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Abstract

This paper presents a new coupled urban change and hazard consequence model that considers population growth, a changing

built environment, natural hazard mitigation planning, and future acute hazards. Urban change is simulated as an agent-based

land market with six agent types and six land use types. Agents compete for parcels with successful bids leading to changes

in both urban land use – affecting where agents are located – and structural properties of buildings – affecting the building’s

ability to resist damage to natural hazards. IN-CORE, an open-source community resilience model, is used to compute damages

to the built environment. The coupled model operates under constraints imposed by planning policies defined at the start of a

simulation. The model is applied to Seaside, Oregon, a coastal community in the North American Pacific Northwest subject to

seismic-tsunami hazards emanating from the Cascadia Subduction Zone. Ten planning scenarios are considered including caps

on the number of vacation homes, relocating community assets, limiting new development, and mandatory seismic retrofits. By

applying this coupled model to the testbed community, we show: (1) placing a cap on the number of vacation homes results

in more visitors in damaged buildings, (2) that mandatory seismic retrofits do not reduce the number of people in damaged

buildings when considering population growth, (3) polices diverge beyond year 10 in the model, indicating that many policies

take time to realize their implications, and (4) the most effective policies were those that incorporated elements of both urban

planning and enforced building codes.
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Key Points: 13 

• An urban change model is coupled with a hazard consequence model to consider future 14 
hazards, population growth, and planning policies. 15 

• The model is applied to a coastal community in the Pacific Northwest considering Cascadia 16 
Subduction Zone seismic-tsunami hazards. 17 

• Placing a cap on the number of vacation homes in a community could result in more visitors 18 
in damaged buildings.   19 
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Abstract 20 

This paper presents a new coupled urban change and hazard consequence model that considers 21 
population growth, a changing built environment, natural hazard mitigation planning, and future 22 
acute hazards. Urban change is simulated as an agent-based land market with six agent types and 23 
six land use types. Agents compete for parcels with successful bids leading to changes in both 24 
urban land use – affecting where agents are located – and structural properties of buildings – 25 
affecting the building’s ability to resist damage to natural hazards. IN-CORE, an open-source 26 
community resilience model, is used to compute damages to the built environment. The coupled 27 
model operates under constraints imposed by planning policies defined at the start of a simulation. 28 
The model is applied to Seaside, Oregon, a coastal community in the North American Pacific 29 
Northwest subject to seismic-tsunami hazards emanating from the Cascadia Subduction Zone. Ten 30 
planning scenarios are considered including caps on the number of vacation homes, relocating 31 
community assets, limiting new development, and mandatory seismic retrofits. By applying this 32 
coupled model to the testbed community, we show that: (1) placing a cap on the number of vacation 33 
homes results in more visitors in damaged buildings, (2) that mandatory seismic retrofits do not 34 
reduce the number of people in damaged buildings when considering population growth, (3) 35 
polices diverge beyond year 10 in the model, indicating that many policies take time to realize 36 
their implications, and (4) the most effective policies were those that incorporated elements of both 37 
urban planning and enforced building codes. 38 

 39 

Plain Language Summary 40 

Natural hazards negatively impact communities resulting in significant infrastructure damages. 41 
Natural hazard mitigation planning attempts to reduce these damages and modeling can be used to 42 
measure how effective different mitigation plans can be. A new modeling framework is presented 43 
that accounts for population growth, a changing built environment, natural hazard mitigation 44 
planning, and future hazards. The model is applied to a testbed community with a large tourist 45 
population that is exposed to earthquake and tsunami hazards. Using this model, we consider 46 
different combinations of policies such as limiting the number of vacation homes in the 47 
community, relocating community assets, limiting new development, and enforcing building 48 
codes. Interestingly, we show that while placing a cap on the number of vacation homes does free 49 
up housing for full time residents, this also results in more visitors in damaged buildings. It is also 50 
shown how even with building codes in place, population growth contributes to an increased 51 
number of people in damaged buildings. Lastly, we show how the most effective policies 52 
incorporate elements of both urban planning and building codes.  53 
  54 
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1 Introduction 55 

With disasters occurring at the nexus of the built-natural-social environments (Mileti, 1999; Peek 56 
and Guikema, 2021), recent natural hazards have highlighted the need for disaster resilient 57 
communities (Koliou et al., 2018). Increasing community resilience has gained traction in recent 58 
years with local stakeholders, national, and global entities alike addressing community resilience 59 
and disaster risk reduction (e.g., SPUR, 2009; OSSPAC, 2013; UNDRR, 2015; NIST, 2016). 60 
Simultaneously, however, complexities of increasing community resilience in an uncertain future 61 
are being identified. These complexities stem from a variety of sources and can include 62 
accelerating human activities, increased uncertainty in the built-natural-human environments, and 63 
increased complexity of infrastructure systems themselves (Spies et al., 2014; Chester et al., 2021). 64 
Population growth, urbanization, and a changing climate are expected to further contribute to 65 
increased exposure and societal losses associated with natural hazards in both the immediate and 66 
long-term future (Neumann et al., 2015; Hemmati et al., 2020; Bilskie et al., 2022; Cremen et al., 67 
2022). As a result, the outcomes of hazard mitigation plans are often difficult to fully envision, 68 
with biased policies leading to increased vulnerability of marginalized populations (Peek et al., 69 
2020). 70 

Given these challenges and complexities, modeling and simulation have been identified as a means 71 
to inform disaster theory and understand emerging phenomena (Mostafavi and Ganapati, 2021). 72 
Subsequently, the use of simulation has proven effective to evaluate how natural hazard mitigation 73 
plans and policy can help improve community resilience (Talebiyan and Mahsuli, 2018; Wang et 74 
al., 2019; Nofal et al., 2021). While many of these simulation efforts provide what-if scenarios for 75 
natural hazard mitigation planning, they often consider static, present-day representations of the 76 
built-natural-social environments despite their dynamic nature.  77 

