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Abstract

Weather forecasts made with imperfect models contain flow- and state-dependent errors. Data assimilation (DA) partially

corrects these errors with new information from observations. As such, the corrections, or “analysis increments’, produced

by the DA process embed information about model errors. An attempt is made here to extract that information to improve

numerical weather prediction. Neural networks (NNs) are trained to predict corrections to the systematic error in the NOAA’s

FV3-GFS model based on a large set of analysis increments. A simple NN focusing on an atmospheric column significantly

improves the estimated model error correction relative to a linear baseline. Leveraging large-scale horizontal flow conditions

using a convolutional NN, when compared to the simple column-oriented NN, does not improve skill in correcting model error.

The sensitivity of model error correction to forecast inputs is highly localized by vertical level and by meteorological variable,

and the error characteristics vary across vertical levels. Once trained, the NNs are used to apply an online correction to the

forecast during model integration. Improvements are evaluated both within a cycled DA system and across a collection of

10-day forecasts. It is found that applying state-dependent NN-predicted corrections to the model forecast improves the overall

quality of DA and improves the 10-day forecast skill at all lead times.
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Key Points:11

• A neural network (NN) trained to infer analysis increments from model forecasts12

learns to correct systematic errors in the FV3-GFS model.13

• Sensitivity analysis of the NN reveals physically consistent error characteristics14

that may used to improve the NN architecture.15

• Applying online corrections from NN improves the accuracy of sequential data as-16

similation and extended free forecasts.17
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Abstract18

Weather forecasts made with imperfect models contain flow- and state-dependent errors.19

Data assimilation (DA) partially corrects these errors with new information from obser-20

vations. As such, the corrections, or “analysis increments”, produced by the DA process21

embed information about model errors. An attempt is made here to extract that infor-22

mation to improve numerical weather prediction. Neural networks (NNs) are trained to23

predict corrections to the systematic error in the NOAA’s FV3-GFS model based on a24

large set of analysis increments. A simple NN focusing on an atmospheric column sig-25

nificantly improves the estimated model error correction relative to a linear baseline. Lever-26

aging large-scale horizontal flow conditions using a convolutional NN, when compared27

to the simple column-oriented NN, does not improve skill in correcting model error. The28

sensitivity of model error correction to forecast inputs is highly localized by vertical level29

and by meteorological variable, and the error characteristics vary across vertical levels.30

Once trained, the NNs are used to apply an online correction to the forecast during model31

integration. Improvements are evaluated both within a cycled DA system and across a32

collection of 10-day forecasts. It is found that applying state-dependent NN-predicted33

corrections to the model forecast improves the overall quality of DA and improves the34

10-day forecast skill at all lead times.35

Plain Language Summary36

Computer models used for operational weather prediction are not perfect - they37

are naturally only simplifications of the true atmosphere. Such imperfections result in38

reduced forecast quality. Weather forecast systems routinely correct the forecasts by pulling39

them closer to observations, thus providing some information about the errors present40

in the forecast model. Here, a neural network (NN) is trained to correct NOAA’s oper-41

ational weather forecast model, FV3-GFS, by “learning” the relation between the fore-42

casts and the estimated model errors. The learned NN correction is then fed back into43

the weather model to improve the quality of the best guess state of the atmosphere and44

the subsequent 10-day forecasts. By analyzing how the NN output depends on its input45

forecast, we gain some insight about the model errors, which may be helpful for future46

atmospheric model development and improvements to future error-correcting NNs.47

1 Introduction48

Operational numerical weather prediction (NWP) models are inherently imperfect.49

Systematic errors result from approximations in deriving the governing equations, from50

their numerical implementation, and from conceptual and numerical errors in the pa-51

rameterizations that represent subgrid scale physical and dynamical processes. Even small52

errors in any component of the NWP model can compound over time to produce errors53

that significantly degrade the forecasting skill.54

Systematic errors can be addressed with a wide range of approaches. One approach55

is to improve the model components – the dynamical core and subgrid scale physics pa-56

rameterizations. The forecast system as a whole can be improved, say by adopting stochas-57

tic parameterizations that account for uncertainty, or by increasing spatial resolution.58

Model forecasts can also be further improved by an “offline” post-processing using sta-59

tistical methods (e.g. Model Output Statistics) or machine learning (ML) methods ap-60

plied to the model output after the completion of model forecast. However, the model61

errors may be convoluted over time and become more nonlinear as forecast progresses,62

leading to errors that are more difficult to represent.63

To avoid such a complication, there is increasing interest in applying machine learn-64

ing methods for “online” correction of the model forecast within the operational forecast-65

analysis cycle itself. The attraction of online correction is that, by reducing systematic66
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errors, corrections can improve the forecasts (background state) provided to the data as-67

similation (DA) analysis algorithm, allowing the full-cycled DA system to make better68

use of the observations. As one example, Crawford et al. (2020) improved the 10-day fore-69

cast skill of the US Navy’s NAVGEM model by applying a seasonal moving average of70

the analysis increment in their 1-year training data as a correction. The correction is fixed71

throughout different forecast lead-times and independent of the meteorological condi-72

tions of the day. Fixed corrections limit the generalization of the method, as the correc-73

tion may become invalid for longer forecast lead times or when applied during a year that74

has a different climate background environment due to interannual or decadal variabil-75

ity (e.g. ENSO). The storage required to maintain at least a full year of the seasonal mov-76

ing averaged analysis increment data for the full 3D atmosphere is also a burden.77

