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Abstract

Understanding terrestrial ecosystems and their response to anthropogenic climate change requires quantification of land-

atmosphere carbon exchange. However, top-down and bottom-up estimates of large-scale land-atmosphere fluxes, including

the northern extratropical growing season net flux (GSNF), show significant discrepancies. We develop a data-driven metric for

the GSNF using atmospheric carbon dioxide concentration observations collected during the High-Performance Instrumented

Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) and Atmospheric Tomography

Mission (ATom) flight campaigns. This aircraft-derived metric is bias corrected using three independent atmospheric inversion

systems. We estimate the northern extratropical GSNF to be 5.7 ± 0.2 Pg C and use it to evaluate net biosphere productivity

from the Coupled Model Intercomparison Project phase 5 and 6 (CMIP5 and CMIP6) models. While the model-to-model spread

in the GSNF has decreased in CMIP6 models relative to that of the CMIP5 models, there is still disagreement on the magnitude

and timing of seasonal carbon uptake with most models underestimating the GSNF and overestimating the length of the growing

season relative to the observations. We also use an emergent constraint approach to estimate annual northern extratropical

gross primary productivity to be 56 ± 15 Pg C, heterotrophic respiration to be 25 ± 11 Pg C, and net primary productivity to

be 28 ± 10 Pg C. The flux inferred from these aircraft observations provides an additional constraint on large-scale, gross fluxes

in prognostic Earth system models that may ultimately improve our ability to accurately predict carbon-climate feedbacks.
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Key Points:

• Aircraft observations of atmospheric carbon dioxide concentrations are
used to infer the northern extratropical growing season net flux.

• The observations suggest a larger net flux and shorter growing season than
simulated in Earth system models.

• An emergent constraint approach is used to estimate productivity and
respiration fluxes.

Abstract

Understanding terrestrial ecosystems and their response to anthropogenic cli-
mate change requires quantification of land-atmosphere carbon exchange. How-
ever, top-down and bottom-up estimates of large-scale land-atmosphere fluxes,
including the northern extratropical growing season net flux (GSNF), show
significant discrepancies. We develop a data-driven metric for the GSNF us-
ing atmospheric carbon dioxide concentration observations collected during the
High-Performance Instrumented Airborne Platform for Environmental Research
(HIAPER) Pole-to-Pole Observations (HIPPO) and Atmospheric Tomography
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Mission (ATom) flight campaigns. This aircraft-derived metric is bias corrected
using three independent atmospheric inversion systems. We estimate the north-
ern extratropical GSNF to be 5.7 ± 0.2 Pg C and use it to evaluate net biosphere
productivity from the Coupled Model Intercomparison Project phase 5 and 6
(CMIP5 and CMIP6) models. While the model-to-model spread in the GSNF
has decreased in CMIP6 models relative to that of the CMIP5 models, there is
still disagreement on the magnitude and timing of seasonal carbon uptake with
most models underestimating the GSNF and overestimating the length of the
growing season relative to the observations. We also use an emergent constraint
approach to estimate annual northern extratropical gross primary productivity
to be 56 ± 15 Pg C, heterotrophic respiration to be 25 ± 11 Pg C, and net
primary productivity to be 28 ± 10 Pg C. The flux inferred from these air-
craft observations provides an additional constraint on large-scale, gross fluxes
in prognostic Earth system models that may ultimately improve our ability to
accurately predict carbon-climate feedbacks.

1 Introduction

Approximately half of the carbon dioxide (CO2) released annually by the com-
bustion of fossil fuels stays in the atmosphere (Keeling et al., 1976; Schimel et
al., 2001; Friedlingstein et al., 2021). The remaining CO2 is taken up by the ter-
restrial biosphere and ocean in roughly equal proportion (Khatiwala et al., 2009,
Keeling et al., 2014; Sabine et al., 2004). The efficiency of the ocean and land
sinks varies with both climate and atmospheric CO2, representing an important
feedback in the climate system (e.g. Ballantyne et al. 2012; Fung et al., 2005;
Fernandez-Martinez et al., 2019). The strength of the land sink may be related
to the amplitude of the seasonal cycle of atmospheric CO2 (e.g. Keeling et al.,
1996; Randerson et al., 1997) via annual and seasonal imbalances between pho-
tosynthesis and respiration. However, the magnitude, and spatial and temporal
distributions of gross primary productivity (GPP) and net primary productiv-
ity (NPP) vary noticeably among Earth system models (ESMs) (e.g. Hu et al.,
2022). Furthermore, models typically underestimate the change in amplitude of
seasonal CO2 exchange in northern land ecosystems over time (e.g. Graven et
al., 2013) or underestimate CO2 uptake in the Northern Hemisphere mid-high
latitudes. (e.g. Canadell et al., 2021, fig 5.24).

Multi-model ensembles of coupled carbon-climate models show large differences
in their land sink projections, especially for terrestrial carbon uptake (e.g. Arora
et al., 2020; Cadule et al., 2010). For example, Friedlinstein et al. (2014) showed
that the Coupled Model Intercomparison Project phase 5 (CMIP5) models range
between -173 and 758 Pg C in simulations of cumulative land carbon uptake
for 1850 to 2100 when forced by RCP8.5. This uncertainty exists in historical
simulations where models both overestimate and underestimate the historical
atmospheric CO2 increase by over 20%. These differences are mainly due to
uncertainties in the land carbon cycle response, with differences in their cu-
mulative land flux estimates of 214 Pg C for 1850-2005, more than double the
differences in their cumulative ocean flux estimates (Friedlingstein et al., 2014).
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Quantifying the exchange of carbon between the atmosphere and the land sur-
face at hemispheric and global scales is challenging because the heterogeneity
of Earth’s surface makes it difficult to upscale local flux measurements (e.g.
Friend et al., 2007; Kumar et al., 2016). Atmospheric inversion, wherein car-
bon fluxes are estimated from atmospheric CO2 observations using atmospheric
tracer transport models, provides a method to infer large-scale carbon fluxes
(e.g. Tans et al., 1990; Ciais et al., 2010; Thompson et al., 2016); however, this
method has been shown to be sensitive to uncertainty due to the simulation of
vertical transport (Schuh et al., 2019; Stephens et al., 2007; Verma et al., 2017).
Atmospheric inversions that rely only on surface observations must accurately
represent vertical mixing to estimate CO2 concentrations aloft. Uncertainty in
atmospheric inversion flux estimates can be characterized through the use of
observations of the vertical profile of atmospheric CO2 (e.g. Peiro et al., 2022;
Stephens et al., 2007).

