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Abstract 

Yes 

Key Points 

• Interval statistics have been used to conclude that major earthquakes are random events 
in time and cannot be anticipated or predicted 

• Machine learning is a powerful new technique that enhances our ability to understand the 
information content of earthquake catalogs 

• We show that catalogs contain significant information on current hazard and future  
predictability for large earthquakes 

Plain Language Summary 

The question of whether earthquake occurrence is random in time, or perhaps chaotic 
with order hidden in the chaos,  is of major importance to the determination of risk from 
these events.  It was shown many years ago that if aftershocks are removed from the 
earthquake catalogs, what remains are apparently events that occur at random time 
intervals, and therefore not predictable in time.  In the present work, we enlist machine 
learning methods using Receiver Operating Characteristic (ROC) analysis.  With these 
methods, probabilities of large events and their associated information value can be 
computed.  Here information value is defined using Shannon Information Entropy, shown by 
Claude Shannon (Shannon, 1948) to define the surprise value of a communication such as a 
string of computer bits.  Random messages can be shown to have high entropy, surprise 
value, or uncertainty, whereas low entropy is associated with reduced uncertainty and high 
reliability.  An earthquake nowcast probability associated with reduced uncertainty and 
greater reliability is most desirable.  Examples of the latter could be the statements that there 
is a 90% probability of a major earthquake within 3 years, or a 5% chance of a major 
earthquake within 1 year.  Despite the random intervals between major earthquakes, we find 
that it is possible to make low uncertainty, high reliability statements on current hazard by 
the use of machine learning methods. 

Introduction 

Are major earthquakes random events in time?  Or possibly chaotic, with order in the 
chaos if we know where to look?  These questions lie at the heart of the debate on whether 
earthquakes can be predicted or anticipated, and whether it is possible to quantitatively 
characterize the current state of earthquake hazard.   

Many years ago, Gardner and Knopoff (1974) wrote a paper with the title: “Is the sequence 

of earthquakes in Southern California, with aftershocks removed, Poissonian?” Their abstract: 

“Yes.”  The analysis they did was based on fitting the intervals between events to an 
exponential probability distribution, which is often called Poisson statistics.  This type of 
statistics is well-known to apply to many types of random counting problems, from the 
arrivals of automobiles in parking lots, to neutron decay, to calls per hour at a call center, 
and many other applications. 
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Since that time, many other researchers have searched for temporal structure in 
earthquake intervals, with generally negative results (e.g., Scholz, 2019; comprehensive 
review by Rundle et al., 2021a and references therein).  Exceptions do exist, such as are seen 
in Episodic Tremor and Slip and small repeating earthquakes (Rundle et al., 2021a; Rouet-
Leduc, 2019), but this behavior does not generally apply to large damaging earthquakes. 

In all of these studies, the fundamental question underlying these investigations can be 
phrased as: How much information does an earthquake catalog contain?  This is the question 
that we consider in this paper. 

To summarize our results:  We find that there is skill in earthquake nowcasts, as 
measured by the Receiver Operating Characteristic (ROC) curve, used in machine learning to 
evaluate signal detection.  Skill is defined as the ability to discriminate between true signals 
and false signals.  We quantify this in terms of Shannon Information Entropy, using as 
probabilities the ROC curve and its associated Precision (Positive Predictive Value).  We 
show that nowcasts of real data have lower entropy (higher information content) than 
random data.  Using a simple simulation of a nowcast state variable curve with random 
(exponential) recurrence times, we show that Poisson recurrence does not imply a lack of 
predictability or skill using the state variable.  The state variable time series resembles the 
long-hypothesized cycle of tectonic stress accumulation and release for major earthquakes.  
We conclude that the observation of Poisson recurrence statistics does not necessarily imply 
a lack of earthquake predictability. 

Data and Method 

In recent research, we have developed methods that we call earthquake nowcasting whose goal 

is to estimate the current state of hazard.  A number of authors have now begun to use these 

methods in a variety of applications. Recent research has developed the idea of earthquake 

nowcasting, which uses state (“proxy”)  variables to infer the current state of the earthquake cycle 

(Rundle et al., 2016, 2018, 2019, 2021a,b; Rundle et al., 2022; Rundle and Donnellan, 2020; Pasari 

and Mehta, 2018; Pasari, 2019, 2020; Pasari and Sharma, 2020;  Luginbuhl et al. 2019;  2020).  

