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Abstract

A key component of data assimilation methods is the specification of univariate spatial correlations, which appear in the

background-error covariance. For realistic problems in meteorology and oceanography, correlation length scales are nonstation-

ary (variable in space) and anisotropic (variable in each direction). Variational approaches typically use an operator to enforce

correlation length scales, and thus the operator must be designed to capture desired levels of nonstationarity and anisotropy.

For systems with complex boundaries, such as the ocean, it is natural to use a filtering approach based on the application of

an elliptic, Laplacian-like operator. Here we show how an elliptic operator can be formulated to capture a general Matérn-type

correlation structure. We show how nonstationarity and anisotropy can be encoded into the operator via a simple change of

variables based on user-defined normalization length scales. The change of variables defines a mapping between the compu-

tational domain and a space where the analytical Matérn correlation function applies. In addition to the mapping, two other

hyperparameters separately control the correlation length scale (i.e. range) and shape. As a practical use-case, we apply the

operator to a global ocean model. We show that when the normalizing length scales correspond to the local grid scale, the

range parameter has an intuitive interpretation as the number of neighboring grid cells at which correlation drops to 0.14.

Finally, the correlation model is shown to be computationally efficient in two regards. First, the necessary linear solve can

be performed with a high tolerance ( 10ˆ{-3}) while still achieving the correct statistics, requiring few iterations to converge.

Secondly, the operator’s exponent, which controls the correlation shape, is linearly related to the diagonal elements of its matrix

representation. As a result, using an exponent greater than one can improve convergence properties. Thus, the framework

provides flexibility in controlling correlation shape.
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A key component of data assimilation methods is the specifi-

cation of univariate spatial correlations, which appear in the

background-error covariance. For realistic problems in meteorol-

ogy and oceanography, correlation length scales are nonstationary

(variable in space) and anisotropic (variable in each direction).

Variational approaches typically use an operator to enforce cor-

relation length scales, and thus the operator must be designed

to capture desired levels of nonstationarity and anisotropy. For

systems with complex boundaries, such as the ocean, it is nat-

ural to use a filtering approach based on the application of an

elliptic, Laplacian-like operator. Here we show how an elliptic

operator can be formulated to capture a general Matérn-type cor-

relation structure. We show how nonstationarity and anisotropy

can be encoded into the operator via a simple change of variables

based on user-defined normalization length scales. The change of

variables defines a mapping between the computational domain

and a space where the analytical Matérn correlation function

applies. In addition to the mapping, two other hyperparameters

separately control the correlation length scale (i.e. range) and

shape. As a practical use-case, we apply the operator to a global

ocean model. We show that when the normalizing length scales

correspond to the local grid scale, the range parameter has an

intuitive interpretation as the number of neighboring grid cells at

which correlation drops to 0.14. Finally, the correlation model is

shown to be computationally efficient in two regards. First, the

necessary linear solve can be performed with a high tolerance
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(∼ 10−3) while still achieving the correct statistics, requiring

few iterations to converge. Secondly, the operator’s exponent,

which controls the correlation shape, is linearly related to the

diagonal elements of its matrix representation. As a result, using

an exponent greater than one can improve convergence prop-

erties. Thus, the framework provides flexibility in controlling

correlation shape.

K E Y W O R D S

correlation operators, covariance modelling, background error, ocean

data assimilation, variational assimilation, stochastic PDEs

1 | INTRODUCTION1

High dimensional geophysical inverse problems, such as numerical weather prediction and oceanographic state estimation, are2

typically ill-posed due to the sparsity of data relative to the size of the control vector. A classical method for handling this3

ill-posedness is to prescribe some type of regularization in order to “spread” information to the uninformed regions and variables4

in the control vector (e.g., Wunsch, 2006). In the Bayesian interpretation of the inverse problem, this regularization is defined so5

that it represents the prior uncertainty or background-state error (e.g., Bui-Thanh et al., 2013). Ideally, this uncertainty captures6

the true error in the background state, but for all practical applications the background error must be approximated. Moreover, to7

make the problem computationally tractable, it is often assumed that the background error is governed by Gaussian statistics,8

such that the uncertainty is fully described by a covariance matrix.9

For realistic data assimilation (DA) problems in meteorology and oceanography, a well formed background error will contain10

covariance relationships between different variables (e.g., between temperature and velocity components), it will have spatially11

dependent length scales of covariation (i.e. nonstationarity or inhomogeneity), and it will respect the system’s anisotropy, such12

that length scales of covariance differ appropriately in each direction (e.g., Bannister, 2008a). Within variational DA systems,13

the background error covariance is usually represented as an operator so that it can be applied efficiently during an iterative14

optimization algorithm. Thus, for an operator-based covariance model to be useful in this context, it must be able to respect15

multivariate, nonstationary, and anisotropic features that are necessary for the given problem setting.16

Typically, the background state error covariance is decomposed into two operators following Derber and Bouttier (1999). The17

first, “balance” operator captures multivariate (i.e. cross-variable) covariance information while the second captures “unbalanced”18

(i.e. univariate) covariance information. Our focus is on the latter operator, but we note the review by Bannister (2008b) which19

outlines balance operators used in atmospheric DA, and e.g., Weaver et al. (2005); Moore et al. (2011) for oceanographic20

examples.21

Univariate covariance operators are further decomposed into two stages, where spatial correlations are specified first, and22

then scaled to the appropriate amplitude. In atmospheric DA, it is common to transform the control vector into a wavelet or23

spherical harmonic basis in order to specify the background error (e.g., Bannister, 2008b). However, for systems with complex24

boundaries like the ocean, it is far more straightforward to formulate the correlation operator in terms of the original, physical25

domain. Considering methods that operate in the physical or grid space, there are generally two classes of correlation models26

that are commonly used. The first class is encapsulated by explicit functional forms, including, for example, the functions27

developed by Gaspari and Cohn (1999); Gneiting (1999); Gaspari et al. (2006), which have the benefit of providing compact28

support. The second class of correlation models can generally be described as a filtering approach. Purser et al. (2003b,a) show29



TIMOTHY A. SMITH 3

correlation functions based on recursive filters, and Dobricic and Pinardi (2008) extend this to be used with complex boundaries.30

More recently, Purser et al. (2022) show a “beta filter” approach which enables compact support and a highly generalizable31

correlation shape via an efficient multigrid approach. Alternatively, within this class of models are those based on the solution to32

a differential equation.33

Correlation models that are based on the solution to differential equations have several advantages. Most importantly, these34

operators handle complex boundaries naturally and the infrastructure required to obtain their solution typically exist within35

the underlying numerical model. Within oceanographic state estimation, a widely used framework is based on the solution to36

the diffusion equation (e.g., Nguyen et al., 2021; Forget et al., 2015; Blockley et al., 2014; Moore et al., 2011; Daget et al.,37

2009; Muccino et al., 2008; Di Lorenzo et al., 2007; Weaver et al., 2003). The diffusion-based framework relies on either38

an explicit, pseudo-time stepping method (Weaver and Courtier, 2001) or an implicit solution (Mirouze and Weaver, 2010;39

Carrier and Ngodock, 2010; Weaver and Mirouze, 2013), where the correlation structure underlying the solution corresponds to40

either a Gaussian or more general auto-regressive function, respectively. Alternatively, Lindgren et al. (2011) (hereafter L11)41

show an explicit link between the numerical solution to a stochastic partial differential equation (SPDE) and a Matérn-type42

covariance model. As of yet, however, it has remained unclear how this model could be used to specify univariate correlations43

with appropriate nonstationarity and anisotropy for an operational variational DA system.44