Global-scale aircraft observations, such as those made during the High-
Performance Instrumented Airborne Platform for Environmental Research
(HIAPER) Pole-to-Pole Observations project (HIPPO, 2009-11) and the
Atmospheric Tomography Mission (ATom, 2016-18), are representative of
large regions and capture the vertical profile of atmospheric CO2 (Wofsy et
al., 2011; Thompson et al, 2021). These campaigns measured the vertical
structure of CO2 in the atmosphere across a range of latitudes and over the full
seasonal cycle, and allow for analysis of seasonal changes in hemispheric-scale
atmospheric CO2 (e.g. Jin et al., 2021), which are dominated by land exchange.
We use the seasonal cycle of atmospheric CO2 concentrations measured during
the HIPPO and ATom flight campaigns to develop a metric for evaluating the
simulation of terrestrial CO2 exchange in prognostic ESMs.

We derive estimates of the northern hemisphere net land flux integrated over the
growing season, or growing season net flux (GSNF), as a benchmark for model
evaluation (e.g. Collier et al., 2018). The creation of flux benchmarks allows
for a direct comparison of observations and model simulations at the flux level
rather than at the concentration level (e.g. Keppel-Aleks et al., 2013), which
requires either using an atmospheric transport model or emulator (Liptak et al.,
2017) to translate fluxes into atmospheric mole fraction variations. This research
explores an alternative approach to formal inverse modeling to constrain net
land-atmosphere carbon fluxes at hemispheric scale. We use CO2 measurements
from the HIPPO and ATom flight campaigns to infer the GSNF with only
minimal reliance on atmospheric transport models. Thus, our estimated flux
is less sensitive to errors in transport simulation and gives more robust insight
into prognostic model inconsistencies.

We describe the data sets and methods used to derive GSNF in Section 2. We
discuss the GSNF and compare to ESM estimates of net biosphere productiv-
ity (NBP), GPP, heterotrophic respiration (RH), and net primary productivity
(NPP), using output from the Coupled Model Intercomparison Project phase 5
and 6 (CMIP5 and CMIP6) in Section 3. This is followed by a discussion of
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those results in Section 4 and conclusions in Section 5.

2 Data and Methods

2.1 Aircraft Observations

We used dry air mole fractions of CO2 measured in the free troposphere dur-
ing the HIPPO and ATom aircraft campaigns. HIPPO (Wofsy, 2011; Wofsy et
al. 2017) used the NSF/NCAR GV aircraft to make measurements primarily
over the remote Pacific from 87° N to 67° S (Fig. 1a) during five campaigns
that spanned all four seasons between 2009 and 2011 (Table 1). The aircraft
flew vertical profiles from near the surface to an altitude of 14 km; typically,
a full profile was completed over ~2.2° of latitude (Fig. 1b). During these
flights, measurements were made of greenhouse gasses and related tracers. CO2
mole fractions were measured using three different in situ instruments and two
whole air samplers: the Harvard Quantum Cascade Laser System (QCLS, San-
toni et al., 2014), the Harvard Observations of the Middle Stratosphere (OMS,
Daube et al., 2002) instrument, the National Center for Atmospheric Research
(NCAR) Airborne Oxygen Instrument (AO2, Stephens et al., 2021), the Na-
tional Oceanic and Atmospheric Administration (NOAA) Portable Flask Pack-
ages (PFP, Sweeney et al., 2015), and the NCAR/Scripps Medusa Whole Air
Sampler (Stephens et al., 2021). For our analysis, we used the recommended
CO2.X variable, which is derived primarily from QCLS measurements with cali-
bration periods gap-filled using OMS measurements, reported as part per million
dry air mole fraction (Wofsy et al., 2017). We use the 10-second merge data
product and all CO2 measurements are reported to be within 0.2 ppm with re-
spect to the WMO X2007 scale (Santoni et al., 2014). The mean bias between
QCLS and NOAA flask measurements across all five HIPPO campaigns is 0.11
ppm (Santoni et al., 2014). We use comparisons to the other 4 systems as a
measure of analytical uncertainty. We also use observations of N2O made by
QCLS to identify stratospheric samples.
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Figure
1 Flight paths for (a) HIPPO-2, which flew over the remote Pacific
in November 2009, and (c) ATom-1, which flew over the Pacific and
Atlantic in August 2016. All other campaigns followed similar flight
paths. Flight path with continuous vertical profiling for flight 3,
which flew from Anchorage, AK to Kona, HI for (b) HIPPO-2 and
(d) AToM-1. All other flights flew a similar path.

ATom (Wofsy et al., 2021) is a more recent series of flight campaigns that used
the NASA DC-8 aircraft to measure atmospheric trace gas concentrations by
traveling south over the Pacific and north over the Atlantic (Fig. 1c) and which
included a much larger scientific payload. As with HIPPO, a full annual cy-
cle was measured, with flights that occurred in each of the four seasons over a
three-year period from 2016 to 2018 (Table 1). Flights spanned 83°N to 86°S
and sampled vertical profiles from 0.2 to 12 km in altitude (Fig. 1d). ATom
measured CO2 using the QCLS, AO2, Medusa, and PFPs similarly to HIPPO
but also included a NOAA Picarro instrument. For our analysis, we used the
CO2.X variable, which consists of NOAA Picarro measurements gap-filled us-
ing QCLS measurements. However during the first two flights of ATom-1, the
NOAA Picarro measurements were not reported due to an inlet problem. Sim-
ilar to HIPPO, we use the 10-second merge data product (Wofsy et al., 2021).
To identify and remove stratospheric samples, we use observations of N2O from
QCLS and the NOAA PAN and Trace Hydrohalocarbon ExpeRiment (PAN-
THER, ATom-1 only). While the WMO CO2 scale has been recently updated,
both the HIPPO and ATom observations used here have been calibrated with
respect to the previous, WMO X2007, scale.

Table 1 Aircraft data used in this study
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Deployment Northern Hemisphere (Southbound) Dates Northern Hemisphere (Northbound) Dates
HIPPO-1 1/8/09-1/16/09 1/28/09-1/30/09
HIPPO-2 10/31/09-11/7/09 11/16/09-11/22/09
HIPPO-3 3/24/10-3/31/10 4/10/10-4/16/10
HIPPO-4 6/14/11-6/22/11 7/4/11-7/11/11
HIPPO-5 8/9/11-8/24/11 9/3/11-9/8/11
ATom-1 7/29/16-8/6/16 8/17/16-8/23/16
ATom-2 1/26/17-2/3/17 2/15/16-2/21/17
ATom-3 9/28/17-10/6/17 10/19/17-10/28/17
ATom-4 4/24/18-5/1/18 5/14/18-5/21/18

2.2 Curtain Averages from Atmospheric Concentrations

The CO2 observations from all flight campaigns are combined to estimate the
average northern extratropical tropospheric CO2 seasonal cycle (Bent, 2014).
We then use a set of transport models to convert the time derivative of this
cycle into estimates of northern extratropical terrestrial CO2 flux. We refer to
this process as “bias correction.”