An approach such as this is needed since the cycle of stress accumulation and release is not 

observable (Rundle et al., 2021b; Scholz, 2019).  These first approaches to nowcasting has been 

based on the concept of natural time (Varotsos et al., 2001; 2002; 2011, 2013; 2014; 2020a,b; 

Sarlis et al., 2018).    

More specifically, in this work we analyze the result of applying a filter that, when applied 
to a timeseries of small earthquakes, reveals the cycle of large earthquake occurrence and 
recovery.  Details of the process of building, optimizing, and applying the filter is indicated 
in Figure 1, and discussed elsewhere (Rundle et al, 2022).  The Python code used to compute 
the filter is available on the ESSOAR site as well.  In this section, we sketch the process, details 
of which can be found in the cited references. 

A critical component of the current approach is that the information is encoded in the 
earthquake clusters or bursts, a series of events closely spaced in time (Rundle et al., 2020; 
Rundle and Donnellan, 2020).  Bursts are a temporal clustering of highly correlated 
seismicity, typically in a small spatial region. 

Data.  Referring to Figure 1, we begin with the seismicity in a regional box of size 10o 
latitude by 10o  longitude centered on Los Angeles, CA (Figure 1a).  The timeseries of 
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earthquakes in that region since 1970, having magnitudes M > 3.29, is shown in Figure 1b as 
a series of vertical lines.  Also  shown as a blue curve is the exponential moving average 

(EMA) with number of weights N = 36 [1].  Note that the blue curve shows an “inverted” cycle 
of large earthquakes that is the primary basis for the nowcast filter.  This inverted cycle 
shows a sudden decrease at the time of a large earthquake, due to the occurrence of the 
aftershocks. 

In Figure 1c, we show a time series for the mean number 𝜇(𝑡) of small earthquakes as a 
function of time.  The mean is taken beginning in 1960, and is also shown since 1970.  It can 
be seen that the mean does not indicate a steady state.  Instead, there is a general increase in 
mean number of events up to about 1993, after which it shows a cycle similar to that in Figure 
1b.   

This catalog behavior may be due either to actual tectonic processes, or perhaps to 

changes in methods of earthquake detection and magnitude assignment in the early 1990’s, 
when the network was fully automated and digital (Hutton et al., 2010).  In fact, it is 
interesting that the temporal trends in Figure 1c  seem to somewhat mirror the general 
historical change in number of seismic stations in California as shown in Figure 3 of Hutten 
et al. (2010). 

State Variable 𝛩(𝑡).The data in Figures 1b and 1c are then combined to form the state 

variable timeseries 𝛩(𝑡) shown in Figure 1d.  The state variable itself is the EMA average of 

the small earthquakes, then adjusted using the current mean number 𝜇(2022)of small 

earthquakes, using a constant of proportionality 𝜆.  The N-value and 𝜆-value are obtained by 
optimizing the ROC skill.   

The adjustment corresponds to an assumption that there is a minimum number of small 
earthquakes that occur each month.   An important component of this adjustment is the 
assumption that there appears to be a transition from unstable seismic slip, observable with 
seismometers, to stable sliding that is observable only with geodetic observational 

instruments such as GNSS or InSAR.  Figure 1d then represents an “inverted” and adjusted 
and EMA averaged timeseries of the small earthquakes.  

Receiver Operating Characteristic (ROC).  To calculate the the EMA N-value, and the 
contribution of the mean number 𝜇(𝑡)  of small earthquakes, we construct the temporal 
Receiver Operating Characteristic  (ROC) for a forward time window 𝑇𝑊 =3 years beyond a 
given time t (Rundle et al., 2022).  We note that other researchers are also using ROC 
methods in earthquake cluster analysis (Ben-Zion and Zaliapin, 2020;  Zaliapin and Ben-Zion, 
2022), similar in some ways to ideas in Rundle and Donnellan (2020) and Rundle et al. 
(2021a,b). 