Bonavita and Laloyaux (2020), hereafter BL20, addressed some of these limitations78

by training a neural network (NN) to predict the analysis increments from the correspond-79

ing forecasts. Corrections were computed at low spatial resolution (smoothing to T2180

by truncating higher wave number in spectral space) to accelerate training, and a column-81

based NN predicted analysis increments within the atmospheric column given the cor-82

responding forecast and climatological variables including the time of the day, the month83

of the year, and the geo-location of the column. The NN correction was applied in con-84

junction with weak constraint 4D variational DA (4D-Var), as well as extending the orig-85

inal stratosphere-only correction to the troposphere. The validation period of the on-86

line correction together with 4D-Var was short due to resource limitations. A question87

that remains is whether it is possible to apply the NN correction online for medium-range88

operational forecasts.89

Watt-Meyer et al. (2021) built on earlier work (e.g., Brenowitz & Bretherton, 2018,90

2019) that used machine learning to reproduce a high-resolution reference dataset from91

a lower-resolution input dataset. They trained a random forest to correct a coarse C4892

(∼ 200 km) resolution FV3-GFS model with 79 vertical levels. They generated the train-93

ing dataset by nudging the model towards the higher-resolution operational Global Fore-94

casting System (GFS) analyses. The random forest was trained to predict the nudging95

tendencies of the prognostic variables of a column from the corresponding column states.96

The random forest correction improved both 10-day weather prediction skill and the cli-97

matological variables (e.g., annually averaged precipitation) that were not directly up-98

dated by the correction. This line of work focused on better representing the subgrid-99

scale processes of a coarse-resolution model, while we explore a similar approach in the100

context of operational NWP using a much higher resolution model.101

Here, we apply machine learning (ML) models to learn systematic state-dependent102

model errors in NOAA’s FV3-GFS by comparison to an observationally-informed atmo-103

spheric analysis, introduce methods to predict and correct model errors online while gen-104

erating a forecast, and test whether online model error correction can improve common105

weather prediction tasks. Corrections to model error are determined from increments106

generated by “replaying”(see section 2.2) NOAA’s FV3-GFS model to ECMWF IFS anal-107

ysis. We generate three progressively more complex predictors for the systematic error:108

(1) a linear baseline similar to Crawford et al. (2020), (2) a 1D atmospheric column-oriented109

ML predictor similar to BL20, and (3) an extension of the 1D ML predictor of the BL20110

that also includes horizontal information using convolutional neural networks (CNN).111

We conduct a comprehensive evaluation of the trained error predictors against each other112

using an offline set of analysis increments, in a cycling DA system, and in a set of 10-113

day forecasts.114

2 Methods and Setup115

We seek to learn state-dependent systematic error from analysis increments and116

apply corrections to improve the quality of the medium-range forecast and DA of the FV3-117
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03Z 06Z 09Z 12Z 15Z 18Z Timeanalysis increment
6h replayed forecast
replayed update

target analysis
6h free forecast

update increment

Figure 1: Schematic illustration of the replay system.

GFS using a resolution close to operation. To achieve this goal, we train two neural net-118

work architectures to predict the analysis increments conditioned on the corresponding119

forecasts. The trained NNs are compared with several linear baselines in offline evalu-120

ation. Predicted corrections are then applied to forecasts in an online evaluation for both121

DA and medium-range forecast, in which the performance metric is the forecast error122

reduction. Both offline and online evaluations are performed in an independent testing123

period that is not included in the training process.124

2.1 Model125

We use the National Oceanic and Atmospheric Administration (NOAA) operational126

NWP model (FV3-GFS; UFS Community, 2020), which is comprised of a finite volume127

cubed sphere dynamical core (FV3; see e.g., Lin, 2004; Putman & Lin, 2007) and the128

NOAA global forecast system (GFS) physics. We use the FV3-GFS at a reduced C192129

resolution (≈ 50km), which is coarsened from the operational resolution of C768 (≈ 13km).130

2.2 Data131

To simulate the DA process with reduced computational cost, we use a “replay”132

system to constrain the forecast using an externally provided full-field analysis instead133

of directly assimilating observations. Figure 1 shows a schematic of the replay system.134

Given a 6h forecast as background (blue arrow), an “update increment” (dashed line)135

is computed by the difference between the background forecast and a target analysis (red136

dot) at the analysis valid time (e.g., 06Z, 12Z, 18Z in the schematic). A forcing to the137

tendency equations (black arrow) is then obtained by dividing the update increment by138

6 hours to match the update frequency. We obtain the replayed trajectory (yellow ar-139

row) by restarting the model from the same initial condition of the forecast segment (3140

hours before the valid time of the target analysis, e.g., 03Z, 09Z, 15Z) with the additional141

forcing term. We further define the difference between the background and the replayed142

trajectory at the analysis valid time as the “analysis increment” (dotted line). This re-143

play process is similar to the incremental analysis update (IAU; e.g., Bloom et al., 1996;144

Lei & Whitaker, 2016) method, which was developed to provide a better balanced DA145

update by nudging forecasts over a fixed-size window (e.g., 6h). Bengtsson et al. (2019)146

showed that the replay methodology allows for rapid generation of training datasets that147

reveal the nature of the model error even if the model is replayed to an external anal-148

ysis.149

The target for the replay system can be supplied from a cycled DA system using150

the same model (i.e. a “self-analysis”) or from an external source that uses a different151

model. The advantage of using the self-analysis is that it is available in real time at the152

operational center, while the benefit of using the external analysis is that it may reduce153

correlations between the background and the analysis.154
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In this study we use the operational IFS analysis from ECMWF, an external anal-155

ysis, as the replay target. An earlier Cy41r2 version of the same model powered the lat-156

est European center reanalysis product (ERA5; Hersbach et al., 2020). We do not di-157

rectly use the update increment to train the NNs because the resulting correction will158

likely replace the FV3-GFS error with the IFS error. Instead we use the analysis incre-159

ment (dotted line), the difference between the background forecast (yellow arrow) and160

the replayed trajectory (blue arrow) at the analysis valid time, as the training target.161

