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Abstract

Earthquake-triggered slow-moving landslides are not well studied mainly due to lack of high-resolution in-situ geodetic observa-
tions both in time and space. Satellite-based interferometric synthetic aperture radar (InSAR) has shown potential in landslides
applications, however, it is challenging to detect earthquake-triggered slow-moving landslides over large areas due to the ef-
fects of post-seismic tectonic deformations, atmospheric delays, and other spatially propagated errors (e.g., decorrelation noises
caused unwrapped errors). Here, we present a novel InSAR phase-gradient-based time-series approach to detect slow-moving
landslides that triggered by the 2016 Mw 7.8 Kaikōura earthquake. 21 earthquake-triggered large (> 0.1 km 2) slow-moving
landslides are detected and studied. Our results reveal decaying characteristics of the temporal evolutions of these landslides,
that averagely after 3.9 years since the earthquake, their postseismic velocity will decay 90% and close to pre-seismic level. Our
study opens new perspectives for the research of the mass balance of earthquakes and helps reduce associated hazards.
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Key Points:  

• A new InSAR phase-gradient based time-series approach used to detect earthquake-
triggered slow-moving landslides 

• 21 slow-moving landslides triggered by the 2016 Mw 7.8 Kaikōura earthquake are 
detected and monitored 

• Our results reveal decaying characteristics of post-seismic velocity of the earthquake-
triggered slow-moving landslides 

 
Abstract Earthquake-triggered slow-moving landslides are not well studied mainly due to lack of 
high-resolution in-situ geodetic observations both in time and space. Satellite-based 
interferometric synthetic aperture radar (InSAR) has shown potential in landslides applications, 
however, it is challenging to detect earthquake-triggered slow-moving landslides over large areas 
due to the effects of post-seismic tectonic deformations, atmospheric delays, and other spatially 
propagated errors (e.g., decorrelation noises caused unwrapped errors). Here, we present a novel 
InSAR phase-gradient-based time-series approach to detect slow-moving landslides that triggered 
by the 2016 Mw 7.8 Kaikōura earthquake. 21 earthquake-triggered large (> 0.1 km2) slow-moving 
landslides are detected and studied. Our results reveal decaying characteristics of the temporal 
evolutions of these landslides, that averagely after 3.9 years since the earthquake, their post-
seismic velocity will decay 90% and close to pre-seismic level. Our study opens new perspectives 
for the research of the mass balance of earthquakes and helps reduce associated hazards. 
 
 
Plain Language Summary Large shallow earthquakes in mountainous regions can trigger 
widespread landslides that cause major damage to infrastructure. Such landslides are typically 
identified using aerial imagery, optical satellite images, or fieldwork as such landslides tend to be 
associated with ‘fresh’ scars and deposits of debris. However, there are also another type of 
landslides, that triggered by earthquake but move slowly, are difficult to find and monitor. 
Satellite-based interferometric synthetic aperture radar (InSAR) provides an opportunity to 
monitor slow-moving landslides, however, given the weak and localized signals in the InSAR 
maps, the landslide displacements are easily contaminated by other signals in InSAR. To address 
this problem, we developed a new InSAR-phase-gradient based time-series method. Using our 



new method, we find 21 large earthquake-triggered slow-moving landslides with average area of 
0.84 km2. Through studying the spatio-temporal displacements of these landslides, we find their 
movements gradually recover to pre-seismic level in the years after the earthquake. Our study 
helps us to better understand the mechanism of earthquake triggered landslides, and thus help to 
reduce associated hazards. 
 

