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Abstract

Soil organic carbon (SOC) stocks represent a large component of the global carbon cycle that is sensitive to warming. Modeling

and empirical studies often assume that temperature responses of microbial physiological functions and extracellular enzymatic

reactions are predictive of ecosystem-scale SOC decomposition responses to warming. However, temperature-dependent soil

trophic interactions such as predation of microbial decomposers by other organisms have not yet been incorporated into quan-

titative SOC models. Here, we incorporated a microbial predator into a tri-trophic population ecology model and a global-scale

predictive SOC model to determine how predation would affect soil community population dynamics and temperature sensitivity

of SOC stocks. Predators increased SOC stocks and their dependence on substrate input rates. Top-down controls of predators

on microbial biomass caused SOC warming responses to diverge from microbial temperature responses, with warming-induced

SOC losses reduced or reversed when predators were more temperature-sensitive. Our results suggest that higher trophic levels

can reduce the sensitivity of SOC to warming, and that differences in temperature sensitivity across trophic levels may be a

key determinant of SOC warming responses.

1



 1 

Trophic interactions decouple soil carbon temperature 1 

response from that of microbial decomposers  2 

 3 
Benjamin N. Sulman1 and Jean P. Gibert2 4 

 5 
1. Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National 6 

Laboratory, Oak Ridge, TN, USA, sulmanbn@ornl.gov 7 
2. Department of Biology, Duke University, Durham, NC, USA, jean.gibert@duke.edu 8 

 9 
Corresponding author:  10 
Benjamin N. Sulman 11 
Mail: P.O. Box 2008, MS6301, Oak Ridge, TN 37831, USA 12 
Phone: (865) 576-0766 13 
Fax: (865) 241-4088 14 
Email: sulmanbn@ornl.gov 15 
 16 
Statement of authorship: Both authors conceived the study, designed and conducted the mathematical 17 
modeling, analyzed and interpreted the results, and wrote the paper. 18 
 19 
Data accessibility: All model code, driver data, and output are available at 20 
https://github.com/JPGibert/Microbial_munchers 21 
 22 
 23 
Keywords: Soil, carbon, climate change, warming, food webs, modeling, trophic interactions 24 
 25 
 26 
 27 
Notice:  This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-28 
00OR22725 with the US Department of Energy (DOE). The US government retains and the 29 
publisher, by accepting the article for publication, acknowledges that the US government retains 30 
a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published 31 
form of this manuscript, or allow others to do so, for US government purposes. DOE will 32 
provide public access to these results of federally sponsored research in accordance with the 33 
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). 34 
  35 



 2 

Abstract 36 

Soil organic carbon (SOC) stocks represent a large component of the global carbon cycle that is sensitive 37 
to warming. Modeling and empirical studies often assume that temperature responses of microbial 38 
physiological functions and extracellular enzymatic reactions are predictive of ecosystem-scale SOC 39 
decomposition responses to warming. However, temperature-dependent soil trophic interactions such as 40 
predation of microbial decomposers by other organisms have not yet been incorporated into quantitative 41 
SOC models. Here, we incorporated a microbial predator into a tri-trophic population ecology model and 42 
a global-scale predictive SOC model to determine how predation would affect soil community population 43 
dynamics and temperature sensitivity of SOC stocks. Predators increased SOC stocks and their 44 
dependence on substrate input rates. Top-down controls of predators on microbial biomass caused SOC 45 
warming responses to diverge from microbial temperature responses, with warming-induced SOC losses 46 
reduced or reversed when predators were more temperature-sensitive. Our results suggest that higher 47 
trophic levels can reduce the sensitivity of SOC to warming, and that differences in temperature 48 
sensitivity across trophic levels may be a key determinant of SOC warming responses.  49 
 50 
  51 
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Introduction 52 

 Understanding how rapid global climate change may impact the structure and dynamics of food 53 
webs and associated ecosystem-level processes and services is a pressing but challenging issue in 54 
ecology. An important but often overlooked component of ecological dynamics lies beneath the ground in 55 
the form of soil food webs. Soils represent the largest cycling terrestrial carbon (C) pool on earth [1]. 56 
While soil organic carbon (SOC) stocks are thought to be vulnerable to warming [2], projected responses 57 
of SOC stocks to climate change are highly uncertain [3,4] and measured responses of SOC to warming 58 
have been inconclusive [5,6]. Recent work explicitly incorporating biological processes into SOC models 59 
[7] highlights important mechanisms and related uncertainties in SOC cycling, including differences in 60 
microbial carbon use efficiency (CUE) and its temperature sensitivity [8,9], rhizosphere priming effects 61 
[10], microbial dormancy [11,12], and density-dependent microbial biomass turnover [13]. Microbial 62 
processes are thus increasingly recognized as a major determinant of SOC stocks and are now being 63 
incorporated into global-scale studies of climate change impacts on soil C stocks [3,10,14,15], facilitating 64 
the incorporation of these processes into earth system model (ESM) projections of terrestrial C cycle 65 
responses to global climate change.  66 

