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Abstract

While the higher mean Equilibrium Climate Sensitivity (ECS) in CMIP6 has been attributed to more positive cloud feedbacks,

it is unclear what causes the greater range of ECS values across CMIP6 models compared to CMIP5. Here we investigate

the relationship between radiative forcing and cloud feedbacks across the two model generations to explain the very high ECS

values in some CMIP6 models. The relationship is sensitive to the definition of the forcing, particularly in CMIP6, but fixed-

SST simulations suggest the shortwave cloud feedback ($\lambda {SW, cl}$) is anti-correlated with the forcing in CMIP5 and

weakly positively correlated with the forcing in CMIP6. These relationships reflect the cloud adjustment to the forcing, which

is anti-correlated with $\lambda {SW, cl}$ in CMIP5 and positively correlated in CMIP6. Although we are unable to identify

a systematic change across the model generations, we do show that modifications to the land components of climate models are

not responsible for the change in the relationship between cloud adjustments and cloud feedbacks, and that cloud adjustments

are generally driven by low and, especially mid-level clouds. Moreover, models derived from the MOHC and NCAR modeling

centers seem to be responsible for much of the trend between CMIP5 and CMIP6. Our analysis is severely limited by the

available simulations, highlighting the need for targeted simulations to probe the sources of intermodel differences in cloud

adjustments.
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Key Points:7

• The relationship between feedback and forcing is sensitive to the definition of the8

forcing, especially in CMIP69

• Cloud adjustments are anti-correlated with cloud feedbacks in CMIP5 and posi-10

tively correlated in CMIP611

• It is unclear what caused this change, though models derived from a small number12

of modeling centers drive the trend13
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Abstract14

While the higher mean Equilibrium Climate Sensitivity (ECS) in CMIP6 has been15

attributed to more positive cloud feedbacks, it is unclear what causes the greater range of16

ECS values across CMIP6 models compared to CMIP5. Here we investigate the relation-17

ship between radiative forcing and cloud feedbacks across the two model generations to18

explain the very high ECS values in some CMIP6 models. The relationship is sensitive19

to the definition of the forcing, particularly in CMIP6, but fixed-SST simulations suggest20

the shortwave cloud feedback (λSW,cl) is anti-correlated with the forcing in CMIP5 and21

weakly positively correlated with the forcing in CMIP6. These relationships reflect the22

cloud adjustment to the forcing, which is anti-correlated with λSW,cl in CMIP5 and posi-23

tively correlated in CMIP6. Although we are unable to identify a systematic change across24

the model generations, we do show that modifications to the land components of climate25

models are not responsible for the change in the relationship between cloud adjustments26

and cloud feedbacks, and that cloud adjustments are generally driven by low and, espe-27

cially mid-level clouds. Moreover, models derived from the MOHC and NCAR modeling28

centers seem to be responsible for much of the trend between CMIP5 and CMIP6. Our29

analysis is severely limited by the available simulations, highlighting the need for targeted30

simulations to probe the sources of intermodel differences in cloud adjustments.31

1 Introduction32

The models participating in the Sixth Climate Model Intercomparison Project (CMIP6)33

have a much wider range of Equilibrium Climate Sensitivities (ECSs) than the models par-34

ticipating in the Fifth Climate Model Intercomparison Project (CMIP5): in CMIP6 the35

lowest ECS is 1.83K (INM-CM4-8) and the highest ECS is 5.64K (CanESM5), while36

in CMIP5 the corresponding values are 2.08K (INM-CM-4) and 4.65K (MIROC-ESM)37

[Zelinka et al., 2020]. The high end of the CMIP6 models’ ECS in particular has been38

the subject of much concern, as the fact that several CMIP6 models have ECS values39

≥5K raises the possibility of a very high real-world ECS. While the move away from raw40

model weighting and towards combining multiple lines of evidence to assess ECS have41

led both the recent Sherwood et al. [2020] assessment and the IPCC’s AR6 report [Forster42

et al., 2021] to place the upper bound of ECS below 5K, it is still important to understand43

what causes these high sensitivities so that the realism of the models can be evaluated.44
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The high sensitivities also raise the possibility that models contain undiagnosed physical45

processes or feedbacks not included in the evaluation of Sherwood et al. [2020].46

ECS is determined by the radiative forcing due to a doubling of CO2, F, divided by47

the climate feedback parameter, or radiative restoring co-efficient, λ:48

ECS =
F
λ
. (1)

F is typically taken to include both the instantaneous radiative forcing (IRF) from in-49

creased CO2 concentrations and the “rapid adjustments" to the forcing which appear in50

the first few days or weeks after CO2 increase [Hansen et al., 2005; Gregory and Webb,51

2008; Sherwood et al., 2015]. These rapid adjustments come from increases in land tem-52

peratures, decreases in stratospheric temperatures and changes in atmospheric properties53

that are directly forced by CO2 and not mediated by surface temperature changes. The to-54

tal feedback λ includes both clear-sky and cloud feedbacks, with the latter typically taken55

to be the largest source of uncertainty in ECS [e.g., Soden et al., 2008; Vial et al., 2013;56

Forster et al., 2013; Zelinka et al., 2020; Sherwood et al., 2020].57

In addition to a larger range of ECS values, the CMIP6 models also have a higher58

ensemble-mean ECS than the CMIP5 models. The latter was attributed by Zelinka et al.59

[2020] to a more positive ensemble-mean cloud feedback, specifically an increase in the60

shortwave low cloud feedback. This is driven by a more positive extratropical low cloud61

amount feedback and more positive SW low cloud scattering feedback in all regions [see62

also Lutsko et al., 2021]. However, while cloud feedbacks can explain the higher mean63

ECS, the range of total feedbacks is similar in both sets of models, as is the range of net64

