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Abstract

One of the central challenges for global food security is the growing pressure from increasingly frequent extreme weather events

that results in sharp drops in crop yield and disruptions in the food supply. Such pressure can potentially be alleviated by

international crop trade, which plays a crucial role in reallocating food commodities from surplus to deficit regions. However,

few studies have examined the influence of extreme weather events and the synchrony of crop yield anomalies on trade linkages

among nations. To investigate such influence, we used the international trade network of wheat as an example, developed

relevant covariates, and tested specialized statistical and machine learning methods. The results show that countries with

higher differences in extreme weather stress tend to have higher import volumes and more trade partners. Trade partnerships

are more likely to be established between countries with synchronous yield variations. These findings indicate that increase

in heat stress and co-occurring yield loss could lead to future higher dependence on imports, especially for vulnerable import

dependent nations, and affect the stability of wheat supply. Hence, the current international trade network needs to be improved

by contemplating the patterns of extreme weather and yield synchrony among countries.
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Abstract   9 

One of the central challenges for global food security is the growing pressure from 10 

increasingly frequent extreme weather events that results in sharp drops in crop yield and 11 

disruptions in the food supply. Such pressure can potentially be alleviated by international 12 

crop trade, which plays a crucial role in reallocating food commodities from surplus to 13 

deficit regions. However, few studies have examined the influence of extreme weather 14 

events and the synchrony of crop yield anomalies on trade linkages among nations. To 15 

investigate such influence, we used the international trade network of wheat as an 16 

example, developed relevant covariates, and tested specialized statistical and machine-17 

learning methods. The results show that countries with higher differences in extreme 18 

weather stress tend to have higher import volumes and more trade partners. Trade 19 

partnerships are more likely to be established between countries with synchronous yield 20 

variations. These findings indicate that increase in heat stress and co-occurring yield loss 21 

could lead to future higher dependence on imports, especially for vulnerable import-22 

dependent nations, and affect the stability of wheat supply. Hence, the current 23 

international trade network needs to be improved by contemplating the patterns of 24 

extreme weather and yield synchrony among countries. 25 

Introduction 26 

Extreme weather events, such as drought, flood, and heatwave threaten food security 27 

from regional to global scales through the resulting sharp decline in the availability, 28 

affordability and adequate utilization of food (1, 2). During 2003–2013, extreme weather 29 

events have caused marked damage of USD 30 billion to the agricultural productivity (3). 30 

Crop production was impacted the most, with yield reductions (3–7) introducing price 31 

volatility in the food systems (1, 8), affecting food trade, welfare of farmers, and economic 32 

development, especially in low-income or import-dependent countries (1, 9–11).  33 

International crop trade can potentially alleviate the negative impacts of extreme 34 

weather events on food security by exporting food commodities from surplus to deficit 35 

regions (12). Currently, international trade accounts for 80% of the global crop supply, 36 
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and wheat, a crop essential for people’s daily caloric and protein needs, accounts for 22% 37 

of the crop trade (in caloric content) (13). However, heavy reliance on the import from 38 

other countries or the global market may expose a country to the yield and market 39 

variations outside of the country’s jurisdiction and consequently introduce additional risk 40 

to the country’s food supply. For example, the 2010 heatwave in Russia triggered export 41 

restrictions for wheat, led to wheat shortage and price spike in Middle East, where over 42 

1/3 of the wheat supply is from Russia, and potentially contributed to the destabilization 43 

of the region (9, 14). A simultaneous drop in yields of major exporters may destabilize the 44 

global trade network and food supply. Therefore, the controversial role of international 45 

trade in addressing the food security challenge is associated with patterns of extreme 46 

weather events and yield variability, however, such associations remain poorly 47 

understood and require an in-depth investigation (15).  48 

 The occurrence and volume of the trade between countries have been often 49 

investigated as results of comparative advantages in producing food commodities (e.g., 50 

more efficient use of water and land resources), as well as many socioeconomic factors 51 

such as geographical proximity of countries, population, agricultural productivity 52 

language, contiguity, level of economic development, and trade agreements (16–20). 53 