Because the update is applied through the forcing term, the replayed trajectory is not162

the same as directly replacing the states with the target analysis. This results in the dif-163

ferences between the update increment and the replayed analysis increment.164

The replay and analysis increments are computed over a 15-month period from 20165

November 2019 to 1 March 2021. The first 10 days are discarded as a spin-up period,166

and the following 12 months are used for training and validation, while the remaining167

3-month period is reserved for independent testing. To capture the annual and seasonal168

cycles in both the training and validation process, we withhold the initial 15 days of each169

season (every 120-day period) of those 12 months for validation.170

To reduce the computational cost of the NN training, a data reduction is applied171

to the Gaussian grid of size 768×384 corresponding to the original C192 resolution by172

either sampling grid points or by applying a smoothing of the global data fields to a 64×173

32 Gaussian grid corresponding to T21 as illustrated in Figure 2. For the former approach,174

we sample from the original Gaussian grid every 12 grid points. This approach preserves175

finer details from the original resolution to some extent. Alternatively, the smoothing176

approach (spectral truncation) converts the data from the original Gaussian grid to spec-177

tral space, truncates the higher wave numbers to the T21 resolution, and then converts178

back to its corresponding Gaussian grid. Such a truncation approach assumes that the179

more easily diagnosed model errors are larger in scale and thus removes information not180

represented in T21 resolution.181

The learning tasks in our study are different from most machine learning applica-182

tions: the signal/noise ratio is unusually low because the analysis increments contain not183

only the model error information, but also the inhomogeneity and irregularity of the ob-184

servation network distribution in space and time, initial condition error of the forecasts,185

observational errors, etc. Therefore the goal is not to learn everything in the analysis in-186

crements, but to extract only the information that is dependent on the input features.187

From this perspective, the smoothing approach is intended to remove some of these sources188

of noise.189

2.3 Error correction methods190

We devise two column-based NN error correction methods, modified after the col-191

umn approach of BL20. The first method, which we refer to as the column NN hereafter,192

is trained using the sampled dataset as it does not require any neighboring information193

for input. An obvious drawback of the column NN is that it does not incorporate infor-194

mation about the horizontal structure of the background forecast as input to predict the195

analysis increment correction. To incorporate the spatial relationship in the error field,196

we also consider a Convolutional Neural Network (CNN). The CNN has had great suc-197

cess in computer vision applications; it scans through 2D fields with a moving window198

(also known as a kernel) assuming an invariant input-output relationship across the field.199

Thus for comparison, we also adopt a convolutional architecture in the horizontal direc-200

tions for the same column-base NN trained against the smoothed dataset. We refer to201

this approach as a low-res CNN because the convolution architecture is trained to learn202

the large-scale spatial structure in the truncated resolution and can only operate in that203

same resolution. The low-res CNN mainly focuses on the errors in the large scales and204

includes the adjacent grid information when predicting the center grid column, using a205
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N_lat: 384

N_long: 768

N_lat: 32

N_long: 64

N_lat: 32

N_long: 64

Regular Gaussian grid in original C192 resolution

(b) Smoothed dataset(a) Sampled dataset

Transform back to

Gaussian grid


 

Tranform to

spectral space


 
Spectral truncation:


T254 -> T21Sample every 12 grid points

Figure 2: Illustration of the two data reduction approaches from the original C192 res-
olution to an equivalent of T21: (a) sampling of every 12 grid points and (b) smoothing
by spectral truncation. Note that both the reduced datasets are of the same size in the
regular Gaussian grid space.

kernel size larger than 1. The hidden layers and the output layer have the same horizon-206

tal domain size of 64× 32 as the input.207

Performance of the NN methods is assessed against three additional linear base-208

line methods similar to the method used by Crawford et al. (2020). We use the annual209

average, the seasonal (3-month) moving average, and the hourly seasonal moving aver-210

age of the analysis increments. All three linear baselines are computed only from the train-211

ing period for a fair comparison with the NN methods. The linear baseline methods rep-212

resent tradeoffs. The hourly seasonal average baseline is algorithmically simpler than the213

NN methods. However, when implemented at the same resolution as the operational model,214

the volume required for storing a full year of global data for each variable can be pro-215

hibitive in an operational environment. The training of NNs can be viewed as a com-216

pression of this huge amount of data.217

2.4 Training the NNs218

2.4.1 Training setup219

The NNs are trained to predict separate corrections to each model state variable220

within a vertical column: temperature, specific humidity, and u- and v-wind, which are221

prognostic variables of the atmospheric model. The training target is the collection of222

analysis increments obtained from the replay dataset. Additional inputs to the NN in-223

clude ancillary information such as time of the day, latitude, longitude, land-sea mask,224

radiative fluxes, etc. (see Table 1 for a complete list of all input features). To improve225

the interpolation of the temporal and spatial information, the time of the day, the day226

of the year, and longitude information are transformed into sine and cosine form. The227

input and output data are normalized using the mean and standard deviation calculated228

from the training dataset. The stochastic gradient decent method is used to minimize229

a mean square error (MSE) loss function. The two NN methods share common hyper-230

parameters (see Table 2 for the search space), which we optimize using the validation231

dataset. To make the training more efficient and to prevent overfitting, we use an early232

stopping criteria that terminates the training if the validation score does not improve233
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during the last 20 epochs. After training, we then perform independent testing to the234