SOC models using explicit microbial processes have also produced seemingly unrealistic results 67 
like oscillations in SOC stocks and insensitivity to carbon input rates [16]. While model structures can 68 
mitigate these issues [10,13,17], variations in assumptions and parameterizations can drive wide 69 
differences in projected responses to ecosystem perturbations [6]. At the same time, measurements of 70 
microbial physiological and phylogenetic traits can be used to directly constrain model parameters 71 
[8,18,19]. Recent reviews have suggested that incorporating metagenomics information into microbial-72 
explicit soil decomposition model parameterizations could improve model projections of SOC responses 73 
to changing environmental conditions [20–22]. To date, however, microbial-explicit SOC models have 74 
focused on the role of a single category of living organisms in the soil: microbial decomposers [7]. Such 75 
models, along with laboratory and field measurements of microbial physiological traits, however, may not 76 
completely reflect ecosystem dynamics if they ignore interactions with other components of the soil food 77 
web. 78 

 79 
The role of trophic interactions 80 

While microbial-explicit SOC models have yielded important insights about decomposition 81 
processes, other important mechanisms, such as trophic interactions between microbes and other 82 
organisms in the soil food web, have so far been excluded [23–27]. Food web structure can drive 83 
ecosystem dynamics in both terrestrial and aquatic systems [28]. Moreover, trophic interactions are 84 
temperature-dependent through physiological responses [29–31], changes in animal movement [32], and 85 
other trait responses to temperature [33–35]. For example, predation pressure on eel sea grass beds varies 86 
with temperature along latitudinal gradients [36], climate influences predator-prey ratios in bromeliad 87 
communities [37] and warming increases the strength of plant-herbivore interactions [38]. Trophic 88 
interactions can also alter SOC decomposition: the presence of microbe-eating isopods changes SOC 89 
responses to global change [39], grazing on microbes by organisms at higher trophic levels impacts 90 
microbial growth patterns [40], litter decomposition and C utilization vary with soil faunal community 91 
complexity [41], and interactions between predatory spiders and fungivorous Collembola change with 92 
warming to reduce litter decomposition [42]. Together, these results suggest important but largely 93 
overlooked interactions between warming, trophic interactions and SOC responses. Food web structure 94 
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and dynamics are susceptible to changes in temperature [43–45], but understanding of how food webs 95 
mediate the effects of temperature on decomposition, and the integration of these principles into SOC 96 
models, have so far been limited [23,46]. 97 

Integrating trophic interactions into SOC models is challenging due to the complexity of soil food 98 
webs and the difficulty of obtaining measurements that can constrain model parameters [47]. However, 99 
recent studies using microbial-explicit SOC models have demonstrated that biological interactions can be 100 
integrated into tractable models and can drive important differences in projected outcomes compared to 101 
models that treat biological processes implicitly [7,23,46]. To address these issues, and as a first step 102 
toward integrating food web interactions into quantitative SOC models, we developed two models of soil 103 
trophic interactions including SOC, microbial decomposers, and predators that feed on microbes. First, 104 
we modified a population ecology predator-prey model to demonstrate conceptually how soil microbe 105 
predators may determine SOC responses to temperature. Second, we modified a state-of-the-art, 106 
quantitative SOC cycling model – the Carbon Organisms Rhizosphere and Protection in the Soil 107 
Environment (CORPSE) model [10] – to show how incorporating microbe predators into simulated soil 108 
food webs impacts SOC projections under warming across gradients of climate and ecosystem 109 
productivity at a global scale. Given the premise that loss of SOC in response to warming is accelerated 110 
by microbial growth and SOC assimilation, we test the hypothesis that the presence of a higher trophic 111 
level that consumes microbial decomposers weakens the connection between the temperature sensitivity 112 
of microbial substrate consumption and the temperature sensitivity of SOC stocks. In addition, we 113 
evaluate the importance of local adaptation and differences in temperature sensitivity across trophic-levels 114 
in determining latitudinal patterns of these trophic interactions and their effects on SOC stocks. 115 

Methods: 116 

 117 
Trophic-chain food web models 118 
The simplest approach to modeling SOC decomposition only considers carbon stock (C) naturally 119 
decaying over time at a temperature-dependent first-order rate k (Fig 1A) while being replenished at a 120 
constant rate I (Supplementary Information, eq S1). While global land surface models such as those used 121 
in the Climate Model Intercomparison Project Phase 5 (CMIP5) comparison predominantly use multiple-122 
pool versions of this approach [48], studies [7] have suggested that model fidelity can be improved by 123 
explicitly simulating microbial biomass as the driver of decomposition (Fig 1B). We model the microbial 124 
effect on carbon as a classic type-II functional response, where the SOC decomposition rate depends on 125 
microbial biomass and carbon stocks (M and C, respectively), as well as on two parameters controlling 126 
the feeding process, the microbial attack rate (𝛼) and handling time h [49,50]. Conversion of carbon into 127 
microbial biomass is determined by a conversion efficiency parameter (𝜀), and microbes die naturally at a 128 
per-capita rate 𝑑! (SI, eqs S2 and S3). Microbial attack rates are temperature-dependent, following an 129 
Arrhenius function of the form: 130 

𝛼(𝑇) = 𝑉𝑒
"!"#$

#%&"
%
&'
$
, (1) 131 

 132 
where V is a pre-exponential rate constant (units of inverse time), 𝑘% is the Boltzmann constant (8.62x10-5 133 
electron-volts per degree Kelvin, eV K-1), T is the temperature at which the process occurs (in K), 𝑇& is a 134 
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reference temperature (K), and 𝐸' is the activation energy of the process (in eV), which is a measure of its 135 
temperature dependence [30,32,51]. 136 
 137 
To incorporate the effects of a microbial predator, we added a third trophic level, P, that preys on the 138 
microbial biomass, M, also following a type II functional response with an attack rate following the same 139 
temperature response as that of microbial biomass (Eq. 1). This microbe-predator model (Fig 1C) makes 140 
similar assumptions as the microbial model, and can thus be written as: 141 
 142 
()
(*
= 𝐼 − +%(-))!