Several recent studies have evaluated the impacts of climate factors (17), such as annual 54 

rainfall and annual evapotranspiration. Only a few studies investigated the impacts of 55 

extreme weather stress and synchronous crop yield fluctuations (21–24); but their focus 56 

was on the impacts on food price fluctuations or trade volumes for individual countries, 57 

and not on the changes in the bilateral trade network.  58 

 In addition, the investigation of drivers for trade links has been limited to statistical 59 

approaches that were not designed to handle complex network data or derive data-driven 60 

relationships. Prior research of the potential drivers used linear regression models (25–61 

27) that impose multiple restrictive assumptions on the shapes of relationships and 62 

distribution of the data, while application of statistical network analysis and machine 63 

learning methods has been limited. Only recently, the statistical exponential random 64 

graph models (ERGMs) have been used to investigate the relationships between 65 

international trade links (or volume) and their potential drivers (20, 28, 29). However, 66 

these recent studies still impose parametric assumptions and do not consider non-67 

linearity in the data. Despite the success of machine learning approaches such as random 68 

forest (RF) in handling large volumes of complex data and deriving non-linear 69 

relationships from the data, such data-driven approaches have been rarely utilized in 70 

trade analysis (30). 71 

To address these knowledge gaps, we proposed network-based covariates for 72 

studying international trade network of wheat using modern statistical and machine 73 

learning models. In addition to commonly used geopolitical factors (e.g., contiguity) two 74 

network-based covariates were developed to characterize the extreme weather stress 75 

and yield synchrony, namely the difference in extreme weather stress (DEWS) and short-76 

term synchrony (STS) of crop yield anomalies between countries. To accommodate the 77 



 

 

3 

 

complexity and network structure of the data, we applied ERGM and RF, the modern 78 

specialized statistical and machine learning methods, to model trade linkages and volume 79 

between countries (see Methods section for details). With the developed models, we 80 

investigated potential changes in trade relationships under future climate conditions and 81 

discussed their implications for the global food security.  82 

Results 83 

Extreme weather stress for wheat production 84 

Cold and heat stresses were identified as the major contributors to the variability of 85 

extreme weather indices developed for a country’s wheat production. A total of 17 indices 86 

were used to quantify weather stresses (including heat stress, cold stress, flood, and 87 

drought) during the growing period for wheat in 115 countries for the years 2005–2014 88 

(see Methods and SI Appendix, Section S3). The first two principal components of the 17 89 

indices, dominated by cold and heat stress, represent 65% and 22.7% variance of the 90 

weather index matrix, respectively (SI Appendix, Fig. S2). 91 

The dominant principal components of the extreme weather indices are not 92 

significantly correlated with production level across countries, while the heat stress 93 

indices are correlated with the import dependency (Fig. 1; detailed results in SI Appendix, 94 

Table S3). It suggests that the scale of wheat production in a country was not necessarily 95 

affected by the extreme weather stress in the wheat producing region, but a country’s 96 

dependency on wheat import was associated with higher heat stress. The pairwise 97 

relationships between weather stress and other major characteristics of trade (such as 98 

number of linkages and trade volume) are similar: the countries facing higher heat stress 99 

(or lower cold stress) are likely to have fewer trade partners for exports; and countries 100 

with higher cold stress tend to have higher import trade partners (SI Appendix, Figs. S8–101 

S11 and Table S3). 102 

 103 

Relationships between trade networks and extreme weather stress 104 

Using the principal components of extreme weather indices as part of the covariates, we 105 

modeled the bilateral trade networks (one weighted by trade volume and one without the 106 

weights) of wheat with ERGM and RF model separately. The two models observe similar 107 

general relationships between trade networks and their potential drivers, but the 108 

performances of the two models vary. To evaluate the performance of each model, we 109 

conducted a cross-validation. The results show that ERGM, with an error rate of 5.35%, 110 

was more accurate than RF in predicting trade presence/absence (i.e. the trade network 111 

without weight by trade volume), while RF was more accurate in predicting trade volume 112 