Here, we extend the work by L11 to show how the framework can be used within variational DA. Our emphasis is on45

oceanographic applications, although the methodology is more general. We show how the mapping method suggested by L1146

can be used to formulate a correlation operator that respects anisotropy and nonstationarity in a way that is relevant to many47

ocean general circulation models. In essence, the mapping method is simply a change of variables between the computational48

domain and a space where correlations can be described by the analytical Matérn correlation function for isotropic and stationary49

fields. Here we make practical suggestions on how to define the mapping via normalization length scales. With these normalizing50

length scales are defined, we show how two hyperparameters separately control the “range” and shape of the correlation model.51

As an intuitive example, when the normalizing length scales are defined relative to the model grid, a “range parameter” can52

be interpreted as the “number of neighboring grid cells” at which correlation drops to an expected value. We show that this53

interpretation holds no matter how many times the operator is applied, such that the overall shape can change while the correlation54

length scale remains fixed. It is therefore straightforward to use this approach to achieve desirable anisotropic and nonstationary55

statistics by simply tuning these two parameters.56

The paper is laid out as follows. In Section 2 we give some context for how univariate correlation models are used in57

variational DA. We provide a review of diffusion based correlation operators, and then review the Matérn type covariance58

developments in L11 which we build on. In Section 3 we show how the Matérn model can be mapped from its isotropic,59

stationary form into a more complex computational domain. We then provide suggestions for parameterizing the model so that it60

can intuitively capture anisotropy and nonstationarity. In Section 4 we show numerical results of this correlation model applied61

to the global ocean, using the “Lat-Lon-Cap” grid introduced by Forget et al. (2015). Finally, in Section 5 we provide some62

discussion on the advantages of this model, and a general comparison to the widely used diffusion based models.63

2 | MATHEMATICAL CONTEXT AND BACKGROUND64

In order to provide some mathematical context for our correlation model developments, we first outline the generic inverse65

problem that is central to a variety of applications such as numerical weather prediction and state estimation. Our notation closely66

follows Ide et al. (1997), and we note that matrix notation is used to describe the problem, but these matrices are never formed67

explicitly. Rather, all matrices presented are described by operators that can be applied scalably in high dimensional inverse68

problems. We then review correlation models that are based on the application of a diffusion operator (Weaver and Courtier,69
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2001; Mirouze and Weaver, 2010), which are commonly used for large scale geophysical inverse problems (e.g., Forget et al.,70

2015; Moore et al., 2011). We then discuss the developments from L11, outlining the connection between the solution to a71

SPDE and a Gaussian random field with Matérn type covariance. We finish by showing a comparison of auto-regressive and the72

more general Matérn type correlation functions with a classical Gaussian. These comparisons motivate our development of an73

anistropic, nonstationary correlation model, which is presented in Section 3.74

2.1 | Data assimilation setting75

We consider the general problem of finding the optimal control vector, x, which minimizes the regularized model-data misfit cost76

function77

J(x) = 1

2

H (x) − yo2R−1 + 12 x − xb2
B−1
.78

Here ‖v‖A =
√
vT Av is a weighted Euclidean norm. The solution to this inverse problem, xa , arises from a tradeoff between79

fitting the observational data, yo , via the observation operator, H ( ·) , and minimizing deviations from the background-state xb .80

This tradeoff is governed by the two error covariances, R and B, which dictate how much deviation is acceptable in either term.81

On the one hand, the observational error covariance matrix R represents our uncertainty in the observational data, together with82

our confidence in the model’s ability to represent the observed values. On the other hand, the background-state covariance matrix83

B represents our uncertainty in the prior estimate or background state, xb .84

To be explicit, we focus on how our correlation model fits into the background-state error covariance, B. However, we85

note that the formulation could be used for specifying correlations between observations in a similar fashion to Guillet et al.86

(2019), but we leave this for future investigation. In the general case, the control vector x could be multivariate, including initial87

conditions of the system state, uncertain boundary conditions, or uncertain parameter fields. Here we employ the decomposition88

proposed by Derber and Bouttier (1999) in order to separate the multivariate (i.e. cross-variable) covariance relationships from89

the univariate (i.e. assumed independent) covariance relationships. Specifically, the background-state covariance is decomposed90

as follows91

B := KbBuKTb ,92

where Kb is a balance operator that deals with the cross-variable correlations. The matrix Bu describes the covariance for the93

unbalanced variables and has a block-diagonal structure, such that each covariance is described independently. The unbalanced94

covariance is further factored as95

Bu := ΣCΣ96

where Σ is a diagonal scaling matrix, containing the desired pointwise standard deviation values and C is a block diagonal97

correlation matrix, describing each variable’s independent correlation structure. To be concrete, this can be viewed as98

Bu =

©«

ΣαCαΣα 0 · · · 0

0 ΣβCβΣβ · · · 0

0 0
. . . 0

0 0 · · · ΣγCγΣγ

ª®®®®®®®¬
99
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where α , β , γ are placeholders for unique variables, and each Σα ,Cα pair describes the covariance for its particular variable. In100

this formulation, Cα describes the spatial correlation structure for the variable α , and is scaled to a proper covariance given the101

diagonal matrix Σα .102

The goal of this paper is to formulate a generic operator for C that could be used in a variational DA system to specify103

correlations for any variable, e.g., Cα , Cβ , etc. As with diffusion based correlation models, we specify C through its square104

root C1/2, such that C = C1/2CT /2. To provide some additional context for this development, we first review past work that has105

achieved this with a generalized diffusion-based operator.106

2.2 | Diffusion based correlation models107

A common method for specifying the correlation structure, C, in variational DA systems, especially in oceanographic applications,108

is through the solution of a generalized diffusion equation,109

∂θ

∂t
= + · κ+θ . (1)110

Here κ is a diffusion tensor that controls anisotropy and nonstationarity, t is a “pseudo-time” coordinate, and the solution to this111

equation has a Gaussian, or “Gaussian-like”, covariance.112

Building on work from Derber and Rosati (1989); Egbert et al. (1994); Bennett et al. (1996), Weaver and Courtier (2001)113

showed that an explicit, forward Euler solution to Equation (1) provides a scalable approach to defining correlations in complex114

domains. That is, the solution θ (T ) is given by forward pseudo-time stepping115

θ (T ) = (I + + · κ+)p θ (t0) , (2)116

which requires p applications of the operator117

AED := (I + + · κ+) ,118

where p is chosen in order to achieve numerical stability (see Weaver and Courtier, 2001, for details regarding the discretized119

form of this operator, and extensions of the model briefly shown here). The solution θ (T ) is shown to have an approximately120

Gaussian covariance structure. A correlation model is thus defined by estimating the pointwise variance of ApED, σ̂2 (s) , in order121

to define the normalization matrix122

Λ := diag{1/σ̂n }Nθn=1 ,123

where we use n to refer to each grid cell, such that the correlation matrix is defined through its square root as124

C1/2ED := ΛApED . (3)125

The explicit diffusion-based correlation model as briefly summarized here directly approximates a Gaussian structure.126

However, a limitation of this approach is that in some cases, many iterations are required to keep the scheme stable (i.e. a127

large value of p is required in Equation (2)). As such, Mirouze and Weaver (2010) and Carrier and Ngodock (2010) developed128
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correlation models based on the implicit solution of Equation (1):129

(I − + · κ+)M θ (T ) = θ (t0) , (4)130

which is unconditionally stable. In this case, a square-root correlation operator is defined through the “implicit diffusion operator”131