/0+%(-)1%)
 (2) 143 

 144 
(!
(*
= 𝜀/

+%(-))!
/0+%(-)1%)

− +((-)!2
/0+((-)1(!

 (3) 145 

 146 
(2
(*
= 𝜀3

+((-)!2
/0+((-)1(!

− 𝑑2𝑃 (4) 147 

 148 
For both microbe and microbe-predator models, steady-state solutions were found analytically. We 149 
determined solutions across a range of substrate inputs and temperatures and further analyzed model 150 
behavior using Wolfram Mathematica 11 (code available at https://github.com/JPGibert/Microbial_munchers). 151 
Parameter values used in our analyses are shown in Table S1 and were chosen so that equilibrium 152 
biomass in all non-warmed scenarios showed a regular biomass pyramid (C>M>P). 153 
 154 
 155 
Quantitative SOC models 156 

While the modeling approach described above illustrates the dynamical effects of an additional 157 
trophic level on microbe populations and SOC concentrations (Fig 1A), it was not designed to 158 
quantitatively reproduce observed SOC stocks or organismal biomass in soils, or to represent key 159 
mechanisms in soil biogeochemical cycling such as stabilization of SOC through physico-chemical 160 
interactions with minerals [52]. To incorporate the trophic interactions identified in the food web models 161 
into a quantitative SOC framework, we implemented a predator trophic level in the Carbon Organisms 162 
Rhizosphere and Protection in the Soil Environment (CORPSE) model, which includes SOC and 163 
microbial decomposer pools and has been previously applied and validated against measurements at both 164 
ecosystem and global scales [3,10,53]. Here, we refer to the modified model as CORPSE-Pred. CORPSE-165 
Pred differs from the food web model in key aspects. First, CORPSE-Pred divides substrate C into 166 
multiple types representing simple, complex, and microbial-biomass-derived compounds. Second, 167 
microbial and predator populations in CORPSE-Pred are constrained not to decline below a minimum 168 
value, preventing their complete eradication. Third, decomposition and predation kinetics in CORPSE-169 
Pred are calculated using the ratio of microbe to SOC carbon, or the ratio of predator to microbe carbon, 170 
rather than the absolute stocks or concentrations of those factors (an equivalent formulation in the 171 
predator-prey models would be to include ratio-dependent foraging rates or interference competition). 172 
Under these assumptions, changes in carbon stocks, 𝐶, over time can be calculated as: 173 

 174 
())
(*
= 𝐼4 − 𝑉4𝑒

"
!")
#$
(%&"

%
&'
)
× 𝜃'(1 − 𝜃)%𝑘5 × 𝐶4

!
!06*)

 , (5) 175 
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 176 
where Ci is substrate carbon of type i (representing chemical classes with different decomposition rates 177 
and microbial CUEs), Ii is input rate of each substrate type, θ is volumetric soil water content as a fraction 178 
of saturation, a and b control moisture sensitivity of decomposition, kθ is a normalization constant for 179 
moisture sensitivity, M is microbial biomass, and kM controls the relationship between microbial biomass 180 
and decomposition rate. The temperature dependence of the interaction between C and the microbes was 181 
modeled using Eq. 1 but with substrate-specific parameters, where Vi is the maximum microbial 182 
decomposition rate of substrate type i, and Eai is the activation energy for decomposition of each 183 
substrate type. Inputs (I) include a fraction (60%) of microbial and predator death (excluding microbial 184 
biomass loss from predation). The rate of change of the microbial biomass, M, can be modeled by: 185 
 186 

!"
!#
= ∑ ([𝑉$𝑒

%
!"#
$%
(&'%

&
'(
) × 𝜃((1 − 𝜃))𝑘* × 𝐶$

"
"+,)-

] × 𝜀$)$ − (𝑀 −𝑀.$/∑ 𝐶$$ ) ⋅ 𝑑" − 𝑉0𝑒
%
!"*
$%

(&'%
&
'(
) ⋅ 𝑀 0

0+,*"
, (6) 187 

 188 
where 𝜀4 is microbial carbon use efficiency associated with each substrate type, BM,min is the minimum 189 
microbial biomass (expressed as a fraction of total substrate C), 𝑑! is the background death rate for 190 
microbial biomass, VP is maximum predation rate, EaP is the activation energy parameter for predation, 191 
and kP is a parameter controlling the relationship between predation and predator biomass. Finally, the 192 
rate of change of predator biomass can be modeled as: 193 

(2
(*
= 𝜀2[𝑉2𝑒

"
!"+
#$

(%&"
%
&'
)
×𝑀 2

206+!
] − (𝑃 − 𝑃G4H𝑀) ⋅ 𝑑2, (7) 194 

where 𝜀2 is carbon use efficiency of predators, Pmin is minimum predator biomass, and 𝑑2is death rate of 195 
predators. CORPSE-Pred also includes protected SOC stocks that are inaccessible to decomposition. We 196 
do not show the equations for protected SOC here for brevity (see SI for full model equations including 197 
those related to protected SOC). 198 