The ROC curve [2] is constructed by establishing a series of increasing thresholds TH in 

the state variable 𝛩(𝑡) from low values to high values.  We then consider all values of time, 
and a series of 4 clauses (statements).  A review of these methods can be found in Jolliffe and 
Stephenson (2003). 

For each time t: if a given 𝛩(𝑡) ≥ 𝑇𝐻 and a large earthquake occurs within the next TW 

years, we classify that as true positive TP;  if  𝛩(𝑡) ≥ 𝑇𝐻 and no earthquake occurs within 
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the next TW years, we classify as false positive FP;  if 𝛩(𝑡) < 𝑇𝐻  and no earthquake occurs 

within the next TW years, we classify as true negative  TN;  if 𝛩(𝑡) < 𝑇𝐻   and an earthquake 
does occur within the next TW years, we classify as false negative  FN.  We then repeat this 
procedure over all values of threshold 𝑇𝐻.   

Having TP, FP, FN, TN, we then define the true positive rate TPR or “hit rate” TP/(TP + 

FP); the false positive rate FPR or “false alarm rate” FP/(FP+TN).  A plot of  TPR against FPR 
defines the ROC curve, which is the red curve in Figure 1e.  For future consideration, we also 
define the Precision, or positive predictive value as TP/(TP+FP), the fraction of predictions 
that turn out to be accurate. These and other quantities are described in [2]. 

Supervised Machine Learning.  The area under the ROC curve is the Skill, which 
specifies the ability of the method to discriminate between true signals and false signals.  The 
diagonal line in Figure 1e is the no skill line, equivalent to a random predictor.  Note that the 
area under the no skill line is 0.5.   

For a method to have skill, the ROC curve must either be above the diagonal line, or below 
it.  For a method with skill, the area under the ROC curve can either be a maximum of 1.0, or 
a minimum of 0.0.  For future reference, we define a skill index  SKI in % as a function of the 
Relative Skill RS = |Skill - 0.5|:  

 

𝑆𝐾𝐼 =  −100 ( 𝑅𝑆  𝐿𝑜𝑔2 𝑅𝑆  +  (1 − 𝑅𝑆)𝐿𝑜𝑔2(1 − 𝑅𝑆) )   (1) 

 

SKI can then range from 0% (when skill = 0.5), to 100% (when skill is either 1.0 or 0.0).  
In Figure 1e, the no skill area is indicated by the darker shaded area.  The skill of the 
nowcasting method that we discuss here is indicated by the total shaded area. 

As discussed in Rundle et al. (2022), we find the optimal values of N for the EMA, and the 
contribution of the mean earthquake (t) adjustment , by maximizing the skill.  This is 
indicated in Figure 1d and 1e as a feedback between the state variable curve and the ROC 
skill calculation.  This procedure results in a filter that has been optimized by well-
understood, reliable methods.  We note that the code is available on the AGU preprint archive 
ESSOAR (Rundle et al., 2022, supplemental tab). 

Shannon Information.   Claude Shannon’s famous paper on statistical communication 
theory  (Shannon, 1948) describes a measure of the information content of a message 
between communicating parties.  It is based on the idea of viewing a message consisting of a 

bit string as a series of intermixed 1’s and 0’s, with an associated entropy of mixing.  
Examples of the use of these methods can be found, e.g., in Cover and Thomas (1991), and 
Stone (2015). 

The usual interpretation of Shannon information entropy is then the number of binary 
yes/no questions that must be asked in order to determine the information in the message 
being sent.  If more questions are required, the entropy is higher and the information 
communicated is more surprising.  Conversely if fewer questions are required, the entropy 
is lower and the information communicated is not as surprising.   



 6 
Information Content of Earthquake Catalogs 

For a message in which symbols in an alphabet (i.e., the 1’s and 0’s) have probability mass 

function p(𝜔), where 𝜔 ∈[0,1], the self-information 𝐼𝑠𝑒𝑙𝑓 associated with a given symbol is: 

𝐼𝑠𝑒𝑙𝑓 = −𝐿𝑜𝑔
2
𝑝(𝜔)       (2) 

The Shannon information of a string of symbols is then given by the expectation of the 
self-information: 

𝐼𝑆 = −∑
𝜔

𝑝(𝜔)𝐿𝑜𝑔
2
𝑝(𝜔)     (3) 

Comparing (3) with the skill index SKI, we see that equation (1) is an information entropy-
based definition. 