NNs using both offline and online evaluation.235

2.4.2 Offline evaluation236

The performance metric for offline evaluation is the explained percentage of the tar-237

get analysis increment, a normalized MSE, defined as238

1−
∑

(ytruth − ypred)2/
∑

y2truth, (1)

where ytruth is the target analysis increment, and ypred is the predicted correction from239

the error correction methods. Having an explained percentage of 100% represents a per-240

fect prediction, and having 0% means the correction method neither improves nor de-241

grades the forecast. Negative values indicate that the correction has degraded the fore-242

cast skill.243

Performance of the NN methods is assessed by comparison to the three linear base-244

lines, which are also computed both from the sampled and smoothed datasets (the same245

datasets used for NN training) to ensure a fair comparison with the NN methods. All246

error correction methods are evaluated using both reduced datasets in the full 3 months247

of independent testing period for offline testing.248

For the offline evaluation, we include also a close replica of the BL20 setup. The249

main difference of this replica from our column NN is the lack of some ancillary infor-250

mation about physical processes such as radiative fluxes, land-sea-ice mask, etc. In ad-251

dition, the longitude, the time of the day, and the day of the year information is not trans-252

formed into since and cosine form as in our column NN.253

We use the analysis increment in the testing period as “truth” for offline evalua-254

tion so that the NNs can be evaluated without being integrated with the FV3-GFS model.255

The performance metric is aggregated over the whole globe and the entire testing pe-256

riod. It should be emphasized that the column NN and the low-res CNN are trained with257

the sampled and smoothed datasets, respectively, and hence the truth for evaluating the258

performance of the NNs is specific to each dataset. For this reason, separate baselines259

are created for each dataset for a fair comparison, and thus we do not compare the col-260

umn NN and low-res CNN directly in the offline evaluation.261

2.4.3 Online evaluation262

For the online evaluation, we examine the forecast error changes resulting from the263

corrections predicted by the NNs. To achieve this, the error correction needs to be in-264

tegrated with the model workflow. This integration would normally require interfacing265

between the FORTRAN-based FV3-GFS and the typically Python-based machine learn-266

ing libraries (e.g., Ott et al., 2020). To circumvent this software engineering challenge267

and develop a prototype, we use temporary intermediate files to exchange data between268

the FV3-GFS model and the trained NN. Using the FV3-GFS utility for ingestion of DA269

update files in the Gaussian grid space, all error corrections are applied directly to the270

forecast fields.271

As the analysis increment embeds the information of errors that accumulates over272

6h interval, it is pragmatic to make this file-based update at the end of each 6h forecast273

segment using the NN predicted corrections. This approach is not ideal for an operational274

forecast, as it would require stopping the model integration and initializing the machine275

learning package and the NNs every 6 hours.276

Only the hourly seasonal moving average baseline is included in the online eval-277

uation. Here the linear baseline is computed from the dataset in the original model res-278

olution (not the reduced dataset used for NN training). The linear baseline and the col-279
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Input in T21

Output in T21

Spectral

truncation


 

Low-res CNN
 

Spectral upsampling

by zero padding


 

Input in C192

Output in C192

Figure 3: Data processing pipeline for the online low-res CNN correction. Starting from
the forecast input in the original C192 Gaussian grid space, the data are down-sampled by
spectral truncation to T21 Gaussian grid space. The CNN takes in forecast fields in T21
and predicts the corresponding correction fields in T21. The predicted error correction in
T21 is then up-sampled by zero padding in spectral space.

umn NN are straightforward to integrate into the forecast workflow. Although the col-280

umn NN is trained from the sampled dataset, it can be applied directly to each column281

in the original C192 resolution since the data reduction simply extracts a subset from282

the original column data, and column NN does not require neighboring grid information.283

In contrast, additional spectral operations are required for using the low-res CNN for on-284

line correction in the original resolution (C192), because it is trained to operate at a lower285

resolution and depends on neighboring information. The learned spatial dependencies286

within the kernel are not applicable across different resolutions. Figure 3 illustrates the287

data processing pipeline for performing a low-res CNN correction online. Starting from288

the input, the background forecast is truncated to T21 spectral resolution. The result-289

ing CNN-predicted corrections at T21 resolution are then upscaled (through zero padding290

of higher harmonics) to the original T192 truncation before ingesting them into the FV3-291

GFS forecast model.292

To evaluate the online performance of the error correction methods, we examine293

two tasks essential for operational NWP: (1) sequential DA and (2) 10-day free forecasts.294

Their workflows are integrated with the error correction methods, as illustrated in Fig-295

ure 4. We use 3D-Var as a relatively low-cost option for DA. The error correction is ap-296

plied to the model forecast to correct the background fields before the assimilation of ob-297

servations. Ideally, an improved background should also lead to an improved analysis298

and subsequent forecast. For the extended free forecast, we apply the error correction299

to a 6h forecast segment, from which we initiate the subsequent 6h segment until a full300

10-day forecast is obtained. To examine the quality of the background produced by 3D-301

Var and also the 10-day forecasts, the ECMWF IFS analysis data are used as “verify-302

ing truth” to compute forecast errors. This is appropriate because the quality of the anal-303

ysis produced by 3D-Var and the 10-day forecasts at reduced resolution are significantly304
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Analysis Analysis Analysis

model forecast

DA correction
NN correction

BKGD


Cor. BKGD


BKGD


Cor. BKGD


Initial condition

06h model forecast
NN error correction

FCST06


Cor. FCST06

FCST12


Cor. FCST12

(a) sequential DA with NN correction

(b) concatenated 6h forecast with NN correction

Figure 4: Schematic illustration of the integration of the error corrections with the work-
flow of (a) sequential DA and (b) concatenated 6h free forecasts.