132

AID := (I − + · κ+) (5)133

as134

C1/2ID := ΛA−MID , (6)135

with Λ defined based on the operations that precede it.136

Mirouze and Weaver (2010) provide the theoretical underpinnings for the implicit diffusion approach, and show details137

regarding its implementation in general curvilinear coordinates. Additionally, the authors show that this correlation model138

corresponds with an M th order auto-regressive (AR) function, which is a subclass of Matérn type correlation models (see Weaver139

and Mirouze, 2013, for more description of the parameters controlling this model). Thus, the correlation model has a more140

general shape, which in the limit M →∞, approaches a classical Gaussian structure (see Section 2.4).141

In this work, we formulate a correlation operator in a similar fashion by directly parameterizing the elliptic PDE that142

corresponds to the more generic Matérn type correlation (or covariance) structure. In the following subsections, we provide some143

background on this general correlation structure to give our developments some context and motivation.144

2.3 | Review of the Matérn correlation structure145

The Matérn covariance function between two points, ŝ1, ŝ2 ∈ Ω̂ = ÒNd can be expressed as:146

c (ŝ1, ŝ2) =
σ̂2

2ε−1G(ε)

(√
δ̂ | |ŝ2 − ŝ1 | |

)ε
Bε

(√
δ̂ | |ŝ2 − ŝ1 | |

)
. (7)147

Here G is the Gamma function, Bε is the modified Bessel function of the second kind and order ε, δ̂ > 0 is a scaling parameter,148

and ε > 0 controls the mean-square differentiability of the underlying statistical process described by the Matérn covariance. We149

note that in the limit of ε →∞, the Matérn-type covariance becomes a classical Gaussian. Throughout, we refer to a “Matérn150

field” as any random field that has covariance described by the Matérn covariance function, Equation (7). Additionally, we note151

that this analytical function only pertains to fields where the assumptions of stationarity and isotropy hold, and we use notation152

with “hats” ( ·̂) when this is the case. The marginal variance of such a Matérn field has the analytical form153

σ̂ =
G(ε)

G(ε + Nd /2) δ̂ε (4π)Nd /2
, (8)154

where Nd is the dimensionality of the field being described. Thus, the Matérn covariance can be described via a correlation155

function, r (ŝ1, ŝ2) , that is scaled by the marginal variance:156

c (ŝ1, ŝ2) = σ̂ r (ŝ1, ŝ2) .157
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The key relationship discussed in L11 is that any discrete solution to the elliptic SPDE,158 (
δ̂ − +̂ · +̂

)M
θ̂ (ŝ) = Ŵ(ŝ) , (9)159

is a Matérn field, for any triangulation or rectangular lattice of ÒNd . Here Ŵ is a white noise process defined on the space Ω̂160

and M ≥ 1 is the total number of times that the inverse of the operator161

Â := (δ̂ − +̂ · +̂)162

is applied to obtain the solution. This number is related to the mean differentiability and dimensionality of the field via the163

relation164

M = ε/2 + Nd /4 . (10)165

For our purposes, we consider M as a parameter which can be tuned to obtain the desired correlation shape (see Section 2.4). In166

order to simplify the solution process, we consider positive integer values of M , although the theory underlying more general167

operators for which M = q/2 with q ∈ Ú+ is covered in L11.168

Throughout this paper we use the empirical relation discussed by L11 to specify δ̂ via169

ρ̂ =

√
8ε

δ̂
. (11)170

The so-called “range parameter”, ρ̂, defines the distance between two points at which correlation drops to 0.14. We note that the171

range parameter used here is larger by a factor of 2 than what is sometimes used (e.g., Rasmussen and Williams, 2006), but we172

prefer this definition because of its intuitive interpretation. With M and ρ̂ defined, we provide an explicit form of the Matérn173

correlation function which will be used throughout:174

r (d ; ρ̂,M ) = r (d ; ρ̂, ε (M )) = 1

2ε−1G(ε)

(√
8ε
d

ρ̂

)ε
Bε

(√
8ε
d

ρ̂

)
, (12)175

where d is the distance between two points and ε = ε (M ) is defined via Equation (10).176

In Section 3, we suggest to define a correlation operator through the elliptic operator in Equation (9). For an isotropic and177

stationary case, the operator would be defined as178

C1/2iso,stat = Λ
(
δ̂ − +̂ · +̂

)−M
, (13)179

with Λ appropriately defined, but we extend this to a more general case in Section 3.180

2.4 | Comparing the Matérn and auto-regressive functions181

To provide some motivation behind our developments of the Matérn correlation function, we compare its structure to auto-182

regressive (AR) (corresponding to the operator A−MID ; (Mirouze and Weaver, 2010)) and Gaussian functions. Figure 1(a) shows a183

comparison of these 1D correlation structures as a function of distance, d , where each use a representative length scale of 4. The184

Matérn function and Gaussian consistently reach an approximate correlation of 0.14 when distance is equal to ρ̂. The consistency185

here makes using the Matérn correlation structure intuitive in practice: no matter what value of M is used (or equivalently no186
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F I G U R E 1 (a) Correlation as a function of distance given by Matérn (green; Equation (13)), auto-regressive (AR; orange),
and Gaussian (black; rg (d ) = exp(−2(d/4)2)) functions. For each, we choose a length scale of ρ̂ = 4, noting for comparison
purposes that this corresponds to L = 2 using the notation in Mirouze and Weaver (2010) for the auto-regressive function.
Finally, we note that we use Nd = 3 to compute ε (M ) (see Equation (10)) since this corresponds to our numerical experiments
in Section 4. (b) Absolute error considering the difference between the Matérn and AR functions with respect to a Gaussian with
the same length scale.

matter what shape is desired), we can expect this approximate relationship to hold.187

Additionally, Figure 1(b) shows the error in each Matérn and AR functions relative to a Gaussian. We note that error for the188

Matérn function is comparable to the AR function, although M is halved. This has practical implications, since in both cases M189

corresponds to the number of inverse elliptic operator applications required for achieving a correlation structure via the implicit190

diffusion approach via A−MID (AR) or the approach proposed here (Matérn). Thus, if the goal is to approximate a Gaussian, then191

using the direct Matérn shape results in half the required inverse elliptic solves. However, we also stress that the desired shape of192

the correlation function will be application dependent, and so we present a comparison from which practitioners can take their193

pick.194

3 | A NONSTATIONARY AND ANISOTROPIC MATÉRN CORRELATION OP-195

ERATOR196

Here we propose to use the SPDE operator described by L11 as a means to describe an anisotropic, nonstationary correlation197

model in a similar manner to the diffusion-based methods described in Section 2.2. To do so, we employ the “mapping method”198

described by L11 which we show for the general M th order SPDE in Section 3.1. In summary, the basic idea we present is to use199

the mapping method to nondimensionalize or re-scale the elliptic operator. We provide a simple scaling argument for why this is200

a good idea in Section 3.2, and discuss practical choices for the nondimensionalization based on the grid scale in Section 3.3.201

3.1 | Mapping method or change of variables202

In L11 it is suggested that solving the SPDE in a transformed coordinate system allows one to readily incorporate anisotropy and203

nonstationarity into a Matérn covariance model. In this mapping method, we consider solutions to the isotropic, stationary SPDE204

(9) to be defined in a transformed, or “deformed” (Sampson and Guttorp, 1992), space Ω̂. Then, assume that we have a mapping205
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ϕ that maps between this transformed space and our computational domain, Ω:206

