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Abstract

Arctic sea ice thickness (SIT) have been mostly retrieved from microwaved and visible altimeters since the 2000s.

However, the repeatability of altimeters and their spatial coverage limit SIT estimates spatially and temporally.

On the other hand, the passive microwave (PMW) radiometer have daily basin-scale coverage of the Arctic.

In this study, we proposed a SIT retrieval from PMW observations, based on a statistical inversion technique.

It is based on the evidence of hig correlations between PMW observations and existing altimetric satellite-derived SIT, especially

at 36 GHz.

Lidar ICESat-2 SIT products were used to train a neural network with multiple combinations of brightness temperatures

between 1.4 and 36 GHz as inputs over the 2018-2019 time period. The PMW retrieved SIT can mimic the lidar SIT product

over the full winter over the Arctic, with a correlation of 0.85, and a RMSE of 0.54 cm.

Results were also compared with the altimeter CS2SMOS and the Nucleus for European Modelling of the Ocean (NEMO) SIT

products and with the Operation IceBridge QuickLook SIT measurements.

The Neural Network (NN) SIT retrieval with all frequencies from 1.4 to 36 GHz has good performance, a correlation of 0.72 and

a RMSE of 57 cm when compared to OIB-QL measurements, for large sea ice thickness (mostly above 3 m), under multi-year

ice environments.

The NN SIT retrieval using only 18 and 36 GHz has also shown satisfactory performances, paving the way for the creation of

long time series, these two microwave channels being available since the 1980s.
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Abstract15

Arctic sea ice thickness (SIT) have been mostly retrieved from microwaved and visible16

altimeters since the 2000s. However, the repeatability of altimeters and their spatial cov-17

erage limit SIT estimates spatially and temporally. On the other hand, the passive mi-18

crowave (PMW) radiometer have daily basin-scale coverage of the Arctic. In this study,19

we proposed a SIT retrieval from PMW observations, based on a statistical inversion tech-20

nique. It is based on the evidence of hig correlations between PMW observations and21

existing altimetric satellite-derived SIT, especially at 36 GHz. Lidar ICESat-2 SIT prod-22

ucts were used to train a neural network with multiple combinations of brightness tem-23

peratures between 1.4 and 36 GHz as inputs over the 2018-2019 time period. The PMW24

retrieved SIT can mimic the lidar SIT product over the full winter over the Arctic, with25

a correlation of 0.85, and a RMSE of 0.54 cm. Results were also compared with the al-26

timeter CS2SMOS and the Nucleus for European Modelling of the Ocean (NEMO) SIT27

products and with the Operation IceBridge QuickLook SIT measurements. The Neu-28

ral Network (NN) SIT retrieval with all frequencies from 1.4 to 36 GHz has good per-29

formance, a correlation of 0.72 and a RMSE of 57 cm when compared to OIB-QL mea-30

surements, for large sea ice thickness (mostly above 3 m), under multi-year ice environ-31

ments. The NN SIT retrieval using only 18 and 36 GHz has also shown satisfactory per-32

formances, paving the way for the creation of long time series, these two microwave chan-33

nels being available since the 1980s.34

Plain Language Summary35

Arctic sea ice thickness (SIT) have been retrieved from satellite radar and lidar al-36

timeters since the 2000s. However, the altimeter spatial coverage and their repeatabil-37

ity limit the SIT estimates, spatially and temporally. On the other hand, satellite pas-38

sive microwave radiometers have daily basin-scale coverage of the Arctic. In this study,39

we proposed to estimate SIT from passive microwave observations, with a statistical in-40

version technique. It is based on the evidence of a high absolute correlation between ex-41

isting altimetric satellite-derived SIT, and passive microwave observations, especially at42

36 GHz. Lidar SIT products are used to train a neural network with multiple combina-43

tions of brightness temperatures between 1.4 and 36 GHz as inputs, over the 2018-201944

time period. Results are compared with other satellite and model derived SIT, as well45

as with in situ campaign measurements. The new passive microwave SIT retrieval with46

all frequencies from 1.4 to 36 GHz shows good performance, even for large SIT, under47

multi-year ice environments. The SIT retrieval using only 18 and 36 GHz also has sat-48

isfactory performances, paving the way for the development of long time series, these two49

microwave frequencies being available from satellite since the 1980s.50

1 Introduction51

Over the last decades, the Arctic region has experienced climate changes at mag-52

nitudes and rates higher than most regions in the world (IPCC report, 2019) leading to53

a large decrease in sea ice extent (SIE) and thickness (SIT) (Pörtner et al., 2019). Sea54

ice regulates the energy and mass exchange between the atmosphere and the underly-55

ing ocean in the polar regions, and the observed sea ice loss over the last ∼40 years con-56

tributed to the warming amplification in the boreal region (e.g., Serreze and Barry (2011);57