Results 

In this section we compute the information content/entropy using the statistics of the 
ROC curve, and the time series precision.  In Figure 2, we first address the skill and 
information content of the method outlined in Figure 1 for a continuum of future time 
windows 𝑇𝑊 ∈ [0.125,8.5] years.    

Skill.  Figure 2a shows the same ROC diagram as in Figure 1e for a future time window 
of 𝑇𝑊 =1 year.  As discussed previously, the red curve is the true positive rate (TPR), which 
ranges from 0 to 1.  The diagonal line is the true positive rate for an ensemble of 50 random 

time series, each of which were obtained from the state variable time series 𝛩(𝑡) using a 
bootstrap procedure of random sampling with replacement.  The ensemble of random time 
series is shown as the cyan curves grouped near the diagonal line. 

The skill, which is the area under the ROC curve, is shown in Figure 2b as function of the 

future time window 𝑇𝑊 , for fixed EMA N-value and 𝜆-value.  Figure 2c shows the skill index 
SKI defined in (1), also as a function of 𝑇𝑊 .  Both Figures 2b,c indicate that there is a 
maximum in skill at a value 𝑇𝑊 = 0.625 years, and no skill at 𝑇𝑊 = 6.875 years, where the 
skill curve crosses the no-skill (dashed horizontal) line. 

Shannon Information from ROC.  To calculate the Shannon Information entropy as a 
function of 𝑇𝑊 using (3), we need a probability mass function pmf.  For this purpose, we use 
the ROC curve as a cumulative distribution function, and difference it with respect to 
threshold values 𝑇𝐻 to obtain the pmf.  Because the ROC curve was constructed using 200 
values of 𝑇𝐻, there are 199 values of the pmf => 𝑝(𝜔) to be used in equation (3).   

To compare the results with those for the no skill diagonal line, we note that the diagonal 
line can also be regarded as a cumulative distribution, but for a uniform pmf whose value is 
the constant pmf => 𝑝(𝜔) = 1/N. For this value of pmf, it is easy to show that 𝐼𝑆 =7.64 bits.   

According to the conventional interpretation of Shannon information, one would need to 
ask, on average, 7.64 yes/no questions to establish the value of a random state variable just 
prior to the occurrence of a major earthquake during the following 𝑇𝑊 years.  Or in other 
words, the number of yes/no questions needed to determine whether a given random 
threshold state is followed by a window 𝑇𝑊  that contains a large earthquake. 
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By contrast, the actual ROC curve has a lower value of 𝐼𝑆, and therefore more information 
content, and lower entropy, than the random ROC (diagonal line).  For the value of 𝑇𝑊 = 1.0 
year, we find 𝐼𝑆 = 4.29 bits, corresponding on average to 4.29 yes/no questions.   

A selection of these data are also summarized in Table 1, and are compared to data from 
a simple illustrative simulation discussed below.  Data for skill, skill index, ROC Information, 
Information from random ROC, Kullback-Leibler Divergence [3], and Jensen-Shannon 
Divergence[4] are shown in the table as well.  These latter quantities are measures of the 
difference in information entropy between the data and a random nowcast. 

Shannon Information from Precision (PPV).  More insight into the information 

content/entropy of the state variable 𝛩(𝑡)  can be realized using the positive predictive 
value (PPV) probability, or precision.  Figure 3a shows the optimized state variable as a 
function of time, an enlarged version of Figure 1d.   

Note in particular that the top area of the  state variable curve corresponds to enhanced 
quiescence prior to the occurrence of a large earthquake, as explained previously and in 
Rundle et al. (2022).  Conversely, the bottom area of the curve  corresponds to enhanced 
activation, for example aftershock occurrence following a large event. 