ϕ : Ω̂ 3 ŝ→ s ∈ Ω .207

With this mapping, we can employ a change of variables (Smith, 1934) to rewrite the SPDE in the computational domain as:208

(
δ̂

det (Φ (s)) − + ·
Φ (s)Φ (s)T
det (Φ (s)) +

)M
θ (s) = det (Φ (s))−1/2W(s) .209

Here we have defined the Jacobian as210

Φ (s0) :=
∂ϕ

∂ ŝ

���
ϕ−1 (s0 )

,211

and for now we assume that ϕ−1 (s0) is well defined. For our purposes, this turns out to be the case, but this becomes clear when212

Φ is defined in Section 3.2. With the following definitions:213

K (s) := Φ (s)Φ (s)T
det (Φ (s)) δ (s) := δ̂

det (Φ (s)) A := (δ (s) − + · K (s)+) (14)214

the SPDE in Equation (9) can be written in the computational domain’s coordinate system as215

AM θ (s) = det (Φ (s))−1/2W(s) , (15)216

where zero flux, Neumann boundary conditions are applied at the boundaries (see Appendix A for details).217

Here, we propose to use this generic form to define a square root of the correlation matrix in a similar fashion to Weaver and218

Courtier (2001); Mirouze and Weaver (2010); Carrier and Ngodock (2010) as follows,219

C1/2 := ΛA−M det (Φ (s))−1/2 , (16)220

where Λ is once again a variance-preserving normalization matrix defined by the operations that precede it. In this model,221

anisotropy and nonstationarity are controlled by Φ (s) , and in the following sections we discuss how this can be assigned for222

practical applications in geophysical inverse problems. We note that in this discussion we loosely mix the use of finite dimensional223

matrices and infinite dimensional operators in order to ease the presentation, but we provide a more careful derivation of their224

discretized forms relevant to our numerical experiments in Appendix A.225

3.2 | Scaling the Laplacian term for anisotropy226

Here we focus on parameterizing Φ (s) in order to achieve an anisotropic correlation model that is relevant for variational DA.227

We illustrate our choice with a scaling argument focusing on how K (s) influences correlation length scales.228

Consider a 3D field θ (s) ∼ Θ that exhibits spatial variability at the length scales, Lx , Ly , and Lz in the direction of longitude,229

latitude, and height, respectively, where Lx , Ly >> Lz , such that the field exhibits highly anisotropic fluctuations. This is a230

common situation in large scale geophysical fluid dynamics, where fields (e.g., temperature, velocity) exhibit length scales231

of variability that are much greater in either horizontal dimension compared to the vertical (e.g., Vallis, 2006). Without any232
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rescaling, i.e. without K , the Laplacian term in A is unbalanced233

+2θ (s) ∼ Θ

L2x
+ Θ

L2y
+ Θ

L2z

' Θ

L2z
.

(17)234

As a result, the correlation model will have unrealistically large (small) correlations in the vertical (horizontal). Our goal is235

therefore to define the elements of K such that each term is of the same order of magnitude.236

To achieve this balance between Laplacian terms, we suggest a straightforward, perhaps obvious, specification of Φ:237

Φ =
©«
Lx 0 0

0 Ly 0

0 0 Lz

ª®®®¬ ,238

where we simply ignore the off-diagonal elements of Φ. The determinant in this case is det
(
Φ
)
= LxLyLz and according to the239

definitions in Equation (14):240

K =
©«
1/Lz 0 0

0 1/Lz 0

0 0 Lz /(LxLy )

ª®®®¬ ,241

so that242

+ · K+θ (s) ∼ 3

LxLyLz
Θ .243

The key is that K scales each term in the Laplacian so that they are approximately the same order of magnitude, and the operator244

is balanced in all directions. In the case of nonstationarity, we simply require this balance to apply locally and allow the length245

scales Lx , Ly , and Lz to vary in space.246

3.3 | Harnessing the grid scale for nonstationarity247

At this point, we must prescribe values for the normalizing length scales Lx (s) , Ly (s) , and Lz (s) in order to fill Φ (s) .248

Considering the scaling analysis of the Laplacian in Section 3.2, a simple yet reliable choice for these is to use the underlying249

grid-scale of the numerical model (e.g., the ocean or atmosphere general circulation model).250

We consider using the length scale of the grid elements to be reasonable because a baseline level anisotropy and nonstation-251

arity is usually encoded into the grid. A prime example of this nonstationarity is represented by the vertical axis of ocean model252

grids, which are designed to capture a variety of behavior in a computationally efficient manner (Griffies, 2004). Toward the253

surface, the ocean is tightly coupled to the atmosphere, sea ice, and rivers, and ocean models use a finely resolved vertical grid254

to capture the ocean component of these coupled processes. In the interior ocean, well below the mixed layer, the ocean acts255

more like stacked layers, and variation in properties like temperature and salinity occurs over much larger distances than at the256

surface (Talley, 2011). Vertical grids are correspondingly much coarser at depth than near the surface. As a concrete example,257

the height-based vertical grid we use in Section 4 varies from ∼ 5 − 10 m near the surface, and spacing increases to O(100) m258

below 1,000 m (Figure 3(f)). By using the grid elements directly, our correlation model can capture the nonstationarity motivated259
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by the physical processes which influence the model grid’s development.260

Another justification for using the grid elements to specify Φ (s) is that this provides a practical and intuitive nondimen-261

sionalization. With this definition, the correlation model exhibits isotropic and stationary behavior within the nondimensional262

space defined by the computational grid. As such, the idealized correlation function (Equation (13)) applies relative to the grid263

spacing, and one can view ρ̂ as an intuitive, nondimensional parameter controlling the “number of neighboring grid cells” at264

which correlation decays to 0.14. Our numerical experiments in Section 4 show that this is a good approximation in the case of a265

realistic global ocean model grid.266

4 | APPLICATION TO THE GLOBAL OCEAN267

Here we show results from a numerical implementation of the correlation model described in Section 3. For this application268

we use the “Lat-Lon-Cap” (LLC) grid used by the ECCOv4 state estimate (see their Section 2 of Forget et al., 2015, for a269

complete description of the grid). The overall goal with these numerical experiments is to show that even in this relatively270

complicated global grid, the correlation model generally follows the expected Matérn correlation structure (Section 4.1), while271

maintaining anisotropy and nonstationarity that is relevant to the physical system (Section 4.2). Additionally, we show how272

Neumann boundary conditions to the differential operator affect the solution in Section 4.3. We finish by showing that the model273

can be applied efficiently with a relatively imprecise solver tolerance (Section 4.4) and that it is relatively cheap even when the274

number of applications, M , is greater than one (Section 4.5).275

For all experiments, we compute statistical quantities from 1,000 samples (see Appendix A and specifically Equations (21)276

and (22) for sampling details). We use a block-Successive Over Relaxation (SOR) method (Appendix B) to find numerical277

solutions to the elliptic SPDE, using a tolerance of 10−3 for all results except where specified in Section 4.4. Additionally, we278

use the following normalizing length scales Lx (i , j ) = ∆xg (i , j ) , Ly (i , j ) = ∆yg (i , j ) , and Lz (k ) = ∆rf (k ) (Figure 7) where279

we have switched from the spatial coordinate s ∈ Ω to the computational grid indices i , j , k . All experiments are performed with280

a 3D field, which could represent an ocean state property like temperature or salinity.281

4.1 | Correspondence with theoretical correlation structure282

We first show that the sample correlation structure computed on the LLC grid corresponds with the analytical Matérn-type283

correlation function (Equation (13)). For this comparison we compute the correlation field in the transformed space Ω̂, where it284

can be considered isotropic and stationary. Because we use the grid spacing to define this mapping, the correlation distances are285

computed simply by counting the number of neighboring grid cells in each direction from the point in consideration.286

