
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
19
56
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Identification of a lumped, mass-conserving rainfall-discharge model

of the Amazon basin for GRACE data assimilation

Karim Douch1, Peyman Saemian1, and Nico Sneeuw1

1University of Stuttgart

November 23, 2022

Abstract

Previous work based on Gravity Recovery and Climate Experiment (GRACE) data has shown that for certain large river basins

like the Amazon, the empirical storage-discharge relationship reveals an underlying dynamics that is approximately linear and

time-invariant. This is particularly true for the catchment upstream of the Óbidos stream gauge station on the Amazon river. We

build on this observation to put forward, in this case, a simple first-order differential equation that approximates the observed

dynamics. The model formulation includes one parameter that can be physically interpreted as an offset determining the total

drainable water stored in the catchment, while a second parameter characterizes the typical time constant of the draining of the

basin. We determine a value of 1925 km³ for the average total drainable water stored in the catchment during the period 2004 to

2009 and a draining time constant of 27.4 days. The same approach is also tested over eight smaller catchments of the Amazon

to investigate whether or not the storage-discharge relationship is governed by a similar dynamics. Combined with the water

mass balance equation, we eventually obtain two coupled linear differential equations which can be easily recast into a discrete

state-space representation of the rainfall-storage-discharge dynamics of the considered basin. This set of equations is equivalent

to defining an analytical instantaneous unit hydrograph for the whole basin. Besides, the proposed model is particularly suitable

for Bayesian filtering and smoothing or the reconstruction of past unobserved states.
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Abstract13

Previous work based on Gravity Recovery and Climate Experiment (GRACE) data has14

shown that for certain large river basins like the Amazon, the empirical storage-discharge15

relationship reveals an underlying dynamics that is approximately linear and time-invariant.16

This is particularly true for the catchment upstream of the Óbidos stream gauge station17

on the Amazon river. We build on this observation to put forward, in this case, a sim-18

ple first-order differential equation that approximates the observed dynamics. The model19

formulation includes one parameter that can be physically interpreted as an offset de-20

termining the total drainable water stored in the catchment, while a second parameter21

characterizes the typical time constant of the draining of the basin. We determine a value22

of 1925 km3 for the average total drainable water stored in the catchment during the pe-23

riod 2004 to 2009 and a draining time constant of 27.4 days. The same approach is also24

tested over eight smaller catchments of the Amazon to investigate whether or not the25

storage-discharge relationship is governed by a similar dynamics. Combined with the wa-26

ter mass balance equation, we eventually obtain two coupled linear differential equations27

which can be easily recast into a discrete state-space representation of the rainfall-storage-28

discharge dynamics of the considered basin. This set of equations is equivalent to defin-29

ing an analytical instantaneous unit hydrograph for the whole basin. Besides, the pro-30

posed model is particularly suitable for Bayesian filtering and smoothing or the recon-31

struction of past unobserved states.32

1 Introduction33

The Amazon river and its tributaries drain an area of around 5.9 · 106 km2 rep-34

resenting the largest drainage basin in the world and covering about 35% of the South-35

American continent. With an average flow of around 6.6·103 km3 yr−1 (Sproles et al.,36

2015; Dai & Trenberth, 2002; Marengo, 2005), it contributes by about 15 to 20% to the37

world’s total freshwater discharge into the oceans (Clark et al., 01 Aug. 2015; Coe et al.,38

2016), far beyond any other river. The basin is also home to the world’s largest trop-39

ical rainforest and receives annually around 2100mm of precipitation across most of the40

basin, with inter-annual variations between 1000 and 3000mm and peak values up to 4000mm41

in the northwestern part of the basin (de Paiva et al., 2013). The whole watershed can42

be seen as a moisture sink since the yearly aggregated precipitation over the whole basin43

largely outbalances evapotranspiration, the excess water being eventually discharged into44

the ocean. Yet, it accounts for around 15% of global terrestrial evapotranspiration, part45

of which is recycled as new precipitation over the basin. As such, the Amazon plays a46

critical role in the global hydrologic cycle as well as in the global atmospheric circula-47

tion and regional climate (Malhi et al., 2008; Coe et al., 2016; Jahfer et al., 2017).48

Despite this importance, proper quantification of the Amazon basin hydrologic bal-49

ance remains partly elusive: different estimates of precipitation, evapotranspiration, wa-50

ter storage, and discharge across the basin can show significant discrepancies and, when51

combined, can fail to close the water mass budget (see equation (1)) within the error bounds52

(Lehmann et al., 2021). This is particularly true for the evapotranspiration, whose es-53

timates can significantly differ from one data set to another, both in the spatial and tem-54

poral domain (Werth & Avissar, 2004; Chen et al., 2020). For an example of a system-55

atic comparison of different estimates of these components for the Amazon basin, the56

reader is referred to the article by Chen et al. (2020) and Sneeuw et al. (2014); Lorenz57

et al. (2014) for other river basins.58

Our main goal is to propose an approach to refine the discharge and the aggregated59

terrestrial water storage estimates for the Amazon basin by combining in a Bayesian frame-60

work space gravity observations from the Gravity Recovery and Climate Experiment (GRACE)61

mission with in situ discharge measurements and estimated precipitation and evapotran-62
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spiration across the basin. To this aim, we first need to build a rainfall-discharge model63