Figure 3b shows the precision, and Figure 3c shows the corresponding self information 
𝐼𝑠𝑒𝑙𝑓  , equation (2), both quantities on the horizontal axis and shown as a function of the 

threshold value TH on the vertical axis.  These are the magenta curves in those figures.  Figure 
3 allows one to read horizontally and associate a value of PPV and self-information 𝐼𝑠𝑒𝑙𝑓 with  

a given value of 𝛩(𝑡).   

Also shown in Figures 3b,c are the PPV and 𝐼𝑠𝑒𝑙𝑓  for an ensemble of 50 random time 

series, these are the cyan curves.  The mean of the cyan curves is shown as a solid black line, 
and the 1 𝜎 confidence limits are shown as dashed lines.  Each random time series  in the 

ensemble is again computed by sampling with replacement the time series  𝛩(𝑡), then for 
each curve calculating the PPV and 𝐼𝑠𝑒𝑙𝑓  for that curve.   

A main finding from Figure 3 is that the statistics of future time windows 𝑇𝑊  for the 
ensemble of random time series do not depend on the value of the threshold 𝑇𝐻  .  The 
random (uniform) probability of a future window 𝑇𝑊 containing a large earthquake is about 
10%, for example.  By contrast, the probability of a future time window containing a large 

earthquake increases dramatically as the time series 𝛩(𝑡) increases from bottom of the 
chart (activation phase) to the top (quiescence phase).  

We also see in Figure 3c that the information entropy is basically the same for the 

ensemble or random curves as for 𝛩(𝑡)  in the activation condition.  Conversely, as 
quiescence becomes more dominant and the time of a large earthquake approaches, entropy 

for 𝛩(𝑡) decreases and information content correspondingly increases.   

We can also understand why the self-information 𝐼𝑠𝑒𝑙𝑓  for the random time series is 

approximately 3.35 bits.  In the figure, we considered a series of  𝑇𝑊 = 1 year windows from 
1970 to early 2022.  There are thus a little more than 51 non-overlapping, independent time 
windows.   
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During this time period, there are 5 major earthquakes having magnitudes 𝑀 ≥ 6.75:  
M6.9 Loma Prieta; M7.3 Landers; M7.1 Hector Mine; M7.2 El Mayor Cucupah; and M7.1 
Ridgecrest earthquakes.  If the earthquakes were distributed randomly in time, there would 
be a probability of 𝑝(𝜔) = 5/51 = 0.098 of finding a large earthquake in any of these time 
windows.  

Thus we calculate a self-information entropy for the mean of the random ensemble 
curves of 𝐼𝑠𝑒𝑙𝑓 = −𝐿𝑜𝑔

2
(5/51) = 3.35  bits.  Therefore it would take on average 3.35 

yes/no questions to determine if one of these future time windows 𝑇𝑊  contains a large 

earthquake.  Conversely, it is apparent that the self-information entropy of the PPV of 𝛩(𝑡) 
approaches 0 as the seismically quiescence phase becomes fully developed. 

The primary conclusion from these calculations is that the information content is higher 
in the quiescence phase of seismicity than the activation phase.  Or alternatively, that the 
activation phase has higher entropy than the quiescence phase. 

A Simple Example 

We now return to the question posed at the beginning of this paper of whether large 
earthquakes, which have been repeatedly found to have interval statistics that are 
exponentially (Poisson) distributed, nonetheless have information content about past and 
future events.   

To show that this is not a contradiction, we consider the following simple model 
simulation: 

• The basic state variable curve 𝛩𝑠𝑖𝑚(𝑡) is specified as the logistic function: 

𝛩𝑠𝑖𝑚(𝑡) =
1

(1+𝑒𝑥𝑝(−𝑡′)
     (4) 

where:  𝑡′ =
𝛥𝑡

𝜏
+ 6  and 𝛥𝑡 is the time since the last large “earthquake.” 

• Failure (a “large earthquake”) occurs when 𝛩𝑠𝑖𝑚(𝑡) = 0.995.  At failure, we then set 

𝛥𝑡 = 0, and declare that a large “earthquake” has occurred. 

• After a “large earthquake” occurs, the next value of 𝜏 is chosen from an exponential 
distribution whose mean is taken to be 25 “months”. 

• The future time window 𝑇𝑊 = 40 “months” is used to evaluate nowcast skill. 