There has, however, been a recent shift towards considering disaster resilience under a more 78 
dynamic and future-oriented lens (Hemmati et al., 2020; Galasso et al., 2021; Cremen et al., 2022). 79 
To this end, there is a need to situate the simulation of disaster resilience within appropriate 80 
temporal settings given that both disasters and the adoption of mitigation plans happen over an 81 
extended period of time ranging from months to years. The dynamic nature of the built and social 82 
environments within disaster resilience simulation can be captured by coupling urban growth and 83 
change models with hazard consequence models. Figure 1 shows a conceptual diagram of this 84 
coupling. The time scale shown is in decades, and the y-axis shows a “Metric of Interest”. Example 85 
metrics could include the number of habitable homes, number of residents with electricity, etc. 86 
Policies influence how these metrics evolve over time and, while not shown here, these metrics 87 
could also decrease. At some point in the future, an extreme event may occur resulting in damages, 88 
losses, and recovery. The overall goal of the simulation model is to evaluate how policies affect 89 
the metric of interest relative to the status quo during non-disaster conditions and how these 90 
policies affect the resilience trajectory (initial damage and recovery) following an extreme event.  91 
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 92 

Figure 1: Situating infrastructure resilience within a larger temporal setting by coupling urban 93 
growth and change modeling with hazard consequence modeling 94 

While it is common to find models to evaluate policies for either non-disaster growth or damage-95 
recovery following a disaster, there are few comprehensive models that evaluate both in a 96 
consistent manner. Table 1 provides a review of models and papers divided into three groups: (1) 97 
urban growth and change models, (2) hazard consequence models, and (3) coupled urban change 98 
and hazard consequence models.  99 

Table 1: Review of: (1) urban growth/change models, (2) hazard consequence models, and (3) 100 
coupled urban change and hazard consequence models 101 
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Model Description/Notes Model name 

Urban growth 
and change 

White and Engelen 
(1993) 

✓           Early cellular automata model of urban 
change 

- 

Berry et al. (1996) ✓      Socioeconomic model influences 
transition probability matrix, influences 
land use 

LUCAS 

Waddell (2002) ✓      Real estate market modeling choices of 
households, businesses, real estate, 
etc. 

UrbanSim 

Hunt and Abraham 
(2003) 

✓      Used for simulating spatial economic 
systems; can be applied to urban land 
use change  

PECAS 

Brown and Robinson 
(2006) 

✓      Residential choice where agents select 
grid space maximizing utility 

SLUCE/SOME 

Bolte et al. (2007) ✓      Land use change model for alternative 
future evaluation of policies 

Envision/EvoLand 

Urban growth and change

Status quo

Policy A

Time (years)
Present Day

Extreme Event Occurs

Future
0 10 20 30

M
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ric
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Hazard consequence model: 
damage, loss, and recovery 
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Model Description/Notes Model name 
Filatova et al. (2009) ✓      Residential choice with agent 

buying/selling mechanisms 
ALMA 

Filatova et al. (2011) ✓      Residential choice with agent 
buying/selling mechanisms for coastal 
area 

ALMA-C 

Magliocca et al. 
(2011) 

✓      Coupled housing and land market CHALMS 

Chaudhuri and Clarke 
(2013) 

✓           Cellular automata model that started 
out as wildfire spread model 

SLEUTH 

Hazard 
Consequence 

McLaren et al.(2008)   ✓         Early regional-level earthquake risk 
analysis software 

MAEVIS 

van de Lindt et al. 
(2018) 

 ✓ ✓ ✓ ✓ ✓ Regional-level natural hazard damage, 
loss, and recovery 

IN-CORE 

FEMA (2021a)  ✓ ✓ ✓  ✓ Regional-level natural hazard damage, 
loss, and recovery; GIS-based 

HAZUS 

Deierlein et al.(2021)   ✓  ✓ ✓  ✓ Regional-level natural hazard damage, 
loss, and recovery 

SimCenter - R2D 

Urban growth 
and change 

+ 
Hazard 

Consequence 

Jain et al. (2005) ✓   ✓   Forecast urban change as proportional 
to population and consider hurricane 
risk 

 

French (2012) ✓ ✓     Forecast urban growth using per capita 
multipliers and focus on nonstructural 
damages from earthquakes 

 

Filatova (2015) ✓  ✓    Empirical land market and consider 
flood risk as in/out of flood zone 

RHEA 

Dubbelboer et al. 
(2017) 

✓  ✓    Simulate land market for flood 
insurance evaluation 

 

Jenkins et al. (2017) ✓  ✓    Agent-based model of land use change 
for insurance evaluation 

 

Sleeter et al. (2017) ✓ ✓    ✓ Apply LUCAS model and consider 
earthquake/tsunami exposure at 
regional scale 

 

Mills et al. (2018) ✓  ✓    Use Envision model to evaluate coastal 
hazard policies informed by 
stakeholder engagement 

 

Chang et al. (2019) ✓ ✓ ✓    Urbanization follows simple rules based 
on policy; consider both earthquake 
and flood risk 

 

Haer et al. (2019) ✓  ✓    Agent-based model of land use change 
for disaster policy evaluation 

 

Haer et al. (2020) ✓  ✓    Agent-based model of land use change 
for exploring safe development 
paradox 
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Model Description/Notes Model name 
Sarica et al. (2020) ✓ ✓     Apply SLEUTH model and consider 

buildings exposed to earthquake 
hazard 

 

Calderón et al (2021) ✓ ✓     Multi-agent system with agents 
defining preferences for land use to 
change; consider earthquake damage 

 

Cremen et al. (2021) ✓ ✓     Number of residences in future 
projections match population growth; 
consider earthquake hazards 

 

Hemmati et al. 
(2021a) 

✓  ✓    Use cellular automata and consider 
flood hazards 

 

Hemmati et al. 
(2021b) 

✓  ✓    Use cellular automata + agent-based 
model and consider flood hazards 

 

Mesta et al. (2022) ✓ ✓ ✓    Apply SLEUTH model and consider 
earthquake and flood hazard at 
regional scale 

 

Williams et al. (2022) ✓   ✓   Urbanization by using a neural network 
and consider hurricane hazards 