of the Amazon. This is the object of this article.64

Modelling the water cycle at regional scales relies essentially upon the determina-65

tion of four quantities: precipitation (P ), evapotranspiration (ET ), terrestrial water stor-66

age (TWS but referred to as S in the equations), which corresponds to the summation67

over a vertical column of surface and subsurface water storage, and runoff (Q), which68

represents the surface and subsurface flow of liquid water. These quantities are related69

to each other via the water mass balance equation equation (1)70

dS

dt
= P − ET −Q (1)

which states the conservation of mass. Besides this equation, a crucial step in the pro-71

posed approach is to model the coupled dynamics of both terrestrial water storage and72

discharge. Depending on the spatial and temporal resolution we seek to achieve, the nu-73

merical modelling of a real-world basin can quickly become intractable as the involved74

physical processes can be multi-scale, nonstationary and controlled by complex, spatially75

heterogeneous features, whose typical size can be orders of magnitude smaller than the76

catchment. A faithful representation of these processes would therefore require collect-77

ing an immense amount of information about the surface and sub-surface spatially dis-78

tributed properties over the whole basin, which is not conceivable nowadays or in the79

near future. Consequently, it should be borne in mind that all hydrologic models are in-80

evitable, at some level of detail, a simplified representation of real-world physical pro-81

cesses (Singh & Woolhiser, 2002; Vrugt et al., 2008; Yilmaz et al., 2010).82

When only quantities aggregated over the whole basin are considered, the combi-83

nation of all the hydrologic and hydraulic processes can sometimes result in an appar-84

ent simpler behaviour. In such a case, parsimonious heuristic or conceptual models can85

reproduce the observed dynamics satisfactorily. We use this observation to model the86

storage-discharge relationship in the large catchment upstream of the Óbidos gauge (see87

Figure 1). Óbidos (state of Parà, Brazil) is located in the downstream region of the Ama-88

zon river at a section where the river has a single and relatively narrow stem. It is ap-89

proximately 800 km upstream of the river mouth, making the influence of the Atlantic90

ocean tides on the flow negligible. Still, with an area approximately 4680 000 km2, the91

catchment covers 80% of the whole Amazon basin.92

After analysing the empirical function Q = f(∆S) for the Óbidos catchment, where93

∆S is the monthly TWS anomaly estimated from GRACE data, Riegger and Tourian94

(2014) concluded on the existence of an underlying linear time-invariant (hereafter ab-95

breviated LTI) dynamic system governing the time evolution of these quantities. The96

plot of the discharge Q as a function of ∆S is reproduced in Figure 2 with updated and97

extended time series. As already noticed, the observed dynamics exhibit an annual hys-98

teresis cycle demonstrating a dependence of the base flow, not only on the TWS anomaly,99

but also on its own past values. Besides, it evolves in an anti-clockwise direction, mean-100

ing that for a given value of the TWS anomaly, the corresponding discharge is larger when101

the TWS is decreasing (mostly during the dry season) than during the wet season. We102

build on these observations to put forward a simple dynamic model relating Q and ∆S103

in the next sections. Furthermore, we investigate whether such an approach is general-104

isable and to what extent similar dynamics can be observed in eight smaller catchments105

of the Amazon basin (see Figure 1) and be modelled in the same way.106

The remainder of the article is organised as follows: in section 2 we describe the107

different data sets needed to quantify the discharge and the aggregated TWS anomaly108

for the different gauge stations considered in this study. In the next section, we propose109

and analyse a linear storage-discharge model that will construct the final lumped rainfall-110

discharge model and discuss its physical interpretation in detail. We also describe the111

–3–



manuscript submitted to Water Resources Research

Figure 1. Location of the different stream flow gauges considered in this study and their

corresponding upstream catchments (in bright colours). The gauges are Óbidos (Ób.), Caracarai

(Ca.), Curicuriari (Cu.), São Paulo de Olivença (SPO), Labrea (La.), Porto Velho (PV), Mani-

coré (Ma.), Barra de São Manuel (BSM) and Altamira (Al.). Note that the Manicore upstream

catchment includes the Porto Velho catchment and the Óbidos upstream catchment encompasses

all the other catchments except Altamira and Barra de São Manuel.

method used to calibrate and evaluate the model against observation data. Finally, in112

section 4, the model fitness for discharge simulation is discussed in light of the calibra-113

tion results.114

2 Data sources and pre-processing115

2.1 Discharge records116

We use river discharge time series from gauge records provided by the Global Runoff117

Data Centre (GRDC (GRDC data archive, 2021)). Besides the Óbidos gauge, we have118

selected eight other streamflow gauges located in the Amazon basin fulfilling the follow-119

ing conditions:120

• the daily discharge records are available without major data gaps during most of121

the GRACE mission lifetime, and122

• the corresponding upstream catchment has an area sufficiently large to be com-123

patible with the spatial resolution of GRACE gravity field solutions, which is is124

estimated by Vishwakarma et al. (2018) to be around 63 000 km2.125

The name, location and divide of the upstream catchment of these gauges are provided126

in Figure 1. The daily data are used to compute the monthly averaged discharge cor-127

responding to the GRACE monthly solutions. A month is discarded if more than 10 data128

points are missing. As an example, the time series of the discharge at the Óbidos gauge129

used in Figure 2 is plotted in Figure 3.130

–4–
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Figure 2. Phase portrait representing the discharge as a function of the aggregated TWS

anomaly across the catchment upstream Óbidos (expressed in terms of Equivalent Water Height

in meters). The observed dynamics clearly displays a hysteresis cycle in an anti-clockwise direc-

tion.