1. Introduction 
 
Large shallow earthquakes in tectonically active mountain chains can trigger widespread 
landslides that cause major damage to properties and infrastructure (e.g., Hovius, Stark and Allen 
1997, Massey et al. 2018, Bontemps et al. 2020). Although most  earthquake-triggered landslides 
initiate as a result of the inertia forces from the earthquake acting on the slope (Keefer 1984, Jibson 
et al. 1994, Huang and Li 2014, Fan et al. 2019), others may continue to move slowly (e.g., 
millimeter to several meters per year) after the shaking from the earthquake attenuates and can 
continue to move for months to decades (Lacroix et al. 2014). Various mechanisms of landsliding 
under seismic forcing have been presented: perturbation of the basal friction during and after the 
shaking (Moro et al. 2011, Lacroix et al. 2014); co-seismic weakening of substrate material 
(Dadson et al. 2004); increased pore water pressure due to the crushing of the grains in the shearing 
plane (Jibson et al. 1994, Wasowski et al. 2002). These mechanisms, however, are still not well 
validated due to lack of high-resolution in-situ geodetic observations both in space and time. While 
there are a few examples where Global Positioning Systems (GPS) monitoring have been used to 
track slow-moving landslides following earthquakes (Lacroix et al. 2014, Bontemps et al. 2020),  
it is not a routine method that can be used to monitor earthquake-triggered landslides.   
 
The movement patterns of rapid (typically >1.8 m/hour, Hungr et al., 2014) co-seismic landslides 
are difficult to monitor in near real time due to their velocity of movement and disaggregated 
nature of their debris – as most tend to be debris and rock avalanches and flows (e.g., Keefer, 1984; 
Massey et al., 2021). The movement patterns of coherent (Keefer, 1984), co-seismic landslides 
during and after an earthquake are also difficult to monitor using in-situ geodetic techniques as the 
location of where the landslide might occur needs to be known prior to the earthquake, to allow 
equipment to be installed. Even if a landslide is pre-existing and monitoring equipment is installed 
on it, to capture its reactivation during an earthquake, requires an earthquake – with ground shaking 
large enough to trigger movement – to occur during the lifetime of the monitoring. Remote sensing 
datasets combined with digital image correlation and deep learning techniques can be used to 
derive landslide movement patterns from pre- and post-landslide movement, optical image and 
lidar surveys (e.g., Senogles et al., 2022), however, such techniques lack the temporal resolution 
to identify the changes in landslide movement patterns over time, therefore not allowing patterns 
of movement to be linked to their causes. As a result of these constraints: 1) the movement patterns 



at high temporal resolutions of coherent landslides, in response to, and after strong ground shaking 
remain largely unknown; and 2) the mechanisms governing such displacements are poorly 
understood. Most coherent slides and slumps are typically assumed to displace via ‘sliding block’ 
style mechanisms (e.g., Newmark 1965). Such mechanisms assume sliding occurs along a plane, 
with or without internal deformation of the sliding mass (e.g., Makdisi and Seed, 1978). In such 
analyses, permanent slope displacement occurs when the acceleration of the slope, caused by the 
earthquake inertia forces, is larger than the yield acceleration of the slope. Movement of the 
landslide is assumed to stop when the earthquake accelerations are below the yield acceleration. 
However, movement of the landslide could continue if for example, the coseismic displacement 
causes a change in the strength of the moving mass and/or a change in pore-water pressures within 
the mass. Earthquake-induced landslides, could therefore in theory, continue to move after an 
earthquake.  
 
Satellite-based interferometric aperture radar (InSAR) techniques are increasingly being used to 
monitor slow-moving landslides (Schlögel et al. 2015, Sun et al. 2015, Dai et al. 2016, Bekaert et 
al. 2020), over large areas (e.g., ~ 250 km) with high spatial resolution (e.g., ~ 10 m). However, it 
is still challenging to use current InSAR techniques to detect earthquake-triggered slow-moving 
landslides because of at least three reasons: 1) the locations of these landslides are often unknown 
and their distributions can cover large areas (e.g., up to 100 km away from the epicenter); 2) the 
weak (e.g., several centimeters per year) and local (e.g., ~ 1 km) landslide deformations would be 
largely contaminated by atmospheric delays (e.g., Cao, Jónsson and Li 2021, Cao et al. 2017) and 
post-seismic deformation; and 3) possible unwrapping errors mainly caused by decorrelation 
noises particularly over dense vegetation regions (e.g., Yunjun, Fattahi and Amelung 2019), 
usually cause large uncertainties or even wrong values in InSAR-derived time-series results (e.g., 
velocity map or time-series displacements), especially when the pixel of interest is far away from 
the reference pixel due to the spatially propagated characteristics of the unwrap errors. 
 