To isolate tropospheric CO2 signals, we define an upper cutoff of 300 hPa and
remove any remaining observations with detectable stratospheric influence using
the measured concentration of nitrous oxide (N2O) and a cutoff value of 319
parts per billion (ppb) after detrending the data to 2009; samples whose N2O
concentration falls below this threshold are removed from the observations (Bent,
2014). We also manually remove outlying samples primarily obtained during
takeoffs and landings, to avoid strong local influences from biospheric exchange
or fossil emissions. The flights and times filtered are identified in Data Sets S1
and S2. We filter output at the same locations and times for the transport model
CO2 mole fractions Simulated along the flight tracks, discussed in section 2.3.
This stratospheric and local influence filtering removes 2.8% of the observations
within the defined domain from the HIPPO and ATom datasets. We do not
use observations from the northbound leg of HIPPO-1 because it only extended
to 40°N, and both QCLS and OMS have been filtered for altitude-dependent
biases on these flights.

We then detrend the filtered data by removing the long-term trend in the NOAA
Mauna Loa in situ CO2 mole fraction record (Thoning et al., 2022), found
by Seasonal-Trend decomposition using locally estimated scatterplot smoothing
(STL, Cleveland et al., 1990) with a 2-year smoothing window. The filtered and
detrended data primarily reflect the seasonal variations in tropospheric CO2
concentrations that are of interest.

We calculate the extratropical mean drawdown by first aggregating the de-
trended data in latitude and pressure bins. We discretize the atmosphere into
bins of 5° in latitude and 50 hPa in pressure, for the latitude range 20°N to
90°N and the pressure range 300 hPa to 1000 hPa. Observations at latitudes
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south of 20°N are excluded because of the differences in the phasing of the trop-
ical seasonal cycle to that north of 20°N, and observations at pressures below
300 hPa were excluded because measurements were sparse and frequently in
the stratosphere. Within each bin, we average all data collected for a given
day of the year and then fit a second-order harmonic with an offset due to the
difference in the annual mean relative to Mauna Loa (Fig. S1). We then gener-
ate seasonal time series at daily resolution from the harmonic fits and take the
pressure-weighted average of these values for each latitude bin. These partial
columns are then integrated over latitude from 20°N to 90°N (Eq. 1), using
cosine(lat) weighting to reflect the influence on the full zonal volume. We call
the result of this integration the “curtain average” concentration of atmospheric
CO2 (Bent, 2014).

𝐶𝑢𝑟𝑡𝑎𝑖𝑛𝐴𝑣𝑔 = ∫90∘𝑁
20∘𝑁 ∫1000 hPa

300 hPa aveCO2(𝜑,𝑃) dp cos 𝜑d�
∫90∘𝑁
20∘𝑁 ∫1000 hPa

300 hPa dp cos 𝜑d�
(1)

The curtain average is shown in black in Figure 2, and is compared to north-
bound and southbound legs of each HIPPO and ATom mission where each point
is found by filtering, detrending, interpolating and extrapolating to get a full al-
titude and latitude slice, then taking a pressure and cosine of latitude weighted
average (Akima, 1978).

Figure 2 Two-harmonic fit to detrended average carbon dioxide con-
centration in ppm as a function of day of year for HIPPO and ATom
flight campaigns in the atmospheric curtain between 20°N and 90°N
in latitude and between 1000 hPa and 300 hPa in pressure. The points
are found by filtering, detrending, interpolating and extrapolating to
get a full altitude and latitude slice, then taking a pressure and cosine
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of latitude weighted average. The black line is the average of all fits
to individual latitude-pressure bins with the annual mean removed.

The derivative, found as a finite-difference, of the curtain average concentra-
tion fit line with respect to time, then gives the rate of change of CO2 of this
atmospheric volume as a function of the day of the year.

We convert from a rate of change in concentration to a rate of change in mass
balance (MB) by multiplying the concentration by the mass of dry air within the
domain from the ERA5 reanalysis fields used by Tracer Model 5 (TM5) within
CarbonTracker 2019 (Krol et al., 2005; Jacobson et al., 2020). We use the
time mean mass within the domain across the HIPPO and ATom time periods,
neglecting annual and seasonal variations, which are less than 0.2%.

2.3 Flux Estimates Using Atomspheric Transport Models

Although the HIPPO and ATom observations over the remote ocean provide
representative estimates of background values, the sampling and discretization
method, zonal gradients, and mixing out of the domain result in differences be-
tween our MB time derivatives and zonal fluxes. Also, fossil fuel emissions and
air-sea gas exchange make small contributions to the observed cycles. We use
atmospheric transport models to account for the cumulative effect of: 1) atmo-
spheric mixing across the southern boundary and above the pressure boundary;
2) spatial sampling biases associated with specific flight tracks; 3) zonal sampling
bias; 4) temporal sampling biases associated with synoptic variability, subsea-
sonal sample distribution, and interannual variability; and 5) contributions from
fossil-fuel emissions and ocean uptake.

Atmospheric inversions provide optimal estimates of surface-atmosphere CO2
exchange derived from both atmospheric CO2 mole fraction data and initial
estimates for land-atmosphere and ocean-atmosphere exchange in the context
of an atmospheric transport model. We used posterior concentrations from three
different inversions (Table 2) to reduce the uncertainty that may arise due to
biases present in the choice of transport model as differences in transport have
previously been shown to lead to large differences in optimized fluxes (Gurney
et al., 2002; Schuh et al., 2019; Stephens et al., 2007).

CarbonTracker is a data assimilation system consisting of the TM5 atmospheric
transport model coupled to an ensemble Kalman filter (Jacobson et al., 2020; Pe-
ters et al., 2007). TM5 is a global two-way nested transport model driven by 3-h
meteorological forcing from the ERA5 operational forecast model (Krol et al.,
2005). We used output from the most recent Carbon Tracker release (CT2019B,
Jacobson et al., 2020), which includes optimized carbon fluxes through the
HIPPO and ATom time period, and CO2 mole fractions simulated along the
flight paths for the HIPPO and ATom campaigns, which match the dates, times,
and locations for the HIPPO and ATom data included in the GLOBALVIEW-
plus v5.0 ObsPack product (Cooperative Global Atmospheric Data Integration
Project, 2019).
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The Model for Interdisciplinary Research on Climate version 4 atmospheric
general circulation model based chemistry transport model (MIROC4-ACTM)
provides posterior 4-D CO2 fields and optimized surface fluxes through the
HIPPO and ATom period (Chandra et al., 2022). Atmospheric CO2 transport
in MIROC4-ACTM is simulated by the Japan Agency for Marine-Earth Science
and Technology’s ACTM, a transport model driven by meteorological param-
eters from the Japanese 55-year Reanalysis (JRA55, Patra et al., 2018). We
use MIROC4-ACTM output from 2020 and MIROC CO2 mole fractions sim-
ulated along the flight paths for the HIPPO and ATom campaigns matching
the dates, times, and locations for the HIPPO and ATom data included in the
GLOBALVIEWplus v5.0 ObsPack product..