(longwave plus shortwave) cloud feedbacks (see Figure 1c of Zelinka et al. [2020]); long-65

wave cloud feedbacks compensate to some extent for shortwave cloud feedbacks. Thus66

feedbacks alone cannot explain the very high ECS CMIP6 models. Instead, as Zelinka67

et al. note, the highest ECS models in CMIP6 combine moderate radiative forcings with68

weak (negative) climate feedback parameters in a way that wasn’t seen in CMIP5: the69

most sensitive models in CMIP5 have both weak climate feedback parameters and weak70

forcings, which limits the maximum ECS values.71

In this study, we investigate the relationships between forcings and cloud feedbacks72

in the two generations of models, seeking to explain why the combination of moderate73

forcing and small climate feedback parameter is present in some CMIP6 models but in74

none of the CMIP5 models. We draw on a number of previous studies that have estimated75
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radiative forcings and feedbacks in CMIP5 and CMIP6 models (see next section) and76

compare different ways of estimating the radiative forcing, which turns out to be essential77

for clarifying the relationships between forcings and feedbacks across model generations.78

Our analysis is severely limited by the small number of fixed Sea Surface Temperature79

(SST) simulations in both ensembles, particularly CMIP5. Fixed-SST simulations are re-80

quired to accurately estimate radiative forcing and to investigate what causes differences in81

radiative forcing between models. Nevertheless, using the available data we do find sug-82

gestive evidence that, rather than systematic differences between model generations, the83

changes are primarily driven by models derived from two modeling centers, which com-84

bine strong, positive cloud feedbacks and large, positive cloud adjustments to forcing.85

2 Data Sources86

The following data sources are used in the analysis:87

• Regression-based forcing estimates, using years 1-140 of abrupt-4XCO2 simula-88

tions, for 24 CMIP5 models and 31 CMIP6 models from Zelinka et al. [2020].89

• Shortwave cloud feedbacks (λSW,cl) for 24 CMIP5 models and 31 CMIP6 models90

from Zelinka et al. [2020].91

• Regression-based forcing estimates, using years 1-20 of abrupt-4XCO2 simulations,92

for 24 CMIP5 models and 29 CMIP6 models from Dong et al. [2020].93

• Fixed-SST forcing estimates for 13 CMIP5 models from Kamae and Watanabe94

[2012].95

• Fixed-SST forcing estimates for 17 CMIP6 models from Smith et al. [2020].96

• Estimates of the Cloud Radiative Effect (CRE) response to CO2 forcing for 1397

CMIP5 models from Kamae and Watanabe [2012]. Note that the CRE response98

is not equivalent to the cloud adjustment to the forcing as it does not account for99

cloud masking [Soden et al., 2004], but it is well correlated with estimates of the100

true cloud adjustment (see next bullet).101

• Estimates of the cloud adjustment to the forcing for six CMIP5 models (CanESM2,102

CCSM4, HadGEM2-A, IPSL-CM5A-LR, MIROC5 and MRI-CGCM3) are calcu-103

lated following the procedure in Zelinka et al. [2013]. These are the models which104
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ran fixed-SST simulations with the ISCCP simulator1 and thus provided the neces-105

sary data to estimate the true cloud adjustment.106

• Estimates of the cloud adjustments to the forcing for 16 CMIP6 models from Smith107

et al. [2020], including 10 CMIP6 models which ran fixed-SST simulations with108

the ISCCP simulator. Note that we have calculated the cloud adjustment for the109

MIROC6 model using the Zelinka et al. [2013] method, which was not included in110

the analysis of Smith et al. [2020].111

• Cloud adjustments in aquaplanet simulations with seven CMIP6 models, calculated112

following the procedure in Zelinka et al. [2013].113

• Meteorological cloud radiative kernels from Myers et al. [2021] based on the Cloud114

Controlling Factor (CCF) analysis developed by Scott et al. [2020] for five CMIP5115

models and seven CMIP6 models. Note that we have calculated a new CCF kernel116

for the CESM2 model as part of this analysis. The required meteorological data for117

the CCF analysis were also downloaded for each model (see Supplementary Text118

for more information).119

See Tables 1 and 2 for complete lists of models and data used in this study. All val-120

ues are linearly scaled for a doubling of CO2, e.g., if 4XCO2 values are reported, we have121

divided them by 2.122

3 Different Forcing Definitions145

We begin by investigating the relationships between different forcing definitions.146

The simplest way of estimating radiative forcing is through so-called “Gregory" regres-147

sions [Gregory et al., 2004], in which the anomalous surface temperature (T) from abrupt-148

4XCO2 simulations is regressed onto the anomalous net top-of-atmosphere (TOA) radia-149

tive flux (R). The forcing is defined as the y-intercept of the regression. Zelinka et al.150

[2020] diagnosed the forcings in CMIP5 and CMIP6 by regressing R onto T for years151

1-140 of the abrupt-4XCO2 simulations in the two sets of simulations. These forcing esti-152

mates (F1−140) are problematic, however, as the radiative feedback λ (the slope of R over153

T) changes over time due to the so-called “pattern effect" in which evolving patterns of154

1 The International Satellite Cloud Climatology Project (ISCCP) simulator translates modeled cloud fields into a distri-

bution of cloud fractions as a joint function of seven cloud-top pressure ranges and seven cloud optical depth ranges, in an

analogous manner to the observational ISCCP cloud product [Klein and Jakob, 1999; Webb et al., 2001]
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Table 1. CMIP5 models used in this study. Where available, regression-based forcing estimates, using

years 1-140 of abrupt-4XCO2 simulations (F1−140), are taken from Zelinka et al. [2020], regression-based

forcing estimates, using years 1-20 of abrupt-4XCO2 simulations (F1−20, are taken from Dong et al. [2020],

fixed-SST forcing estimates (Ff ix) are taken from Kamae and Watanabe [2012], short-wave cloud feedbacks

λSW,cl are taken from Zelinka et al. [2020], estimates of the Cloud Radiative Effect (CRE) response to CO2

forcing are taken from Kamae and Watanabe [2012] and estimates of the cloud adjustment to the forcing are

calculated following the procedure in Zelinka et al. [2013].