• We then progressively increase 𝛥𝑡  by 1 “month” intervals until the next large 
“earthquake” occurs, at which point  we repeat the process. 

The results of a long simulation of 183 large “earthquakes” is shown in Figure 4.  There 
we see that a short segment of the time series 𝛩𝑠𝑖𝑚(𝑡) as shown in Figure 4a is generally 
similar to that shown in Figure 3a.  Figure 3b shows that there is significant nowcast skill, 
equal to 0.88, with a skill index of 95.81%, meaning that the true signals can be 
differentiated from false signals with a high degree of reliability. 
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By construction, however, we also see from Figures 4c and 4d that the interval statistics 
for 𝛩𝑠𝑖𝑚(𝑡)conform to those of a Poisson interval distribution (exponential distribution).  
We can therefore say that for this model simulation, the existence of Poisson interval 
statistics does not imply a lack of predictability for 𝛩𝑠𝑖𝑚(𝑡), similar to what we found with 
the California data set. 

Conclusion 

In this paper we have analyzed earthquake catalogs to understand the information they 
contain.  Interval statistics observed in catalogs are usually taken to indicate random 
(Poisson) events having no memory.  However, we have shown that the temporal clustering, 
or variation in monthly rate of the small earthquakes, does contain important information.    

This temporal clustering is in the form of bursts of activity that can be modeled with 
invasion percolation networks (Rundle et al., 2020).  We thus find that the process of de-
clustering a catalog is shown to remove information content, and to increase the 
information entropy. 

The current results are consistent with the cluster analysis of Rundle and Donnellan 
(2020).  We also note that this general decrease in monthly rate leading up to the next big 
earthquake might also be regarded as the “long tail” of the Omori aftershock distribution. 

We have used this idea to construct a state variable 𝛩(𝑡) by defining a 2-parameter filter, 
based on an exponential moving average (EMA) of small earthquake seismicity, together 
with an assumption about the minimum number of small earthquakes during a month-long 
interval. 

The interplay between seismic activation, for example aftershocks, and seismic 
quiescence, can be analyzed by standard methods.  These methods are receiver operating 
characteristic (ROC), positive predictive value (PPV), and Shannon information entropy.  
We note that quiescence has been identified as a precursor to major earthquakes in 
previous research (Kanamori, 1981; Wyss and Haberman, 1988; Haberman, 1988; Main and 
Meredith, 1991; Huang et al., 2001;  Chouliaras, 2009; Weimer and Wyss, 1994; Torman et 
al., 2010; Rundle et al., 2011; Katsumata, 2011; Nanjo, 2020). 

ROC analysis clearly shows that use of the optimized state variable 𝛩(𝑡) to describe the 
earthquake cycle in California has nowcast skill.  Skill is the ability to distinguish between 
future time windows 𝑇𝑊 that are likely to contain a large earthquake (true signal) and those 
that are not (false signal).  The positive predictive value PPV can be interpreted as an 
indicator of the chance of a large earthquake during 𝑇𝑊.   

Furthermore, the Shannon information content of both the ROC and PPV can be 
demonstrated to contain more information, or lower surprise value, than a random 
predictor.  Or in other words the random predictor has higher information entropy than  

𝛩(𝑡).   

To summarize, in reference to the original question posed by Gardner and Knopoff 
(1974) regarding earthquake predictability, we find the following.  Their conclusion may 
apply to earthquake interval statistics where the ordering of temporal bursts and clustering 
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(variation in monthly rate) has been lost through the de-clustering process, thereby 
increasing the information entropy in the catalog.   

But if small earthquakes are used to build a state variable, to which a threshold criterion 
is then applied, we find that  there does exist information value in the resulting state 

variable 𝛩(𝑡).  The original (non-declustered) catalog is thus found to contain significant 
information that can be used to compute and test earthquake probabilities without need to 
resort to models of stress accumulation and release, for example. 
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are freely available there.  The Python code mentioned above can be used to download these data 