We drove global SOC simulations using 10 years of monthly-average net primary production 199 
(NPP), soil temperature, and soil moisture from previous global simulations using the Geophysical Fluid 200 
Dynamics Laboratory (GFDL) global land model LM3 [54,55]. NPP was assumed to be equivalent to 201 
total carbon inputs to soil (thereby assuming plant biomass was at approximate steady state). 202 
Meteorological forcing for the LM3 simulations used a gridded historical climate dataset over years 1958-203 
1967 [56], which were repeated to drive simulations of any length. We numerically integrated the 204 
CORPSE-Pred model for 750 years to equilibrate all pools, then conducted control simulations and 205 
warming simulations with temperatures increased by 2 ºC.  206 

We conducted CORPSE-Pred simulations using two alternative assumptions concerning local 207 
temperature adaptation of predator physiology. With local adaptation, T0 for predators was set to the 208 
control simulation mean annual temperature of each grid cell. With globally constant base temperature, T0 209 
for predators in each grid cell was equal to the mean global temperature (13 ºC). 210 

CORPSE-Pred simulations used parameter values from previous CORPSE simulations [10,57] 211 
where possible. Values of new parameters associated with predation-related processes were chosen to 212 
reproduce the same approximate global patterns under steady-state conditions but could not be further 213 
constrained due to the paucity of measurements directly comparable to model trophic levels. Parameters 214 
and values are shown in Table S2. Simulations were conducted at a five-day time step using an 215 
implementation of the model in python. Scripts, model code, forcing data, and model output are available 216 
at the aforementioned github repository. 217 
 218 
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Characterization of SOC temperature responses 219 
To compare the temperature response of SOC stocks with the temperature dependence of microbe 220 

and predator growth rates, we used changes in SOC stocks under warming to calculate an equivalent SOC 221 
temperature sensitivity (CEa) in the same units as the temperature-dependence parameters in our models 222 
(Ea), following an approach previously used to estimate equivalent Q10 values [58]. SOC temperature 223 
dependence can be approximated as:  224 

𝑆𝑂𝐶- = 𝑆𝑂𝐶-'𝑒
",!"#$

#%&"
%
&'
$
,         (8) 225 

where 𝑆𝑂𝐶- and 𝑆𝑂𝐶-' are carbon stocks at temperatures 𝑇 and 𝑇& respectively. This relationship can be 226 
solved for 𝐶𝐸': 227 

𝐶𝐸' = 𝑘I ln ;
JK)&
JK)&'

< = /
%
&"

%
&'

> .        (9) 228 

𝐶𝐸' represents the temperature sensitivity that would result in a given ratio of SOC stocks at steady state 229 
under two different temperatures. Assuming SOC stocks have approached a steady state following any 230 
temperature perturbation, CEa values can be compared across simulations with different assumptions to 231 
quantify differences in SOC temperature responses. 232 
 233 

Results: 234 

Trophic-chain food web models 235 

The population-based microbial model illustrated the fundamental impact of a third trophic level on SOC 236 
dynamics. A two-level model, including only substrate and microbial decomposers, reproduced dynamics 237 
shown in previous microbial decomposition models [16]: steady-state SOC was independent of substrate 238 
input rates (I) while microbial biomass increased with I (Figure 2a). Warming reduced SOC concentration 239 
but did not affect microbial biomass. Adding a third trophic level fundamentally changed SOC dynamics 240 
(Figure 2b). With predators, SOC increased at an accelerating rate with greater I while microbial biomass 241 
was constant with respect to I. Predator biomass did not persist below a minimal I. Warming decreased 242 
SOC stocks while increasing microbial and predator biomasses.  243 
 244 
SOC warming sensitivity varied with the relative temperature-dependence of microbes and their predators 245 
(𝐸', Figure 2c). When microbes were more temperature-sensitive than their predators, warming depleted 246 
SOC. Above a critical predator Ea, reduction of microbial biomass due to increased predation drove 247 
accumulation rather than loss of SOC under warming. The strength of this effect depended on substrate 248 
input rate, such that an increase in substrate inputs led to a larger effect of differences in temperature 249 
dependence across trophic levels (SI Fig S1). 250 
 251 
When the two models (with and without predation) were directly compared, the temperature sensitivity of 252 
SOC stocks in the presence of predators (CEa) decreased compared to that of a model without predators, 253 
suggesting a weaker temperature dependence of SOC stocks in the presence of predators (Fig 2d). The 254 
difference in SOC temperature sensitivities between the two and three-level models was itself temperature 255 
dependent and increased with warming. The magnitude of the reduction in SOC temperature sensitivity 256 
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due to predators was determined by the relative temperature sensitivity of microbes and predators: 257 
increasing predator Ea reduced the temperature sensitivity of SOC when predators were present (Fig 2d).    258 
 259 

Quantitative global SOC model 260 

We used global simulations with the CORPSE-Pred model to investigate how predator activity 261 
would alter SOC responses to warming across gradients of climate and ecosystem productivity. CORPSE-262 
Pred reproduces the key aspects of top-down control of microbial populations via predation predicted in 263 
the population-based approach (Fig. S2) as well as the effects of variable temperature sensitivities across 264 
trophic levels (Fig. S3) suggesting a fundamental level of agreement between both modeling approaches 265 
despite differences in model structure and assumptions. However, the structure of CORPSE-Pred 266 
facilitated simulations across large gradients of mean annual temperature and C inputs, allowing the 267 
investigation of microbe-predator interactions on SOC stocks across climate gradients, and facilitating 268 
comparison of alternative assumptions regarding local adaptation of predator populations.  269 