To address the above-mentioned problems for hunting and monitoring earthquake-triggered slow-
moving landslides over large areas, here we propose a new InSAR phase-gradient based time-
series approach. We use the phase gradient directly calculated from wrapped interferograms, and 
we estimate time-series solutions of the displacement-gradients by using multi-temporal phase-
gradients from those interferograms with short-baselines. We identify earthquake-triggered slow-
moving landslides by analyzing the displacement-gradient velocities before and after the 
earthquake, and we explore temporal evolutions of these landslides using time-series solutions of 
the displacement-gradients. Advantages of our new method include: 1) effects of those spatial 
correlated large-scale signals (e.g., atmospheric delays and post-seismic deformations) are 
minimized; 2) our results are not affected by unwrap errors and the quality of the time-series 
products (e.g., gradient velocities, or time-series solutions of displacement-gradients) can be well 



evaluated; and 3) temporal evolutions of the landslides can be analyzed directly from time-series 
of the gradient.  
 
Using the new method, we identify and investigate slow-moving landslides triggered by the 14 
November 2016 Mw 7.8 Kaikōura earthquake, New Zealand, which is one of the most complex 
earthquakes ever recorded (e.g., Hamling et al. 2017, Xu et al. 2018). More than 29,000 mapped 
landslides were triggered by the Kaikōura earthquake over an area of about 10,000 km2. Most were 
mapped using aerial imagery, optical satellite images, and DEM differences, and most comprised 
rapid debris and rock avalanches (Massey et al. 2018, Massey et al. 2020). In contrast to these 
landslides, many large coherent landslides were already present on the slopes, which were strongly 
shaken by the 2016 Kaikōura earthquake. Most of these landslides can be classified as rock slides 
or slumps (Hungr et al., 2014), but their activity rates before, during and after the Kaikōura 
earthquake were largely unknown. Given the ‘coherent’ morphology of these landslides it could 
be assumed that they move relatively slowly (Hunger et al., 2014), or rapidly over very short time 
periods, thus giving the impression that they are either dormant or creeping, and/or move 
episodically in response to strong earthquake shaking. In this paper we focus on these large 
coherent rock slides/slumps, which are assumed to be slowly moving and could be either first-time 
failures (initiated by the 2016 Kaikoura earthquake) or reactivated by the earthquake. Hereafter, 
for simplicity, we define these earthquake-triggered slow-moving landslides as eSMLs. 
 
2. Methods 
 
InSAR phase gradients calculated from wrapped interferograms can be written as: 

               !
∆𝜑$,&' = 𝑈 *𝑊,𝜑$,&-./ −𝑊,𝜑$,&/1

∆𝜑$,&2 = 𝑈 *𝑊,𝜑$-.,&/ −𝑊,𝜑$,&/1
           where:  𝑈{𝑥} = 6

𝑥 + 2𝜋	,
𝑥	,

𝑥 − 2𝜋	,
     

𝑥 < −𝜋
−𝜋 ≤ 𝑥 ≤ 𝜋

𝑥 > 𝜋
 

where ∆𝜑$,&'  and ∆𝜑$,&2  are the phase gradient along range direction (i.e., line-of-sight, LOS) and 

azimuth direction (i.e., flight direction), respectively, 𝑊,𝜑$,&/  denotes the wrapped phase at 
location (𝑖, 𝑗), 𝑈{𝑥} is the operator of calculating phase gradient from wrapped phase. Here we 
propose to use multi-temporal phase gradients to analyze the temporal evolutions of those 
earthquake-associated local deformations, for hunting and monitoring earthquake-triggered slow-
moving landslides. 
 