lower than the operational IFS analysis. Due to resource limitations, the DA experiment305

spans only the second month of the testing period (January 2021), and 10-day forecast306

experiments are run only once per day at 18Z of the same month (31 cases in total).307

3 Results308

3.1 Offline performance309

We first examine the offline performance of the linear baselines and the NN approaches310

in predicting the analysis increments in the testing period of the two reduced datasets.311

To understand how our NNs perform, we compare the skill of the annual average (blue),312

seasonal moving average (red), hourly seasonal moving average (yellow), a close replica313

of the setup of BL20 (green), and our two NN approaches (orange) in Figure 5.314

All NN approaches substantially outperform the linear baselines for all variables315

in both reduced datasets. The hourly seasonal average is generally the best performing316

linear baseline method and will be examined in online correction experiments in a later317

section. The low-res CNN (Fig. 5 b) and the column NN (Fig. 5 a) slightly outperform318

our replica of BL20 in the smoothed and sampled datasets respectively. The corrections319

in temperature and specific humidity appear to be more predictable than that in the winds.320

Comparing the performance of the linear baselines and the NNs for each variable reveals321

the predictability originating from the average, seasonal cycle, diurnal cycle, and the state-322

dependent components. For instance, the hourly seasonal baseline method (yellow) re-323

veals the periodic model error components, while the NNs (green and orange), with both324

forecast and time information inputs, extracts the state-dependent components in ad-325

dition to the periodic components of the model errors. The difference between the per-326

formance of the two methods measures to some extent the predictability originating from327

the state-dependent error components learned by the NNs. For temperature, the annual328

average provides little skill for prediction, whereas the seasonal cycle and the diurnal cy-329

cle contribute some prediction skill, especially on large scales (shown in the smoothed330

dataset). In this case, the prediction skill of the state-dependent component from the331
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Figure 5: Offline performance of linear baselines (annual average, seasonal moving aver-
age, hourly seasonal moving average), close replica of the BL20 approach, and the neural
network implemented in this study in predicting the analysis increment of temperature,
specific humidity, u- and v-component wind in the testing period of the (a) sampled
dataset and (b) smoothed dataset. Performance metric is the global explained percentage
formulated in Equation 1.
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NNs provides an additional 10% of the explained percentage to the hourly seasonal av-332

erage. On the other hand, the annual average of the specific humidity itself provides a333

significant portion of predictability in the linear methods, and the NNs add another 30%334

to the performance metric on top of the linear baseline. The linear components are not335

predictive for the winds (especially for the u-wind), and the state-dependent components336

in the winds yield also roughly 10% additional skill, similar to that for the temperature.337

When comparing across the two reduced datasets, the skill for the smoothed dataset is338

generally higher owing to the smoothing effect, indicating that the large-scale features339

are more predictable. For this different nature in the datasets, we do not make a direct340

comparison between the performance of low-res CNN and column NN in the offline eval-341

uation.342

3.2 Sensitivity analysis343

To understand the error characteristics captured by the NNs, we examine the av-344

eraged gradients of the column NN subject to all training samples. This is one of many345

methods (Mamalakis et al., 2022) that allows one to examine how the output of the NN346

depends on the input. We visualize the averaged gradient in the Figure 6 with the ver-347

tical and horizontal axes representing the input and output respectively. Note that each348

column of blocks in the figure represents a NN trained separately for predicting differ-349

ent variables. When training the NNs, the input and output data are normalized using350

the mean and standard deviation calculated from the training dataset, so the values are351

non-dimensional and the sensitivities are realized at the forecast mean for each level. For352

simplicity, we refer to the normalized inputs as forecast anomalies as they are deviations353

from the mean value of each level. Positive (negative) sensitivity values indicate that the354

NN adds corrections of the same (reverse) sign as the anomalous forecast.355

Figure 6 (top) shows the sensitivity of the NN predicted corrections to the tem-356

perature, specific humidify, u- and v-wind forecast inputs. The highest sensitivity ap-357

pears to be on the diagonal blocks, meaning that the corrections are most sensitive to358

the forecasts of the same variable. The diagonal pattern of negative values across all vari-359

ables indicates that the column NN reduces local forecast anomaly, except for the block360

of u-wind, which appears to only have gradients at some of the top levels (e.g., above361

10 hPa). The immediate parallels of the diagonal with positive values show that the fore-362

cast anomalies at levels right above and below increase anomalies at the levels in between363

(e.g., below 150 hPa around the diagonal line of the temperature diagonal block). Around364

the diagonal line, there are several parallels with alternating signs that fade away as the365

vertical distance from the diagonal line increases (e.g., around the diagonals of the di-366

agonal blocks of temperature, specific humidity, and v-wind), indicating the vertically367

localized influences of the forecast input features. Notice that the widths of the diago-368

nal parallels are thinner in the stratosphere than in the troposphere (below 150 hPa).369

The off-diagonal blocks represent the cross-variable sensitivities. The sensitivity370

of the specific humidity correction to the temperature forecast input is the largest off-371

diagonal block, followed by the sensitivity of temperature corrections to the tropospheric372

forecasts of specific humidity, showing that the model errors of the two variables are closely373

related to each other. The diagonals of these two off-diagonal blocks are positive, mean-374

ing that the anomaly of one variable will increase the anomaly of the other. The wind375

forecasts also provide some information for predicting the temperature and specific hu-376

midity corrections, but not the other way around. The wind corrections do not depend377

on the forecast of other variables. We also note that the entire matrix of blocks is non-378

symmetric. For example, the prediction of humidity correction is more sensitive to the379

temperature forecast than the other way around.380

On the right-lower (troposphere) quarter of the blocks corresponding to the pre-381