We use a third set of inverse modeling output from the Copernicus Atmosphere
Monitoring Service (CAMS; Chevallier et al., 2005). Within CAMS, transport
of atmospheric CO2 is simulated by the global climate model of the Laboratoire
de Météorologie Dynamique, zoom capacity (LMDZ) driven by meteorological
parameters from ECMWF (Chevallier et al., 2005). We used CO2 mole frac-
tions simulated along the HIPPO and ATom flight paths matching the dates,
times, and locations for the HIPPO and ATom data included in the GLOB-
ALVIEWplus v5.0 ObsPack product, and posterior carbon fluxes from CAMS
v20r1, which contains output through the HIPPO and ATom period.

Table 2 Inverse models used in this study.

CT2019B MIROC4-ACTM CAMS
Years Available 2000-2018 1996-2018 1979-2020
Years Used 2009-2018 2009-2018 2009-2018
Transport TM5 ACTM LMDZ
Meteorology ERA5 JRA55 ERA5
Resolution (lat x lon in degrees) Glb2x3, N America 1x1 Glb2.8x2.8 Glb1.9x3.75
Fossil Fuels Miller and ODIAC EDGARv432 GCP-GridFEDv2021.2
Reference (Jacobson et al., 2020) (Chandra et al., 2022) (Chevallier et al., 2005)

For each model, we calculate the annual cycle of the northern extratropical net
land flux by removing the long-term annual mean of the posterior land flux,
which excludes fossil fuel emissions and ocean fluxes, from 2000 - 2018 at each
grid cell and then taking an area-weighted average north of 20°N. We linearly
interpolate between monthly means to get an annual cycle at daily resolution
to allow for direct comparison to the aircraft-observation-derived MB.

To correct for bias, we match the model ObsPack output date, time, and lo-
cation to the 10-second merge files for HIPPO and ATom, then repeat the
analysis described in Section 2.2 using posterior CO2 mole fractions simulated
along the HIPPO and ATom flight tracks to calculate the curtain average and
MB for each atmospheric inversion system. The MB, akin to the observations,
is then subtracted from the area-weighted averaged posterior land flux to de-
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rive a seasonal correction. The MB found using posterior CO2 mole fractions
simulated along the HIPPO and ATom flight tracks is the MB that would be
observed if transport in our world perfectly matched transport in the model.
Thus, in each model, we assume the difference between the MB for each model
(solid lines in Fig. 3a) and northern extratropical average posterior land flux
(dashed lines in Fig. 3a) is due primarily to mixing outside the domain, with
additional influences listed above. We determine the correction for each model
and subtract it from the observationally derived MB (dotted black line in Fig.
3b) resulting in transport-model specific flux estimates (solid color lines in Fig.
3b). The average difference across the three models (dashed black line in Fig.
3b) is subtracted from the observationally derived MB to estimate the seasonal
cycle of the average net flux, hereafter referred to as the “flux cycle”, into the
atmosphere (solid black line in Fig. 3b).

We find that the contribution of atmospheric transport uncertainty for the large
spatial scale over which we average is small. In particular, noted variations in
representations of vertical mixing (Stephens et al., 2007; Schuh et al. 2019) may
change the distribution of CO2 within our averaging domain but not the domain
average.

2.4 Growing Season Net Flux from Seasonal Flux Cycles

We then calculate the net atmospheric carbon exchange during the growing
season, or GSNF, as the integral of the flux cycle during the growing season,
defined to be when the bias corrected flux cycle is negative, which is nominally
equivalent to the
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Figure 3 (a) Time derivative of concentrations from observations and
inverse models, along with model fluxes. The dashed lines the area
weighted average of posterior land fluxes from each inversion system
in the domain 20°N-90°N. The solid lines are found by using the
carbon dioxide mole-fractions along the flight track for each model
to calculate the MB as described in Section 2.2. The solid black
line is the time derivative of concentrations using the HIPPO and
ATom observations. The estimated flux for the observations is bias
corrected by finding the difference between the dotted and solid lines
for a given model and applying that difference to the time derivative
of the concentration. (b) Estimated flux after bias correction. The
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colored lines are found by calibrating using only the model indicated
and the solid black line is found using the average correction. The
dotted black line is the time derivative of concentration before the
correction.

period when detrended atmospheric CO2 is declining, primarily due to addi-
tional uptake by the biosphere as GPP outpaces respiration.

By detrending the observations, this estimate excludes the annual mean flux of
CO2, which itself includes fossil fuel emissions and terrestrial and oceanic sinks.
Thus, our estimate of GSNF reflects the seasonal-only component of terrestrial
exchange; the actual net uptake by the terrestrial biosphere during the growing
season is larger when the annual component (long-term sink) is included. This
approach is consistent with prior use of GSNF (e.g. Fung et al., 1983; Yang
et al., 2007). Seasonal variations in fossil-fuel emissions and air-sea exchange
contribute to seasonal variations in atmospheric CO2, but these influences are
small at about 3% and 5% of land exchange respectively on average for the three
inversion systems, and have been removed by our use of the land flux in our
model-based bias correction.

2.5 Earth System Models (CMIP5 and CMIP6)

The Coupled Model Intercomparison Project (CMIP) is an international, multi-
model research intercomparison project whose purpose is to compare a coordi-
nated set of simulations from ESMs in order to gain a better understanding of
our ability to model climate change and associated feedbacks (Friedlingstein et
al., 2006). The ESMs that participate simulate relevant physical, chemical, and
biological processes within the coupled Earth system (Eyring et al., 2016) using
models developed by individual modeling centers worldwide, with the goal of
including the most important processes that feedback into the climate system.

Here, we analyze the historical simulations for CMIP5 and CMIP6 (Table 3)
that span the period from 1850 to 2005 for CMIP5 and 2014 for CMIP6. We
analyze the CO2-concentration driven historical simulations in which environ-
mental forcing, such as greenhouse gas concentrations and solar forcing, are
prescribed. Land and ocean fluxes are allowed to evolve prognostically in re-
sponse to greenhouse gasses and other forcings (Eyring et al., 2016).

Table 3 Earth system models used in this study. Models in bold are
included in the subset used to analyze GPP, RH, and NPP.