Dai et al. (2019)).58

The Sea Ice Extent (SIE) has been extensively monitored from passive microwave59

satellite observations since the late 70’s (e.g., Comiso (1986)), and its decline has been60

evidenced (e.g., Stroeve et al. (2012); Kwok (2018)). Large-scale satellite estimation of61

the Sea Ice Thickness (SIT), the other necessary parameter to estimate the sea ice vol-62

ume change, is more recent, with the advent of the laser altimeter missions (Ice, Cloud63

and Land Elevation Satellite (ICESat and ICESat-2) (Schutz et al., 2005; Abdalati et64
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al., 2010)), and radar altimeter missions (e.g., ERS 1 and 2 (S. Laxon et al., 2003), or65

CryoSat-2 (CS2) (Wingham et al., 1986; S. W. Laxon et al., 2013), see Abdalla et al. (2021)66

for a review). Because of their nadir geometry, the repeatability of altimeters and their67

spatial coverage limit SIT estimates spatially and temporally. Both altimetry techniques68

(laser and radar) estimate a freeboard, i.e., the thickness of the layer protruding above69

the water level: for the laser altimeters, this layer includes the snow cover and for the70

low frequency radar, the signal is expected to penetrate the snow layer and reach the sea71

ice surface. The freeboard estimate is the difference between a measurement above sea72

ice and another one over open ocean or a lead. The estimation of the total sea ice thick-73

ness, including the submerged draft sea ice part, always assumes hydrostatic equilibrium,74

and an estimation of the snow loading over the sea ice. As a consequence, assumptions75

have to be made, first on the snow depth and density, often using climatologies (Warren76

et al., 1999), but also satellite estimates or modeling, and second on the ice and water77

densities. Long time series of publicly available sea ice thickness products include the78

ICESat-2 monthly winter product from Petty et al. (2020) data or the CS2 winter prod-79

uct from Tilling et al. (2018). The sensitivity of the radar altimeter estimates is expected80

to decrease for low sea ice thickness, and passive microwave observations at L-Band (1.4 GHz)81

from the Soil Moisture Ocean Salinity (SMOS, (Font et al., 2010)) or the Soil Moisture82

Active Passive (SMAP, (Entekhabi et al., 2010)) missions have been exploited (Kaleschke83

et al., 2010) and merged with the CS2 estimates for an improved product (CS2SMOS)84

covering the full range of sea ice thickness, and available on a weekly basis over the win-85

ter (Ricker et al., 2014).86

Satellite-based SIT estimates have been evaluated and compared. Wang et al. (2016)87

include ICESat-2, CS2, and SMOS products in their comparison against aircraft and model88

estimates. Sallila et al. (2019) essentially concentrate on the differences between radar89

altimeter products derived from CS2. In addition to the intrinsic limitations of the dif-90

ferent satellite sensors, estimations of SIT are based on several and different assumptions91

on the snow loading and the geophysical parameters of the sea ice, which leads to dif-92

ferences between SIT products (Wang et al., 2016; Petty et al., 2020), even when using93

the same instrument (Sallila et al., 2019).94

Satellite passive microwave observations have been extensively exploited to esti-95

mate Sea Ice Concentration (SIC and the related SIE), sea ice type, as well as snow depth96

over sea ice, mainly from 18 and 36 GHz measurements from imagers such as the Ad-97

vanced Microwave Scanning Radiometers (AMSR) or the Special Sensor Microwave /98

Imagers (SSM/I) (Comiso, 1995; Comiso et al., 2003; Walker et al., 2006; Markus & Cav-99

alieri, 2009). Thin sea ice thickness is also now routinely estimated from passive microwaves100

at 1.4 GHz (Kaleschke et al., 2016). However, evaluation of the potential of the passive101

microwave observations to estimate the sea ice thickness for the full thickness range has102

not triggered yet much efforts, as passive microwave observations are not expected to103

penetrate the ice for more than 50 cm, and to be directly sensitive to the thicker sea ice,104

especially at high frequency (Heygster et al., 2014). Nevertheless, we observed unexpected105

systematic high correlation at basin-scale between passive microwave observations and106

existing sea ice thickness, during the full winter (see sections below). Recently, Lee et107

al. (2021) proposed an estimation of the SIT in the Arctic, from the Advanced Microwave108