To detect the slow-moving landslides that triggered by the 2016 Mw 7.8 Kaikōura earthquake, we 
use 166 Sentinel-1 images acquired from ascending track during October 2014 to September 2021 
(see Figure S1). We simulate the topographic phase and the flatten earth phase using the 30m 
Copernicus DEM (https://spacedata.copernicus.eu/), and we remove the simulated components 



from the raw interferogram to get the differential interferogram, and we apply 10 and 2 multi-look 
numbers to the range and the azimuth direction, separately, which derives a spatial resolution of 
around 30 m for each pixel. Then, we apply an improved Goldstein filter (Li et al. 2008) to the 
differential interferogram to mitigate the effects of decorrelation noises, and we calculate the phase 
gradients from the filtered differential interferogram using the above equation. Thus, the main 
components in the phase gradient include displacement, atmospheric delay, decorrelation noise, 
DEM errors, and possible orbital error. It should be noted all of these components are the 
differences between two adjacent pixels, and so spatially correlated long-wavelength of signals are 
all removed. 
  
We generate the interferometric network based on the baseline thresholds of 80 days and 120 m, 
and to make sure all of the interferometric pairs are included in one subset, we bridge the network 
gap that between January and May 2018 by using all of the pairs covering the period of December 
2017 to June 2018 constrained by a spatial baseline of 120 m. We estimate the time-series solutions 
of phase gradients (October 2014 to September 2021) using a weighted least-squares method 
(Yunjun et al. 2019), and we calculate the weights as follow: 

6
𝑤$,&' = C𝑉𝑎𝑟,𝜑$,&-./ + 𝑉𝑎𝑟,𝜑$,&/G

H.

𝑤$,&2 = C𝑉𝑎𝑟,𝜑$-.,&/ + 𝑉𝑎𝑟,𝜑$,&/G
H. 

where 𝑤$,&'  and 𝑤$,&2  are the value of weights that used for time-series estimation, and 𝑉𝑎𝑟{∙} means 
the operator of calculating variance. Because the uncertainty of the interferometric phase is mainly 
caused by the decorrelation noises, its variance can be modeled based on the coherence and the 
multilook numbers (Tough, Blacknell and Quegan 1995), in addition, we assume the decorrelation 
noises are spatially uncorrelated, thus, variance of the phase gradient can be considered as 
accumulation of the variances of the two interferometric phases. We evaluate the quality of the 
time-series solutions based on the estimated temporal coherence (Pepe and Lanari 2006), and we 
mask all of those pixels where the temporal coherences are smaller than 0.6 in further analysis. To 
correct the DEM errors in the time-series solutions, we estimate the DEM residuals using all of 
the post-seismic datasets (November 2016 to September 2021) (Fattahi and Amelung 2013), and 
then we correct the whole time-series based on the estimated the DEM residuals. 
 
To hunt those earthquake-triggered slow-moving landslides signals, we estimate the differences 
between the pre- and post-seismic velocities of the displacement gradient. Here we use all of the 
SAR datasets that before the November 2016 earthquake to estimate the pre-seismic gradient 
velocity, and we use the data that acquired after the earthquake to January 2018 to estimate the 
post-seismic velocity. Considering displacement-gradients have different sensitivities along the 
range and the azimuth directions, we fuse the velocity differences that derived from the range 
gradient and the azimuth directions as follow: 