 

As shown in Table 1, modeling urban change can take on many forms ranging from cellular 102 
automata (White and Engelen, 1993; Chaudhuri and Clarke, 2013) to modeling land markets and 103 
buyer-seller transactions (Parker and Filatova, 2008; Parker et al., 2012; Huang et al., 2014). These 104 
models are typically used for land use and urban planning to explore alternative futures under 105 
various policy scenarios.  106 

On the hazard consequence side, there has been extensive research into simulating the impact that 107 
natural hazards have on the built- and social-environments. These can include infrastructure 108 
damages and losses, recovery and restoration processes, and/or modeling of social impacts. 109 
Recently, there have been efforts to transfer this research into deployable models that communities 110 
can utilize for resilience planning (e.g., van de Lindt et al., 2018; Deierlein et al., 2021).  111 

The coupling of these two groups of models has increased in recent years as researchers are 112 
recognizing that future projections of the built- and social-environments are important to consider 113 
for mitigation planning. Limitations to many of the previously coupled models include either 114 
considering hazards in a minimal way (i.e., hazard exposure), or considering urban change in a 115 
minimal way (i.e., multipliers based on population growth). Only a handful of the modeling 116 
approaches in Table 1 focus on the exploration of policies to evaluate hazard risks with both 117 
detailed urban change and hazard consequence components (Haer et al., 2019; Hemmati et al., 118 
2021a; Hemmati et al., 2021b). These approaches in particular have focused exclusively on flood 119 
risks. 120 

This paper thus presents a new coupled urban change and hazard consequence model that considers 121 
population growth, a changing built environment, natural hazard mitigation planning, and future 122 
acute hazards. Urban change is modeled via simulation of a land market whereas immediate post-123 
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disaster damages are modeled using IN-CORE, an opensource software for community resilience 124 
(van de Lindt et al., 2018). The coupled model is applied to Seaside, Oregon, a testbed community 125 
in the North American Pacific Northwest considering seismic-tsunami hazards associated with the 126 
Cascadia Subduction Zone.  127 

2 Coupled Urban Change and Hazard Consequence Model 128 

Figure 2 shows a flowchart of the coupled urban change (grey dash-dot box) and hazard 129 
consequence model (blue dash-dot box). IN-CORE is used as the hazard consequence model, and 130 
we consider only building damages here. Alternative hazard consequences, including damages to 131 
lifelines and social impacts, could be considered using IN-CORE. Each time step in the model 132 
represents one year. The overall modeling framework begins with defining an urban change policy 133 
or policies that constrain the model simulation (b). These policies could be unrelated to the extreme 134 
event, for example to increase tourism, or could be specific to hazard mitigation, for example to 135 
incentivize building retrofits. The model is then initiated with a population and housing unit 136 
allocation (c), followed by simulating population growth (d). A land market is simulated (e) which 137 
updates the community description (f). This process repeats until the hazard event is triggered, at 138 
which the community description (f) is passed to IN-CORE. IN-CORE maps spatially explicit 139 
hazard intensity measures (g) to the built environment using damage models (h). This results in 140 
damages to physical infrastructure (i). This process is then repeated for a user-defined number of 141 
iterations. The remainder of this section provides more detail of the coupled model. Additional 142 
model documentation and the source code is provided through the data availability statement.  143 
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 144 

Figure 2: Flowchart of the coupled urban change (grey dash-dot box on left) and hazard 145 
consequence model (blue dash-dot box on right). 146 

2.1 Urban Change Policies 147 

A policy, or combination of policies, is first identified shown as b in Figure 2. These could include 148 
both policies unrelated to hazard mitigation or those that aim to reduce the damages and losses 149 
following natural hazards. Many forms of natural hazard mitigation policies exist. In general, these 150 
can be classified as modifying the hazard, modifying the building inventory, modifying building 151 
structural properties, or decreasing social and economic losses (S. French, personal 152 
communication, February 16, 2022).  153 

Modifying the hazard includes implementing both grey and green engineered solutions to reduce 154 
the intensity of natural hazards (Feagin et al., 2015; Saleh and Weinstein, 2016). Modifying the 155 
hazard can be costly and requires community buy in. In addition, this may result in the “safe-156 
development paradox” in which individuals feel more protected behind engineered structures, 157 
leading to increased exposure if the structural protection were to fail (Haer et al., 2020).  158 

(a) Start

(i) Damage to 
Physical 

Infrastructure

(h) Damage 
Models

(g) Hazard 
Models

t = thaz?
Yes

(d) Population 
Growth Model

No

(f) Community 
Description at Time t

Yes

(j) END

No i = imax?

(e) Land Market 
Simulation

(b) Urban Change 
Policies

t = Year 0

t = t + 1 Year

i = i + 1

(f) Community 
Description at Time t

(c) Population 
Allocation

Urban Change Model

Hazard
Consequence Model
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Modifying the building inventory includes various urban planning measures such as zoning, 159 
acquisition of damaged buildings for repeating hazards, and managed retreat (Han et al., 2020; 160 
Hurlimann et al., 2021). Often a charged topic, managed retreat could disrupt the fabric and 161 
cohesive structures of communities (Hino et al., 2017).  162 

Modifying building structural properties includes building codes for new development, and 163 
structural retrofits or elevation of flood-prone structures for existing development (Haer et al., 164 
2019; Wang et al., 2021). This can often be difficult to finance and unattainable for low-income 165 
groups.  166 

Decreasing social and economic consequences includes hazard insurance mechanisms and 167 
recovery financing (Dubbelboer et al., 2017; Costa et al., 2020; Alisjahbana et al., 2021). While 168 
these policies could be implemented pre-disaster, actions are often taken as post-disaster 169 
responses.  170 

Of these policy classes, this paper focuses on modifying the building inventory and modifying 171 
building structural properties. Note that these policies focus on buildings; however additional 172 
policies could be applied to different aspects of the built environment.  173 