 270 

Predator effects across latitudes 271 

Variation in predator biomass across latitudes depended on alternative assumptions of local 272 
adaptation. With locally-adapted predator T0, predator populations were significant across tropical, 273 
temperate, and boreal climate zones (Figure 3a). These larger populations led to significant top-down 274 
control on microbial populations, reducing microbial biomass by 10-20% in the tropics and by over 50% 275 
in higher latitudes (Figure 3b) relative to simulations without predators. By contrast, a globally constant 276 
T0 led to higher predator populations in the tropics and lower populations in high latitudes (Figure 3c). 277 
Under this assumption, top-down control on microbial biomass was enhanced in the tropics and much 278 
weaker in high latitudes (Figure 3d). 279 

With no predators, SOC temperature sensitivity (CEa) varied moderately across latitude, with 280 
higher values (around 0.6  eV) in high latitudes and lower values (around 0.3 eV) in the tropics (Figure 281 
4a). This variation was most likely due to the effect of protected C stocks that were not directly 282 
responsive to warming but still exchanged C with unprotected SOC pools. Predators lowered CEa 283 
globally, indicating weaker temperature responses due to top-down control on microbial biomass. In the 284 
tropics, CEa was reduced to about 0.2 eV with both locally-adapted and global constant predator T0. With 285 
globally constant predator T0, CEa was reduced by about the same amount in high latitudes (Fig. 4c). 286 
However, with locally adapted predator T0, CEa in high latitudes was more strongly reduced, reaching 287 
negative values across northern areas that indicated a reversed temperature dependence with SOC stocks 288 
increasing under warming (Fig. 4b). Negative CEa values occurred in desert regions with globally 289 
constant T0, but SOC stocks were low in those regions under all conditions.  290 
 291 
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Discussion 292 

Implications for SOC stocks and warming responses 293 

Both the population-based and the quantitative modeling approaches suggested that higher trophic levels 294 
and their temperature dependence can strongly affect SOC stocks and their warming responses. 295 
Introducing a third trophic level in food web models also caused SOC to become dependent on the rate of 296 
substrate inputs, thus resolving a known flaw of some microbial-explicit SOC model formulations 297 
[16,17]. Our results thus suggest that top-down control of microbial biomass by predators can address this 298 
structural issue with a mechanistic justification. 299 

In both population-based and quantitative models, microbial predators increased equilibrium SOC 300 
stocks by reducing the abundance of decomposers. Models that lack explicit representation of top-down 301 
controls may incorporate their effects implicitly into other parameter values such as microbial biomass 302 
turnover rates or SOC pool decomposition rate constants. However, explicitly representing top-down 303 
control on microbial biomass facilitates examination of key parameter values across climates and 304 
ecosystems, allows for better mechanistic understanding of underlying processes, and draws a clearer link 305 
between model parameters and empirical estimates of biological processes. Our results further suggest 306 
that laboratory measurements of microbial biomass turnover rates in the absence of predators could 307 
underestimate microbial mortality relative to field conditions. Furthermore, the divergence of SOC 308 
temperature response (CEa) from microbial temperature response as a function of predator traits in our 309 
results suggests that temperature response measurements of microbial physiology and enzymatic reaction 310 
rates may not be directly applicable to SOC decomposition rates. 311 

Our results further suggest that not only the structure of the food web, but differences in the 312 
temperature dependence of species across trophic levels can determine the integrated response of the soil 313 
system to changes in temperature. As predators became more sensitive to temperature, SOC losses under 314 
warming weakened. Under some circumstances an increase in top-down control under warming could 315 
overwhelm increases in microbial substrate consumption rates and increase SOC stocks with warming. In 316 
a recent meta-analysis [6], 47% of soil warming manipulations observed increases in SOC rather than 317 
losses. Previous explanations for these unexpected results have included changes in soil moisture [59], 318 
increases in plant C inputs [60], and shifts in microbial physiology [8,61]. Our results suggest that 319 
increasing SOC under warming could also be explained by enhanced top-down control by microbial 320 
predators that increase their activity under warmer temperatures. Alternately, predators with low or 321 
negative thermal sensitivities could accelerate SOC losses under warming due to weakening of top-down 322 
control on microbial biomass. Our results also corroborate recent empirical studies indicating that 323 
temperature dependence of upper trophic levels could cascade down the soil food web, ultimately 324 
affecting soil respiration [39,42,62]. These results highlight the need to hone our understanding of how 325 
species respond to warming across soil trophic levels, instead of focusing only on the microbial 326 
decomposer component.  327 

A significant challenge for this model structure is parameterization of processes related to trophic 328 
interactions [47]. Many important parameters in the models were poorly constrained in these simulations, 329 
including predator growth rates and CUE. Even parameters for which there is strong empirical evidence, 330 
such as thermal sensitivities, can vary substantially across organisms [63]. The high sensitivity of SOC 331 
temperature responses to the presence and traits of predators suggests that developing observational 332 
constraints for these parameters should be a priority in soil organic matter research. This said, note that 333 
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while our two modeling approaches share some core structural assumptions (two or three trophic levels, 334 
density-independent substrate inputs), they also incorporate substantially different assumptions (e.g., 335 
ratio-dependent predation vs ratio-independent predation, existence of multiple C types vs only one type 336 
of C) and have different parameterizations. Given these important differences, the level of congruence 337 
between the results of the two modeling approaches suggests that these qualitative results may apply 338 
broadly.  339 