diction of temperature and specific humidity corrections, the horizontal patterns suggest382
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cillary (e.g., boundary condition) input variables measured by the averaged gradient of
the column NN that performs the best for each T, Q, U, and V variables.
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a homogeneous response of a thick tropospheric layer to a single level of tropospheric fore-383

casts. Except for the tropospheric homogeneous response, note that both the off-diagonal384

blocks and the off-diagonal elements of each block are mostly blank, suggesting that the385

sensitivities are sparse and are local in both vertical direction and variable space. Such386

a sparse pattern indicates that a NN that spans the entire atmospheric column may not387

be the most efficient implementation for predicting the correction, and a vertically lo-388

calized NN may have improved performance.389

Figure 6 (bottom) shows the sensitivity of the NN predicted corrections to the an-390

cillary inputs. Against our intuition and the observed strong diurnal components in the391

temperature errors, the hour of the day information is the least important among all the392

ancillary input information. This insensitivity could result from the inclusion of ther-393

modynamical variables, such as radiative fluxes, that may provide a sufficient source of394

information representing the diurnal cycle. Many of the large responses are either only395

in the upper levels or only in the troposphere, which is consistent with the diagonal pat-396

tern of localization in Figure 6 (top). Only a few input features (e.g., clear sky upward397

long wave flux at toa for temperature and latitude for v-wind) show approximately the398

same response magnitude to both above and below 150hPa. Given that most of the se-399

lected input features are hydrological and thermodynamic variables, they are most help-400

ful in predicting the temperature and specific humidity corrections, but not the wind cor-401

rections.402

3.3 Online testing performance403

Here we compare the hourly seasonal average (will be referred to as linear base-404

line hereafter), low-res CNN, and column NN applied as online forecast error corrections.405

We point out that due to the different data reduction methods and the different406

NN architectures, the predicted corrections from the three methods appear quite differ-407

ently in the original resolution for online testing. Figure 7 compares in original resolu-408

tion the prediction of surface temperature corrections from the three methods for a case409

extracted from the 10-day forecast experiment. The linear baseline correction has gran-410

ular spatial features with detailed information since it is simply a moving average of anal-411

ysis increments centered on the same day of the year of the corresponding forecasts. On412

the other hand, the spectral data reduction of the low-res CNN smooths out all the fine413

features smaller than the resolved wave number. With data reduction using regular sam-414

pling, the column NN balances between the two and preserves many of the fine spatial415

features using the same amount of training data as the low-res CNN. All three methods416

agree well with one another on the larger scales. We note that the differences in fine fea-417

tures are smaller in higher model levels, and hypothesize that the primary source may418

originate from the inhomogeneity in surface conditions. At this point, it is unclear from419

Figure 7 whether the fine spatial features of the linear baseline and column NN are valid420

corrections or simply noise that should be removed. The online experiments in the fol-421

lowing sections, which actually apply the corrections to the forecasts, will allow us to quan-422

tify the impact of these small-scale features and whether they actually reduce the fore-423

cast error.424

3.3.1 Correcting sequential 3D-Var425

The improvement to the background as a function of model pressure level is shown426

in Figure 8. The shading area shows for reference the magnitude of the control RMSE,427

where no corrections were applied to the forecasts. For temperature and specific humid-428

ity, the column NN correction generally outperforms the other two methods except at429

the surface boundary layer below 950 hPa, where the linear baseline provides the largest430

error reduction. In the mid to upper troposphere, all three methods provide none or even431

slight degradation of the temperature. The humidity correction reduces the forecast er-432
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Figure 7: Comparison of surface temperature corrections [K] generated from three correc-
tion methods: (a) linear baseline (hourly seasonal moving average), (b) CNN trained on
the smoothed dataset, and (c) column NN trained on the sampled dataset.

ror from the surface to the upper troposphere by around 10% compared to the control433

background. The column NN and the low-res CNN correct a huge portion of the back-434

ground error at the top few levels. For u-wind, all corrections fluctuate drastically be-435

tween improvement and degradation in the upper levels and are nearly zero from the sur-436

face to the middle troposphere. The linear baseline provides only slight improvements437

in u-wind in the lower troposphere. When compared with the relatively skillful correc-438

tions in the offline evaluation, this poor online performance may indicate a generaliza-439

tion issue in predicting U-wind corrections. This issue could be associated with a sim-440

ple overfitting problem, but it could also suggest a more complicated situation where there441

is other state-dependent information in the increments that is irrelevant to estimating442

the model error. It would require further analysis to understand the poor performance443

in predicting U-wind corrections. We will pursue this analysis in future work and would444

advise for now against including the NN predicted U-wind corrections (especially above445

tropopause) in relevant applications. The column NN outperforms the linear baseline446

above the middle troposphere for the v-wind, especially at the upper levels. Overall, the447

best performing method is the column NN. The linear baseline surprisingly provides the448

best correction in the boundary layer. This may be due to the strong periodic compo-449

nent of surface errors and the granular spatial features preserved by the linear baseline.450

In contrast, the low-res CNN in many cases performs the worst, perhaps due to the loss451

of detailed spatial information. The column NN strikes a balance between preserving the452

fine spatial features and reducing the data size.453

To further examine the latitudinal distribution of the improvements, we show the454

relative RMSE changes in zonal mean cross section in Figure 9. For the temperature er-455

ror, the largest improvements of all methods in near-surface levels are found in the south-456

ern tropical to subtropical regions and the higher latitude regions for both hemispheres.457