Figure 2 shows the comparison between the theoretically expected correlation structure (black) and the numerically computed287

sample correlation structure for ρ̂ = {5, 10, 15, 20} (color) using M = {1, 2, 4, 8} (panels). Recall that as M increases, the288

correlation structure approaches a Gaussian shape, such that there is little visible difference between e.g., M = 4 and M = 8.289

The correlation is computed in the direction of longitude, indicated by δi . The shading indicates the spread between the first290

and ninth deciles of the sample correlation, computed at all depth levels and latitudes from 70◦S to 37◦N at 127.5◦W - a subset291

chosen simply to ease the calculation. Similar plots showing correlation in the meridional and vertical directions are shown in the292

Supplemental Material.293

Generally speaking, the colored curves match the analytical expression well, and each colored curve intersects the horizontal294

gray line, indicating a correlation value of 0.14, where ρ̂ = δi . We note that the largest spread in the computed correlation295

structure occurs when M = 1, especially for larger values of ρ̂. Considering an analogy to Laplacian versus biharmonic damping296

in ocean models (e.g., Holland, 1978; Griffies and Hallberg, 2000), we suggest that there is more spread when M = 1 because297
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F I G U R E 2 Correlation structure computed from the theoretical Matérn correlation function (black; Equation (13)) and from
1,000 samples using a subset of the “Lat-Lon-Cap” grid within the Pacific Ocean (shaded coloring). The sample correlation is
computed in the zonal direction, δi , indicating the number of neighboring grid cells from 127.5◦W. The shading indicates the
spread between the first and ninth deciles, based on sample correlations at all depth levels and latitudes from 70◦S and 37◦N.
Similar plots showing correlation as a function of meridional and vertical distance are provided in the Supplemental Material.
Recall that as M →∞, the Matérn correlation function approaches a Gaussian (cf. Figure 1).

the operator A−1 contains only a Laplacian term. Compared to the cases when M > 1, which contain biharmonic and higher298

order Laplacian terms in A−M , the Laplacian case is less scale-selective. That is, the operator does not cutoff higher frequency299

variability sharply, allowing noise to pollute the sample statistics (see Griffies and Hallberg, 2000, Section 2 for a quantitative300

description of this cutoff in frequency space). We note, however, that the spread still allows for a reasonable interpretation that301

the operator A−1 captures the behavior of the analytical Matérn correlation function.302

4.2 | Sample correlation maps303

Maps of the sample correlation field on the LLC grid are shown in Figure 3, at (0.2◦N, 127.5◦W, 722 m depth) and (10.5◦N,304

87.5◦W, 5 m depth) in panels (a & d) and (b & e), respectively. These two locations are chosen to highlight local anisotropy in305

the latitude-longitude plane and nonstationarity in the vertical axis. For these calculations we use a perhaps unrealistically large306

correlation length scale defined by ρ̂ = 20 for illustrative purposes.307

Comparing panels (a) and (b) of Figure 3, we see that near the equator, the correlation structure is stretched zonally, while308

poleward of ∼ 10 − 15◦ the structure is closer to being isotropic. Elongated zonal correlation length scales at the equator are309

consistent with observations (Meyers et al., 1991), so we consider this anisotropic behavior to be desirable. In our case, we310

achieve this anisotropy via local refinements in the meridional grid scale near the equator, which are specifically designed to311

capture tropical zonal currents (Forget et al., 2015). Specifically, Figure 3(c) shows how the meridional grid spacing (∆y ) refines312

near the equator, while the longitudinal grid spacing (∆x ) slightly increases near the equator. The result of this grid refinement313

is that near the equator, a range of ρ̂ grid cells covers a shorter distance meridionally than it does at e.g., 15◦N. Overall, this314

example highlights how details in the model grid can be harnessed to achieve physically relevant correlation structures. However,315

we note that if this correlation shape is desired but would not immediately occur due to a different model grid definition, then the316

normalizing length scales could easily be modified with a weighting function to achieve the desired structure.317

Panels (d) and (e) of Figure 3 illustrate nonstationary correlation structures obtained along the vertical axis. As discussed in318

Section 3.3, it would be reasonable to expect shorter correlation lengths near the ocean surface due to localized processes there,319

and relatively longer correlation length scales in the interior ocean. This general behavior is shown in panel (e), where correlation320
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(a) (b) (c)

(d) (e) (f)

F I G U R E 3 Two sample correlation fields and a depiction of the computational grid. (a & b) Sample correlation field in the
latitude-longitude plane at (0.2◦N, 127.5◦W, 722 m depth) and (10.5◦N, 87.5◦W, 5 m depth), respectively. (c & d) The same
sample correlation fields as above, shown in the depth-longitude plane. (e & f) The local horizontal and vertical grid spacing,
respectively. The correlation fields are computed with ρ̂ = 20 and M = 2.

> 0.1 is confined to the upper hundred meters of the ocean, while in panel (d), correlation > 0.1 spans the full depth of the ocean.321

Once again, the correlation structures shown here correspond directly to the vertical grid spacing, which is shown in Figure 3(f).322

4.3 | Pointwise sample standard deviation323

The pointwise, sample standard deviation is shown in Figure 4, where it is represented as a ratio with respect to the “expected”324

value from Equation (8) for an isotropic, stationary Matérn field. Throughout most of the domain, the sample standard deviation is325

approximately equal to the theoretical value. Near continental boundaries, however, the standard deviation is inflated, especially326

for large values of ρ̂ and in regions of tightly confined topographic boundaries such as in the Caribbean Sea. This deviation near327

the boundaries is expected for correlation models based on the solution of differential equations (e.g., Weaver and Courtier, 2001;328

Lindgren et al., 2011), as a result of the zero flux, Neumann boundary conditions used to find the solution. Thus, the theoretical329

value cannot be used directly and it is necessary to calculate or estimate the true variance of the operator in order to formulate330

the normalization matrix Λ. Throughout this work, we have used the estimated standard deviation shown in Figure 4 to fill Λ,331

based on 1,000 random samples. Given that the numerically computed correlation structure compares well to the theoretical332

value (Section 4.1), this normalization method appears to be reliable. We also note this method is convenient because it is333

embarrassingly parallel, and scales well to arbitrarily high dimensional fields. However, for cases when the correlation operator334

is to be updated repeatedly, e.g., in cycled DA, other normalization methods could be explored for use with this operator as in335

Weaver et al. (2021).336
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(a) (b) (c) (d)

(e) (f) (g) (h)

F I G U R E 4 The ratio of the sample standard deviation to the value computed from Equation (8) for an isotropic, stationary
Matérn field (indicated in the bottom row by σ̂). Panels (a-d) show the ratio in the latitude-longitude plane at the surface for
ρ̂ = {5, 10, 15, 20}, respectively. Panels (e-h) show the corresponding fields in the depth-longitude plane along 10.5◦N. The
largest deviations from the theoretical value are near the boundaries, as expected. All fields use M = 2.