2.2 TWS anomaly from GRACE observations131

GRACE was a satellite gravimetry mission consisting of a constellation of two iden-132

tical satellites launched in March 2002, aiming at mapping the month-to-month Earth’s133

gravity field variations (Tapley et al., 2004, 2019). Until its end in October 2017, GRACE’s134

observation records have been used to estimate 163 monthly solutions of the Earth’s grav-135

ity field out of 187 months. These monthly models can be inverted to quantify the cor-136

responding mass change on the Earth’s surface, which on the continents reflect the TWS137

redistribution. Yet, it should be borne in mind that the physical quantity related to the138

TWS estimated with GRACE and GRACE-FO observations is by no mean an absolute139

quantity but rather an anomaly, that is, the deviation of the current TWS for a given140

month relative to an unknown reference which is the average total TWS during the pe-141

riod 01.01.2004 to 09.31.2009 (Save et al., 2016). We show in the next section how the142

proposed methodology can help estimate this unknown constant hereafter denoted S0.143

In May 2018, a GRACE Follow-On mission (abbreviated GRACE-FO) was launched to144

continue the multi-decadal record of the Earth’s gravity field variations (Tapley et al.,145

2019). First analyses show that the quality of released monthly gravity models of GRACE-146

FO is slightly improved compared to GRACE (Landerer et al., 2020).147

Among the various gravity model solutions computed from GRACE data by the148

three official Science Data System centres, we consider only the latest (RL06 version 2)149

mascon solutions released by JPL (Wiese et al., 2016) and CSR (Save et al., 2016; Save,150

n.d.). Mascon solutions offer the possibility to constrain the gravity field solutions with151

prior information drawn from geophysical models, preventing, in particular, the appari-152

tion of north-south stripes degrading the classical unconstrained spherical harmonic so-153

lutions (Watkins et al., 2015). In addition, the mascon solutions are less damaged by leak-154

age error and compare better to in situ data (Landerer et al., 2020). Besides the data155

gap of 11 months between GRACE and GRACE-FO, GRACE data after August 2016156

–5–
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Figure 3. Top: Comparison of the TWS anomaly expressed in terms of Equivalent Water

Height (EWH) aggregated over the Óbidos watershed derived from GRACE data and computed

from CSR and JPL mascons solutions. The grey patches correspond to data gaps. Bottom: daily

(in light grey) and monthly averaged discharge observed at Óbidos from January 2003 to January

2020.

have been purposely discarded since the raw data collected by the two satellites were much157

more degraded at the end of the mission. As a consequence, only the data from January158

2003 to August 2016 are used for the model calibration and validation since a time se-159

ries with a constant sampling period is needed. Small data gaps during this period are160

filled in by spline interpolation. Comparing the aggregated TWS anomaly across the Óbidos161

catchment computed from the CSR and JPL solutions shows no significant difference (see162

Figure 3). As a consequence, we only use the JPL mascon solution. Based on this dataset163

and the discharge records, the phase portrait for the eight other flow gauges is computed164

and plotted in Figure 4.165

3 Storage-discharge relationship in the Óbidos Catchment166

This section aims to show that for monthly-averaged values, the storage-discharge167

relationship in the case of the catchment upstream of the Óbidos gauge station on the168

Amazon river is well approximated by a first-order ordinary differential equation, whose169

parameters can be estimated from data. For the remainder of this article, all the quan-170

tities such as ∆S or Q are considered as monthly averaged, continuous-time variables.171

3.1 A dynamic model172

Following the investigations of Riegger and Tourian (2014) on global scale storage-
discharge relationships for large drainage basins, Tourian et al. (2018) proposed a ba-
sic storage-discharge model for the case of the Óbidos upstream catchment and used it
to determine the total drainable water storage (TDWS) in the catchment. They define
this quantity as ”the total stored water that can exit or drain the river basin through

–6–
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Figure 4. Phase portrait representing the discharge as a function of the aggregated TWS

anomaly across the eight different catchments considered besides Óbidos. When a hysteresis cycle

is clearly visible and the direction of cycling unambiguous, a black arrow indicates the direction

of evolution.
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natural hydrologic runoff generation as the time approaches infinity, [..] given no addi-
tional inputs”. The model has the form

Q(t) =
1

θ
S(t+∆t) =

1

θ
(S0 +∆S(t+∆t)) (2)

where θ is a time constant and ∆t is a time shift. This equation assumes that the wave-173

form of the TDWS time series S is identical to the waveform of the base flow Q, except174

for scaling and a shift in time by ∆t. This seems to be an acceptable approximation since175

the temporal evolution of both quantities is largely dominated by a smooth seasonal vari-176

ation (see Figure 3).177

The core idea of our approach originates from the observation that a hysteresis cy-
cle in an LTI system can rather be approximated by a model as simple as a first-order
ordinary differential equation (abbreviated hereafter ODE). We, therefore, propose the
following continuous-time ODE to model the relationship between Q and TDWS Sd:

dQ

dt
+

Q

τ
= ω2

nSd (3)

where τ is a time constant while ω2
n is a squared frequency, note that τ must be posi-

tive in order to keep the system stable. A more detailed physical interpretation of these
parameters is given in the next section. This model is totally heuristic in the sense that
it is not derived from first principles but corresponds rather to an approximate and par-
simonious representation of the dynamic system. Similarly to equation (2), We can adapt
equation (3) to the water storage observations derived from GRACE data and decom-
pose the terrestrial water storage as Sd(t) = S0 +∆S(t) where ∆S(t) is the observed
monthly anomaly with respect to an unknown volume of water S0:

dQ

dt
+

Q

τ
= ω2

n(∆S + S0) (4)