Model Generation Land Component Ocean Component Institution ID Reference
ACCESS-ESM1-5 CMIP6 CABLE2.4 ACCESS-OM2 (MOM5) CSIRO Ziehn et al., 2019
CanESM5 CMIP6 CLASS3.6/CTEM1.2 NEMO3.4.1 CCCma Swart et al., 2019
CESM2 CMIP6 CLM5 POP2 NCAR Danabasoglu et al., 2019
CESM2-FV2 CMIP6 CLM5 POP2 NCAR Danabasoglu et al., 2019
CESM2-WACCM CMIP6 CLM5 POP2 NCAR Danabasoglu et al., 2019
CESM2-WACCM-FV2 CMIP6 CLM5 POP2 NCAR Danabasoglu et al., 2019

12



Model Generation Land Component Ocean Component Institution ID Reference
CMCC-CM2-SR5 CMIP6 CLM4.5 NEMO3.6 CMCC Lovato et al., 2020
CMCC-ESM2 CMIP6 CLM4.5 NEMO3.6 CMCC Lovato et al., 2021
GISS-E2-1-G CMIP6 GISS LSM GISS NASA-GISS NASA/GISS 2018
GISS-E2-1-H CMIP6 GISS LSM HYCOM NASA-GISS NASA/GISS 2019
IPSL-CM6A-LR CMIP6 ORCHIDEE NEMO-OPA IPSL Boucher et al., 2018
MPI-ESM-1-2-HAM CMIP6 JSBACH3.2 MPIOM1.63 HAMMOZ-Consortium Neubauer et al., 2019
MPI-ESM1-2-LR CMIP6 JSBACH3.2 MPIOM1.63 MPI-M Wieners et al., 2019
NorCPM1 CMIP6 CLM4 MICOM1.1 NCC Bethke et al., 2019
NorESM2-LM CMIP6 CLM MICOM NCC Seland et al., 2019
NorESM2-MM CMIP6 CLM MICOM NCC Bentsen et al., 2019
TaiESM1 CMIP6 CLM4 POP2 AS-RCEC Lee et al., 2020
CanESM2 CMIP5 CLASS2.7 and CTEM1 CanOM4 and CMOC1.2 CCCma Chylek et al., 2011
CCSM4 CMIP5 CLM4 POP2 NCAR Gent et al., 2011
CESM1-BGC CMIP5 CLM BEC NSF-DOE-NCAR Long et al., 2013
GFDL-ESM2G CMIP5 LM3 TOPAZ NOAA GFDL Dunne et al., 2013
HadGEM2-CC CMIP5 MOSES2 and TRIFFID HadGOM2 MOHC Collins et al., 2011
HadGEM2-ES CMIP5 MOSES2 and TRIFFID HadGOM2 MOHC Collins et al., 2011
INM-CM4.0 CMIP5 - - INM Volodin et al., 2010
IPSL-CM5A-LR CMIP5 ORCHIDEE ORCA2 IPSL Dufresne et al., 2013
IPSL-CM5A-MR CMIP5 ORCHIDEE ORCA2 IPSL Dufresne et al., 2013
MIROC-ESM CMIP5 MATSIRO COCO MIROC Watanabe et al., 2011
MIROC-ESM-CHEM CMIP5 MATSIRO COCO MIROC Watanabe et al., 2011
NorESM1-M CMIP5 CLM MICOM NCC Tjiputra et al., 2013

The northern extratropical seasonal land flux for CMIP5 and CMIP6 models is
calculated by removing the long-term annual mean and taking the area-weighted
average of each model’s NBP output north of 20°N, linearly interpolating be-
tween monthly mean values, similar to the method used on the inversion pos-
terior fluxes (Section 2.3). In addition, we fit a second-order harmonic to the
NBP seasonal cycle to find seasonal timing within the models. We define the
growing season in each model as the period for which the model simulates net
terrestrial uptake, which allows us to evaluate each model’s growing season start
and end dates against those inferred from the aircraft observations. In ESMs,
NBP reflects the balance of gross photosynthetic uptake, ecosystem respiration,
and disturbance and harvest fluxes, and corresponds to the land-atmosphere
carbon exchange, making it comparable with our observationally derived flux.
We note that ESMs generally do not represent lateral carbon fluxes in rivers,
but we expect these to have a relatively minor contribution to our observed
seasonal variations. We average multiple years of NBP output from the CMIP
models to derive a climatology; for CMIP6, we average over 2009 - 2014, and for
CMIP5, we average over 2000-2005 because the output is not available through
the HIPPO and ATom timeframe. We evaluate the ensembles as a whole by
taking the multi-model mean as it is commonly used. We also evaluate area-
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weighted averages of three major component fluxes: GPP, RH, and NPP. In-
stead of analyzing the fluxes integrated over the growing season, we analyze
the fluxes integrated over the entire year for GPP, RH, and NPP, which still
correlate with the GSNF and are more useful than the seasonal fluxes when
analyzing the carbon budget (e.g. Ballantyne et al., 2015; Tans et al., 1990).
For the flux analysis, we use a subset of the models (9 of 12 CMIP5 models and
13 of 17 CMIP6 models, Table 3) for which historical NBP, GPP, RH, and NPP
are available.

3 Results

Observations of atmospheric carbon dioxide from the HIPPO and ATom air-
craft campaigns were used to estimate a GSNF of 5.7 ± 0.2 Pg C out of the
atmosphere north of 20°N averaged over the period 2009-2018 (Fig. 5). This
value is equivalent to the net CO2 exchange between the land and atmosphere
during the growing season after removing the annual mean. The growing sea-
son is defined to be the period when seasonal fluxes are negative (net uptake by
land greater than the annual mean) and occurs between day 117 in late April
and day 248 in early September. This corresponds to the day when the curtain
average is maximum to the day when the curtain average is minimum (Fig. 2).
The flux cycle shows maximum uptake on day 196 (Fig. 3b).

We conducted sensitivity tests to ensure that our choices for the latitudinal and
vertical boundaries of our domain and bin size did not have a large influence
on the calculated GSNF. Expanding the region north (south) of 20°N by 5°N
resulted in a decrease (increase) in the strength of the GSNF of just under 1%.
The GSNF was also generally robust to the choice of pressure ceiling for the
aircraft observations, increasing by just over 1% when we instead used 350 hPa
as a ceiling. The relative standard deviation for all boundary combinations
tested (all possible combinations of pressure cutoffs of 300 hPa, 325 hPa, 350
hPa, 375 hPa, and 400 hPa with latitude cutoffs of 20°N and 25°N) was 2%.
Similarly, we saw just over a 1% increase in GSNF magnitude for a doubling of
latitude or pressure bin size. The relative standard deviation for all bin sizes
tested (all possible combinations of pressure bin sizes of 25 hPa, 50 hPa, and
100 hPa with latitude bin sizes of 5 ° and 10 °) was 1%.

Given the small differences that the choice of boundary and bin size make on
the magnitude of the calculated GSNF, most of the uncertainty in GSNF results
from the transport model bias correction process. We see a spread of 0.2 Pg
C or 4% when using CT2019B alone to bias correct vs. using CAMS alone to
bias correct. When adding the uncertainty from bin size, boundary choice, and
bias correction in quadrature, assuming uncorrelated errors, the 1-sigma error
on GSNF is 0.2 Pg C and on the start and end of the growing season is 2 days.