                                                 ∆𝑉JK = L∆𝑉JM
N + ∆𝑉JO

N          

where ∆𝑉JK is the normalized displacement gradient that used to describe the difference before 
and after the earthquake; ∆𝑉JM and ∆𝑉JO are the velocity differences of the displacement gradients 
before and after the earthquake along the range and the azimuth directions, respectively. By jointly 
analyzing ∆𝑉JK and geomorphology, we then pick up those slow-moving landslides signals. We 
finally re-estimate and analyze the spatio-temporal displacements of the detected slow-moving 
landslides one by one, using the regular SBAS (Small BAseline Subset) technique (Berardino et 
al. 2002), based on the multi-temporal unwrapped interferograms over the local landslide region. 
Because we solve the time-series of each landslide within a very local area, we consider the effects 
of the atmospheric delays, unwrap errors, and the seismic tectonic deformations on the time-series 
solutions are very limited. The workflow of our methods can be summarized as 7 steps (Figure 
S2).  
 
3. Results and modeling 
 
Pre- and post-seismic velocities of the displacement gradients are calculated based on the time-
series solutions of the displacement gradients (Figure S3). The normalized gradient velocities 
(∆𝑉JK), are estimated (Figure 1a) by fusing the range- and the azimuth-gradient velocities. We can 
see that those strong signals of  ∆𝑉JK are mainly distributed along the ruptures (red line) or active 
faults (e.g., Clarence fault and London Hill fault) which are close to the main fault ruptures. 
However, not all of ∆𝑉JK signals are associated with eSMLs, with some being caused by short-
wavelength afterslip or postseismic rebound. To show the differences in the displacement-
gradients before and after the earthquake and to describe the estimation of ∆𝑉JK, one time-series 
solutions of the gradients at a specific pixel (see Figure 1a) are illustrated (Figure 1b), and we can 
see that both the Range- and the Azimuth-gradients fluctuate around zero before the earthquake 
but increase rapidly after the earthquake, particularly within the first post-seismic year. In addition, 
we also can find that the magnitudes of the gradients at the two directions show large differences 
(e.g., the Range-gradients are much smaller than that of the Azimuth-gradients for this case), which 
indicates that it is necessary to fuse the gradients calculated from the two directions when detecting 
the earthquake triggered slow movements. Based on the calculated ∆𝑉JK, we detected 21 eSMLs 
that were triggered by the 2016 Mw 7.8 earthquake, within an area of about 80 × 80𝑘𝑚N (see 
Area 1 and Area 2 in Figure 1a).  
 



 
Figure 1. Normalized gradient velocities (∆𝑉JK ) that indicate the deforming-differences of the gradients before and after the 
earthquake: (a) detected ∆𝑉JK using the ascending Sentinel-1 datasets. The black lines represent the active faults and the red lines 
represent the ruptures caused by the 2016 earthquake. The right bottom subplot shows the background tectonic setting, and the red 
rectangular denotes the region of interest; (b) One example (location see black triangle in Figure 1a) of the gradients time-series 
used to show the calculation of ∆𝑉JK and the to present the gradient differences before and after the earthquake. The dashed line 
means the time of the earthquake; (c) Detected eSMLs over Area 1; (d) Detected eSMLs over Area2. 

 

Time-series evolutions of the gradients and displacements of the detected eSMLs are presented as 
Figure 2. To pick apart the likely mechanisms driving the displacements, here by assuming the 
moving direction is approximately along the slope, we have converted the LOS displacements to 
downslope displacements based on three parameters: SAR incidence angle, slide slope, and the 
slide aspect angle. The points in each time-series are selected from the central creeping area of the 
eSMLs with good temporal coherence larger than 0.7. Here we define long-term changes of 
gradient as positive, and the downslope displacement as negative. We can see that, before the 
earthquake, both the gradients (Figure 2a and 2b) and the displacements (Figure 2c) of the eSMLs 
are quite stable and fluctuate around zero (or evolve with a tiny velocity), after that, we can find 
significant changes in the velocities of the gradients and the displacements, which indicates that 
the velocity changes in the gradients or the displacements are caused by the 2016 Kaikōura 
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earthquake. After about 5 years since the earthquake, the accumulated post-seismic range- and 
azimuth-gradients reach to ~ 8 mm (e.g., the 28th eSML) and ~ 7 mm (e.g., the 4th eSML), 
respectively, and that of the displacements reach up to 20 cm (e.g., the 10th eSML). It should be 
noted that the eSMLs with large gradients changes do not mean they have large displacements, as 
the gradient results represent the differences between the two adjacent pixels within the eSML, 
whereas that of the displacements represent the integral results of the gradients (e.g., from a stable 
point outside of the eSML to the pixel of interest inside the eSML). 
 