An implicit yet fundamental assumption made in the previous equation is that the vari-178

ations of the TWS anomaly observed by GRACE correspond to the variations of the quan-179

tity of water available for drainage: ∆S = ∆Sd. In other words, the TWS anomaly is180

assumed to only reflect water storage connected in one way or another to the drainage181

system. As such, no precipitation water remains indefinitely in storage disconnected from182

the river network.183

3.2 Physical interpretation of the model184

Provided that equation (4) is a reasonable model of the observed dynamic, one can
get a more insightful interpretation of the three unknown parameters τ , ω2

n and S0 by
considering, in addition, the water mass balance equation (1). Let us assume that there
are no underground outflow or secondary arms of the river draining water out of the catch-
ment. It follows that the spatial integral over the whole catchment of the runoff is equal
to the discharge Q at the outlet in Óbidos. We can, therefore, couple equation (4) and
the mass balance equation (1) which remains identical for monthly averaged quantities
and where the time derivative of S is replaced by the time derivative of ∆S. These two
coupled first-order ODEs can be recast into a linear state-space representation:

d

dt

(
Q
∆S

)
=

(
− 1

τ ω2
n

−1 0

)
︸ ︷︷ ︸

Ac

(
Q
∆S

)
︸ ︷︷ ︸

X

+

(
ω2
n 0 0
0 1 −1

)
︸ ︷︷ ︸

Bc

 S0

P
ET


︸ ︷︷ ︸

u

(5)

where for brevity we note the state vector X, the system matrix Ac, the input matrix185

Bc and the input u as indicated in equation (5). For completeness, we can adjoin an ob-186

servation equation187

–8–
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Y = CcX (6)

describing whether Q, ∆S or both are observed. Note that we append an index c to all
the matrices names to stress that they describe continuous-time dynamics. The continuous-
time state-space representation ((5), (6)) constitutes a deterministic and complete de-
scription of the dynamics of the basin aggregated state. In particular, the integration
of the model equations given an initial condition X(t0) and the input time series u yields
the solution:

Y(t) = Cce
Ac(t−t0)X(t0) +Cc

∫ t

t0

eAc(t−τ)Bcu(τ)dτ (7)

Together with a characterization of the observation and process noise, the system188

((5), (6)) would form a stochastic model perfectly amenable to Kalman filtering and smooth-189

ing and in this way, data assimilation. Yet, the structure of the model must still be val-190

idated and the parameters estimated.191

When Cc = (1 0), the model equations boil down to a rainfall-discharge model
of the basin. Alternatively, one can derive the direct rainfall-discharge equation by tak-
ing the time derivative of equation (4) and replacing the time derivative of ∆S by P−
ET −Q. Reformulated in a canonical form, the equation reads

1

ω2
n

d2Q

dt2
+

2ξ

ωn

dQ

dt
+Q = P − ET (8)

where

ξ =
1

2ωnτ

A similar differential equation can be derived for the evolution of ∆S.192

Equation (8) corresponds to the well-known linear system described by a second-193

order ODE, ubiquitous in engineering and a fundamental control theory textbook case.194

The parameter ξ is unitless and is usually called the damping ratio. Here again, the sta-195

bility of the system described by equation (8) requires ξ to be non-negative, that is, ωn >196

0. The parameter ωn is the natural frequency of the system, that is, the frequency at which197

the system would oscillate if the damping modelled by the term 1/τ was zero (in other198

words, τ was infinite). Now, if we assume that after time t = t0 P −ET = 0 and pro-199

viding that the initial values Q(t0) is not null, the solution of equation (8) can be clas-200

sified into four categories inspired by the mechanical analogue of the spring-mass-damper201

system202

• the ”undamped” case corresponding to ξ = 0: the solution general form is S(t) =203

c1 sin(ωnt) + s2 cos(ωnt) where c1 and s1 are integration constants204

• the ”underdamped” case for 0 < ξ < 1: the solution is an exponentially atten-205

uated oscillations of the form S(t) = e−σt(s1 sin(ωdt) + c1 cos(ωdt)) where σ =206

ξωn is the attenuation and ωd = ωn

√
1− ξ2 is the damped natural frequency207

• the ”critically damped” case corresponding to ξ = 1: the general solution form208

is S(t) = (s1 + c1t)e
−ωnt

209

• the ”overdamped” case (ξ > 1): the solution has the general form S(t) = c1e
− t

T1 +210

c2e
− t

T2 where 1/T1 = (ξ −
√
ξ2 − 1)ωn and 1/T2 = (ξ +

√
ξ2 − 1)ωn.211

The two first cases must be a priori discarded as we would expect the gravity-driven drainage212

of a basin where no precipitation takes place to decrease the amount of stored water mono-213

tonically, without any oscillation or overshot. We would therefore expect from the cal-214

ibration results that at least ξ ≥ 1 that is215

2ωnτ ≤ 1 (9)