123

124

125

126

127

128

129

Model F1−140 [Wm−2] F1−20 [Wm−2] Ff ix [Wm−2] λSW,cl [Wm−2/K] ∆CRE [Wm−2] Cloud adjustment [Wm−2]

ACCESS1.0 2.94 3.56 – 0.07 – –

ACCESS1.3 2.88 3.42 – 0.48 – –

BCC-CSM1.1 3.24 3.78 – -0.15 – –

BCC-CSM1.1-M 3.43 3.85 – -0.02 – –

CanESM2 3.81 4.18 3.67 -0.29 -0.02 0.63

CCSM4 3.48 4.08 4.42 -0.09 0.19 0.96

CNRM-CM5 3.69 3.58 3.93 -0.21 -0.01 –

CSIRO-Mk3.6.0 2.60 3.55 3.10 0.55 -0.73 –

GFDL-CM3 3.01 3.70 – 0.6 – –

GFDL-ESM2G 2.99 3.50 – -0.4 – –

GFDL-ESM2M 3.35 3.58 – -0.49 – –

GISS-E2-H 3.82 4.11 – -0.72 – –

GISS-E2-R 3.73 4.64 – -0.8 – –

HadGEM2-ES 2.91 3.33 3.50 0.29 -0.06 0.37

INM-CM4 2.97 3.06 3.12 -0.02 -0.57 –

IPSL-CM5A-LR 3.10 3.36 3.25 0.61 -0.28 -0.05

IPSL-CM5A-MR 3.31 3.50 – 0.62 – –

IPSL-CM5B-LR 2.65 3.03 – 0.35 – –

MIROC5 4.16 4.38 3.97 -0.38 -0.21 0.61

MPI-ESM-LR 4.10 4.58 4.31 -0.16 0.10 –

MPI-ESM-MR 4.11 4.68 4.30 -0.07 0.12 –

MPI-ESM-P 4.27 4.91 4.30 -0.21 0.11 –

MRI-CGCM3 3.20 3.60 3.60 0.25 -0.42 0.06

NorESM1-M 3.16 3.77 3.48 -0.02 0.04 –
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Table 2. CMIP6 models used in this study. Where available, regression-based forcing estimates, using

years 1-140 of abrupt-4XCO2 simulations (F1−140), are taken from Zelinka et al. [2020], regression-based

forcing estimates, using years 1-20 of abrupt-4XCO2 simulations (F1−20), are taken from Dong et al. [2020],

fixed-SST forcing estimates (Ff ix) are taken from Smith et al. [2020], short-wave cloud feedbacks λSW,cl are

taken from Zelinka et al. [2020], estimates of the cloud adjustment to the forcing are taken from Smith et al.

[2020] and estimates of the cloud adjustment in aquaplanet simulations are calculated following the procedure

in Zelinka et al. [2013]

130

131

132

133

134

135

136

Model F1−140 [Wm−2] F1−20 [Wm−2] Ff ix [Wm−2] λSW,cl [Wm−2/K] Cloud adjustment [Wm−2] Aquaplanet

cloud adjustment [Wm−2]

ACCESS-CM2 3.43 4.12 3.97 0.96 0.70 –

ACCESS-ESM1-5 2.83 3.50 – 0.43 – –

BCC-CSM2-MR 3.11 3.59 – 0.16 – –

BCC-ESM1 3.01 3.47 – 0.02 – –

CAMS-CSM1.0 4.17 4.33 – -0.72 – –

CESM2-WACCM 3.30 4.05 — 1.05 – –

CESM2 3.27 4.18 4.45 0.79 1.07 1.62

CNRM-CM6.1 3.64 3.95 4.00 -0.02 0.22 0.20

CNRM-ESM2.1 2.97 2.79 3.96 0.03 0.12 –

CanESM5 3.68 3.75 3.80 -0.02 0.47 –

E3SM-1.0 3.33 3.68 – 0.75 – –

EC-Earth3-Veg 3.22 4.00 – 0.02 – –

EC-Earth3 3.37 4.00 4.05 0.05 – –

GFDL-CM4 3.19 4.23 4.22 0.03 0.56 0.52

GFDL-ESM4 3.77 3.69 3.87 -0.15 0.62 –

GISS-E2.1-G 3.95 4.00 3.67 -0.63 0.12 –

GISS-E2.1-H 3.53 3.72 – -0.53 – –

HadGEM3-GC31-LL 3.49 3.87 4.05 0.98 0.74 0.58

INM-CM4.8 2.70 3.13 – -0.19 – –

INM-CM5.0 2.92 3.14 — -0.11 – –

IPSL-CM6A-LR 3.58 3.90 4.00 0.14 0.47 0.16

MIROC-ES2L 4.11 3.98 – -0.35 – –

MIROC6 2.65 3.65 3.66 -0.13 0.35 0.47

MPI-ESM1.2-LR 4.22 – 4.17 -0.68 0.70 –

MPI-ESM1.2-HR 3.65 4.18 – -0.41 – –

MRI-ESM2.0 3.43 3.99 3.83 0.12 0.29 0.72

NESM3 3.73 4.91 – -0.15 – –

NorESM2-LM 3.43 4.61 4.07 0.21 0.72 –

NorESM2-MM 3.73 – 4.19 0.30 0.78 –

SAM0-UNICON 3.89 4.18 – 0.89 – –

UKESM1.0-LL 3.61 3.82 3.97 0.93 0.80 –
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Figure 1. a) “Gregory" plot of R against T for a representative CMIP6 model (CESM2). The blue mark-

ers show annual-mean values, the solid line shows a regression of R against T using all 140 years of data,

the dashed line shows a regression using only years 1-20 and the dotted line shows a regression using years

1-20. The regression-based forcings are taken to be the y-intercepts of these lines. The red cross shows the

fixed-SST forcing Ff ix . b) Pearson correlation coefficients (r) between the different forcing estimates for the

CMIP5 data (blue) and the CMIP6 (orange). The empty orange bar in the third column shows r when CNRM-

ESM2.1 (whose abrupt4XCO2 simulation was set up incorrectly, leading to an anomalously small F1−20) is

excluded from the correlation.