Global patterns of soil food web structure 340 

 Our results suggest that differential thermal sensitivities could drive differences in soil food web 341 
structure at different latitudes, depending on whether predator temperature traits are adapted to local 342 
climate. Top-down control on microbial populations was strongest in the tropics under globally-constant 343 
predator traits, while local temperature adaptation strengthened top-down control in colder regions. When 344 
predators were not adapted to local conditions, cold temperatures at high latitudes prevented predators 345 
from adopting a significant role. These results suggest that soil food web and decomposition responses to 346 
warming may be highly dependent on a combination of climate and local adaptation [64]. Because 347 
predator sensitivity to temperature mediates the response of the system to warming, food webs in different 348 
latitudes with different fauna or trophic structures are likely to have different warming responses. 349 
 Understanding differences in temperature sensitivity across trophic levels is thus crucial for 350 
projecting SOC responses to warming, given that temperature sensitivities are known to vary broadly 351 
across taxa, trophic levels, and habitats [63] and to differ among predators and their prey [63,65]. 352 
Temperature sensitivities are strongly correlated with body size [43], which could lead to different 353 
community responses depending on the size structure of trophic levels. For example, the predator trophic 354 
level in our model formulations could represent organisms like nematodes and amoebae, which, being 355 
larger than their bacterial and fungal prey, could suffer greater metabolic penalties from warming and thus 356 
realize lower biomass gains even with increasing consumption rates [43,66]. Alternately, top-down 357 
control could be exercised by viruses or phages, which are physically smaller and biochemically simpler 358 
than bacteria and fungi and, thus, might have very different thermal responses than larger organisms. A 359 
more sophisticated version of our modeling approach could include multiple organismal types at each 360 
trophic level, including decomposers with different traits (e.g., bacteria and fungi) and different types of 361 
predators with different traits and temperature sensitivities (e.g., phages, amoebae, nematodes, and 362 
microarthropods). Such a model might be more directly comparable with observations of soil biological 363 
communities but would introduce more difficult-to-constrain parameters. 364 

Conclusions 365 

Using two complementary modeling approaches, we show that the presence of a microbial 366 
predator decouples SOC temperature response from that of microbial decomposers by exerting top-down 367 
control on the latter. Our results suggest that SOC stocks are sensitive to food web structure, particularly 368 
the presence or absence of microbial predators, and that temperature sensitivity of decomposition is likely 369 
to be reduced by the presence of higher trophic levels. This effect ultimately depends on the relative 370 
temperature dependence of the microbial communities and their predators, which can lead to different 371 
responses across latitudes. This implies that measurements of temperature sensitivities should be 372 
understood in the context of broader trophic interactions before they can be directly applied to soil C 373 
decomposition and soil respiration parameters. Variations in temperature sensitivity across trophic levels 374 
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in soil food webs are therefore an important and underappreciated uncertainty in our predictive 375 
understanding of SOC dynamics and global change responses across climate zones and latitudes.  376 
 377 
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Figures 551 
 552 
 553 
 554 
 555 

 556 
Figure 1: Diagram of three approaches to SOC modeling. A first-order model has only one trophic level (SOC). A 557 
microbial model adds a second trophic level, and a microbe-predator model includes a third trophic level. Transfers 558 
from one level to the next are mediated by temperature and population of adjacent trophic levels. 559 

  560 
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 561 
 562 
Figure 2: Equilibrium densities of substrate (C), microbes (M), and predators (P) of population-based microbial (a) 563 
and microbe-predator (b) models over a range of substrate input rates and two temperatures. Dashed lines show 564 
simulations at 20 ºC and solid lines show simulations at 25 ºC. (c) Effect of relative microbial and predator 565 
temperature sensitivities on equilibrium SOC response to warming (relative to 20 ºC). ΔEa is the difference between 566 
microbial and predator Ea parameters in electron-volts. (d) Difference in the temperature sensitivity of SOC between 567 
a three-level model (with predators) and a two-level model (without predators) at different levels of warming (as ΔT 568 
over ambient), for differences in temperature sensitivities between predators and microbes (blue-color coded). 569 

   570 
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 571 
Figure 3: Predator biomass distribution and impacts on microbial biomass at steady state. Panels a and b show 572 
simulations with locally-adapted predator T0, and panels c and d show simulations with constant global T0. Panels a 573 
and c show total simulated predator biomass carbon, and panels b and d show the percent difference in microbial 574 
biomass expressed as a fraction of total SOC compared to control simulations.   575 
  576 
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 577 

 578 
Figure 4: CEa of unprotected SOC stocks under alternative assumptions of predator traits. (a): CORPSE model 579 
without predators. (b): Predators with T0 equal to mean annual temperature in each grid cell, representing local 580 
adaptation. (c): Predators with a single global T0 equal to global mean temperature. 581 

  582 



 19 

Supplemental Material 583 
 584 
First order and Microbial models 585 
 586 
The simplest approach to modeling SOC decomposition only considers carbon stock (C) naturally 587 
decaying over time at a temperature-dependent first-order rate k (Fig 1A) while being replenished at a 588 
constant rate I: 589 
 590 
()
(*
= 𝐼 − 𝑘(𝑇)𝐶 (S1) 591 