(Table 1). Hence, throughout the rest of the paper, we report the modeling results for 113 

trade linkages and trade volumes based on ERGM and RF, respectively. 114 

Modeling results from both ERGM and RF show that country pairs with larger 115 

differences in the levels of extreme weather stresses are more likely to be trade partners. 116 

The ERGM shows that a more severe heat stress in importing country compared to an 117 

exporting country (i.e., DEWSheat < 0) corresponds to a higher likelihood of trade link 118 
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formation. Vice versa, trade partnerships are less likely if the exporting country is 119 

experiencing a larger heat stress than the importer does (i.e., DEWSheat > 0; Table 1, and 120 

SI Appendix, Fig. S12). These model results align with the observed relationship between 121 

import dependency and heat stress (Fig. 1b). 122 

The differences of both heat and cold stress between countries have significant 123 

relationships with trade volume. The RF shows overall higher trade volumes correspond 124 

to a higher heat stress in importing country (i.e., when DEWSheat < 0, compared with 125 

DEWSheat > 0, similar to the ERGM results), however, the relationship is not exactly linear 126 

and the trade volumes increase marginally for DEWSheat around zero (Fig. 2b). Higher 127 

trade volume is predicted when differences in cold stress between partners exist (i.e., 128 

DEWScold ≠ 0; Fig. 2a), however, in contrast to the heat stress, two upper deciles of 129 

DEWScold are associated with higher trade volumes. In particular, two biggest spikes in 130 

Fig. 2a are driven by France and Germany, i.e., large exporters that may often experience 131 

more severe cold stress than their trade partners do (DEWScold > 0). The cases of 132 

DEWScold > 3000 are dominated by Japan, Mongolia, and South Korea in the exporter 133 

role, hence the corresponding average trade volumes decline from the peak values 134 

(Fig. 2a). 135 

 136 

The role of yield synchrony 137 

In addition to extreme weather stress, the STS of crop yield anomalies also demonstrates 138 

significant relationship with the wheat trade networks regarding the presence/absence of 139 

trade links and trade volumes. More specifically, the ERGM for unweighted network 140 

shows that STS is positively associated with the likelihood of trade partnerships (Table 1). 141 

In the weighted trade network, RF detects a non-linear relationship characterized by the 142 

overall accelerating increase of trade volume with the increase in STS (main body of the 143 

distribution; Fig. 2c). However, the first decile of STS, comprising the most asynchronous 144 

pairs of countries, is also characterized by a spike in trade volume (Fig. 2c). This 145 

illustrates that countries with perfect asynchrony (STS ≈ –1) and synchrony (STS ≈ 1) of 146 

yield fluctuations tend to trade more. 147 

 148 

The role of other factors 149 

All our ERGM and RF models also include the following covariates that have been 150 

considered as important for the formation of trade linkages: population-weighed distance, 151 

contiguity, and common official language between countries. Our modeling results further 152 

confirmed the important role of these factors. The ERGM results show that the trade 153 

partnerships are more likely to occur between countries that are closer to each other, 154 

contiguous, or have a common official language (Table 1), what aligns well with the 155 

existing findings in the literature. The RF results show, similarly to ERGM, higher trade 156 

volumes for countries that are contiguous and have a common official language (Figs. 2d 157 

and 2f), and an overall negative relationship between trade volume and distance (Fig. 2e). 158 