137

138

139

140

141

142

143

144

warming cause λ to change over time [Winton et al., 2010; Armour et al., 2013; Geoffroy155

et al., 2013; Andrews et al., 2015; Xie, 2020]. Plots of R against T typically feature in-156

flection points about 20 years after the increase in CO2 and so, since λ decreases over157

time, regressing over all 140 years will typically lead to an underestimate of F (see Figure158

1a). For the same reason, F1−140 will tend to be correlated across models with λ: a model159

with a smaller (less negative) λ will have a smaller F1−140. The correlation between λ and160

F1−140 further implies a correlation between F1−140 and λSW,CL , since λSW,CL is the main161

source of uncertainty in λ. This partly explains the statistically significant correlations be-162

tween F and λSW,CL found in previous studies [see below and e.g., Caldwell et al., 2016].163

To obtain forcing estimates that do not depend so directly on λ, we consider two164

other ways of estimating F. First, F can be diagnosed by regressing T onto R over the165

first 20 years of the abrupt 4XCO2 simulations (F1−20), as used e.g., by Dong et al. [2020].166

These estimates are more independent of the feedback but, as noted by Forster et al. [2016],167

regression-based estimates of F are sensitive to the number of years included in the re-168

gressions: F1−10 will differ slightly from F1−20 (see Figure 1a). Second, we take estimates169
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of F from simulations in which atmospheric CO2 concentrations are quadrupled but SSTs170

are kept fixed (Ff ix). Taking the difference between these and control simulations gives171

forcing estimates that include both the IRF and the rapid adjustments. Ff ix does not de-172

pend explicitly on λ and is not sensitive to the number of years included in the analysis173

provided that the forcing is estimated over a long enough time period for internal variabil-174

ity to be small.175

In CMIP5 these three sets of forcing estimates are well correlated (blue bars in Fig-176

ure 1b), though F1−140 is almost always smaller than F1−20 and Ff ix (Supplemental Figure177

S1). By contrast, in CMIP6 the correlation between F1−140 and F1−20 is much lower and178

the correlation between F1−140 and Ff ix is negligible (orange bars in Figure 1b). F1−20 and179

Ff ix are weakly correlated in CMIP6 (r = 0.36), though note that the 4XCO2 simulations180

with CNRM-ESM2.1 were not set up correctly [Smith et al., 2020], leading to an anoma-181

lously small value of F1−20 (see panel e of Supplemental Figure S1). Without this outlier182

model, the correlation between F1−20 and Ff ix is substantially higher (r = 0.56). Hereafter,183

we take F1−20 and Ff ix to be more representative of models’ true radiative forcings than184

the F1−140 estimates used by Zelinka et al. [2020].185

4 Relationships Between Forcings and Cloud Feedbacks186

We now examine the relationship between F and λSW,CL in the two sets of mod-187

els. Figure 2a-c shows that whatever forcing definition is used, F and λSW,CL are anti-188

correlated in the CMIP5 models [see also Caldwell et al., 2016]. That is, even F1−20 and189

Ff ix , which are not directly related to the long-term value of λ, have an inverse relation-190

ship with λSW,CL in the CMIP5 models.191

By contrast, there is no relationship between F1−20 and λSW,CL in the CMIP6 mod-197

els (r = 0.05, Figure 2e), while Ff ix and λSW,CL are weakly positively correlated (r =198

0.37, Figure 2f). F1−140 and λSW,CL are anti-correlated in CMIP6, as expected from the199

discussion in the previous section (Figure 2d), though the relationship is much weaker200

than in CMIP5 (r = -0.25 versus r = -0.61). Given the discussion above and in Forster201

[2016], we take the fixed SST estimates to be the most reliable forcing estimates, such that202

the forcing and the SW cloud feedback are anti-correlated in CMIP5 and weakly positively203

correlated in CMIP6.204
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Figure 2. Relationships between the SW cloud feedback λSW,cl and different forcing definitions in CMIP5

and CMIP6. a) λSW,cl versus F1−140 in CMIP5, b) λSW,cl versus F1−20 in CMIP5, c) λSW,cl versus Ff ix

in CMIP5, d) λSW,cl versus F1−140 in CMIP6, e) λSW,cl versus F1−20 in CMIP6, f) λSW,cl versus Ff ix in

CMIP6. In all panels the Pearson correlation coefficient r is shown in the upper left and the lines show linear

least-squares regressions.
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195

196

5 Cloud Adjustments and Cloud Feedbacks212

The most likely candidate to explain the relationships between forcings and cloud213

feedbacks is the cloud adjustment to the forcing. Unfortunately, only six modeling centers214

ran fixed SST simulations with ISCCP simulators in CMIP5, which are needed to estimate215

the cloud adjustments using the Zelinka et al. [2013] methodology. For this reason, we216

have also used the change in Cloud Radiative Effect (∆CRE), as diagnosed for 13 CMIP5217

models by Kamae and Watanabe [2012], to investigate the relationships between cloud218

adjustments, total forcings and cloud feedbacks. 10 CMIP6 models ran fixed SST simula-219

tions with the ISCCP simulator, and Smith et al. [2020] estimated the forcing for six addi-220

tional models using other methods (the approximate partial radiative perturbation method221

and the offline monthly-mean partial radiative perturbation method).222

–10–



Confidential manuscript submitted to JGR-Atmospheres

1.5 1.0 0.5 0.0 0.5 1.0 1.5
cloud adjustment or CRE [Wm 2]

3.0

3.5

4.0

4.5
fix

ed
 S

ST
 fo

rc
in

g 
[W

m
2 ]

r = 0.89
r = 0.81

a) CMIP5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
cloud adjustment or CRE [Wm 2]

1.0

0.5

0.0

0.5

1.0

SW
 c

lo
ud

 fe
ed

ba
ck

[W
m

2 /K
]

r = -0.79
r = -0.58

b)

cloud adjustment
CRE

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cloud adjustment [Wm 2]

1.0

0.5

0.0

0.5

1.0

SW
 c

lo
ud

 fe
ed

ba
ck

[W
m

2 /K
]

r = 0.59

d)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
cloud adjustment [Wm 2]

3.0

3.5

4.0

4.5

fix
ed

 S
ST

 fo
rc

in
g 

[W
m

2 ]

r = 0.71

c) CMIP6

Figure 3. Relationships between cloud adjustments, the fixed-SST forcings and the SW cloud feedbacks. a)

Fixed SST forcing Ff ix versus the cloud adjustment in CMIP5 (blue circles), and versus the change in CRE

in fixed-SST CMIP5 simulations (orange crosses). b) SW cloud feedback λSW,cl versus the cloud adjustment

in CMIP5 (blue circles), and versus the change in CRE in fixed-SST CMIP5 simulations (orange crosses).