for analysis. 
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Figure 1.  a) Seismicity in a regional box of size 10o latitude by 10o  longitude centered 
on Los Angeles, CA (Figure 1a). Large red circles represent earthquakes having magnitudes 
M>6.9.  Smaller blue circles are earthquakes with M>5.9.  b) The timeseries of earthquakes 
in that region since 1970, having magnitudes M > 3.29.  Blue curve is the exponential moving 
average (EMA) with number of weights N = 36 [1].  c) Time series for the mean number 𝜇(𝑡) 
of small earthquakes as a function of time.  The mean is taken beginning in 1960, and is also 

shown since 1970.  d) Optimized state variable timeseries 𝛩(𝑡).  State variable is the EMA 

average of the small earthquakes, then adjusted using the current mean number 𝜇(2022)of 

small earthquakes, using a constant of proportionality 𝜆.  e) The N-value and 𝜆-value are 
obtained by optimizing the ROC skill, which is shown as the total area under the red curve.  
Skill for the random time series is shown as the area under the diagonal line, thus random 
skill = 0.5.   
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Figure 2.  a) Shows the same ROC diagram as in Figure 1e for a future time window of 
𝑇𝑊 =1 year.  ROC is the red curve, representing a plot of the true positive rate (hit rate) as a 
function of the false positive rate (false alarm rate). The diagonal line is the true positive rate 
for an ensemble of 50 random time series, each of which were obtained from the state 

variable time series 𝛩(𝑡)  using a bootstrap procedure of random sampling with 
replacement.  The ensemble of random time series is shown as the cyan curves grouped near 
the diagonal line. b) Shows the skill, as a function of the future time window 𝑇𝑊 , for fixed 

EMA N-value and 𝜆-value.  c). Shows the skill index SKI defined in equation (1), also as a 
function of 𝑇𝑊.  d). Shows the Shannon information entropy, equation (3),  as a function of 
future time window 𝑇𝑊 .  Here the information is computed from the probability mass 
function associated with the ROC curve.  Horizontal dashed line is the information entropy 
for the random ROC curve (diagonal line), assuming N = 200 threshold values. 
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Figure 3. a) Shows the optimized state variable as a function of time, an enlarged version 
of Figure 1d.  b) Shows the Positive Predictive Value, PPV or Precision.  Red cuve is the PPV 
for the state variable shown in a), where the vertical axis is the threshold TH.   The cyan lines 
represent the PPV for 50 random time series.  Mean of the time series is the solid black line, 
and 1 confidence is shown as the dashed lines.  c). Red curve is the corresponding self 

information 𝐼𝑠𝑒𝑙𝑓, equation (2), on the horizontal axis as a function of the threshold value TH 

on the vertical axis.  Again, the cyan curves are the self-information for the ensemble of 50 
random time series, with mean (solid black line) and 1 confidence as the dashed lines. 
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Figure 4.  Results of a long simulation of 183 large “earthquakes”.  We have constructed 
a time series 𝛩𝑠𝑖𝑚(𝑡) using equation (4), which yields results generally similar to those in 
Figures 1 and 3.  a) Time series 𝛩𝑠𝑖𝑚(𝑡) as a function of "time" in "months" on the left, PPV 
on the right.  Compare to Figure 3.   The vertical red line at bottom of the time series is the 
large "earthquake", the dashed blue line is the derivative of the time series representing the 
activity.  On the left is the time series, on the right is the associated Precision (PPV).  b) ROC 
curve for the time series as discussed in the text.  Area of 0.88 under the ROC curve is larger 
than 0.5, indicating skill. Cyan curves are the skill from 50 random time series. c) Histogram 
of intervals between 183 large "earthquakes".  d) Cumulative interval statistics, obtained 
from integrating histogram in c).  Also shown is the dashed curve for Poisson (exponential) 
statistics having the same mean as the time series.  
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Table 1.  Data for skill, skill index, ROC Information, Information from random ROC, 
Kullback-Leibler Divergence [3], and Jensen-Shannon Divergence[4].  The latter two terms 
refer to evaluating the distance in information space between the ROC from the filtered data 
and a random ROC curve (diagonal line on the ROC diagram).  While both divergence 
quantities measure the difference in entropy between the two distributions, the Jensen-
Shannon is the only one that represents a true metric.  The top 4 rows of data in the table 
are from the California data, whereas the bottom row is from the simulation discussed in 
the text. 

 

 