 592 
Here, we model the microbial effect on carbon as a classic type-II predator functional response, where the 593 
SOC decomposition rate depends on microbial biomass and carbon stocks (M and C, respectively), as 594 
well as on two parameters controlling the feeding process, the microbial attack rate (𝛼) and handling time 595 
h [1,2]. We further assume that the conversion of carbon into microbial biomass is determined by a 596 
conversion efficiency parameter (𝜀), that carbon stocks are replenished at a constant rate 𝐼, determined by 597 
substrate input levels, and that microbes die naturally at a per-capita rate 𝑑!. For simplicity, we assume 598 
that microbial deaths do not feed back into the SOC pool, but such a scenario can be taken into account 599 
by slightly altering substrate input levels. Together, the model calculates the rates of change of C stocks 600 
and M biomass over time through the following system of differential equations: 601 
 602 
()
(*
= 𝐼 − +(-))!

/0+(-)1)
 (S2) 603 

(!
(*
= 𝜀 +(-))!

/0+(-)1)
− 𝑑!𝑀 (S3) 604 

 605 
We further modified this model by assuming, for simplicity, that microbial attack rates, but no other 606 
model parameters, are temperature-dependent, following an Arrhenius function of the form: 607 

𝛼(𝑇) = 𝑉𝑒
"!"#$

#%&"
%
&'
$
, (S4) 608 

 609 
where V is a pre-exponential rate constant (units of inverse time), 𝑘% is the Boltzmann constant (8.62x10-5 610 
electron-volts per degree Kelvin, eV K-1), T is the temperature at which the process occurs (in K), 𝑇& is a 611 
reference temperature (K), and 𝐸' is the activation energy of the process (in eV), which is a measure of its 612 
temperature dependence [3–5]. 613 
 614 
 615 
  616 
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CORPSE-Pred Model Equations 617 
 618 
The soil carbon model is an adaptation of the Carbon Organisms Rhizosphere and Protection in the Soil 619 
Environment (CORPSE) model (Sulman et al, 2014), modified to allow tracking of carbon isotopes. 620 
Organic matter is divided into three chemically-defined forms, which can be either protected or 621 
unprotected. Protected organic matter is inaccessible to microbial decomposition through chemical 622 
sorption to mineral surfaces or occlusion within micro-aggregates. Unprotected organic matter can be 623 
added as litter or root exudate inputs, decomposed by microbial action, or protected: 624 
 625 
()-,)
(*

= 𝐼),4 − 𝐷4 + 𝑇! + 𝑇2 −
()+,)
(*

  (1) 626 
 627 
where 𝐶M,4 is unprotected C; 𝐼),4 is external inputs of C (including litter deposition and root exudation); 628 
𝐷4,N is decomposition rate; TM is microbial necromass production; TP is predator necromass production; 629 

and ()+,)
(*

 is net transfer of C to or from the protected state. i refers to chemically-defined types, which can 630 
be chemically simple plant-derived material (representing compounds like glucose or amino acids that are 631 
readily decomposed), chemically resistant (representing compounds like lignin or complex microbially-632 
produced chemicals), or readily decomposable microbial and predator necromass. 633 
 634 
Protected C is formed from unprotected organic matter and converted back to unprotected form at first-635 
order rates: 636 
 637 
()+,)
(*

= 𝐶M,4 ∙ 𝛾4 −
)+,)
O,+

   (2) 638 

 639 
The decomposition flux is controlled by microbial biomass (BM), temperature (T), and volumetric soil 640 
water content (𝜃): 641 
 642 

𝐷4 = 𝑉G'P,4(𝑇) ∙ C
5
5/"0

D
'
C1 − 5

5/"0
D
%
∙ 𝐶4

!/))
!/))06*

     (3) 643 

 644 
 645 
where 𝜃R'*is the saturation level of 𝜃. Note that decomposition rate is controlled by the ratio of total 646 
microbial biomass carbon (summed over isotope fractions) to substrate carbon (also summed over isotope 647 
fractions) on a substrate-specific basis. The maximum decomposition rate is controlled by the Arrhenius 648 
relationship, which describes the temperature dependence of enzymatic reactions: 649 
 650 
𝑉G'P,4(𝑇) = 𝑉G'P,STU,4 × exp	 C−

V",)
W-
D  (4) 651 

 652 
where 𝑉G'P,STU,4 is a maximum decomposition rate specific to each chemically-defined organic matter 653 
type, 𝐸',4 is activation energy for each organic matter type, and R is the ideal gas constant (8.31 J K-1 mol-654 
1). 655 
 656 
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Microbial growth is supported by uptake of decomposed organic matter, and biomass is lost through 657 
turnover at a fixed rate: 658 
 659 
(I*
(*

= ∑ (𝐷4𝐶𝑈𝐸4)4 −max	(𝑀 −𝑀G4H ∙ ∑ 𝐶M,4 , 0)4 𝑑! − 𝑝  (5) 660 
 661 
Where Mmin is minimum microbial biomass expressed as a fraction of total unprotected C and p is 662 
predation rate. Turnover is divided into maintenance respiration, which is converted directly to CO2, and 663 
necromass production. The division between maintenance and respiration and necromass production is 664 
controlled by a parameter 𝜖*: 665 
 666 
𝑅G'4H* = max(	𝑀 −𝑀G4H ∙ ∑ 𝐶M,4 , 0)4 𝑑!(1 − 𝜖*) (6) 667 
 668 
𝑇!,N = max	(𝑀 −𝑀G4H ∙ ∑ 𝐶M,4 , 0)4 𝑑!	(𝜖*)  (7) 669 
 670 
Predation rate is similar to decomposition rate, but controlled by predator biomass and, for simplicity, 671 
assumed to be independent of soil moisture: 672 
 673 
𝑝 = 𝑉G'P,2(𝑇)𝑀