c) Fixed SST forcing Ff ix versus the cloud adjustment in CMIP6. d) SW cloud feedback λSW,cl versus the

cloud adjustment in CMIP6. The Pearson correlation coefficients are indicated on each panel and the lines

show linear least-squares regressions.
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211

The cloud adjustment is positively correlated with the forcing and anti-correlated225

with the SW cloud feedback in CMIP5, consistent with the results of the previous section226

(Figure 3a-b). IPSL-CM5A-LR, which has the largest SW cloud feedback, has a small,227

negative cloud adjustment, while CCSM4 has the largest cloud adjustment and a nega-228

tive SW cloud feedback (see Table 1). This anti-correlation was also noted for CMIP5 by229

Chung and Soden [2015], though they examined the CRE responses for both the adjust-230

ments and the feedbacks in CMIP5, not the “true" cloud adjustments and cloud feedbacks.231

In CMIP6 the cloud adjustment is positively correlated with both the fixed-SST forcing232

estimates (Figure 3c) and the SW cloud feedbacks (Figure 3d). Interestingly, in CMIP6233
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Figure 4. Cloud adjustment versus IRF in the 16 CMIP6 models analyzed by Smith et al. [2020]. The

Pearson correlation coefficient is given in the top right and the line shows the linear least-square regression.
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MRI-CGCM3 |  0.06 Wm 2

MIROC5 |  0.61 Wm 2

IPSL-CM5A-LR |  -0.05 Wm 2

CanESM2 |  0.63 Wm 2

HadGEM2-A |  0.37 Wm 2

CCSM4 |  0.96 Wm 2
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Figure 5. Spatial maps of the net cloud adjustments in the six CMIP5 models which ran fixed-SST simu-

lations with the ISCCP simulator. The global-mean net cloud adjustment is given above each panel, and the

models are ordered by the size of their adjustment. Values outside the colorbar range are shaded in gray.

243

244

245

the cloud adjustment is anti-correlated with the IRF (r = -0.43, Figure 4). We have not234

investigated this relationship further, and note that Andrews et al. [2019] mentioned the235

possibility of such an anti-correlation in their investigation of the causes of higher sensi-236

tivity in the HadGEM3-GC3.1-LL climate model. Anti-correlation between IRF and cloud237

adjustments may explain why the relationships between the SW cloud feedback and the238

total forcing metrics are weak in CMIP6, even though there is a more robust relationship239

between λSW,cl and the cloud adjustments: since the total forcing is largely set by the sum240

of the IRF and the cloud adjustment, anti-correlation between these may reduce the corre-241

lation between the total forcing and the SW cloud feedback.242

6 What Changed Between CMIP5 and CMIP6?252

The relatively small number of fixed-SST simulations, especially in the CMIP5253

archive, makes it difficult to uncover systematic differences between the two generations254

of models. Moreover, cloud adjustments remain poorly understood compared to cloud255

feedbacks, though it is known that they are driven by land-sea circulations and changes256
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CanESM5 |  0.51 Wm 2

CESM2 |  1.33 Wm 2

CNRM-CM6-1 |  0.13 Wm 2CNRM-ESM2-1 |  0.08 Wm 2

GFDL-CM4 |  0.52 Wm 2 HadGEM3-GC31-LL |  0.78 Wm 2

IPSL-CM6A-LR |  0.32 Wm 2

MIROC6 |  0.47 Wm 2

MRI-ESM2-0 |  0.27 Wm 2

UKESM1-0-LL |  0.83 Wm 2
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Figure 6. Spatial maps of the net cloud adjustments in the ten CMIP6 models which ran fixed-SST simu-

lations with the ISCCP simulator. The global-mean net cloud adjustment is given above each panel, and the

models are ordered by the size of their adjustment. Values outside the colorbar range are shaded in gray. Note

that in some cases the global-mean cloud adjustments differ from the values in Table 2, which are the average

of the three methods used by Smith et al. [2020] to estimate cloud adjustments, whereas the values in this

figure only come from the Zelinka et al. [2013] method.
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in atmospheric stability, among other things. There is also a diverse range of cloud adjust-257

ment patterns across the models, and comparing the cloud adjustments in the six modeling258

centers which provided fixed-SST simulations in both CMIP5 and CMIP6 (CCCMA, IPSL259

NCAR, MIROC, MOHC, MRI) shows that the patterns of cloud adjustments are more260

similar for models from the same modeling center than for models from the same genera-261

tion (compare relevant panels in Figures 5 and 6).262

Changes in cloud adjustments are also not obviously connected to changes in cloud263

feedbacks: λSW,cl increased substantially in the two NCAR models (by +0.88Wm−2/K)264

and in the two MOHC models (by +0.69Wm−2/K), increased to a lesser extent in the265

MIROC and CCCma models (by +0.25Wm−2/K and +0.07Wm−2/K, respectively) and266

decreased in the MRI and IPSL models (by -0.13Wm−2/K and -0.47Wm−2/K, respec-267

tively), while the largest increase in cloud adjustment is seen between the two IPSL mod-268

els (+0.52Wm−2), then between the two MOHC models (+0.37 Wm−2), between the MRI269

models (+0.23 Wm−2) and the NCAR models (+0.11 Wm−2). The net cloud adjustment270

decreased by -0.16Wm−2 between the CCCMa models and by -0.25Wm−2 between the271

MIROC models (Figures 5 and 6). Hence changes in cloud adjustments cannot be pre-272

dicted by changes in cloud feedbacks.273

Nevertheless, we have worked with the available data to explore potential explana-280

tions for the changes in behavior between the model generations. The first possibility we281

investigated is that modifications to the land components of the models are responsible282

for the changes between generations. We have also decomposed the net cloud adjustments283

into contributions from different cloud types and used a cloud controlling factor analysis284

to probe the causes of changes in low clouds. While neither analysis has shown conclu-285

sively what changed between the model generations, these calculations have allowed us286

to rule out certain possibilities and to identify key features of the changes between model287

generations.288

6.1 Changes in land models289

Cloud adjustments are partly the result of circulations which arise due to differen-290

tial warming of land surfaces and the ocean [assuming SSTs are kept fixed Andrews et al.,291