2.2 Agent-based modeling of urban land use change 174 

The grey left-most box of Figure 2 is an agent-based model (ABM) of urban change developed in 175 
this paper. ABMs have been identified as a “boundary-object” for interdisciplinary disaster 176 
research as they can seamlessly integrate knowledge from multiple disciplines (Reilley et al., 177 
2021). As such, an ABM is adopted here to both simulate urban change and couple the hazard 178 
consequence model. The ABM is written in Julia using Agents.jl (Datseris et al., 2022). Each time 179 
step in the model represents one year. The urban change model is initiated with a population and 180 
housing unit allocation to infer the initial land use, types of agents, and number of people in each 181 
parcel (c in Figure 2). Population projections are employed as input to the model and is updated at 182 
each annual time step (d in Figure 2). Agents are added to the general model space – i.e., not yet 183 
in a parcel – and will be competing in the land market. If at the end of an iteration, the total number 184 
of people exceeds the population projection, agents are randomly removed from the model 185 
representing out-migration.  186 

To drive land use changes in the model, a land market is simulated (e in Figure 2). This is an 187 
original model developed herein following the ALMA (Filatova et al., 2009) and ALMA-C 188 
(Filatova et al., 2011) models with two notable changes. First, the ALMA and ALMA-C models 189 
consider two agents (buyers, sellers) and two land uses (vacant, urban). The present work expands 190 
on this by considering six agents and six land uses. This is an important addition to account for (1) 191 
full time resident and visitor populations, and (2) different types of development including single 192 
family homes, rental properties, and high occupancy development. Second, the model developed 193 
here considers changes to the structural properties of buildings. This is an important feature of the 194 
model because it allows for coupling to the hazard consequence model.  195 
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2.2.1 Agent types and relations to land uses 196 

The six agents and land uses are shown in Figure 3. Arrows indicate that an agent can occupy a 197 
parcel, whereas the colors indicate an agent owns a parcel. Agents that own parcels can structurally 198 
retrofit the building on their property. The six land uses include (a) Unoccupied, (b) Owned 199 
Residential, (c) Rental Residential, (d) Low Occupancy Seasonal Rental, (e) High Occupancy 200 
Residential, and (f) High Occupancy Seasonal Rental. The six agent types are as follows. 201 

 202 

Figure 3: Agents and land uses in the urban growth and change model. 203 

Unoccupied Owner agents are associated with unoccupied parcels and act as “sellers” in the model. 204 
As other agents bid on their parcel, they review the bids selecting the maximum if it exceeds their 205 
willingness to accept price.  206 

Household agents are associated with full-time residents. They either reside in a parcel or are 207 
searching for a place to live. They can own an “owned residential” property (i.e., a single-family 208 
home), reside in a rental residential (i.e., a rental home) or reside in a high occupancy residential 209 
property (i.e., an apartment/condo). The number of people associated with newly added household 210 
agents are randomly drawn from a gamma distribution and rounded to the nearest integer. A single 211 
age is randomly assigned to represent the head of the household following a gamma distribution 212 
and increases at each time step. Once the head of the household turns 80 years old, the agent is 213 
removed, and their place of residence becomes vacant. A household will randomly gain or lose 214 
one person following a Poisson process. 215 

Landlord agents own parcels and rent them to household agents as “rental residential” or to visitor 216 
agents as “low occupancy seasonal rentals” (i.e., vacation homes) (Vinogradov et al., 2020). At 217 
any point in the simulation, landlord agents can choose to switch between these two land uses 218 
based on a net utility gain. Like household agents, landlord agents are removed from the model 219 
when they turn 80 and their property becomes vacant.  220 

Firm agents purchase properties for development as either “high occupancy residential” (i.e., 221 
apartments) or “high occupancy seasonal rental” (i.e., hotels). Firm agents cannot switch between 222 
these land uses during the simulation. After a parcel is developed into one of these land uses, it 223 
remains as such for the remainder of the simulation. Firm agents do not age and are not removed 224 
from the model at any point.  225 

Household (Full time resident)

Unoccupied

Agents Land uses

Visitor 

Unoccupied Owner

Landlord

Firm

Owned Residential

Rental Residential

Low Occupancy Seasonal Rental

High Occupancy Residential

High Occupancy Seasonal Rental
*Arrows denote agent occupies parcel

**Colors denote agent owns parcel
☨Real estate agent does not occupy a parcel

Real Estate Agent☨
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Visitor agents represent a transient seasonal visitor and temporarily reside in either “low occupancy 226 
seasonal rental” (i.e., vacation homes) or “high occupancy seasonal rental” properties (i.e., hotels). 227 
The number of people associated with a visitor agent is sampled from a gamma distribution. At 228 
the start of each annual time step, all visitors in the model are removed and new visitor agents are 229 
reassigned to vacant low occupancy or high occupancy seasonal rental parcels on a first-come, 230 
first-served basis that maximizes their utility.  231 

The Real estate agent sets the market value of every parcel throughout the simulation. This market 232 
value is used to inform both the unoccupied owner agents’ willingness to accept price and the cost 233 
of structural retrofits. The market value of a parcel is based on a user-defined base price of land, 234 
the maximum expected utility that either household or visitor agents will get from the parcel, and 235 
the overall demand for parcels. 236 

Gamma distributions are used to sample agent age and number of people in the household because 237 
they are right-skewed and the support is positive. A Poisson distribution, similarly right-skewed, 238 
could alternatively be used to model the number of people in each household (Jarosz, 2021). A 239 
Poisson process is used to model the household change rates as they are commonly used to model 240 
the occurrence of events. It is assumed that each high occupancy residential parcel can hold up to 241 
20 household agents, and each high occupancy seasonal rental parcel can hold up to 45 visitor 242 
agents. These values and distributions can be modified based on study area. The owned residential, 243 
rental residential, and low occupancy seasonal rental properties each have space for 1 occupying 244 
agent.  245 

2.2.2 Agent bidding and changing land uses 246 

Agents compete in the land market attempting to maximize their utility gained from a parcel. The 247 
land market is similar to that of the ALMA model; however, different land uses and agents are 248 
considered here. All utilities are computed using a Cobb-Douglas utility function, commonly used 249 
in urban economics (Huang et al., 2014), and given by: 250 

 𝑈 =#𝑃!
"!