2/!
2/!06+

  (8) 674 

 675 
𝑉G'P,2(𝑇) = 𝑉G'P,STU,2 × exp	 C−

V",+
W-
D (9) 676 

 677 
And predator growth and turnover are similar to their microbial counterparts, but depending on microbial 678 
biomass rather than substrate C: 679 
 680 
(2
(*
= 𝑝 ∙ 𝐶𝑈𝐸2 −max	(𝑃 − 𝑃G4H ∙ 𝑀, 0)	𝑑2 (10) 681 

 682 
Where CUEP is predator carbon use efficiency, Pmin is minimum predator biomass as a fraction of 683 
microbial biomass, and 𝜏2 is turnover time of predator biomass. As with microbes, predator biomass 684 
turnover is divided into necromass production and maintenance respiration: 685 
 686 
𝑅G'4H*,2 = max	(𝑃 − 𝑃G4H ∙ 𝑀, 0)	𝑑2S1 − 𝜖*,2T (11) 687 
 688 
𝑇2 = max	(𝑃 − 𝑃G4H ∙ 𝑀, 0)	𝑑2	S𝜖*,2T (12) 689 
 690 
Total CO2 production rate is the sum of maintenance respiration and respiration derived from 691 
decomposition processes: 692 
 693 
()K(
(*

= 𝑅G'4H* + 𝑅G'4H*,2 + ∑ ((1 − 𝐶𝑈𝐸4)𝐷4)4 + (1 − 𝐶𝑈𝐸2 ∙ 𝑝)                         (13) 694 
 695 
 696 
  697 
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Model parameters  713 

Table S1: Parameter values for the population-based models used in Figure 2. 714 

Parameter Description Value Units 

h1 Microbial handling time 0.04 Time 

h2 Predator handling time 0.04 Time 

e1 Microbial conversion efficiency 0.4 Unitless 

e2 Predator conversion efficiency 0.2 Unitless 

dM Microbial death rate 1.0 Time-1 

dP Predator death rate 0.8 Time-1 

V1 Microbial attack rate 0.22 Time-1 

V2 Predator attack rate 0.22 Time-1 

Ea1 Microbial activation energy 0.65 eV 

Ea2 Predator activation energy 0.65 eV 

T0 Reference temperature 15 ºC 

 715 
Table S2: CORPSE-Pred parameters 716 

Parameter Description Value Units 

V1 Max decomposition rate for simple 
C 

9.0 year-1 

V2 Max decomposition rate for complex 
C 

0.25 year-1 

V3 Max decomposition rate for 
necromass C 

4.5 year-1 

Ea1 Activation energy for simple C 0.052 eV 

Ea2 Activation energy for complex C 0.31 eV 

Ea3 Activation energy for necromass C 0.052 eV 

kM Microbial decomposition saturation 
parameter 

0.1 g microbial C g 
substrate C-1 
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a Moisture sensitivity parameter 1.5 Unitless 

b Moisture sensitivity parameter 0.6 Unitless 

Mmin Minimum microbial biomass 0.001 g microbial C g 
substrate C-1 

dM Microbial death rate 4.0 year-1 

e1 Microbial conversion efficiency for 
simple C 

0.6 Unitless 

e2 Microbial conversion efficiency for 
complex C 

0.05 Unitless 

e3 Microbial conversion efficiency for 
necromass C 

0.6 Unitless 

𝛾/ Protection rate of simple C 0.3 year-1 

𝛾3 Protection rate of complex C 0.001 year-1 

𝛾X Protection rate of necromass C 1.5 year-1 

𝜏)+  Turnover time of protected C 75 years 

VP Max predation rate 4.0 year-1 

EaP Predator activation energy 0.31 eV 

Pmin Minimum predator C 0.001 g predator C g 
microbial C-1 

dP Predator death rate 2.0 year-1 

eP Predator conversion efficiency 0.5 Unitless 

kP Predation saturation parameter 0.5 g predator C g 
microbial C-1 

 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 
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 725 

 726 
Figure S1: Change in steady-state SOC stock under 4ºC warming as a function of predator Ea, for three 727 
different substrate input rates using the population-based model.  728 
 729 
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 731 
Figure S2: Model pools as a function of substrate input using CORPSE-Pred. These plots are comparable 732 
to Fig. 2 in the main text. Microbial and predator pools are shown separately from SOC for better 733 
visibility due to the large differences in stock magnitudes. 734 
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 735 
Figure S3: (a) Effect of relative microbial and predator temperature sensitivities on equilibrium SOC 736 
response to warming, using CORPSE-Pred model. Dashed lines show simulations without predators. This 737 
figure is comparable to Fig. 2c in the main text. (b) Data from the top panel expressed as CEa. Dashed 738 
lines show simulations without predators, and dotted red line shows the actual Ea parameter value of the 739 
slow-cycling component of unprotected SOC. 740 
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