 
Figure 2. Time-series evolutions of the eSMLs between 2014 and 2021: (a) InSAR derived time-series solutions of the range-
gradients; (b) Time-series solutions of the azimuth-gradients; (c) Time-series solutions of the displacements, and the solid gray 
lines represent the best fitted models. Solid circles denote the estimations at the SAR acquisitions, and the dashed gray lines mean 
the timing of the earthquake. Curve colors are associated with the maximum accumulated gradients or downslope displacements. 
The interval of the start gradient of each eSML in (a) and (b) is 2.5 mm, and the interval of the start displacement in (c) is 5 cm. 
 

We also can find that, both the gradients and the displacements showed significant acceleration in 
the velocities after the earthquake compared with that of pre-seismic, but the velocity gradually 
recover to pre-seismic levels again after years since the earthquake, this implies that the eSMLs 
have “self-healing” characteristics. To quantitatively analyze the temporal evolution of the eSMLs, 
here we propose to use the following piecewise function to model the time-series of downslope 
displacements  
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U
𝑦W'X(𝑡) = 𝑘𝑡 + 𝑏

𝑦W[\](𝑡) = 𝛼_𝑒Ha] + 𝑑cd
 

where 𝑦W'X(𝑡) is a linear function that denotes the modeled pre-seismic process, and 𝑘,	𝑏 are to be 
estimated parameters; 𝑦W[\](𝑡) is a decay-shaped exponential function that represents the modeled 
post-seismic process, and 𝛼, 𝛽, 𝑑c  are to be estimated parameters. 𝛼 and 𝛽 will determine the 
decay shape, and 𝑑c  will determine the shift at the start-point associated with the co-seismic 
displacement of the eSML and the InSAR observation errors (e.g., decorrelation noise, 
atmospheric delay). Here we use a least-squares method to estimate those unknown parameters 
based on the time-series observations. The best fitted models are presented as the solid gray lines 
in Figure 2c, and the averaging value of the correlations between observations and the models 
reaches 0.95 (see Table S1), which indicates that the used models are suitable for these eSML 
cases. Note that the co-seismic displacement is estimated by 𝑦f[ = 𝑦W[\]_𝑡ghd − 𝑦W'X_𝑡ghd, which 
is challenge to estimate directly from the time-series, due to the effects of observation noises and 
the timing differences between the SAR acquisition and the earthquake. From the model residuals, 
we also find seasonal variations in the displacements, and we use a simple annual sine function to 
model that components and estimate the seasonal amplitude.  The averaged pre-seismic velocity 
of the eSMLs is around 4.4 mm/year (see Table S2), this implies that these eSMLs are quite stable 
before the earthquake. The averaged co-seismic displacement is 1.40 cm, which is consistent with 
the previous studies that find few centimeters of co-seismic landslide displacements (Moro et al. 
2011, Lacroix et al. 2014). Note that here we can consider those large scale co-seismic 
displacements, which could be up to tens of meters (Hamling et al. 2017), have been removed from 
the landslide co-seismic displacement, as we use a local reference point (i.e., non-landslide point) 
for each eSML to estimate the displacement time-series. The mean seasonal amplitude of the 
downslope displacement is 1.4 mm, and that of the maximum value even reach up to 7.4 mm (the 
13th eSML), which should be mostly caused by the variations in the seasonal rainfalls that cause 
pore pressure changes on the sliding slope. But we dose not find clear correlations between the 
mean monthly rainfall (see Table S2) and the seasonal amplitude of the displacement, this indicates 
that the seasonal variations may be dominated by multiple factors (e.g., geological unit, sliding 
type).  
 