#

!$%

 (1) 

where 𝑃! is a normalized value (0-100) representing either proximity to a particular feature or 251 
market pressure, 𝛼! weights the importance of this feature to the agent representing a preference, 252 
and n are the number of features considered. Spatial features can include the coast, community 253 
assets, and the central business district. The preference weights, 𝛼!, for each agent are uncorrelated, 254 
sampled from a normal distribution, and rescaled such that they sum to 1. Proximity is computed 255 
using a scaled distance decay function, 𝑃&!'( = 100 ∙ 𝑒)&*, with d being distance to the feature 256 
and k being a tunable parameter. Market pressure is based on the number of buyers and sellers, 257 
𝑃+*( = 100 ∙ (0.5 ∙ 𝜖 + 0.5) where 𝜖, as in the ALMA model, is computed as 𝜖 = (𝑁𝐵 −258 
𝑁𝑆)/(𝑁𝐵 + 𝑁𝑆), with NB number of buyers and NS number of sellers. 259 

Agents competing in the land market compute their willingness to pay (WTP) for the parcel that 260 
maximizes their utility. Here, the WTP is modified to account for structural retrofits as: 261 

 𝑊𝑇𝑃 =
𝑌 ∙ 𝑈,

𝑏, ∙ 𝑈,
(1 + 𝜖) − 𝜌 ∙ 𝑚 (2) 
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where 𝑌 is the agent budget sampled from a normal distribution, 𝑈 is the utility of the parcel, 𝑏 262 
represents costs of other goods. The final two terms of equation (2) were not in the ALMA model 263 
and were added to account for the additional costs an agent would incur if retrofits were mandatory. 264 
Here, 𝜌 is a constant between 0 and 1 parameterized on the transition between structural-code 265 
levels, e.g., 𝜌 = 0.6 for a building being retrofit to moderate-seismic code. The market value of 266 
the parcel as provided by the real estate agent is represented as 𝑚.  267 

2.3 Damage and loss modeling 268 

The urban change model simulates annual time steps updating the community description until the 269 
time of the hazard event. For this paper, the timing of the event is defined as a specified year in 270 
the future, rather than treating the occurrence as random. At the time of the hazard, the community 271 
description (f in Figure 2) – including structural properties and number of people – is passed to 272 
IN-CORE. Initial damages to the built environment are computed using the community 273 
description, hazard models, and damage models. Hazard models (g in Figure 2) are spatially 274 
explicit representations of hazard intensity measures. Damage models (h in Figure 2) map the 275 
hazard intensity measures to infrastructural damage. Fragility curves are used here as the damage 276 
model to determine the probability that each building exceeds a damage state for a given hazard 277 
intensity measure. Figure 4 shows an example of structural seismic fragility curves for light-frame 278 
wood buildings and four seismic-code levels (pre-, low-, moderate-, and high-code) (FEMA, 2020; 279 
FEMA 2021b). The probability of being in a discrete damage state given a hazard intensity is the 280 
difference between fragility curves. This is shown in Figure 4 with the text “None/Insignificant”, 281 
“Moderate”, “Heavy”, and “Complete”. In the case of multiple hazards, cumulative building 282 
damage is computed (FEMA, 2020; FEMA 2021b). Using the fragility curves, the expected 283 
damage to a building can be determined (i in Figure 2).  284 

 285 

 286 

Figure 4: Example structural fragility curves for W1 structures (wood light frame) and four 287 
seismic-code levels (pre-, low-, moderate-, and high-code). Fragility curves are shown for 288 
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moderate (blue), heavy (purple), and complete (yellow) damage. The probability of being in a 289 
discrete damage state given a hazard intensity is the difference between fragility curves. 290 

3 Case Study 291 

3.1 Seaside, Oregon 292 

The city of Seaside, Oregon, is utilized to demonstrate the coupled urban change and hazard 293 
consequence model. Seaside – shown in Figure 5 – is a small coastal community in the North 294 
American Pacific Northwest, with a population of 7,115 people (US Census Bureau, 2022). 295 
Seaside, along with many coastal communities in this region, are under threat of a rupture of the 296 
Cascadia Subduction Zone (CSZ). The CSZ is an approximately 1,000 km long subduction fault 297 
that extends between Cape Mendocino, California and Vancouver Island, Canada. Evidence 298 
suggests that the last full rupture of the CSZ occurred in 1700 and is estimated to have had a 299 
moment magnitude between 8.7 and 9.2. Some studies have estimated a 7% to 11% chance that a 300 
full-margin rupture will occur between 2010 and 2060 (Goldfinger et al. 2012). Additionally, an 301 
M9 scenario serves as the basis for the Oregon Resilience Plan (OSSPAC, 2013).  302 

The economy of Seaside is tourist-oriented with large seasonal fluctuations in visitors (Raskin and 303 
Wang, 2017), making this an interesting case study for other coastal towns with large tourist 304 
populations. The Seaside building inventory used in this work was developed from a combination 305 
of 2012 tax assessor data, Google Street view, and a field survey (Park et al., 2017). Initial parcel 306 
population estimates are generated from a housing unit allocation algorithm that uses 2010 US 307 
Census data (Rosenheim et al., 2019). Seaside has been used in previous studies to evaluate multi-308 
hazard risks (Park et al., 2019; Sanderson et al., 2021b), and infrastructure resilience (Kameshwar 309 
et al., 2019; Sanderson et al., 2021a). The Seaside testbed inventory for the built environment and 310 
hazard layers is publicly available (Cox et al., 2022). A detailed description of the built 311 
environment allows for an analysis at the parcel-scale rather than more aggregate levels.  312 
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 313 

Figure 5: Case study location of Seaside, Oregon showing parcels (black dots), community 314 
assets, and central business district (shaded central yellow region near the coast) 315 