–9–
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In this case, the solution converges asymptotically and monotonically from Q(t0) to zero.216

Similarly, the storage anomaly tends monotonically from S0+∆S(t0) toward zero, val-217

idating the interpretation of S0 in equation (4) as an offset which, added to ∆S, forms218

the TDWS.219

It is worth noticing that in terms of rainfall-discharge relationship, the proposed220

model is equivalent to a generalized Nash model (J. E. Nash, 1957; Lee & Singh, 1998)221

consisting of a cascade of 2 linear reservoirs with different storage characteristics 1/τ1222

and 1/τ2 as illustrated in Figure 5. The parameters of the suggested model would then223

correspond to: ω2
n = 1

τ1τ2
and τ = τ1τ2

τ1+τ2
. By construction, the damping ratio ξ = τ1+τ2

2
√
τ1τ2

224

of the Nash model is always larger or equal to 1 in virtue of the inequality of arithmetic225

and geometric means and equal to 1 when τ1 = τ2. This is to be contrasted with our226

model, for which there is no guarantee that equation (9) is satisfied unless the calibra-227

tion is explicitly constrained with this inequality. As such, our model can potentially yield228

unrealistic output. Yet, if the goal of the model calibration is to minimize the predic-229

tion error, it might be relevant not to constrain the estimation of the parameters with230

such an inequality and give more flexibility to the model to fit the data at the price of231

lower physical interpretability.232

Figure 5. Generalized Nash model consisting of a cascade of 2 linear reservoirs.

Finally, it is noteworthy that solving equation (8) for a Dirac impulse as input (P =
δ(t), ET = 0) provides an analytical expression h(t) of the Instantaneous Unit Hydro-
graph (IUH) (J. E. Nash, 1957) :

h(t) =
ωn

2
√
ξ2 − 1

(
e−t/T1 − e−t/T2

)
(10)

where T1 and T2 were defined hereinabove. The existence of a ”reasonable” IUH for such233

a catchment as vast as the Óbidos upstream catchment may look surprising at first sight234

but it is actually a direct consequence of approximating the storage-discharge dynam-235

ics as an LTI system. However, this IUH must be considered with caution since a usual236

assumption when using the unit hydrograph theory for flow prediction is that the pre-237

cipitations occur uniformly across the whole area, which is obviously not the case for the238

Amazon basin.239

3.3 Model calibration and evaluation240

The next step requires to identify the three parameters τ , S0 and ω2
n of the linear241

time-continuous (hereafter abbreviated CT) model (4) from discrete-time series data. The242

advantages of estimating directly a CT model are manifold. Besides the fact that most243

physical systems are by nature CT, one key advantage in our case is that the estimated244

–10–
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parameters have a physical meaning, as discussed in the previous section, making eas-245

ier their comparison to reasonable values for falsification. Conversely, discrete model pa-246

rameters depend on the sampling time and it is not always clear how they relate to true247

physical parameters. An extensive discussion on the advantages of direct CT model iden-248

tification from sampled data can be found in Garnier and Young (2012) and Garnier et249

al. (2008). In this study, we use the popular Simplified Refined Instrumental Variable method250

for Continuous-time system (hereafter abbreviated SRIVC method) as implemented in251

the CONTSID toolbox for MATLAB™ (Garnier & Gilson, 2018). SRIVC, as its name252

would suggest, is a simplified version of the RIVC method developed by P. Young and253

Jakeman (1980), which estimates recursively the parameters of a CT model in differen-254

tial equation form along with the parameters of a discrete-time autoregressive moving255

average process associated to the additive coloured noise corrupting the output measure-256

ments. In the SRIVC method the additive noise is assumed to be purely white, allow-257

ing to ignore the ARMA process identification and simplifying greatly the algorithm. While258

both RIVC and SRIVC estimators are under mild conditions consistent and asymptot-259

ically unbiased (Pan et al., 2020), the SRVIC loses the property of minimum variance260

estimates (Garnier, 2011). An in depth description of the SRIVC method is beyond the261

scope of this article and the reader is referred to Garnier (2011), P. C. Young (2002),262

P. C. Young (2008) and the prior references therein for further details.263

We have divided the available time series into two periods: the first, from January264

2003 to December 2010, is used for the model estimation, whereas the second, from Jan-265

uary 2011 to August 2016, is used for validation. Only 1 data point out of 96 has been266

interpolated for the calibration period, whereas they are 15 out of 68 for the validation267

period.268

Although the continuous-time model parameters are directly estimated from dis-
crete data, it is necessary to discretize the ODE equation (4) at the same sampling pe-
riod ∆t as the data at hand for simulation purposes. This requires in particular to model
the inter-sample behaviour of the input signal ∆S(t). In our case, it is sufficient to as-
sume a piecewise linear behaviour that is

∆S(t) = ∆S(tn) +
∆S(tn +∆t)−∆S(tn)

∆t
(t− tn)

for t ∈ [tn, tn +∆t], with tn = t0 + n∆t, n ∈ N. Under this approximation, the exact
discrete state-space representation of the model becomes:

Q(k + 1) = e−
∆t
τ Q(k) + C0S0 + C1∆S(k) + C2∆S(k + 1) (11)

where the coefficients C0, C1 and C2 are given in Appendix A and the time notation tk269

is abbreviated k for simplicity.270

In order to quantify the simulation accuracy of the models, we use the following271

indices:272

• the root-mean-square error (RMSE), which is simply the square root of the mean
of the squares of the deviations of the simulated data with respect to the observed
data:

RMSE =

√√√√ 1

N

N∑
i=1

(Qobs(i)−Qsim(i))
2

(12)

The lower the RMSE, the better the model simulation performance with the limit273

RMSE = 0 in the case where the observed hydrograph is exactly reproduced.274

• the Nash-Sutcliffe efficiency (NSE) (J. Nash & Sutcliffe, 1970) is a normalized statis-
tic that characterizes the relative magnitude of the simulation error with respect
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to the observed signal variance:

NSE = 1−

N∑
i=1

(Qobs(i)−Qsim(i))
2

N∑
i=1

(Qobs(i)−Qmean)
2

(13)

NSE varies between −∞ and 1 with a value of 1 corresponding to a perfect repro-275

duction of the observed hydrograph. A negative value indicates that the observed276

discharge mean value is a better predictor than the model. Conversely, a positive277

value indicates a better performance of the model. According to Moriasi et al. (2007),278

a model can be regarded as satisfactory if NSE > 0.5.279

Since the discharge of most Amazon sub-basins is dominated by a strong seasonal280

signal, it is more pertinent to characterize the performance of the simulation by com-281

puting a modified version of the NSE called the cyclostationary NSE and expressed as282

follows:283

CSNSE = 1−

N∑
i=1

(Qobs(i)−Qsim(i))
2

N∑
i=1

(Qobs(i)−Qmonth(i))
2

(14)

where Qmonth is the 12-month periodic signal with a cycle consisting for each month of284

the multi-year mean discharge value of this month. Similarly to the NSE, a positive value285

of the CSNSE indicates a better ability of the model to capture the annual and inter-286

annual variability than the mean annual cycle.287

4 Results and validation of the model288

4.1 Estimated parameters and evaluation of the models289

The estimated parameter values and the simulation evaluation statistics for the 9290

sub-basins are summarized in Table 1 and 2, respectively. The simulated discharges are291

plotted in Figure 6 for both the estimation and validation datasets. We can first notice292

that, although the condition ξ ≥ 1 was not enforced in the parameter estimation pro-293

cess, it is verified by all catchments. The simulation statistics are rather satisfactory for294

most catchments, with a positive CNSE for six of them when tested on the validation295

dataset. For these cases, it is therefore safe to assert that the storage controls mostly the296

discharge dynamics and a significant part of this dynamics is captured by the proposed297

model. This is particularly true for the Óbidos and São Paulo de Olivença catchments298

for which a CNSE larger than or very close to 0.5 is achieved with the training and val-299

idation data. It is notable that they correspond to the two largest catchments analyzed300

here.301

With a negative NSE for both the estimation and validation dataset, the proposed302

model is clearly not able to capture the discharge dynamics at Caracarai, leading to un-303

realistic parameter values like for instance for τ . We conjecture that the small size of the304

corresponding catchment combined with the inevitable leakage error degrade significantly305

the estimation of the aggregated TWS anomaly derived from GRACE data and thus the306

model parameters. In the case of Barra de São Manuel, we observe a time delay of the307

simulated discharge with respect to the ground truth, leading also to poor performance308

statistics. These poor performances for both catchments could actually have been an-309

ticipated from the observation of their respective phase portrait. The solution Q for a310

–12–
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Table 1. Estimated parameter of equation (5) for the different catchments . The minimum

offset value Smin
0 discussed in section 4.2 is also given for comparison.

catchment τ (days) ω2
n (days−2) S0 (km3) Smin

0 (km3) ξ

Caracarai 544 2.06 · 10−5 26.7 56.8 2.0
Barra de São Manuel 17.4 3.57 · 10−4 114.5 143.2 1.5
Porto Velho 8.20 8.90 · 10−4 208.9 235.2 2.0
Altamira 5.60 1.20 · 10−3 106.7 216.0 2.6
Labrea 0.19 4.88 · 10−2 53.9 70.3 11.9
Curicuriari 2.61 5.60 · 10−3 77.1 87.4 2.6
São Paulo de Olivença 7.65 2.20 · 10−3 239.1 192.2 1.4

Óbidos 27.4 2.75 · 10−4 1925.0 1739.0 1.1
Manicoré 3.15 2.40 · 10−3 268.9 311.8 3.2

Table 2. Simulation evaluation statistics for both the period of estimation (est. data) and of

validation (val. data).

catchment est. data val. data

RMSE (km3) NSE CSNSE RMSE (km3) NSE CSNSE

Caracarai 0.25 -0.07 -3.11 0.20 -0.04 -1.20
Barra de São Manuel 0.26 0.60 -3.28 0.24 0.68 -1.05
Porto Velho 0.34 0.88 -0.41 0.41 0.86 0.32
Altamira 0.30 0.79 -0.21 0.27 0.81 -0.28
Labrea 0.09 0.94 -0.50 0.15 0.84 0.32
Curicuriari 0.17 0.86 0.48 0.19 0.85 0.33
São Paulo de Olivença 0.35 0.93 0.64 0.52 0.88 0.46