Scanning Radiometer 2 (AMSR2, Imaoka et al. (2012)) frequencies between 6 and 36 GHz,109

based on the assumed proportionality between the scattering optical thickness at these110

frequencies within the freeboard and the physical thickness of the freeboard, and a re-111

alistic snow depth on sea ice. The relationship between the optical thickness and the ice112

freeboard is derived from a linear fit with ice freeboard from CS2.113

Here, we propose to directly exploit the strong statistical relationship observed be-114

tween the passive microwave observations and the existing large-scale sea ice thickness115

estimates, to derive SIT using a machine-learning approach. The motivation is twofold:116

first to develop a method to produce a robust long-time record of sub-monthly SIT at117
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basin scale, second to prepare the exploitation of the Copernicus Imaging Microwave Ra-118

diometer (CIMR) mission. CIMR (Kilic et al., 2018; Donlon, 2020) is a Copernicus High119

Priority Expansion Mission first designed to monitor the poles. It will observe from 1.4120

to 36 GHz, with a large 7 m antenna to reach 5 km spatial resolution at 18 and 36 GHz.121

The Copernicus Polar Ice and Snow Topography Altimeter, CRISTAL, another Coper-122

nicus High Priority Expansion Mission, will also measure the sea ice thickness, overly-123

ing snow depth and ice sheet elevations, owing to a dual frequency altimeter operating124

at Ku (13.5 GHz) and Ka (36.5 GHz) bands, and synergies between these two CIMR and125

CRISTAL are encouraged.126

A database with observations at CIMR frequencies is built, merging the SMAP ob-127

servations at 1.4 GHz and the AMSR2 ones at 6, 10, 18, and 36 GHz, to characterize sea128

ice and snow (Soriot et al., 2022). The statistical analysis between the passive microwave129

measurements and the SIT estimates are conducted for the ICESat-2 SIT (Petty et al.,130

2022), for the CS2SMOS SIT (Ricker et al., 2017), and for NEMO (Rousset et al., 2015)131

modeled SIT. The data and methodology are described respectively in Sections 2 and132

3. The machine-learning algorithm is trained on the ICESat-2 SIT. The results and their133

evaluations are presented in Section 4. Section 5 concludes this study.134

2 Data135

SMAP and AMSR2 provide brightness temperatures (TB) from 1.4 GHz (L band)136

to 89.0 GHz (W band) that include the frequency range (1.4 - 36.5 GHz, from L to Ka137

bands) that will be observed by CIMR. The satellite-derived SIT are extracted from laser138

altimetry (ICESat-2) or from a combination of radar altimetry and low frequency pas-139

sive microwave observations (CS2SMOS). The SIT from the NEMO model is also used140

(Madec & Team, 2008). Comparisons are conducted with the IceBridge-QL aircraft cam-141

paign measurements (N. Kurtz et al., 2013).142

All large-scale datasets are extracted over the Arctic Ocean above 55°N, for a com-143

plete polar year from November 1, 2018, to October 31, 2019. Data are projected onto144

the same EaseGrid 2.0 at ∼ 12.5 km resolution (Brodzik et al., 2012). The sea ice mask145

from Ocean and Sea Ice Satellite Application Facility (OSI-SAF) is adopted (Tonboe et146

al., 2017).147

2.1 Passive Microwave Satellite Observations148

2.1.1 SMAP149

Since January 2015, the NASA SMAP mission observes the Earth at 1.4 GHz at150

both vertical (V) and horizontal (H) polarizations, from a Sun-synchronous 6 AM/6 PM151

orbit (Entekhabi et al., 2014). It has a 6 m real aperture antenna that provides a spa-152

tial resolution of 40 km. The observing incidence angle is 40°, with a 1000 km swath. Its153

orbit inclination angle of 98° allows the full coverage of the poles.154

We directly use the daily surface TB at 25 km spatial resolution from L2 product155

(Meissner et al., 2018) provided by Remote Sensing System (https://data.remss.com/156

smap/SSS/V04.0/FINAL/L2C last access: 9 March 2022). These TB are corrected for the157

extra-terrestrial signal, and for the Faraday rotation. Within each grid cell, the SMAP158

TB are averaged on a ∼ 10-day period (depending on the month, the last 10-day period159

in the month can be slightly longer or shorter), for each frequency, and polarization.160

2.1.2 AMSR2161

AMSR2 is a radiometer on board the Japanese polar orbiting satellite GCOM-W,162

launched in May 2012. It provides observations at 55° incidence angles at 6.9, 7.3, 10.65,163
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18.7, 23.8, 36.5, and 89 GHz, at both V and H polarizations, with spatial resolution from164