The population projections for both full time residents (FTR) and visitors (VIS) are shown in 316 
Figure 6. The full-time resident population is shown as both historic (Moffatt, 1996) and future 317 
projections (Portland State University Population Research Center, 2020). We assume the model 318 
starts in 2010 as the building inventory is from 2012 and the housing unit allocation uses 2010 US 319 
Census data. No historic visitor population data was readily available; however, recent estimates 320 
were obtained from a combination of data from the Hatfield Marine Science Center, data from 321 
Oregon State Parks, and an Oregon visitor report (Dean Runyan Associates, 2021). It is assumed 322 
that the visitor population represents the peak summer nighttime population (i.e., all visitors are 323 
located in either hotels or vacation homes). A linear growth in the visitor population to 12,000 by 324 
2065 is assumed in alignment with the full-time resident population growth.  325 
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 326 

Figure 6: Historic population data and future population projections for Seaside for full-time 327 
residents (FTR) and visitors (VIS). 328 

3.2 Planning and Building Code Scenarios 329 

Ten scenarios, shown in Table 2, are considered as policy options, and are organized into four 330 
scenario clusters: (S0) status quo, (S1) planning, (S2) building codes, and (S3) a combination of 331 
planning and building codes. Scenario clusters S1-S3 each have three scenarios labeled a-c.  332 

Table 2: Planning and building code scenarios 333 

Scenario 
Cluster 

Scenario 
Abbreviation 

Cap on 
LOSR 

Relocate 
Community 

Assets 

No new high 
occupancy 

development 
Owned 

Res. 
Rental 

Res. LOSR 
Status 
Quo S0 - - - - - - 

Planning 
S1a 500 - - - - - 
S1b - East of Nec. - - - - 
S1c - - HOR & HOSR - - - 

Building 
Codes 

S2a - - - Low Low Low 
S2b - - - Moderate Moderate Moderate 
S2c - - - High High High 

Planning 
& 
Building 
Codes 

S3a - East of Nec. - - - High 
S3b - - HOR & HOSR - Moderate Moderate 

S3c     HOSR     High 

LOSR: Low occupancy seasonal rental; Nec: Necanicum River; HOR: High occupancy residential; HOSR: high occupancy 
seasonal rental. Note all new high-occupancy development must be up to high-seismic code 

 334 

Scenario cluster S1 corresponds to planning decisions. Scenario S1a places a cap on the number 335 
of low occupancy seasonal rental properties. While not a hazard mitigation plan, many 336 

Projection Historic 
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communities with large visitor populations consider this to provide housing for full-time residents 337 
(Vinogradov et al., 2020). Scenario S1b relocates community assets that are west of the Necanicum 338 
River to the east side, further from the ocean and in areas with lower tsunami inundation. Scenario 339 
S1c restricts new high occupancy development for both high occupancy residential and seasonal 340 
rental properties.  341 

Scenario cluster S2 corresponds to building code requirements. Scenarios S2a, S2b, and S2c 342 
requires any change of hands to be up to low-, moderate-, and high-seismic codes respectively. 343 
Seismic retrofit standards for existing buildings allow performance objectives to be less than that 344 
of new buildings (ASCE, 2014). Herein we assume that policies involving low and moderate-345 
seismic code requirements (scenarios S2a and S2b) translate to these lower performance 346 
objectives, whereas the high-code requirement (scenario S2c) translates to the same performance 347 
objective as new buildings. All high occupancy buildings must conform to high-seismic code, and 348 
this does not differ across scenarios.  349 

Scenario cluster S3 corresponds to both planning decisions and building code requirements. 350 
Scenarios considered here are intended to be complimentary. Scenario S3a consists of relocating 351 
community assets east of the Necanicum River in addition to enforcing any new low occupancy 352 
seasonal rental property conform to high-seismic code. S3b consists of no new high occupancy 353 
development while simultaneously enforcing that new rental residential and low occupancy 354 
seasonal rental properties conform to moderate-seismic code. Lastly, scenario S3c consists of no 355 
new high occupancy seasonal rental properties while enforcing that new low occupancy seasonal 356 
rental properties conform to high-seismic code.  357 

3.3  Urban growth and change results  358 

The model was run for the 10 scenarios in Table 2 with a 500-yr CSZ occurring at year 30. Each 359 
scenario was repeated 50 times with uncertainty propagated through the initial housing unit 360 
allocation, agent attributes, and ordering of agent scheduling. Figure 7 shows the evolution of the 361 
urban landscape for a portion of the city located on the coast and south of the CBD shown in Figure 362 
5. The model considered all of Seaside; however, only a portion of the city is shown for clarity. 363 
The urban landscape at both the initial time step, assumed to be 2010, and at year 30 are shown in 364 
Figure 7 for both rental residential (top row) and low occupancy seasonal rental parcels (bottom 365 
row). The results of 3 scenarios from Table 2 are shown: (S0) status quo, (S1a) cap on low 366 
occupancy seasonal rental, and (S2a) all change of hands must conform to low seismic code. Rental 367 
residential and low occupancy seasonal rental land uses are shown here as they are both owned by 368 
landlord agents. The remaining land uses also evolve and are not shown for brevity. Each parcel 369 
is shaded according to the probability that the parcel is in the respective land use. The average 370 
number of full-time residents (FTR) and visitors (VIS) located in each land use for all of Seaside 371 
are shown in the bottom left corner of each panel in Figure 7.  372 

Figure 7 shows the impact that policy has on both the urban landscape and number of people. For 373 
example, a cap on the number of low occupancy seasonal rental properties (S1a) naturally results 374 
in a significantly lower number of visitors in those parcels (2,194 VIS) compared to status quo 375 
(3,617 VIS). This also increases the availability of housing for full time residents in rental 376 
residential properties (2,510 FTR) compared to status quo (1,867 FTR).  377 
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The number of full-time residents in rental residential properties decreases for all scenarios at year 378 
30 compared to at year 0. It is more advantageous for landlords to rent their properties as low 379 
occupancy seasonal rental units to visitor agents than it is to rent them to full time residents. The 380 
remainder of the visitor residents and full-time residents are in the other land uses. 381 