 
To quantitatively evaluate the decaying characteristics of the eSMLs, here we calculate the 
temporal velocity evolutions of each eSMLs based on the first-derivative of the estimated post-
sesmic model. Instead of analyzing the full sliding velocity, we calculate and compare the 
normalized post-seismic velocities only, which can be obtained by 

𝑣W[\](𝑡) = 𝑒Ha] 



where 𝑣W[\](𝑡) is the normalized post-seismic velocities of the eSML, that decays from 1 to 0, and 
𝑡 means the time since the earthquake, 𝛽 is the same parameter as that in the displacement model, 
which controls the decay speed of the eSML. Post-seismic models of the normalized velocities 
(Figure 3a) clearly show that the landslide velocities decay rapidly spanning years since the 
earthquake, and different eSMLs show different decaying speeds, e.g., landslide velocities of the 
10th eSML decay to around zero within 1 year since the earthquake, whereas that of the 3rd eSML 
experiences more than 8 years. The decay-timings (Figure 3b) of the post-seismic velocities reveal 
that after 6 years since the earthquake, the landslide velocities of the eSMLs all decay at least 85%, 
and within less than 10 years after the earthquake, all of the eSMLs would decay 95%. Averagely, 
post-seismic velocity of the eSML decay 90% within around 3.9 years since the earthquake.  
Spatial distribution of the post-seismic rainfalls over the regions of the eSMLs (gray histograms 
in Figure 3b) indicate that, the relationship between the rainfalls and the decay-timings is limited.  
 

 
 
Figure 3 (a) Normalized post-seismic velocity of the eSMLs. The gray lines indicate where the velocities have decayed to 0.15 
(decay 85%), 0.1 (decay 90%), and 0.05 (decay 95%), of their maximum. The dashed black line denotes the date of the last SAR 
observations used in this study. (b) Amount of time for each of the eSMLs to decay to 85% (circle), 90% (rectangular), and 95% 
(triangle). The gray bars show the average monthly rainfall at the location of each eSML. The histogram in the upper left shows 
the distribution of decay (90%) times across all of the sSMLs. 
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4. Discussion and Conclusions 
 
We developed a new InSAR-phase-gradient based time-series approach to detect earthquake-
triggered slow-moving landslides over large areas, that are difficult to hunt using regular InSAR 
techniques (e.g., D-InSAR, Stacking-, or SBAS-InSAR) due to the effects of post-seismic tectonic 
deformations, atmospheric delays, possible unwrapped errors, particularly over vegetated areas.  
Compared with the previous gradient-stacking methods (e.g., Hu et al. 2020, Fu et al. 2021), the 
advantages of our new approach include 1) quality of the gradient results can be well evaluated 
based on the gradient-phase closure of the interferometric network (Samiei-Esfahany et al. 2016), 
and 2) the DEM errors in the time-series of the displacement-gradients can be corrected. In addition, 
compared with the velocity-map based gradient method (Bekaert et al. 2020), our method 
calculates the  velocity directly using the phase gradient from the wrapped interferograms, thus 
our results would not be affected by any unwrapping errors. 
 
Using our new approach, 21 slow-moving landslides triggered by the 2016 Mw 7.8 Kaikōura 
earthquake were detected, adding to the catalogue of co-seismic landslide failures  previously 
identified (e.g., Massey et al. 2018, Massey et al. 2020). Our results reveal decaying characteristics 
of the temporal evolutions of these landslides, that averagely after 3.9 years since the earthquake, 
their post-seismic velocity will decay 90% and recover to a level of near pre-seismic, and this may 
indicate self-healing of the earthquake-triggered slow-moving landslides in some degree. We 
suggest that this decay was likely related to a combination of internal deformation of the landslides, 
as well as slip along their basal slide surfaces, in response to the earthquake-triggered displacement, 
as post-earthquake landslide displacements did not correlate to rainfall or any other monitored 
factor.  
 