The southern tropical and subtropical temperature improvements extend upward to ap-458
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of model pressure level (vertical axis) by applying the error correction methods (Linear
baseline: blue, Low-res CNN: yellow, Column NN: green) to the sequential 3D-Var exper-
iment. Forecast improvements are shown as negative values (indicating error reduction).
Changes in temperature, specific humidity, u-component wind, and v-component wind
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the negative side of x-axis for the ease of comparison. Symmetric logarithmic scale be-
yond certain threshold (0.001 for Q; 0.1 for T, U, and V) is used for horizontal axis for
accommodating large vertical variations in RMSE.

proximately 700-850 hPa. The temperature improvement is quite uniform in the top lev-459

els, except that there are a few levels with degradation in the tropics for the column NN.460

The improvement of specific humidity centers at the equator and extends poleward to461

30 degrees. Its vertical extension goes from surface to 950 hPa for the linear baseline and462

the low-res CNN methods, but all the way to 300 hPa for the column NN. Note that the463

column NN degrades the forecast in the polar regions for nearly the entire troposphere464

column. We ignore the relative error changes for specific humidity above 300 hPa ow-465

ing to the trace amount of water vapor at such high altitudes, where small changes would466

appear to be significant. The u-wind corrections are sporadically distributed in the sur-467

face boundary levels for linear baseline, in the top levels for the two NN methods, and468

in the stratosphere for all methods. For v-wind, the two NN methods both reduce the469

error uniformly in the top levels, and the column NN extends the improvement down-470

ward to the upper troposphere in the tropics. Note that there is a strong improvement471

from the linear baseline in the southern polar region in the surface boundary levels for472

both u- and v-winds that are not captured by the NN methods. Overall, the column NN473

provides improvements to more areas, including the tropical troposphere, polar bound-474

ary layers for temperature and humidity, and upper levels for all variables, while the lin-475

ear baseline captures the periodic error components and provides better surface bound-476

ary corrections.477

In Figure 9, we observe a significant response in forecast improvement in the lower478

troposphere in the tropical/subtropical regions, especially in temperature and specific479

humidity fields. This motivates the examination of the temporally and zonally averaged480

corrections to each variable in the troposphere (Fig. 10). Note that the overall distri-481

bution of the positive and negative correction is similar across different error correction482

methods, especially for the temperature and humidity fields. For temperature, all three483
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Figure 9: Zonal mean cross section of background relative RMSE changes [%] by apply-
ing the error correction methods (Linear baseline: top, Low-res CNN: middle, Column
NN: bottom) to the sequential 3D-Var experiment. Changes in temperature, specific hu-
midity, u-component wind, and v-component wind are shown respectively in columns
from left to right. Forecast error reduction is shown as negative value (blue). The specific
humidity levels above 300hPa is shaded owing to the trace amount of water vapor.
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methods show a negative correction from surface to 700 hPa and a positive correction484

above 700 hPa in the tropics. The specific humidity correction appears to have a sim-485

ilar pattern to the temperature corrections but with the sign reversed, which is consis-486

tent with previous study (Fig 13 a and c in Bengtsson et al., 2019). These features in-487

dicate the model has a consistent warm and dry bias in the lower boundary layer while488

having cold and wet bias in the upper troposphere. The wind corrections are rather com-489

plicated, but the V-wind correction shows the error correction methods enhance a con-490

vergent flow below 950 hPa and a divergent flow between 150 and 400 hPa at the equa-491

tor. These features in the averaged temperature, humidity, and V-wind corrections in-492

dicate a Hadley-like systematic error in the model. We also point out that the averaged493

linear baseline correction is equivalent to an average of increments, which corresponds494

to Fig. 15 of Crawford et al. (2020), in which the specific humidity correction appears495

qualitatively similar to that in Fig. 10.496

3.3.2 10-day forecast correction497

Figure 11 compares the error changes caused by error correction methods as a func-498

tion of model levels and forecast lead times for all variables. Overall, the NN methods499

provide improvements that increase with forecast lead time for most levels, except for500

one of the top levels for temperature ( 0.1 hPa) and another for u-wind (10 hPa). The501

column NN performs slightly better than the low-res CNN with a similar pattern. The502

linear baseline corrections are mixed with both improvement and degradation in the fore-503

casts at different lead times. Some degraded levels start with a slight increase of error,504

but the error grows with the increased lead times, such as the layers around 10 hPa for505

temperature, u- and v-wind. Another interesting type of forecast degradation emerges506

at later forecast lead times from the earlier improvements, such as the temperature fore-507

casts at 300-950 hPa and the specific humidity forecasts from 700 hPa to the surface.508

This interesting sign change takes place somewhere between 2-6 days and is an indica-509

tion of the over-correction also observed by Crawford et al. (2020). The corrections to510

temperature and specific humidity in the lower troposphere (below 950 hPa) are the only511

few regions where the linear baseline outperforms the NN methods. However, the hu-512

midity corrections go from error reduction to error increase after 4 days. We observe no513

change of sign for the NN methods, indicating that the corrections are state-dependent514

and less likely to overcorrect the forecasts. The levels of the largest improvement at the515

early lead times are consistent with the 3D-Var results, except for the u-winds where the516
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Figure 11: Forecast RMSE change averaged over 30 cases as a function of model pressure
level (vertical axis) and forecast lead time (horizontal axis) by consecutively applying the
error correcting methods (linear baseline: left, low-res CNN: center, Column NN: right)
to 10-day forecasts for every 6h segments. Changes in temperature, specific humidity,
u-component wind, and v-component wind are shown respectively in rows from top to
bottom. Blue represents the forecast improvement, whereas red indicates degradation.