Óbidos 0.72 0.97 0.72 1.10 0.94 0.63
Manicoré 0.28 0.96 0.23 0.35 0.93 0.66

stable model given by Equation (4) is necessarily delayed with respect to the dynamic311

input ∆S, which results in a counter-clockwise cycling of the phase portrait Q = f(∆S).312

Yet, as noticed in Figure 4, Caracarai and Barra de São Manuel clearly exhibit a clock-313

wise cycling. If we remain within the framework of a lumped storage-discharge relation-314

ship modelled by a first order ODE, this leads to the conclusion that the discharge is ac-315

tually driving the storage and not the inverse like for Óbidos.316

4.2 Lower bound of S0317

The total volume of water participating dynamically to the water cycle and tem-
porarily stored in large basins is difficult to quantify from ground measurements and has
anyway received little attention (Riegger, 2020). Tourian et al. (2018) obtain a value of
1766km3 for S0, which is very similar to our result. This is not surprising since their es-
timate relies on the identification of the parameters of equation equation (2), which is
a actually the solution of equation equation (4) for a sinusoidal ∆S. Besides, we can, with
the help of GRACE observations, set a lower bound for the value of S0 by considering
the following argument. To avoid confusion, we note the field associated to an aggregated
quantity with the corresponding lower case letter. For instance, sd(r, t) is the field of to-
tal drainable water storage defined at any point r across the catchment and at any time
t. Expressed in terms of Equivalent Water Height, the field sd(r, t) is naturally a pos-
itive or null quantity (there is no such thing as a negative volume of water). Further-
more, the spatially distributed offset s0(r), whose aggregated value is S0, is by defini-
tion independent of time so that we can write sd(r, t) = ∆s(r, t)+s0(r) and thus s0(r) ≥
−∆s(r, t) for any time time t. In particular, this means that the spatially distributed

–13–
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Figure 7. Map of the minimum positive offset to add to the TWS anomaly field estimated

from GRACE and GRACE-FO (CSR mascon solution), to ensure a positive equivalent water

height during both missions lifetime. The spatial integral of this field corresponds to the integral

in equation (15).

offset must be everywhere at least larger than the largest negative variation ∆s observed
by GRACE and GRACE-FO. A map of this minimum positive offset is plotted in Fig-
ure 7. A direct consequence of this result is that S0 must satisfy

S0 ≥ Smin
0 = −

∫∫
basin

min(∆S)dΣ (15)

The latter inequality (15) is only verified by our estimate of S0 for Óbidos and São318

Paulo de Olivença confirming again that the proposed lumped model is relevant in these319

cases and captures correctly the observed dynamics. It should be noticed, however, that320

the minimum TWS anomaly is not reached everywhere at the same time. The minimum321

aggregated ∆S observed by GRACE and GRACE-FO over the Óbidos watershed is ac-322

tually −1181 km3 in October 2010. Conversely323

5 Discussion and conclusion324

In this contribution, we have further developed the idea that the relationship be-325

tween TWS anomaly and discharge in the Óbidos upstream catchment can be reason-326

ably modelled as an LTI system (Tourian et al., 2018). Assuming that the discharge is327

primarily driven by the total drainable water storage, we have modelled the storage-discharge328

dynamics by a first-order ODE, which requires adjusting only three parameters. The data-329

driven estimation of these parameters has been carried out using the SRIVC method.330

With an NSE = 0.94 and a CNSE = 0.63 over the validation data, the simulated dis-331

charge for Óbidos shows a good agreement with in situ data. Provided the proposed model332

captures correctly the global dynamics of storage and discharge, a byproduct of the cal-333

ibration is an estimate of the average total volume of drainable water stored in the Óbidos334

catchment during the calibration period from January 2003 to December 2010. This vol-335

ume corresponds to an equivalent water height of 41 cm covering the whole catchment.336
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Another physically interpretable parameter estimated in the calibration is the time con-337

stant of 27.4 days characterizing the exponential decay of the drainage.338

By coupling the storage-discharge equation to the water mass conservation equa-339

tion, we eventually obtain a system of two ODEs that describes the rainfall-discharge340

dynamics at the basin scale in a consistent manner. As such and despite the large area341

covered by this catchment, this makes classical hydrology tools such as the IUH still rel-342

evant. However, rather than estimating an IUH directly, we advocate the identification343

of a continuous-time ODE relating discharge to TWS anomaly. The proposed approach344

offers the advantage to keep the model parameters physically interpretable. Furthermore,345

it is naturally formulated in a state-space representation that can be exactly discretized346

and which gives the possibility to apply filtering (resp. smoothing) techniques such as347

the Kalman filter (resp. smoother) for the optimal estimation of the discharge, TWS anomaly348

and their respective uncertainty.349

The proposed heuristic model relies on a few assumptions that can potentially limit350

its generalization to other drainage basins:351

1. The TDWS anomaly is equal to the TWS anomaly observed by satellite gravime-352

try. This seems to be the case for the Amazon basin where no significant trend353

in the TWS anomaly field is observed. This may not be the case for other catch-354

ments where the variations of TWS could be due for instance to the depletion of355

groundwater caused by human activities or conversely, the permanent storage of356

water in man-made reservoirs.357

2. The discharge is driven by the TDWS. Clearly, this is not the case for the Caracarai358

and the Barra de São Manuel catchments. For them, and given the data at hand,359

it is rather correct to say that the TWS anomaly is driven by the discharge dy-360

namics, as the clockwise direction of their respective phase portrait suggests.361