 382 

Figure 7: Probability of parcels having different land uses (rows) for the initial time step (first 383 
column) and at year 30 for S0 (second column), S1a (third column), and S2a (fourth column). 384 

The average number of full-time residents (FTR) and visitors (VIS) in the respective land use are 385 
shown in the lower left corner of each plot. 386 

Figure 8 shows time series of the number of people in each land use under the same three scenarios 387 
(S0, S1a, S2a). Uncertainty in the model is shown via the shaded region as plus/minus one standard 388 
deviation. The implications of scenario S1a are clearly shown in Figure 8c by the decrease in 389 
number of visitors in low occupancy seasonal rental properties compared to the other scenarios. 390 
Interestingly, this policy simultaneously increases the number of visitors in high occupancy 391 
seasonal rental properties (Figure 8e) as there is a new unmet demand for visitors. As expected, 392 
this scenario frees up housing for full-time residents as the landlord agents transition to renting 393 
properties as rental residential (Figure 8b).  394 

Scenario S2a results in more full-time residents in high occupancy residential properties compared 395 
to the other scenarios (Figure 8d). This is due to the cost of retrofitting, where full time residents 396 
are not able to afford as many single-family homes (Figure 8a). The firms then fill in this unmet 397 
demand for full time resident housing.  398 
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 399 

Figure 8: Average number of people (plus/minus one standard deviation) in each land use for: 400 
(a) owned residential, (b) rental residential, (c) low occupancy seasonal rental, (d) high 401 

occupancy residential, and (e) high occupancy seasonal rental. 402 

3.4 Damage and loss results 403 

To illustrate the urban change coupling with IN-CORE, Figure 9 spatially shows the damages to 404 
the built environment and number of people in each parcel. These results are for a 500-yr CSZ 405 
occurring at year 30. The parcels are color coded according to their expected damage state ranging 406 
between insignificant and complete. The size of each parcel corresponds to the number of people 407 
in that parcel for both visitors (top row) and full-time residents (bottom row). The two columns 408 
correspond to scenarios S0 and S1a. It assumed that this population represents the nighttime 409 
population in Seaside for summer months when the visitor population is high and when people are 410 
located in their places of residence. The larger circles in Figure 9 indicate high occupancy 411 
structures in which large concentrations of people are located. An emerging cluster of high 412 
occupancy seasonal rental properties can be seen to the north and on the waterfront in Figure 9b 413 
that is not present in 9a. As previously discussed, these high occupancy seasonal rental properties 414 
fill the unmet demand for visitors if a cap on low occupancy seasonal rentals is put in place. Not 415 
only is there a large concentration of visitors in concrete structures, but these are also located near 416 
to the coast and in the tsunami inundation zone. This would have implications for a potential 417 
increase in life safety risk depending on the type of evacuation actions taken by individuals (Wang 418 
et al., 2016, Mostafizi et al., 2019).  419 
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 420 

Figure 9: Single iteration showing expected damage due to 500-yr CSZ and number of people in 421 
each parcel for: (a) scenario S0 and visitor population, (b) scenario S1a and visitor population, 422 
(c) scenario S0 and full-time resident population, and (d) scenario S1a and full-time resident 423 

population. CBD is the Central Business District 424 

Figure 10 shows the number of people relative to status quo in parcels with a damage state greater 425 
than moderate for all nine planning scenarios (S1a-S3c). This figure especially demonstrates how 426 
this modelling approach can be used to explore the emergent behavior of planning policies. Both 427 
the number of full-time residents (panel a) and visitors (panel b) are shown in Figure 10. The cap 428 
on the number of low occupancy seasonal rentals (S1a) results in significantly more visitors in 429 
damaged buildings relative to status quo. While S1a is not a hazard mitigation policy, it could have 430 
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unintentional negative consequences if the CSZ were to occur during summer months when there 431 
are large visitor populations.  432 

Scenarios S2b and S2c requires all change of hands to retrofit to moderate and high seismic codes 433 
respectively. These scenarios appear to reduce the number of people in damaged buildings more 434 
than any other policy. However, while not shown here, these scenarios also result in the largest 435 
number of unoccupied parcels indicating that the cost of retrofitting is prohibitive for many agents.  436 

Scenarios in cluster S3 are a combination of planning and building code requirements. Figure 10b 437 
shows that these scenarios result in a significant decrease in the number of visitors in damaged 438 
buildings. While not shown, these scenarios also result in less unoccupied parcels than status quo 439 
conditions. This indicates that effective mitigation planning could consider some combination of 440 
policies.  441 

 442 

Figure 10: Average number of people in parcels with a damage state greater than moderate 443 
relative to status quo conditions for: (a) full time residents, and (b) visitors. Error bar shows 444 

plus/minus one standard deviation 445 

To understand the temporal aspects of the CSZ occurring at any time, rather than only year 30 as 446 
assumed in the previous analysis, the model was rerun for three scenarios (S0, S1a, S2a) with the 447 
CSZ occurring at 5-year intervals, beginning in year 0 and ending at year 30. Figure 11 shows that 448 
the policies start to diverge beyond year 10 in the model, highlighting that the effects of many 449 
policies may take time to fully realize their implications. Further, as hazard mitigation policies aim 450 
to reduce the number of people impacted by disasters, Figure 11 highlights how this objective 451 
competes with population growth. While scenario S2a (low seismic code requirements) results in 452 
less people being in damaged parcels relative to scenario S0 (status quo), there are still more people 453 
in damaged parcels at year 30 than year 0. Uncertainty represented as plus/minus one standard 454 
deviation in Figure 11 does not overlap at the later time steps indicating that even with uncertainty 455 
there are significant deviations in policy implications.  456 
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 457 

Figure 11: Number of full-time residents and visitors in parcels with a damage state greater than 458 
moderate if CSZ with 500-yr recurrence interval were to occur at varying time steps in model 459 