Adopting the scheme of Hungr, Leroueil and Picarelli (2013), we found most of the landslides 
(eSMLs) comprise compound planar or rotational slides in rock (see Table S3), which given their 
size (source area), suggests that their basal slide surfaces could be relatively deep-seated (Massey 
et al. 2020). Most are relict and reactivated in response to the Kaikōura Earthquake and thus their 
basal slide surfaces are likely to be either fully formed or at least in part formed. Time-series 
evolutions of the displacements (Figure 2) show that each eSML is likely to be a function of the 
local site ‘susceptibility’ conditions, mainly geological (structure and geomechnical properties) 
and morphological (slope angle and local slope relief), along with the amplitude and duration of 
shaking each site experienced during the earthquake (e.g., Massey et al. 2016, Brain et al. 2021). 
Given the landslide types (reactivations), their sizes (depths), and eSML time-series displacements, 
we hypothesis that the co-seismic changes in the velocities of the gradients and the displacements 
are likely to relate mainly to basal sliding mechanisms along with some distributed shear within 
the overlying slide mass (e.g., Makdisi and Seed 1978, Bray and Travasarou 2007). We also 
suggest that the post-earthquake time series displacements, given their patterns of displacement, 



are more likely to relate mainly to distributed shear within the slide mass material. This is because 
the exponential decay in displacement, post-earthquake, appears unrelated to seasonal changes in 
stress caused by rainfall-induced fluctuations in pore-water pressures or subsequent earthquake 
loading, or any other environmental factor that could initiation movement (Massey, Petley and 
McSaveney 2013). Such post-seismic deformation might relate to the consolidation of the slide 
mass, which will be further studied in the future. 
  
Only one ascending track of Sentinel-1 datasets were used in this study, as that of the descending 
track is not well covered with enough datasets, thus some of the eSMLs signals may not be detected, 
due to the geometry limitations of InSAR (e.g., shortening and shading) and the 1-D displacement 
imaging limitation (e.g., InSAR cannot detect those landslides whose sliding direction is vertical 
to the LOS direction ). In addition, due to the dense vegetation coverage over the Kaikōura region 
which could cause strong decorrelation noises in InSAR observations, it is challenging to detect 
small eSMLs (e.g., less than 100𝑚 × 100𝑚), thus study of these small eSMLs may need to use 
other SAR datasets which have longer wavelengths (e.g., L-band) and/or higher special resolutions 
than Sentinel-1. In addition, gradient-based signals are not only associated with eSMLs, but also 
can be caused by the residual atmospheric delays (i.e., short wavelengths of the atmospheric delays) 
and some sharp post-seismic deformations, particularly near the earthquake ruptures. The residual 
atmospheric signals in the gradients can be mitigated by averaging the time-series solutions, but 
those residual local post-seismic signals are still mixed with the eSMLs in the gradient-velocity 
maps. To separate the eSMLs from other non-landslide signals in the gradient-results, we 
subjectively set a threshold value of the normalized-gradient-velocity to determine the potential 
eSML-regions, thus, we may lose some weak eSML signals in this step, and the number of the 
detected eSMLs could be underestimated. Deep learning may help to overcome this limitation, 
which could be considered in our future research. 
 
 
 
 
 
Data Availability Statement 
 
The Sentinel-1 images are from the European Space Agency (ESA) and downloaded from the 
Alaska Sat- ellite Facility (ASF) (https://asf.alaska.edu/data-sets/sar-data-sets/sentinel-1/). The 
active fault and ruptures of the 2016 Mw 7.8 Kaikōura earthquake were provided by GNS Science 
(https://data.gns.cri.nz/af/).The rainfall data was provided by United States Agency for 
International Development (USAID) (https://data.chc.ucsb.edu/products/CHIRPS-2.0/). 
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