Considering the extensive altitude-latitude coverage of the aircraft observations,
the inferred flux represents a unique and robust hemispheric estimate of terres-
trial biosphere exchange and its seasonal phasing. We used the observationally
inferred GSNF metric to evaluate NBP and its seasonal phasing from the CMIP5
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and CMIP6 ensembles (Fig. 5). CMIP6 models (mean GSNF: 5.0 ± 1.6 Pg C,
range: 1.5 - 6.9 Pg C) on the whole have less spread than CMIP5 models (mean
GSNF: 5.8 ± 2.4 Pg C, range: 2.5 - 10.0 Pg C) (Fig 5). Two of the 17 CMIP6
ensemble members evaluated, CESM2 and CESM2-WACCM, were within 0.2
Pg C of the observed value, and most of the models with a large bias underes-
timated the GSNF.
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Figure 4 Corrected flux estimated from the HIPPO and ATom campaigns in
comparison to area-weighted average NBP in the same domain from the (a)
CMIP5 and (b) CMIP6 models. The bias corrected observation error is the
standard deviation between correction using the three different inverse models.
While the spread in magnitude and timing of the flux in CMIP6 models is
smaller than that of CMIP5 models, there is still disagreement between models.

Figure 5 GSNF plotted against the (a) start of the season, defined to be the first
day when the seasonal component of atmospheric CO2 is decreasing (seasonal
component of flux changes from positive to negative), (b) end of the season,
defined to be the last day when the seasonal component of atmospheric CO2
is decreasing (seasonal component of flux changes from negative to positive),
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(c) length of the season, and (d) max of season, defined to be the day when
flux is most negative. The black point is the number inferred from the observa-
tions with the gray lines showing uncertainty. CMIP5 models are shown in blue
and CMIP6 models are shown in orange. The blue and orange points are the
multi-model mean for the CMIP5 and CMIP6 ensembles respectively. The sur-
rounding ellipses show the covariance to one standard deviation. Only models
where GPP, RH, and NPP output was available are included.

We note that some modeling centers showed substantial improvement in cap-
turing GSNF between CMIP5 and CMIP6 (Fig. 6) by decreasing the absolute
value of their z-score, which indicates how many standard deviations away from
the observed value a model falls. For example, the two versions of the IPSL
model overestimate GSNF by more than 4 Pg C in CMIP5, which improved
substantially in CMIP6 to underestimate the GSNF by less than 1 Pg C. These
overestimates are a large reason why the CMIP5 mean is closer to the observed
value than the CMIP6 mean. When the IPSL models are excluded from the
mean, the CMIP5 ensemble mean decreases to 4.8 Pg C, even smaller than the
CMIP6 ensemble mean. In both CMIP5 and CMIP6, the majority of ensemble
members underestimate the seasonal flux, falling below the horizontal gray bar
in Fig. 5.
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Figure 6 CMIP5 and CMIP6 model absolute value of z-score calculated for all
models. The color gray and the label none has been used when one generation
of a model is not used or not existent.

A decrease in GSNF model spread in the newer generation has not necessarily
led to an improved agreement between models and observations on the phasing
of the seasonal cycle. For example, The CMIP5 ensemble mean start day (Julian
day 115 ± 17) is closer to the observed start day (Julian day 117 ± 2) than the
CMIP6 ensemble mean start day (Julian day 101 ± 14) (Fig. 5a). None of the
17 CMIP6 models evaluated fell within 2 days of the observed start day while
three of the 12 CMIP5 models evaluated fell within the 2-day uncertainty range
(Fig. 5a). The observations suggest that the growing season onset has become
more biased in CMIP6. However, the CMIP6 ensemble did show a smaller bias
than CMIP5 for the model-mean end day, which was Julian day 245 ± 16 for
CMIP6 and 260 ± 18 for CMIP5, in contrast to day 248 ± 2 in the observations
(Fig. 5b). At 143 ± 9 days, the CMIP6 ensemble mean growing season length
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is 12 days longer than the observed length of 131 ± 2. In comparison, the
CMIP5 ensemble mean growing season length is 14 days longer at 145 ± 12
days (Fig. 5c). While the CMIP6 ensemble mean end day and growing season
length compare more favorably with the observed end day and growing season
length than does the CMIP5 ensemble mean values, in both cases, the simulated
growing season is longer than what is observed (Fig. 5c).

Seasonal phasing in general does not appear to be correlated with GSNF in the
model ensembles, suggesting that phasing is not a dominant driver of GSNF
spread among models. No correlation was seen (r2 < 0.2, p > 0.05) between
GSNF magnitude and the start day, end day, length, or max day across models
(Fig. 5). This suggests that factors other than the phasing of the growing season
may explain inter-model differences.

We analyzed GPP, RH, and NPP for the subset of CMIP5 and CMIP6 ensemble
members which include these outputs to see if these component fluxes might
explain model disagreement on GSNF (Fig. 7). We found that in both the
CMIP5 and CMIP6 ensembles, GSNF was correlated (r2 = 0.68, p < 0.05) with
GPP, where models with larger GPP generally had larger GSNF. Models with
large GPP also tend toward higher respiration values with an r2 value of 0.77
between GPP and RH, as GPP provides the inputs to support RH. RH showed
a weaker correlation with GSNF than did GPP, however, the correlation is still
moderately strong (r2 = 0.52, p < 0.05). As expected, models with higher GPP
values also tend toward higher NPP values, and the correlation between NPP
and GSNF is moderately strong with an r2 value of 0.66 and a p-value less than
0.05.

We see a large range for GPP, RH, and NPP across the CMIP5 and CMIP6
ensembles. The range in GPP is smaller for the CMIP6 ensemble (mean =
50 Pg C, spread = 37 Pg C) than for the CMIP5 ensemble (mean = 60 Pg C,
spread = 47 Pg C). However, this decrease in the model range between ensemble
generations is not seen for RH or NPP. The spreads for RH were 23 Pg C (mean
= 29 Pg C) for CMIP5 and 27 Pg C (mean = 22 Pg C) for CMIP6. NPP from
CMIP5 and CMIP6 had mean values of 32 Pg C and 24 Pg C respectively and a
spread of 28 Pg C for both CMIP5 and CMIP6. We note that two models in the
CMIP6 ensemble have GSNF values consistent with the observational constraint,
MPI-ESM1-2-LR and IPSL-CM6A-LR, but the GPP values spanned by these
models are over 10 Pg C, the RH values spanned by these models are 10 Pg C,
and the NPP spanned by these models are 9 Pg C.