4.4 | High efficiency with low precision337

The numerical results shown in this section have employed the iterative algorithm in Appendix B to obtain approximate correlation338

statistics. As with any iterative algorithm, one must specify a tolerance that can be used to determine when the algorithm has339

converged to an approximate solution. Within this framework, one can always set a tolerance based on the numerical precision340

being used to be confident that the solver has converged. However, in this section we show that this is likely to be unnecessarily341

ambitious.342

To be specific, Figure 5(a) shows the relative error in the approximation that correlation is equal to 0.14 when ρ̂ = δi for343

ρ̂ = {5, 10, 15, 20} (i.e. corresponding to the curves in Figure 2). The error in the approximation is shown for a range of solver344

tolerances, where 10−15 is chosen as an approximate lower bound tolerance for double precision. For tolerances at 10−3 and345

smaller, the error coverges to roughly the same value, indicating that the desired statistics of the correlation model are obtained346

even with a relatively imprecise solve. We note that Carrier and Ngodock (2010) describe similar findings with the implicit347

diffusion correlation model.348

The motivation for using a high tolerance is indicated by Figure 5(b), which shows how the number of iterations required to349

converge increases with the specified tolerance. Solving to a tolerance of 10−15 requires a factor of 6-13 more iterations than are350

required with a tolerance of 10−3. Of course, the specific computational savings obtained will depend on the iterative method351

that is being used, but we provide this as a concrete example to highlight that an imprecise solve is both valid and advantageous.352

4.5 | Rapid convergence for M > 1353

For applications where a Gaussian correlation structure is desired, the correlation model presented here requires M > 1 to354

approach the Gaussian structure (Figure 1). Moreover, it could also be desirable to use A−M with M > 1, given that M = 1355

produces larger spread in the correlation structure (Figure 2(a)), and because the correlation structure drops off much more356
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F I G U R E 5 (a) The relative error in the approximation that correlation equals 0.14 when ρ̂ = δi , as a function of the
tolerance used for the iterative block-SOR method described in Appendix B. Each curve is computed as the error between the
theoretical (black) curve and the average of each shaded curve shown in Figure 2. (b) The number of iterations required for the
block-SOR method to converge to the specified tolerance. Averages are computed from 1,000 samples using M = 1.

rapidly for neighboring points. For these cases, it may be natural to assume that using this model with M > 1 would be less357

efficient than when M = 1 because it requires multiple applications of an inverse elliptic operator. However, here we show that358

this is not necessarily true and it can be more efficient to use M > 1 than M = 1.359

Figure 6(a) shows the total number of iterations required to find a solution to Equation (16), for a variety of combinations of360

ρ̂ and M . Here, “total iterations” refers to all block-SOR iterations required by the algorithm in Appendix B, summing over361

all applications of A−M . Evidently, using M > 1 actually requires fewer total iterations to converge to a solution than when362

M = 1. The reason for this is as follows. For any value of ρ̂, δ̂ increases linearly with M , which increases the amplitude of363

the diagonal elements of the matrix representation of A. In each case, the off-diagonal matrix elements, determined by the364

Laplacian operator, remain fixed. Thus, the matrix becomes more diagonally dominant: the amplitude of the diagonal elements365

increases relative to the sum total of off-diagonals. The degree of diagonal dominance is an important property for determining366

the convergence of our SOR-based elliptic solver, where a more diagonally dominant matrix tends to converge faster (Golub and367

Van Loan, 2013). Evidence of this behavior can be seen in Figure 6(b), which shows the number of iterations required for each368

individual application of A−1 to converge. Here we see that each application gets cheaper as M , and therefore δ̂ , increases. The369

improvement per iteration is evidently enough to reduce the total iterations, shown in panel (a). The exception to this behavior is370

when ρ̂ = 5, where for M ≥ 4 the total number of iterations overtakes the case of M = 1 due to the repeated solves.371

We note that Jacobi, Gauss-Seidel, and SOR methods are rarely used for modern applications (an exception being the372

line-SOR method in the sea-ice solver of the MITgcm (Losch et al., 2010)). For example, the main source code of the MITgcm373

(Marshall et al., 1997; Campin et al., 2021) uses a conjugate gradient method for the pressure solve at each time step. However,374

given the performance benefits noted here and the simplicity of implementing the SOR scheme, it could be used as an efficient375

preconditioner in the event that a different solution method becomes overly expensive for M > 1.376

5 | DISCUSSION377

In this work we have shown a general methodology which can be used to achieve nonstationary and anisotropic Matérn type378

correlation structures within a domain with complex boundaries. To summarize, the general procedure is as follows. First, one379

chooses a normalization length scale for each dimension, thereby defining (the Jacobian of) a mapping between a space where380

correlation is isotropic and stationary, and the more complex domain. These normalizing length scales are essential because381

they determine the local anisotropy and nonstationarity of the correlation operator. Next, one must choose a range parameter,382
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F I G U R E 6 (a) Total number of iterations required to compute θ = A−M z, for a standard normally distributed vector
z ∈ ÒNd . “Total iterations” is represented as the average number of total iterations from 1,000 random samples. (b) The average
number of iterations per application of A−M , as a function of M . For all ρ̂ and M combinations, each application gets cheaper
as M increases. To compute the “average iterations per application”, we take the average iteration per application of A−M , and
compute the sample average of this quantity from 1,000 random samples.

determining the distance relative to the normalizing length scales at which correlation drops to 0.14. Finally, one selects the383

shape of the correlation structure, which also sets the number of times the elliptic PDE must be solved.384

Our presentation has focused on the practical application of this correlation operator within an ocean general circulation385

model. As such, we set the normalizing length scales based on the local grid scale. With this setting, the range parameter is386

shown to be a highly intuitive dial, controlling correlation length scales as a simple function of the number of neighboring grid387

cells. Using this definition was further shown to be beneficial at the equator, for example, because grid scale refinements there388

result in correlation length scales that are longer zonally than meridionally, coinciding with observed autocorrelation structures389

(Meyers et al., 1991). However, we recognize that there could be features that are desirable to capture in a correlation model that390

are not represented in the definition of the underlying model grid. In this case, the normalizing length scales could be further391

tuned with local factors or functions to achieve these desired features. Alternatively, these length scales could be set entirely392

independently of the grid, for instance as a function of a phenomenological length scale such as the local Rossby radius of393

deformation.394

A key feature of the correlation model shown here is that the range parameter, ρ̂, and the number of inverse elliptic operator395

applications, M , control the correlation length scale and shape separately. We consider this to be an attractive feature when396

compared to the implicit diffusion approach. Even when the “length scale” is fixed in the implicit diffusion model, changing M397

modifies the shape of the correlation function in such a way that there is no consistent characteristic distance, for instance at398

which correlation would drop below a threshold value (Figure 1, and also Figs. 1 and 2 from Guillet et al. (2019)). We note that399

in the Matérn correlation model presented here that the parameter δ̂ changes with M while in the implicit diffusion approach,400

δ (s) → I . Apparently the simple variation in this parameter is enough to balance the multiple applications of A−1, such that401

the resulting correlation structure maintains a consistently identifiable length scale via ρ̂.402

As noted in Mirouze and Weaver (2010); Carrier and Ngodock (2010), a drawback to the explicit diffusion approach from403