improvements were not obvious in the previous experiment but quite large in the 10-day517

forecast results. We suspect that the improvement in u-wind may come from the improve-518

ment in v-wind owing to their high correlation. This guess may be supported by the sim-519

ilarity between the u- and v-wind error changes in the figure. At later lead times, there520

are improved levels that appear to be an extension of the nearby levels that are largely521

improved from earlier lead times.522

4 Conclusions523

A NN-based correction is applied to the NOAA FV3-GFS NWP model as a proof524

of concept to demonstrate the potential of machine learning methods to reduce system-525

atic model errors in operational numerical weather forecasts. In this study we system-526

atically compare the linear baseline similar to Crawford et al. (2020), a state-dependent527
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1D column NN similar to BL20, and a more complicated convolutional NN, which is an528

extension of the 1D column NN. Our study finds that the 1D column NN is capable of529

reconstructing the global variability of the systematic model error as revealed in our lin-530

ear baseline (Fig. 10). Similar to prior work (Crawford et al., 2020), this global variabil-531

ity has a Hadley-like structure and may correspond to the systematic error in tropical532

convection activities. When we compare linear baseline to state-dependent correction533

generated with the NN, we find state-dependent corrections considerably improve error534

predictions in all of our tests, including offline testing, cycling DA, and 10-day forecasts.535

We also find that state-dependent corrections provided by the NN avoid the problem of536

over-correction of bias in the extended range forecasts by the linear baseline (as was doc-537

umented by Crawford et al. (2020) and replicated in this study). We attribute this to538

the capability of the NN on predicting the corrections conditioned to the forecast states.539

Comparisons between the 1D column NN corrections (originally introduced by BL20)540

and the more sophisticated convolution network (introduced in this paper) showed that541

inclusion of horizontal information has very limited positive impact in the offline tests542

but had neutral impact in tests with cycling DA and 10-day forecasts. We infer that the543

nature of the short-term model error (as revealed in the analysis increments) is domi-544

nated by the vertical processes such as moist physics, vertical mixing, cloud microphysics,545

radiation, and the gravity wave drag.546

We examine the sensitivity of the NN-predicted corrections to the input features547

and reveal a highly localized dependency structure in the vertical direction and in the548

variable space between the two. The temperature and specific humidity corrections are549

found to be highly dependent on each other’s forecasts, and the corrections mostly de-550

pend on the forecasts in nearby vertical levels. Such a vertical localization of dependency551

is the strongest in the upper atmosphere, while both temperature and specific humid-552

ity in the troposphere show a rather homogeneous response of a thick layer to forecasts553

at certain levels. The sensitivity to the ancillary information reveals that the radiative554

fluxes may be a more generalizable input feature than time information indicated by the555

strong periodic components revealed by the linear baselines while the NNs are not par-556

ticularly sensitive to the time of the day and day of the year input features.557

Our sensitivity analysis points to a future direction for improving the NN struc-558

ture. The sparse and localized features suggest multiple highly localized NN for differ-559

ent vertical levels may provide more accurate and efficient prediction of the error cor-560

rections. Our results in the cycling DA and 10 day forecast cycles also encouraged us to561

implement an online evaluator of the NN in the FV3-GFS model to avoid the need to562

start and stop the model to produce background forecast files for ingesting in stand-alone563

NN evaluators. Another promising application to extend this work is to address model564

biases in the context of the historic reanalysis. Specifically, we showed that it is possi-565

ble to detect, learn, and correct model biases with a modern observing system. However,566

as reanalyses are extended backwards in time the observational system becomes sparse567

and insufficient to correct for model biases. This was manifested in previous reanalysis568

as discontinuities in the reanalysis that correspond to introduction of new observing sys-569

tems. If one can apply systematic error corrections learned from the modern system to570

historic periods, one might be able to avoid these artificial discontinuities that compli-571

cate use of the reanalysis products for study of long term climate trends. Lastly, the anal-572

ysis increments may not be the only source for learning model errors. Observation in-573

novations from certain trustworthy observations can also provide useful information about574

systematic model errors (e.g., Laloyaux et al., 2022).575

Data Availability Statement576

The source code for the FV3-GFS model can be found at https://github.com/577

ufs-community/ufs-weather-model. The data assimilation and replay workflows are578

available at https://github.com/jswhit/da scripts and https://github.com/jswhit/579
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Table 1: Input variables for Neural Network

ID Variable name

0-126 temperature
127 log(surface pressure)

128-254 u-component wind
255-381 v-component wind
382-508 specific humidity

509 aerodynamic conductance
510 canopy water evaporation gfs lsm
511 direct evaporation from bare soil gfs lsm
512 sublimation (evaporation from snow) gfs lsm
513 snow phase change heat flux gfs lsm
514 snow cover gfs lsm
515 surface storm water runoff gfs lsm
516 transpiration gfs lsm
517 surface temperature
518 surface temperature over ice
519 2m specific humidity
520 averaged potential evaporation rate
521 surface roughness
522 averaged albedo
523 clear sky downward long wave flux
524 clear sky downward short wave flux
525 clear sky upward long wave flux
526 clear sky upward long wave flux at toa
527 clear sky upward short wave flux
528 clear sky upward short wave flux at toa
529 land-sea-ice mask
530 latitude
531 sin(longitude)
532 cos(longitude)
533 sin(hour of the day)
534 sin(day of the year)
535 cos(hour of the day)
536 cos(day of the year)

Table 2: Hyperparameter search space for Neural Network training

Column NN Low-res CNN

Data reduction Sampling Smoothing
Kernel sizes 1 1 3, 5

Minibatch size 8 8 1
Dropout

probability
0.25, 0.5, 0.75

Learning rate 1e-5, 1e-4, 1e-3
Weight decay 0.01, 0.05, 0.25

Channel number/
hidden neuron

2048, 4096, 8192

Number of layers 3, 4, 5
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replay scripts. The data reduction and training scripts are available at https://github580

.com/tse-chunchen/model error correction.581
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