2012; Zelinka et al., 2013]. Between CMIP5 and CMIP6, the land components of many292
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Figure 7. a) Cloud adjustments in the aquaplanet CMIP6 simulations versus the SW cloud feedback. The

blue line shows a linear least-squares regression. b) Cloud adjustments in the aquaplanet CMIP6 simulations

versus the true cloud adjustments calculated from the fixed SST simulations. The blue line shows a linear

least-squares regression.c) Land and ocean contributions to the cloud adjustments in the comprehensive sim-

ulations. CMIP5 models are denoted by the open blue circles and CMIP6 models by the red crosses. The

diagonal black line shows the 1:1 line.
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models were upgraded, which could drive changes in cloud adjustments between the gen-293

erations.294

We have investigated this possibility in two ways. First, we calculated the cloud ad-295

justments in aquaplanet simulations with seven CMIP6 models which outputted ISCCP296

data. These cloud adjustments are independent of land models, and can be compared with297

the results of Ringer et al. [2014], who found an anti-correlation between the CRE adjust-298

ments and the CRE responses in aquaplanet simulations with a subset of CMIP5 mod-299

els. In CMIP6, the cloud adjustments are positively correlated with λSW,CL in the aqua-300

planet simulations (r = 0.59, Figure 7a), and these adjustments are also well correlated301

with the cloud adjustments in the Earth-like simulations (r = 0.81, Figure 7b). Qin et al.302

[2022] found a similar change in the sign of the relationship between the CRE responses303

to CO2 forcing and the CRE feedbacks in the CMIP5 and CMIP6 aquaplanet simulations304

(see their Table 1).305

Second, we decomposed the total cloud adjustments in the comprehensive model306

simulations into contributions over land regions and over ocean regions (Figure 7c). There307

are no systematic differences in the magnitudes of the cloud adjustments over land be-308

tween the generations, though comparing the cloud adjustments in the six modeling cen-309

ters which provided fixed-SST simulations in both CMIP5 and CMIP6 shows that the ad-310

justment over ocean is always larger in CMIP6 than in the corresponding CMIP5 model.311

The CMIP6 models cluster more closely to the 1:1 line than the CMIP5 models.312

Together, these two lines of evidence strongly suggest that changes in land models313

are not responsible for the differences in cloud adjustments between the model genera-314

tions, which are instead likely driven by changes in atmospheric physics.315

6.2 Contributions of different cloud types320

To better understand the nature of the cloud adjustments, we decomposed the net321

adjustments into the longwave and shortwave components (LW and SW, respectively; left322

panels of Figure 8). The SW component is substantially larger than the LW component in323

all of the models, with the exception of IPSL-CM5A-LR, suggesting that low and/or mid-324

level clouds are primarily driving the adjustments. This is confirmed in the right panels of325

Figure 8, in which the adjustments are decomposed into contributions from low clouds326

(bottom two levels of the Zelinka et al. [2013] cloud kernels, 900-740hPa mid-points),327
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Figure 8. a) Decomposition of the total cloud adjustment into longwave (LW, blue) and shortwave (SW,

orange) in the CMIP5 models. b) Decomposition of the SW cloud adjustment into contributions from low

(green), mid-level (red) and high (purple) clouds in the CMIP5 models. c) Same as panel a) but for the

CMIP6 models. d) Same as pandel b) but for the CMIP6 models.
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mid-level clouds (levels 3 and 4 of the cloud kernels, 620-500hPa mid-points) and high328

clouds (375hPa mid-point and above). Mid-level clouds are responsible for most of the329

intermodel differences in cloud adjustments, with smaller contributions from low clouds.330

The high cloud contribution is generally weak, except for in the IPSL models, particularly331

IPSL-CM5A-LR. We have not investigated why high clouds are so important for the ad-332

justment in these models.333

While it is difficult to further determine what causes intermodel variations in mid-334

level cloud adjustments, we are able to provide some insight into the low cloud adjust-335

ments. This is helpful because the three CMIP6 models with the highest ECS values in-336

cluded here – CESM2, HadGEM3-GCM31-LL and the UKESM1-0-LL – have the three337

largest low cloud adjustments. Cloud Controlling Factors (CCFs) can be used to investi-338

gate how changes in governing meteorological conditions contribute to the large low cloud339

adjustments in these models (Klein et al. [2018], see Supplemental Material for more de-340

tails), and the residual between the true cloud adjustments and the CCF-derived adjust-341

ments can be taken as an estimate of CO2’s direct effect on low clouds. [As part of this342

analysis we have calculated the low cloud adjustments following Scott et al. [2020], which343

slightly modifies the Zelinka et al. [2013] method to remove the effects of mid- and high-344

level cloud masking. These estimates of the adjustments are qualitatively similar to the345

Zelinka et al.-derived estimates, but provide a more accurate estimate of the CO2 direct346

effect.]347

Figure 9 compares the true cloud adjustments in all of the available models, the355

CCF-derived low cloud adjustment estimates, and our estimates of the CO2 direct effects.356

Also shown are the contributions of changes in Estimated Inversion Strength (EIS) to the357

CCF cloud adjustment. The complete CCF breakdown is shown in Supplemental Figure358

S2.359

In all of the models, the CCF analysis suggests the low cloud adjustment will be360

negative (blue bars in panels a and b of Figure 9), and that this is largely driven by EIS361

changes – since surface temperatures are fixed, radiative heating in the free troposphere362

increases EIS, which in turn increases low cloud cover. Large CO2 direct effect contribu-363

tions counter the EIS component, leading to the generally positive low cloud adjustments364

(red bars in panels a and b of Figure 9). The inferred low cloud reduction as a direct ef-365

fect of increasing CO2 is consistent with theory and large eddy simulations, establishing366
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Figure 9. a) Results of cloud controlling factor anaysis for available CMIP5 data. Black bars show the