The strong correlations and large ensemble spread enabled us to indirectly con-
strain northern extratropical GPP, RH, and NPP through an “emergent con-
straint” (EC) approach (e.g. Eyring et al., 2019, Williamson et al., 2021; Simp-
son et al., 2021). ECs are correlations between some observable element X that
varies across the ESM ensemble and some important variable Y assuming a
physically meaningful relationship exists between X and Y. Here, we assumed
GSNF to be X and assumed a physically meaningful relationship between the
net flux and its component fluxes GPP, RH, and NPP (Fig. 7). The CMIP5 and
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CMIP6 ensembles can be analyzed separately to estimate GPP, RH, and NPP.
The CMIP5 ensemble EC estimate for GPP is 58 ± 21 Pg C, for RH is 28 ± 11
Pg C, and for NPP is 31 ± 11 Pg C where the error is the 95% prediction inter-
val from a hypothetical sample generated using a Monte Carlo simulation of n
= 10000 and assuming a Gaussian distribution. Similarly, the CMIP6 ensemble
EC estimate for GPP is 54 ± 11 Pg C, for RH is 24 ± 11 Pg C, and for NPP
is 26 ± 9 Pg C. However, we can also combine the two ensembles to create a
larger sample size as the estimates agree within error and the modeled relation-
ship does not change substantially between the two generations. The combined
EC estimate for GPP is 56 ± 15 Pg C, for RH is 25 ± 11 Pg C, and for NPP
is 28 ± 10 Pg C. Although we did not constrain autotrophic respiration (RA)
explicitly, the constraint on GPP and NPP imply RA is 28 ± 18 Pg C where
the error has been propagated by summing the errors in quadrature. Applying
an emergent constraint to RA explicitly would likely give smaller errors.
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Figure 7 GSNF plotted as a function of (a) integrated GPP and (b) integrated
RH, and (c) integrated NPP for the CMIP5 and CMIP6 models. The estimated
GSNF from the HIPPO and ATom observations is shown in gray, CMIP5 models
are shown in blue, and CMIP6 models are shown in orange. Only models where
GPP, RH, and NPP data was available are included.

4 Discussion
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Here we derive an observational constraint on northern extratropical GSNF from
two novel aircraft campaigns that measured the atmospheric CO2 curtain over
remote oceans. Our estimated GSNF of 5.7 ± 0.2 Pg C is significantly smaller
in magnitude than the GSNF of 7.9 Pg C yr-1 out of the atmosphere estimated
north of 30°N by Yang et al. (2007) based on total column observations and
spatially sparse aircraft profiles in North America. These differences are most
likely due to differences in methodology, as Yang et al. used a combination
of total column and aircraft measurements at 8 locations between 30°N and
70°N to scale fluxes from a terrestrial ecosystem model (TEM), while we used
aircraft data that sampled nearly continuously between our cutoff of 20°N and
roughly 87°N to estimate GSNF without using a specific TEM. When our cutoff
is changed from 20°N to 30°N, our estimate remains as 5.8 Pg C. Fung et al.
(1983) quantified GSNF in the Northern Hemisphere using a three-dimensional
tracer transport model. When our cutoff is changed to the Equator, our estimate
increases to 6.1 Pg C, which falls within the 3.4 - 10.7 Pg C range given by
Fung et al. (1983). However, the range given by Fung et al. (1983) is large.
The uncertainty on northern hemisphere GSNF could likely be reduced with
application of multiple transport models to existing records.

We may expect to see an increase in GSNF over time due to the observed
increase in the CO2 seasonal cycle amplitude (SCA). Graven et al. (2013) saw
an increase of 32-59 % in the NH seasonal cycle amplitude in the 50-year period
from 1958-1963 to 2009-2011. This equates to an increase of 0.56 - 0.93 %
yr-1. If this trend continued through the HIPPO and ATom time period, we
would expect to see a 4.0 - 6.7% increase across the 7 years between these two
missions. Applying the methodology to HIPPO alone, which covers 2009-2011,
gives a value of 11.2 ppm for the SCA of the curtain average versus 10.7 ppm
when using ATom alone, which covers 2016-2018. This corresponds to a more
than 1% decrease, contrary to the increase expected from Graven. However,
this may not be accurate as there may not be enough data in either mission
alone to fully constrain the seasonal cycle (Fig. S3) and account for interannual
variability in CO2 fluxes. Jin et al. (2021) showed that interannual variability
in the hemispheric carbon inventory is not negligible. Here, we assume the bias-
correction process accounts for interannual variability, and further note that
the interannual variability, calculated as the standard deviation of the GSNF
estimated from the average of the three inversion fluxes for each year over the
period 2009-2018, is less than 0.2 Pg C or just over 3%.

Despite any interannual variability, the expected increase in GSNF is not appar-
ent when comparing the flight-based estimates to previous estimates. Yang et
al. (2007) estimate a larger GSNF despite covering an earlier time period. The
large range given by Fung et al. (1983) means that the increase in GSNF may
be seen if the true GSNF in 1982 fell within the range of 4.6 - 5.2 Pg C. Looking
at surface records, Keeling and Graven (2021) saw an increase in the amplitudes
at Mauna Loa and Barrow between 2010 and 2017 equating to 10.9% at Mauna
Loa and 1.1% at Barrow using 5-year running means, suggesting possibly a shift
to less SCA growth at high latitudes.
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The HIPPO and ATom observations reflect the atmospheric mass of carbon
integrated over a large latitudinal and altitudinal extent, thus, our estimate is
less sensitive to specific representations of atmospheric transport than are other
estimates. For example, the GSNF estimated over our domain bias correcting
with the three inverse models individually only varied by just 0.2 Pg C or less
than 4% (Fig. 3b), even while previous research has reported the relative spread
of 10 simulations for the posterior annual mean northern extratropical land flux
to be 13 % (Gaubert et al., 2019). Additionally, inverse models seem to be
converging on the land flux as the GSNF estimated from the posterior inversion
land fluxes averaged 5.8 Pg C, slightly larger than the observationally based
estimate of 5.7 Pg C, and varied by just 0.2 Pg C. The small differences among
the inverse models at the hemispheric scale mean that even though it represented
the largest source of uncertainty, the bias correction process imparted minimal
uncertainty on our ultimate GSNF value.

To further reduce uncertainty, use of the transformed coordinate, M�e, intro-
duced by Jin et al. (2021) when integrating to find the curtain average may
largely eliminate the contribution of sparse sampling and synoptyic variability
in calculating curtain averages.