Weaver and Courtier (2001) is that it requires many iterations to satisfy numerical stability. In our experimentation with this404
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model on the LLC grid as implemented in the MITgcm (Campin et al., 2021), we have found the number of iterations required405

for numerical stability to be roughly a factor of three larger than the necessary (but insufficient) lower bound for numerical406

stability. We therefore find approaches based on the implicit solution of a PDE to be more straightforward, as it is more intuitive407

to specify a solution tolerance rather than guess the number of iterations required for convergence. Moreover, our numerical408

experiments indicate that an imprecise solution (to a tolerance of ∼ 10−3) is sufficient for capturing the desired statistical409

behavior of the model, and therefore its implementation is highly efficient. Finally, because the correlation model shown here is410

formulated through an inverse elliptic operator, we have access to the inverse correlation operator, which could be used directly411

as regularization while solving an inverse problem (e.g., Bui-Thanh et al., 2013), or for specifying spatial correlations within the412

inverse observation error covariance as in Guillet et al. (2019).413

For some applications it could be desirable to specify oscillating or “lobed” correlation models, which can be achieved with414

the explicit or implicit diffusion models (Weaver and Courtier, 2001; Weaver and Mirouze, 2013). We suggest that such extensions415

are possible for the Matérn type correlation operator shown here, based on results shown by L11 in the complex plane with a416

tunable oscillation parameter. These more general shapes could be explored in future work for the case of multi-dimensional417

fields as shown here.418

A | DISCRETIZATION OF THE MATÉRN SPDE419

In the following analysis we consider a 3D field θ (s) , s ∈ Ω and show the discretized form for A−M . We begin by showing the420

form for M = 1, and then simply illustrate how the operator can be applied iteratively for M > 1. We carry out the discretization421

on a structured, nonuniform, Arakawa C grid (Arakawa and Lamb, 1977) according to the finite volume method - as is the general422

setting in the MITgcm. We note that our development is similar to Fuglstad et al. (2014), who show a differential operator for a423

2D field on a uniform grid.424

Figure 7 shows the general structure of the grid, and defines the various grid cell distances used in the derivation. We begin425

by integrating Equation (15),426 ∫
Ω
δ (s) θ (s) ds −

∫
Ω
+ · K (s)+ θ (s) ds =

∫
Ω
W(s)det (Φ (s))−1/2 ds∑

i ,j ,k

∫
Ei ,j ,k

δ (s) θ (s) ds −
∑
i ,j ,k

∫
Ei ,j ,k

+ · K (s)+ θ (s) ds =
∑
i ,j ,k

∫
Ei ,j ,k

W(s)det (Φ (s))−1/2 ds ,
(18)427

where in second line we distribute the integral across each grid cell Ei ,j ,k ⊂ Ω and i , j , k indicates indices in longitude, latitude,428

and depth, respectively.429

Starting with the first term,430

δi ,j ,k := 1

Vi ,j ,k

∫
Ei ,j ,k

δ (s) ds

=
δ̂

Vi ,j ,k

∫
Ei ,j ,k

1

det
(
Φi ,j ,k

) ds431

so that432 ∫
Ei ,j ,k

δ (s) θ (s) ds = δ̂
Vi ,j ,k

det
(
Φi ,j ,k

) θi ,j ,k433

whereVi ,j ,k = ∆x
i ,j
g ∆y

i ,j
g ∆r

k
f

is the grid cell volume, indicated by Figure 7. We note that a cartesian style notation is used to434
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F I G U R E 7 The structured finite volume grid used in the MITgcm. (a) The horizontal (latitude-longitude) plane viewed from
above. (b) The vertical grid. The circles denote the tracer location at the grid cell center, where fields like temperature and
salinity are located.

ease the presentation, but a more general curvilinear coordinate system is used in the computation in order to support the various435

sectors of the Lat-Lon-Cap (LLC) grid (see Section 2 and Appendix A of Forget et al., 2015, for more details on the LLC grid).436

The third term is, from the definition of a white noise process (Adler and Taylor, 2007),437

∫
Ei ,j ,k

det (Φ (s))−1/2W(s) ds =
√

Vi ,j ,k

det
(
Φi ,j ,k

) zi ,j ,k438

where zi ,j ,k is an uncorrelated (independent) standard Gaussian at each grid cell center i , j , k , and we used:439

det
(
Φi ,j ,k

)
:= 1

Vi ,j ,k

∫
Ei ,j ,k

det (Φ (s)) ds .440

The second term, containing the Laplacian is handled as follows441 ∫
Ei ,j ,k

+ · K (s)+ θ (s) ds =
∫
∂Ei ,j ,k

K (s)+ θ (s) · n̂ ds442

where n̂ is an outward normal to the cell boundary ∂Ei ,j ,k . Throughout this work, we assume the tensor K (s) to be represented443

as the diagonal matrix:444

K (s) =
©«
κux (s) 0 0

0 κv y (s) 0

0 0 κwz (s)

ª®®®¬ ,445
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which could be generalized in future work. We represent the discretized form of this tensor as446

Ki ,j ,k =
©«
κux
i ,j ,k

0 0

0 κ
v y
i ,j ,k

0

0 0 κwz
i ,j ,k

ª®®®¬ ,447

where the elements κux
i ,j ,k

, κv y
i ,j ,k

, and κwz
i ,j ,k

determine the flux in and out of the grid cell:448

κuxi ,j ,k := 1

∆y
i ,j
g ∆r

k
f

∫
∂EW

i ,j ,k

κux (s) ds449

450

κ
v y
i ,j ,k

:= 1

∆x
i ,j
g ∆r

i ,j ,k
f

∫
∂E S

i ,j ,k

κv y (s) ds451

452

κwzi ,j ,k := 1

∆x
i ,j
g ∆y

i ,j
g

∫
∂EB

i ,j ,k

κwz (s) ds453

where ∂EW
i ,j ,k

, ∂E S
i ,j ,k

, and ∂E B
i ,j ,k

are the western, southern, and bottom boundaries of the grid cell. The discretized gradient is454

approximated via the finite difference directional derivative at each cell face:455

∂θ

∂x
(sWi ,j ,k ) '

θi ,j ,k − θi−1,j ,k
∆x

i ,j
c

∂θ

∂x
(sEi ,j ,k ) '

θi+1,j ,k − θi ,j ,k
∆x

i+1,j
c

∂θ

∂y
(sSi ,j ,k ) '

θi ,j ,k − θj−1,k
∆y

i ,j
c

∂θ

∂y
(sNi ,j ,k ) '

θj+1,k − θi ,j ,k
∆y

i ,j+1
c

∂θ

∂z
(sTi ,j ,k ) '

θi ,j ,k−1 − θi ,j ,k
∆r kc

∂θ

∂z
(sBi ,j ,k ) '

θi ,j ,k − θi ,j ,k+1
∆r k+1c

456

for the west, east, south, north, top, and bottom cell faces, respectively. Note that the vertical coordinate is somewhat “flipped”457

when compared to the other dimensions, where the index k = 1 at the surface and k = Nk at depth. Putting these definitions458

together,459 ∫
∂Ei ,j ,k

K (s)+ θ (s) · n̂ dτ :=[(
κux ∆yg∆rf

∆xc

)
i+1,j ,k

(θi+1,j ,k − θi ,j ,k ) −
(
κux ∆yg∆rf

∆xc

)
i ,j ,k

(θi ,j ,k − θi−1,j ,k )
]
+[(

κv y ∆xg∆rf

∆yc

)
i ,j+1,k

(θi ,j+1,k − θi ,j ,k ) −
(
κv y ∆xg∆rf

∆yc

)
i ,j ,k

(θi ,j ,k − θi ,j−1,k )
]
+[(

κwz ∆xg∆yg

∆rc

)
i ,j ,k

(θi ,j ,k−1 − θi ,j ,k ) −
(
κwz ∆xg∆yg

∆rc

)
i ,j ,k+1

(θi ,j ,k − θi ,j ,k+1)
]
.