“true" low cloud adjustments, calculated following Scott et al. [2020], blue bars show the CCF-derived cloud

adjustments, orange bars show the EIS contribution to the CCF-derived cloud adjustments and red bars show

the estimates CO2 direct effect (difference between black and blue bars). b) Same as a) but for the avail-

able CMIP6 data. c) Differences between CMIP6 and CMIP5 models from the same modeling centers. The

method for estimating the errorbars is described in the Appendix, and the error bars in panel c are calculated

by adding the individual errors of two given models in quadrature.
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confidence in our method for diagnosing its contribution to the overall low cloud adjust-367

ment [Bretherton, 2015; Tan et al., 2017; Sherwood et al., 2020]. Increasing CO2 reduces368

cloud-top radiative cooling and hence the turbulent mixing within the boundary layer, re-369

sulting in reduced stratiform cloudiness.370

Comparing the results for the five modeling center which provided the required371

data for both the CMIP5 and CMIP6 models (CCF kernels are not available for the IPSL-372

CM5A-LR model) shows large variations in the intergenerational differences (Figure 9c).373

For example, the two models with the largest increases in low cloud adjustment, CESM2374

and HadGEM, achieve this in different ways. In CESM2 the sensitivity to EIS actually in-375

creases – implying a more negative cloud adjustment – but this is countered by a much376

stronger CO2 direct effect. In HadGEM3 the sensitivity to EIS decreases and the sensi-377

tivity to CO2’s direct effect increases, both contributing approximately equally to the total378

increase in the cloud adjustment.379

7 Summary and Discussion380

In this study, we have investigated the causes of the larger range of ECS values in381

CMIP6 compared to CMIP5. This required clarifying the definition of the radiative forc-382

ing: estimates of the forcing obtained by performing Gregory regressions for years 1-140383

of abrupt-4XCO2 simulations are influenced by models’ long-term feedbacks and tend to384

exhibit an apparent anti-correlation between the forcing and the SW cloud feedback. In-385

stead, using more accurate estimates of the forcing derived from fixed-SST simulations,386

we found that the cloud adjustment to the forcing and the SW cloud feedback are anti-387

correlated in CMIP5, while in CMIP6 the relationship is weakly positive. In turn, the SW388

cloud feedback and the forcing are negatively correlated in CMIP5 and weakly positively389

correlated in CMIP6 (the cloud adjustment is anti-correlated with the IRF in CMIP6,390

weakening the relationship between the forcing and the SW cloud feedback). The anti-391

correlation in CMIP5 damps the high end of ECS, as a model with a strong positive cloud392

feedback will have a smaller cloud adjustment and reduced forcing, whereas the CMIP6393

models with strong cloud feedbacks and large cloud adjustments have high ECS values394

over 5K.395

We have been unable to identify a single factor responsible for the change between396

the two model generations, though our analysis was limited by the small number of fixed397
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SST simulations available for probing cloud adjustments. By calculating the cloud adjust-398

ments for aquaplanet simulations with CMIP6 models, we have shown that differences in399

atmospheric physics, and not in the the representation of land processes, are likely respon-400

sible for the opposite behavior in the two model generations. Furthermore, the differences401

in cloud adjustments across models are primarily driven by low and, especially, mid-level402

clouds, with the exception of the IPSL models for which high clouds make a larger con-403

tribution. We have used a Cloud Controlling Factor analysis to investigate the low cloud404

adjustments, and found that a negative EIS and a positive contribution from the CO2 di-405

rect effect are the largest two components of the overall low cloud adjustment. However,406

these two factors vary substantially across models and there are no clear trends between407

the model generations.408

Many of the trends identified here are driven by a small number of models: CESM2,409

HadGEM3-GCM31-LL and UKESM1-0-LL all have large, positive SW cloud feedbacks410

and cloud adjustments. Most of the other CMIP6 models with ECS values above 5K were411

originally derived from either the NCAR or MOHC models (e.g., E3SM and CIESM), as412

is UKESM1-0-LL. Knutti et al. [2013] has shown that models derived from the same orig-413

inal model can retain similarities for several generations, thus it may be that all the mod-414

els originally derived from those two modeling centers experienced a change in the sign415

of the relationship between cloud adjustments and cloud feedbacks between CMIP5 and416

CMIP6, which expanded the range of ECS between the model generations. An important417

exception, which merits further study, is the CanESM5 model, which has an ECS above418

5K, a moderate cloud adjustment, a relatively large total forcing and a relatively small net419

feedback that is largely driven by the LW cloud feedback, not the SW cloud feedback. In420

general, we believe that the results presented above argue for more simulations designed to421

probe the mechanisms of cloud adjustments and hence improve our understanding of what422

caused the greater range of ECS values in the CMIP6 generation of models.423
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1. Text S1

2. Figures S1 and S2

Introduction The supplementary material contains a description of the Cloud Control-

ling Factor analysis in test S1 and two figures. Figure S1 compares different methods of

estimating radiative forcing in CMIP5 and CMIP6. Figure S2 breaks down the different

components of the Cloud Controlling Factor analysis.
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Text S1. Cloud Controling Factor Analysis To investigate how changes in govern-

ing meteorological conditions contribute to low cloud adjustments, we perform a cloud

controlling factor (CCF) analysis [e.g., Klein et al., 2018; Scott et al., 2020]. The basic

assumption of a CCF analysis is that the change in some property of low clouds, for

example the low cloud radiative effect, R, in response to a forcing (∆, taken here to be

abrupt 4xCO2 forcing), can be represented as a first-order Taylor expansion in CCFs, xi:

∆R =
∑
i

∂R

∂xi
∆xi. (1)

Above, the partial derivatives are the sensitivity of R to respective CCFs (i.e. mete-

orological cloud radiative kernels) and are assumed to be time-scale invariant. The ∆xi

terms are the change in the CCF fields due to the forcing. According to Klein et al.

[2018], the six meteorological CCF fields with the biggest impact on low clouds are sea

surface temperature (SST), estimated inversion strength (EIS), horizontal temperature

advection (Tadv), 700 hPa pressure velocity (ω700), 700 hPa relative humidity (RH700),

and wind speed (WS), with SST and EIS having considerably more influence than the

others. Hence the change in low cloud radiative effect can be decomposed into a sum of

six terms:

∆R =
∂R

∂SST
∆SST +

∂R

∂EIS
∆EIS +

∂R

∂Tadv
∆Tadv +

∂R

∂ω700
∆ω700 +

∂R

∂RH700
∆RH700 +

∂R

∂WS
∆WS.