However, RF was also able to model non-linearity in the latter relationship, characterized 159 
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by substantial spikes in trade volume around the deciles 3–4 and 9–10 of the population-160 

weighted distance (Fig. 2e). 161 

The inclusion/exclusion of these covariates in the ERGM and RF models does not 162 

affect the above results regarding the relationships between trade networks and extreme 163 

weather stresses, as well as yield synchrony, further confirming the robustness of the 164 

modeling results. For example, countries closer to each other tend to have more 165 

synchronized yield; however, the ERGM results show significant positive association of 166 

trade partnerships with STS regardless of whether the distance variable is included or 167 

excluded (SI Appendix, Table S4). This test suggests that the positive relationship 168 

between trade networks and STS is not only due to the positive relationship between STS 169 

and distance, but could be an outcome of other factors that are not included in the models 170 

(e.g., level of economic development, cultivars, and technology and management 171 

practices in agriculture). 172 

Conclusions 173 

Our analysis suggests that the two factors, the level of extreme weather stress and 174 

synchrony of crop yield fluctuations, significantly affect the international wheat trade 175 

network. Country-pairs with larger differences in heat stress are more likely to have trade 176 

connections and higher trade volumes. Meanwhile, in the current wheat trade network, 177 

trade partnerships are more likely to be established between countries with synchronized 178 

yield fluctuations. This represents a systemic risk in the current global wheat market, 179 

since synchronized yield failure can disrupt the wheat supply and intensify food insecurity 180 

for both partnering countries. Our results demonstrate the need to consider the extreme 181 

weather stress and yield synchrony in the trade policy framework in order to improve the 182 

stability and fairness of the global food system.  183 
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Figures and Tables 263 

 264 

 265 

Fig. 1. Relationships between the 2005–2014 import dependency ratio (IDR; Eq. 1) and 266 
derived principal components (PC) representing the weather stress: (a) cold stress, (b) heat 267 
stress. Positive IDR means higher import dependency, while a negative IDR means that a 268 
country is a net exporter. Each point represents a country, size of the point corresponds to 269 
the average wheat production level during 2005–2014. The lines represent the estimated 270 
linear relationships between weather stress and IDR (p-value = 0.460 and 0.005, 271 
respectively), shaded areas correspond to 95% confidence intervals. 272 
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 274 

Table 1. Summaries of the models for 2005–2014 international wheat trade 275 

Response Model Covariate  Coefficient Error 

Trade 
presence 
(unweighted 
directed 
network) 
 

ERGM DEWSheat -2.30 × 10-5 

(4.20 × 10-6) 

5.35% 

STS 0.111  

(4.22 × 10-2) 

Distance -2.17 × 10-5 

(1.28 × 10-6) 

Contiguity 2.25  
(0.164) 

Common official language  0.272  

(5.80× 10-2) 

RF DEWSheat, DEWScold Fig. S4 37% 

STS 

Distance 

Contiguity 

Common official language 

Trade 
volume 
(weighted 
directed 
network) 

ERGM DEWSheat 
  

-1.76 × 10-5 

(1.00 × 10-6)  

1.64 
 

STS 2.08 × 10-2 

(4.62 × 10-4) 

Distance -3.06 × 10-5 

(3.30 × 10-7) 

Contiguity 0.498 

(9.12 × 10-4) 

Common official language 1.92× 10-3 

(6.32 × 10-4) 

RF DEWSheat, DEWScold Fig. 2 1.36 

STS 

Distance 

Contiguity 

Common official language 

ERGM: exponential random graph model, RF: random forest, DEWS: difference in extreme 276 
weather stress, STS: short-term synchrony. Standard errors of the coefficients are shown in 277 
parentheses. Errors are the cross-validated misclassification error for trade presence, and mixed 278 
error for trade volume. 279 

 280 



 

 

10 

 

 281 

Fig. 2. Random forest partial dependence plots for trade volume in 2005–2014. The x-axes 282 
represent the considered covariates, where DEWS is difference in extreme weather stress, STS 283 
is short-term synchrony. The inner tickmarks on the x-axes represent deciles of the variables. The 284 
y-axis represents the marginal effect of the covariate on wheat trade volume. 285 
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