3. The model is time-invariant. In the proposed model, all the parameters are con-362

stant. This may not be true in general (Heerspink et al., 2020). For instance, it363

has been observed recently that ongoing deforestation and, more generally, changes364

in land cover and land use alter the partition between evapotranspiration and runoff365

in favour of the latter (Baidya Roy & Avissar, 2002; Coe et al., 2011, 2017). We366

should therefore regard the time-invariance of the suggested model as a satisfac-367

tory approximation for the period of study rather than the mathematical formu-368

lation of inherent stationarity of the observed system.369

4. The observed discharge constitutes the only outflow from the catchment. This as-370

sumption needs to be qualified and quantified. In (Chen et al., 2020) the authors371

investigated the difference between the in situ discharge observation at the basin372

outlet and the total runoff estimated as a residual of the water mass budget clo-373

sure, for which satellite gravity measurements and independent precipitation and374

evapotranspiration data are combined. While both flow rates estimates are inevitably375

contaminated with errors, they argue that the latter is more reliable than the for-376

mer. As a consequence, they hypothesize that the discharge observed at the stream377

gauge during the wet season is probably underestimated as the water may over-378

flow the riverbanks and surrounding floodplains, creating temporary drainage chan-379

nels which are not accounted for (Chen et al., 2020; Eom et al., 2017). In addi-380

tion, they recall that while the stream gauge measures the total surface runoff, the381

indirect method based on the closure of the water mass balance estimates total382

runoff, which includes a possible subsurface runoff. In (Chen et al., 2020), the greater383

yearly accumulated runoff derived from water mass budget closure has been in-384

terpreted by the authors as a confirmation of the existence of unobserved ground-385

water flows to the ocean underneath the Amazon river, as hypothesized by Pimentel386

and Hamza (2012) following geothermal studies. They estimated this flow rate to387

be 2% of the observed surface river discharge.388
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Finally, we have partly omitted an important step of the modelling process, which389

is the choice of the model structure and thereby the number of adjustable parameters.390

To promote parsimony, we have prescribed in this article a first-order ODE to represent391

the TWS-discharge dynamics. However, it may not be the most appropriate order. To392

go even further, one can drop the linearity approximation: in the case of Óbidos, the pro-393

posed model performs in general badly when the discharge reaches its yearly maximum,394

meaning that it fails to capture the real dynamics at work. A more appropriate model395

would probably distinguish two different dynamics: a linear one as suggested in this ar-396

ticle when TWS is below a certain threshold and a second, non-linear one above this thresh-397

old, in which the right-hand side of equation (4) is replaced by a saturation function of398

(S0+∆S). The identification of such a non-linear function will be the object of future399

work.400

Appendix A Exact discretization of the ODE401

The general solution of equation (4) between time t0 = k∆t and t = (k + 1)∆t
is given by

Q((k + 1)∆t) =e−
∆t
τ Q(k∆t)

+ ω2
n

∫ (k+1)∆t

k∆t

e−
(k+1)∆t−v

τ (S0 +∆S(v))dv

where v is a dummy integration variable. If we consider a piecewise linear behaviour
of the input ∆S(t) than the integral in the equation hereinabove reduces to the sum C0S0+
C1∆S(k) + C2∆S(k + 1) where

C0 = ω2
nτ(1− e−

∆t
τ )

C1 = ω2
nτ(τ

1− e−
∆t
τ

∆t
− e−

∆t
τ )

C2 = ω2
nτ(1− τ

1− e−
∆t
τ

∆t
)

Appendix B Open Research402

The CSR GRACE/GRACE-FO RL06 v02 (respectively RL06M.MSCNv02) mas-403

con solutions derived from GRACE and GRACE Follow-On observations by the CSR404

(respectively JPL) processing centre and used to compute the monthly, basin-aggregated405

terrestrial water storage anomaly are available at http://www2.csr.utexas.edu/grace406

or via dx.doi.org/10.15781/cgq9-nh24 (resp. http://grace.jpl.nasa.gov or via dx407

.doi.org/10.5067/TEMSC-3MJC6). In both cases, we used the data with all corrections408

applied.409

Daily discharge data at the 9 flow gauges considered in this study along with the410

boundaries of their corresponding upstream catchment are made available by The Global411

Runoff Data Centre (GRDC), 56068 Koblenz, Germany via https://www.bafg.de/GRDC/412

EN/02 srvcs/21 tmsrs/riverdischarge node.html.413

The continuous-time system identification (CONTSID) toolbox version 7.4 used414

to build a continuous-time dynamic model of the storage-discharge relationship can be415

downloaded via http://www.contsid.cran.univ-lorraine.fr/. The CONTSID tool-416

box is run with MATLAB™ and requires in addition the MATLAB Control and System417

Identification toolboxes.418

Maps were plotted with MATLAB™ and the mapping package for MATLAB™ M Map,419

version 1.4m, from Pawlowicz, R., 2020, available online at www.eoas.ubc.ca/~rich/420

map.html.421
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