4 Discussion 460 

Community resilience planning for natural hazards involves many interacting entities as disasters 461 
occur at the interface of the built-natural-social environments (Mileti, 1999; Peek and Guikema, 462 
2021). Many simulation efforts consider static representations of the built-natural-social 463 
environments despite their dynamic and complex nature. The model presented in this paper 464 
attempts to capture this dynamic interplay by considering population growth, a changing built 465 
environment, and policy choices. This model also situates the simulation of acute hazards within 466 
appropriate temporal settings given that these events do not occur immediately, as many simulation 467 
efforts assume, but at some point in the future.  468 

The model can be extended and applied to other hazards, infrastructure systems, and communities. 469 
For example, many coastal communities are exposed to sea-level rise and hurricanes that also 470 
necessitate a future-oriented lens of the built-natural-human environments. Further, urbanization 471 
does not apply only to new buildings, but also to other infrastructure systems such as electric 472 
power, transportation, and water systems. 473 

In addition to extending this model to other hazards and infrastructure systems, insights from the 474 
Seaside testbed can be applied to other communities. Many coastal communities have large tourist 475 
populations and this work showed that placing a cap on the number of vacation homes results in 476 
more visitors in damaged buildings compared to status quo scenarios. This was caused by high 477 
occupancy seasonal rental properties (i.e., hotels) filling in a newly created unmet demand for 478 
visitors. These high occupancy structures are concrete and typically located in the inundation zone. 479 
This combination of factors could have negative implications for increases in life safety risk. In 480 
particular, this result highlights that coastal communities considering this policy and subject to 481 
rapid onset hazards - such as earthquakes and tsunamis – should have alternative plans in place for 482 
visitors. This could include well marked evacuation routes or vertical evacuation structures.  483 
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This work also highlighted that the most effective policies were those that considered elements of 484 
both urban planning and enforced building codes on new development. This indicates that there is 485 
no one-size-fits all solution to natural hazard mitigation planning, but rather policies should be 486 
tailored for specific communities and population groups. Through iterative processes, this type of 487 
modeling can be used to identify nuanced policies that may not be easy to initially imagine but do 488 
incorporate many different elements.  489 

Given their complexities and many interacting entities, prediction of urban systems into the future 490 
is notoriously difficult. As such, the value of this modeling framework is not to predict the land 491 
use of individual parcels, but rather to provide insight into the collective behavior and emerging 492 
risks associated with planning policies. Similar efforts considering hazard exposure have involved 493 
stakeholder engagement (Mills et al., 2018). This type of modeling with stakeholder engagement 494 
can seed rich discussions and be used to inform policy choices.  495 

There are two interesting avenues for future work. First, this model could be coupled with a model 496 
of earthquake-tsunami life safety. As shown, some policies may put more visitors in damaged 497 
buildings that are located in the inundation zone. By coupling a life safety model, we could explore 498 
how policy choices impact life safety risk. This work could also include temporal fluctuations in 499 
visitor and full-time resident populations including day-night, weekday-weekend, and summer-500 
winter. Second, this model uses existing fragility curves at various seismic-code levels. Advances 501 
in structural engineering may lead to buildings that are more resistant to hazard damages. 502 
Likewise, infrastructure ages and deteriorates over time, which was not accounted for here. Both 503 
of these could lead to temporal modifications in the fragility curves that are associated with 504 
buildings.  505 

5 Conclusions 506 

This paper presented a coupled urban change and hazard consequence model for evaluating 507 
community resilience under a future-oriented lens. Urban change was modeled via simulation of 508 
a land market whereas immediate post-disaster building damage was simulated using the 509 
opensource software IN-CORE. The coupled model was applied to Seaside, Oregon, located in the 510 
North American Pacific Northwest considering seismic-tsunami hazards associated with the 511 
Cascadia Subduction Zone. By applying the coupled urban change and hazard consequence model, 512 
the following conclusions can be made: 513 

1. Policies can result in unintended negative outcomes for different population groups: It was 514 
shown that by placing a cap on the number of low occupancy seasonal rental properties in 515 
a community, more visitors were in damaged buildings compared to status quo conditions 516 
(Figure 10). As expected, this policy does free up more housing for full-time residents; 517 
however, this also highlights that additional hazard mitigation plans should be put in place 518 
if coastal communities pursue this option in areas that are subject to rapid onset disasters.  519 

2. Mandatory seismic retrofits do not reduce the number of people in damaged buildings 520 
when considering population growth: Three scenarios were considered in which the CSZ 521 
was simulated at five-year intervals out to 30-years (status quo, a cap on vacation homes, 522 
and mandatory seismic retrofits). While the seismic retrofits can reduce the negative 523 
consequences of the CSZ relative to a status quo conditions, this scenario still resulted in 524 
an increase of total number of people impacted relative to present day conditions (Figure 525 
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11). This highlights the challenges of mitigation planning in areas with growing 526 
populations and that more transformative adaptation may be necessary. 527 

3. Policies take time to be fully realized: By considering the CSZ occurring at 5-year intervals 528 
from year 0 to year 30, it was shown that the three policies diverge only after year 10 in 529 
the simulation (Figure 11). This indicates that many policies take time to fully realize their 530 
implications and highlights the urgency of mitigation planning in areas subject to disasters. 531 

4. The most effective policies were those that incorporated elements of both urban planning 532 
and mandatory building codes: It was shown that only enforcing building codes may 533 
reduce the number of people in damage buildings; however, this also results in a significant 534 
number of unoccupied parcels at the end of the model run. This indicates that this is not 535 
attainable for many agents and could be cost prohibitive. More effective strategies that 536 
reduced the number of people in damaged buildings considered some combination of both 537 
enforced building codes and urban planning (Figure 10). Communities should tailor their 538 
resilience planning with no one-size-fits-all solution available. 539 

Many resilience studies consider historic or static representations of the built-natural-social 540 
environments despite their dynamic and complex nature. The coupled urban change and hazard 541 
consequence model presented in this paper provides an avenue towards planning for hazards in an 542 
uncertain future. Given urbanization, population growth, policy choices, and a changing climate, 543 
more research should be conducted to account for the complexities that arise at the interface and 544 
future of the built-natural-social environments. 545 
  546 
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