(2)

In this study, we focus on low cloud adjustments, so ∆SST=0 and all other variables

are taken from FixedSST experiments.
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Meteorological Cloud Radiative Kernels

We use meteorological cloud radiative kernels (∂R/∂xi) from Myers et al. [2021], as

well as a new kernel for CESM2 that was not included in their analysis. These kernels

were calculated from 20 (for CMIP5) or 50 years (for CMIP6) of a preindustrial control

GCM simulation according to the method presented in Scott et al. [2020] and provide

the GCM-simulated low cloud-induced change in TOA radiative flux per unit change in

cloud-controlling factor xi. Note that due to data limitations, the CESM2 meteorological

cloud radiative kernel was calculated from 50 years of a historical simulation. These data

are presented on a 5◦ × 5◦ grid from 60◦S-60◦N and have units of W m −2 dx−1
i .

Meteorological Predictor Fields

We use monthly mean output from a control and an abrupt4xCO2 FixedSST experi-

ment for CMIP5 (sstClim & sstClim4xCO2, respectively) and CMIP6 (piClim-control &

piClim-4xCO2, respectively). We calculate ∆xi by taking the thirty-year average differ-

ence between the abrupt forcing run and the control run.

ω700, RH700, and WS are standard GCM outputs. Following Scott et al. [2020], EIS

can be calculated from monthly mean GCM outputs as:

EIS = LTS − Γ850
m (Z700 − ZLCL), (3)

where LTS is lower-tropospheric stability (the difference in potential temperature between

700 hPa and the surface), Γ850
m is the moist-adiabatic lapse rate at 850 hPa, Z700 is the

height of the 700 hPa pressure level relative to the surface, and ZLCL is the height of the

lifting condensation level relative to the surface.

D R A F T July 20, 2022, 9:03am D R A F T



N. J. LUTSKO, M. T. LUONGO, C. J. WALL: CLOUD ADJUSTMENTS AND CLOUD FEEDBACKSX - 5

Similarly, we follow Scott et al. [2020] to calculate Tadv as:

Tadv = − U10

a cos(φ)

∂SST

∂λ
− V10

a

∂SST

∂φ
, (4)

which uses a second-order centered finite-difference scheme where U10 and V10 are the

zonal and meridional 10m wind components, φ is latitude, λ is longitude, and a is Earth’s

mean radius.

Note that the NCAR model does not output 10m wind components. As a work-around,

we follow Vimont et al. [2009] and Hwang and Chung [2021] who estimate the 10m wind

vectors by taking the average of the 1000 hPa and 850 hPa level winds and multiply it by

80%. In addition, near-surface wind speed is not output by CCSM4. Unfortunately the

monthly average surface wind speed, found by taking the average of surface wind speeds

at each time step over the course of the month, is not the same as taking the magnitude

of the monthly average surface wind vector. Because WS is not a major driver of cloud

adjustment [e.g. Klein et al. [2018] and results from other models below], we set the ∆WS

term to NaN in our CCSM4 calculations and proceed.

Error Estimation

We calculate 95% uncertainty based on Myers et al. [2021]. At each grid box, we give

the 95% confidence interval as,

∂R

∂xi
∆xi ± t

√
∆xT

i C∆xi

√
Nnom

Neff

=
∂R

∂xi
∆xi ± δ. (5)

Above, C is the covariance matrix of regression coefficients at each grid cell from Myers

et al. [2021]’s meteorological radiative kernels, ∆xi is a 7× 1 vector of the six ∆xi values
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and a one (note that we set the SST value to 0), and Nnom/Neff is the ratio of the nominal

to effective number of monthly values. For Nnom, we note that Myers et al. [2021] used

data from July 1983-December 2018 and for Neff we divide Nnom by 5 following Myers

et al. [2021]’s rule of thumb that “we find that one out of five points is independent

temporally.” t is the critical value of the Student’s t-test at the 95% significance level with

Neff − 6 degrees of freedom. Note that in Myers et al. [2021], they consider the critical t

value for Neff − 7 degrees of freedom, but because we remove SST from our analysis we

consider only six.

This gives us an uncertainty at each grid cell. We calculate the global mean (denoted

by angular brackets) error for each model (s) as,

〈∂R
∂xi

∆xi〉 ±

√√√√∑k(δkwk)2

(
∑

k wk)2

√√√√N∗
nom

N∗
eff

= 〈∂R
∂xi

∆xi〉 ± s, (6)

where δk is the uncertainty in the k-th grid box, wk is the cosine of φ, and N∗
nom/N

∗
eff

is the ratio of nominal to effective number of 5◦ × 5◦ grid boxes, taken here to be 30 per

Myers et al. [2021]’s rule of thumb: “around 1 out of 30 grid boxes is independent.”

Lastly, we take the global mean error for each model and calculate the multi-model

mean error as,

sMMM =
(√

s21 + . . .+ s2n

)
/n, (7)

where n is the number of models (in our case, six for CMIP5 and seven for CMIP6).
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Figure S1. Comparisons of different methods of estimating radiative forcing in CMIP5 and

CMIP6. a) F1−140 versus F1−20 in CMIP5, b) F1−140 versus Ffix in CMIP5, c) F1−20 versus Ffix

in CMIP5, d) F1−140 versus F1−20 in CMIP6, e) F1−140 versus Ffix in CMIP6, f) F1−20 versus

Ffix in CMIP6. In all panels the Pearson correlation coefficient r is shown in the upper left and

the black lines show the 1:1 line. The text in brackets in panel f) gives the Pearson correlation

coefficient when CNRM-ESM2.1 (the outlier with anomalously small F1−20) is excluded from the

correlation.
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Figure S2. Results of the CCF analysis. The top panel show the global-mean values of

the meteorological cloud radiative kernels for the CMIP5 and CMIP6 models (blue and red

circles, respectively), which demonstrates how the sensitivity of the CRE R to the meteorological

controling factors varies between the model generations. The middle panel shows the global-mean

responses of the meteorological controling factors to quadrupling of CO2, in units of per standard

deviation. The bottom panel shows the total change in CRE ∆R estimated from the CCF analysis

(“Sum”), as well as the contributions from the individual CCF fields. The error bars show the

multimodel mean error.
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