(19)460
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The discretized form of this operator is generated by defining the coefficients that form the seven point numerical stencil:461

c
i ,j ,k
east :=

(
κux ∆yg∆rf

∆xc

)
i+1,j ,k

c
i ,j ,k
west :=

(
κux ∆yg∆rf

∆xc

)
i ,j ,k

c
i ,j ,k
north :=

(
κv y ∆xg∆rf

∆yc

)
i ,j+1,k

c
i ,j ,k
south :=

(
κv y ∆xg∆rf

∆yc

)
i ,j ,k

c
i ,j ,k
top :=

(
κwz ∆xg∆yg

∆rc

)
i ,j ,k

c
i ,j ,k
bottom :=

(
κwz ∆xg∆yg

∆rc

)
i ,j ,k+1

462

463

c
i ,j ,k
center := −c

i ,j ,k
east − c

i ,j ,k
west − c

i ,j ,k
north − c

i ,j ,k
south − c

i ,j ,k
top − c

i ,j ,k
bottom .464

With these definitions we define the matrix L such that Lθ '
∫
Ω
+ · K (s)+ θ (s) ds where the row corresponding to the index465

i , j , k466

[
ctop · · · csouth · · · cwestccenterceast · · · cnorth · · · cbottom

]
i ,j ,k

467

With each term in Equation (18) defined above, we have the system of equations in matrix form:468

(Dδ − L)θ = Dz z

Aθ = Dz z
(20)469

where470

Dδ := diag
{
δ̂

Vn
det (Φn )

}Nθ
n=1

Dz := diag

{√
Vn

det (Φn )

}Nθ
n=1

A := (Dδ − L)471

where for notational simplicity we index each grid cell with n . Note that when we prescribe Φ as in Section 3, then det (Φn ) =Vn472

so that Dδ = δ̂I and Dz = I. The solution, θ, is the discretized form of a Matérn field with covariance DzA−2Dz . The solution473

for cases when M > 1 is simply obtained through an iterative application of A−1 (see also Theorem 4 in Appendix C.4 of L11),474

i.e. for M > 1:475

AM−1θM = θ476

A.1 | Neumann boundary conditions477

Throughout this work we use zero flux, Neumann boundary conditions as follows:478

K (s)+θ (s) · n̂ = 0 s ∈ ∂Ωsolid .479

These boundary conditions are implemented by zeroing out the flux terms in the definition of L along the boundary. More480

specifically, these are defined using a “mask” field which has values of one in the ocean and 0 on land. The mask is used to481



TIMOTHY A. SMITH 21

modify the coefficients of L as follows:482

c
i ,j ,k
east := c i ,j ,keast mi ,j ,kmi+1,j ,k c

i ,j ,k
west := c

i ,j ,k
westmi ,j ,kmi−1,j ,k

c
i ,j ,k
north := c i ,j ,knorthmi ,j ,kmi ,j+1,k c

i ,j ,k
south := c i ,j ,ksouthmi ,j ,kmi ,j−1,k

c
i ,j ,k
top := c i ,j ,ktop mi ,j ,kmi ,j ,k+1 c

i ,j ,k
bottom := c i ,j ,kbottommi ,j ,kmi ,j ,k−1

483

where mi ,j ,k is used to denote the mask value at each grid cell.484

A.2 | Correlation operator485

The discretized form of the correlation operator used in this work is more formally defined as486

C := ΛA−MDz . (21)487

To estimate the sample standard deviation used to fill Λ, we draw 1,000 independent standard normal vectors zl ∈ ÒNθ488

l ∈ {1, 2, ..., 1000}, solve489

AM θl = Dz zl l ∈ {1, 2, ..., 1000} , (22)490

and compute the pointwise standard deviation from {θl }1000l=1
.491

A.3 | Code availability492

This study used the MITgcm (Campin et al., 2021), with modifications that can be found at github.com/timothyas/MITgcm/493

tree/matern-correlation, for solving the presented linear system on the LLC grid. The grid files that make up the LLC494

grid can be found with the ECCOv4 data, which were accessed at (ECCO Consortium et al., 2020). All code used to generate,495

postprocess, and analyze the results in this paper can be found at Smith (2022). The python packages xmitgcm (Abernathey496

et al., 2021), xarray (Hoyer and Hamman, 2017), dask (Dask Development Team, 2016), and zarr (Miles et al., 2020) were497

essential for these tasks.498

B | A BLOCK SUCCESSIVE OVER RELAXATION METHOD499

Applying the correlation operator described in this paper, C1/2, requires the solution to an elliptic equation. Here we describe the500

block-Successive Over Relaxation (SOR) method that was implemented to solve this problem. We note that both preconditioned501

conjugate gradient algorithms exist in the MITgcm for 2D (in the latitude longitude plane) and 3D fields. However, the502

preconditioner for these solvers is designed specifically for the pressure solve at each time step (Marshall et al., 1997), and so503

may not be generally applicable to our problem. As such, we opted to implement the SOR algorithm outlined here because it was504

simple to do so, and efficient enough for our purposes.505

The SOR method is an iterative method for solving Ax = b. At iteration k , the elements of x are x k
i

, and we seek the update:506

github.com/timothyas/MITgcm/tree/matern-correlation
github.com/timothyas/MITgcm/tree/matern-correlation
github.com/timothyas/MITgcm/tree/matern-correlation
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F I G U R E 8 Performance of the SOR algorithm for various settings of ω using 10 samples, ρ̂ = 10, tolerance of 10−15, and
M = 1.

507

x̃ k+1i = (1 − ω)x ki +
ω

ai i

©«bi −
∑
j<i

ai j x̃
k+1
j −

∑
j>i

ai j x
k
j
ª®¬ , i = 1, 2, ...,N , (23)508

where the elements of x are x k
i

(and similarly for A and b), and ω is the SOR parameter. Here the notation x̃ k+1
i

refers to the509

fact this is a local update, i.e. there is no communication between the processes assigned to each portion of the computational510

domain. The only areas where this local update causes the algorithm to deviate from a standard SOR method is when neighboring511

elements x̃ k+1
j
, i , j are in the “halo” regions of a process’s subdomain which are only updated at the end of each iteration. In512

this case, these neighboring elements take on the value from the previous iteration: x̃ k+1
j

= x k
j

.513

We find this simple implementation to be an effective method for solving the linear system. Figure 8 shows the number514

of iterations required for convergence as a function of the parameter ω, with an optimal value of approximately ω∗ = 1.3. We515

note that the number of iterations required to converge at this optimal value is about half that of ω = 1, which coincides with516

a (block) Gauss-Seidel algorithm (again differing from it’s true form due to the halo updates). Of course, Figure 8 shows the517

major drawback of the SOR algorithm: near the “optimal” value for the SOR parameter, efficiency is highly sensitive. For our518

implementation, at ω = 1.35, we see that the algorithm does not fully converge and runs until set limit of 20,000 iterations.519
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F I G U R E S 1 Correlation structure computed from the theoretical Matérn correlation function (black) and from 1,000
samples using a subset of the “Lat-Lon-Cap” grid within the Pacific Ocean (shaded coloring). The sample correlation is
computed in the meridional direction, δj , indicating the number of neighboring grid cells from 0.2◦N. The shading indicates the
spread between the first and ninth deciles, based on sample correlations at all depth levels and latitudes from 157.5◦W and
97.5◦W.
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F I G U R E S 2 Same as Figure S1, but the sample correlation is computed in the vertical direction, δk , indicating the number
of neighboring grid cells from 722 m depth (the 25th vertical level). The shading indicates the spread between the first and ninth
deciles, based on sample correlations at each grid cell from 157.5◦W to 97.5◦W in the zonal direction and 70◦S to 37◦N in the
meridional direction. There are 50 vertical levels on the LLC grid.
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