The low uncertainty on the hemispheric integral makes GSNF and its phasing
robust targets for evaluating TEMs and the land components of ESMs. Al-
though direct comparison with atmospheric CO2 mole fraction has been used
to evaluate ESMs previously, these comparisons rely on simulation of the three-
dimensional atmospheric CO2 mole fraction within the ESM (e.g., Keppel-Aleks
et al., 2013) or require estimating CO2 using an offline transport model or op-
erator (e.g., Liptak et al, 2017). In contrast, our GSNF constraint can be used
to evaluate ESMs at the flux level rather than relying on comparisons at the
concentration level. Compared to our metric, the CMIP6 ensemble has shown
some improvements relative to the CMIP5 ensemble, namely a reduction in the
spread between models (5.5 Pg C vs. 7.3 Pg C) and a more favorable simulation
of the timing of the end of the growing season (3 days early vs. 12 days late)
when considering the ensemble mean values (Fig. 5 b, c). However, there are
still large disagreements, and in some ways, CMIP5 models perform better in
relation to the observationally inferred flux than do CMIP6 models. For exam-
ple, CMIP5 models outperform CMIP6 models in simulating the start of the
growing season (2 days early vs. 16 days early) and the GSNF magnitude (5.8
± 2.4 Pg C vs 5.0 ± 1.6 Pg C compared to observational value of 5.7 ± 0.2 Pg
C) when considering the ensemble mean values (Fig. 5). The models tend to
underestimate the magnitude of GSNF on the whole with 4 of the 10 CMIP5
models and 10 of the 17 CMIP6 models underestimating the flux (falling below
the horizontal gray lines in Figure 5), 2 CMIP5 and 3 CMIP6 models falling
within the uncertainty range, and only 4 CMIP5 models and 4 CMIP6 models
overestimating the net flux. This is consistent with previous results from Keppel-
Aleks et al. (2013) suggesting the Community Land Model version 4 (CLM4), a
version of which is used as the land model for over one-third of the ESMs evalu-
ated, underestimated GSNF. Three of the models with the largest underestimate
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of GSNF (NorCPM1, NorESM1-M, and TaiESM1) utilize CLM4 as their land
model, however, we note that two of the best performing models (CESM2 and
CESM2-WACCM) both utilize the Community Land Model version 5 (CLM5)
as their land component, reflecting major improvement in CLM5 compared to
CLM4 in simulating CO2 seasonality (Lawrence et al., 2019). Correlations be-
tween GSNF and seasonal phasing were weak or nonexistent, meaning that the
improvements in CLM5 are more likely due to improvements in simulations of
the overall magnitude of photosynthesis and respiration than to improvements
in simulations of the timing of the growing season.

The chosen methods to define the growing season have some effect on model-
observation comparisons. We could have chosen to prescribe the growing season
dates for calculating model metrics from the observations rather than allowing
the dates to vary from model to model. The primary difference in the results
using this approach is a slight reduction in the magnitude of the GSNF for most
of the CMIP5 and CMIP6 models, a less strong correlation between GSNF and
GPP, RH, and NPP, and a slight increase in the inferred values of northern
GPP, RH, and NPP (Fig S2). Another choice that affects model-observation
comparisons is the use of the ensemble mean rather than the ensemble median
as representative of the ensemble. Use of the median may be preferable because
outliers exist in both the CMIP5 and CMIP6 ensembles, however, the mean
was used as it is a common approach used in model evaluation and evidence
exists that the multi-model mean provides the best comparison to observations
(Lambert and Boer, 2001). For the CMIP6 ensemble, the median is 6.0 Pg C
and for the CMIP5 ensemble, the median is 8.0 Pg C, indicating that CMIP6
models may better capture the GSNF than CMIP5 models do.

Although the aircraft CO2 data provide a constraint on GSNF, this benchmark
is also useful for constraining component fluxes that are difficult to infer obser-
vationally at large spatial scales. We examine the GPP, RH, and NPP of the
ESM ensembles in relation to GSNF. GPP, RH, and NPP are components of
the net flux, and we see moderate correlations between simulated GSNF and
simulated productivity (both GPP and NPP) and RH. It is noteworthy that cor-
relations between GSNF and the various annual fluxes are stronger than those
between GSNF and seasonal timing, which may indicate that the magnitudes
of photosynthesis and respiration are more dominant drivers of GSNF than sea-
sonal phasing (e.g., Valentini et al., 2000, Baldocchi et al., 2017). Cadule et
al. (2010) analyzed three CMIP models and concluded that models generally
underestimate the seasonal amplitude due to shortcomings in vegetation phe-
nology and heterotrophic respiration response to climate. Our results generally
support this role for discrepancies in component fluxes as driving a discrepancy
in the resulting GSNF.

These correlations between GSNF and its component fluxes provide an oppor-
tunity to constrain GPP, RH, and NPP using an emergent constraint approach.
Previous estimates of northern extratropical GPP are highly uncertain, with
large disagreements between estimates. For example, Mao et al., (2012) used

24



the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product to
estimate Northern Hemisphere GPP averaged over 2000-2009 as 64.75 ± 0.97
Pg C yr-1. In contrast, the FluxCom product, based on upscaled observations
from FLUXNET sites using various machine learning approaches (Jung et al.,
2019), estimated GPP north of 20°N averaged over 2009-2014 to be 48 Pg C
yr-1. Our GSNF-constrained value of 56 ± 15 Pg C for GPP is consistent with
both of these estimates given the larger error bars on the emergent constraint
approach and indicates that GPP falls between these two estimates. The large
value for GPP relative to Fluxcom is interesting in light of the uncertainty in
global GPP. The range in global mean GPP magnitudes for 2008–2010 from
FLUXCOM members is 106 - 130 Pg C yr-1 (Jung et al., 2020). This range cov-
ers the observation-based estimate of global mean GPP of 123 ± 8 Pg C yr-1)
found using eddy covariance flux data and various diagnostic models (Beer et
al., 2010) but is smaller than the GPP magnitudes of 150–175 Pg C yr-1 derived
from an isotope-based study (Welp et al., 2011). Our results may indicate a
higher global mean GPP than the flux tower upscaling yields; however, we are
constraining extratropical GPP which may be affected by different factors than
tropical GPP. These results therefore need to be interpreted with caution.

5 Conclusions

Earth system models disagree in their simulation of large-scale carbon fluxes,
making it crucial to evaluate models to contextualize their climate predictions.
We have presented an approach to constrain the seasonal land flux using aircraft
data from the HIPPO and ATom flight campaigns. The northern extratropical
GSNF of 5.7 ± 0.2 Pg C derived from these observations can be used to eval-
uate prognostic model fluxes for net flux, directly, and for component fluxes
via an emergent constraint approach. We note that this constraint is tied to
atmospheric transport models because the flux is bias corrected by comparing
posterior mole fractions from inverse models with their fluxes. We found, how-
ever, that at the hemispheric scale, the constraint is robust to the choice of
atmospheric transport model since common transport errors tend to cancel out
at this scale.

When compared to CMIP5 and CMIP6 models, the inferred GSNF suggests a
larger net flux and shorter growing season than simulated in both model en-
sembles. This gives modelers an additional observation to target during model
development and could be added to a benchmarking system such as the Interna-
tional Land Model Benchmarking (ILAMB) System (Collier et al., 2018). While
there is decreased model spread between CMIP6 models, this benchmark also
highlights some of the ways in which CMIP6 models have not improved from
CMIP5, such as in simulating the start of the growing season.

Correlations within the CMIP5 and CMIP6 ensembles allowed us to apply an
emergent constraint approach to estimate northern hemisphere GPP, RH, and
NPP. We found that the GSNF-constrained value for GPP is at the higher end
of a commonly used upscaling product.
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Overall, the HIPPO and ATom inferred GSNF provides a robust metric as it
allows for the evaluation of large-scale fluxes in flux space and sheds light on
component fluxes, filling a need highlighted by Collier et al., (2018) for land
model benchmarking. More regular global scale airborne tomography could
resolve GSNF at higher time resolution and leverage carbon cycle interannual
variability for improved tests of ESM process representations.
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