48 km at 6.9 GHz to 4 km at 89 GHz. With an inclination angle of 88°, AMSR2 does165

not observe the Arctic above 88°N. Here, we analyze the frequencies common to the CIMR166

instrument (noted 6, 10, 18, and 36 GHz hereafter). The Level-1R daily TB at their na-167

tive spatial resolution (Maeda et al., 2016) are obtained from the JAXA website (https://168

gportal.jaxa.jp, last access: 9 March 2022).169

The EaseGrid 2.0 12.5 km spatial resolution is close to the 10 km spatial sampling170

of the AMSR2 observations, and to the spatial resolution at 36 GHz (Maeda et al., 2016).171

Within each grid cell, the AMSR2 TB are averaged on a ∼ 10-day period (depending on172

the month, the last 10-day period in the month can be slightly longer or shorter), for each173

frequency, and polarization.174

2.2 Satellite-derived Sea Ice Thickness over the Arctic175

2.2.1 ICESat-2 SIT176

The ICESat-2 L4 monthly gridded sea ice thickness product (Petty et al., 2022)177

is extracted (https://nsidc.org/data/IS2SITMOGR4, last access: 19 April 2022), avail-178

able during the winter from November to April at a resolution of 25 km. It is based on179

the laser measurement of the total height of the freeboard (the thickness of the emerged180

sea ice layer plus the snow cover layer) if sea ice concentration is > 50 %, if height sam-181

ples are at least 25 km of the coast, and under cloud-free conditions. Hydrostatic equi-182

librium is assumed for estimating the total SIT from the measured freeboard. Estimates183

of the snow depth as well as the snow, ice, and water densities are also required. The184

snow depth and density are simulated from the NASA Eulerian Snow on Sea Ice Model185

(NEOSIM v1.0) (Petty et al., 2018), modified with an empirical piecewise function to186

increase the initial model spatial resolution (Petty et al., 2020).187

2.2.2 CS2SMOS SIT188

The CS2SMOS SIT product combines the CS2 radar altimeter estimates (Ricker189

et al., 2014; Hendricks et al., 2016) with the passive microwave SMOS observations (Tian-190

Kunze et al., 2014; Kaleschke et al., 2016). The data can be found at ftps://smos-diss191

.eo.esa.int (last access: 19 April 2022). While CS2 lacks the capability to observe thin192

ice, SMOS is restricted to ice regimes thinner than ∼ 1 m (Ricker et al., 2017).193

Unlike ICESat-2, CS2 is considered to measure the ice-only freeboard, as the radar194

frequency (Ku-band at 13 GHz) is expected to penetrate the snow layer and reach the195

ice surface. Calculation of the total sea ice thickness relies on the hydrostatic equilib-196

rium, with an estimate of the snow loading along with a snow, ice, and water density es-197

timation. The CS2 SIT uses the snow climatology from Warren et al. (1999), for the snow198

depth and density. The original Warren climatological snow depth is reduced by 50 %199

over first-year sea ice N. T. Kurtz and Farrell (2011), where discrimination between first-200

year and multi-year sea ice type is provided by the satellite-derived OSI-SAF product201

(Aaboe & Down, 2021). The method to retrieve the thin ice SIT from SMOS TB at 1.4 GHz202

is based on a thermodynamic sea-ice model and a one-ice-layer radiative transfer model203

(Tian-Kunze et al., 2014).204

An optimal interpolation scheme is developed to merge the CS2 and SMOS SIT205

estimates. It is applied to weekly CS2 and SMOS SIT estimates, allowing the estima-206

tion of the full SIT range. The product is available from mid-October to mid-April, on207

a weekly basis, with an initial 25 km spatial resolution.208
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2.3 NEMO Simulations209

The NEMO model is a state-of-the-art modelling framework for research activities210

and forecasting services in ocean and climate sciences (Madec & Team, 2008). It uses211

the Louvain-La-Neuve Sea Ice Model 3.6 (LIM3.6) (Rousset et al., 2015).212

In this study, the global high-resolution monitoring and forecasting system PSY4V3R1213

(Gasparin et al., 2018) is adopted. It is based on version 3.1 of the NEMO ocean model,214

which assimilates satellite sea ice concentration from the EUMETSAT/OSI-SAF. The215

PSY4V3R1 NEMO model provides a daily SIT product at 2 km resolution that is av-216

eraged on the common 12.5 km EASE grid 2.0.217

2.4 Sea Ice Thickness Measurement Campaign218

The Unified Sea Ice Thickness Climate Data Record (Lindsay & Schweiger, 2013)219

aggregates all types of measurements of SIT from airplane and submarines operations,220

from 1947 to current time. In our time window (11/2018-10/2019), only the Operation221

IceBridge QuickLook (OIB-QL) data are available (N. T. Kurtz et al., 2013). The mea-222

surements are provided by a nadir-looking ground penetration depth radar: the Multi-223

channel Coherent Radar Depth Sounder (MCoRDS), operating at 193.9 MHz (Shi et al.,224

2010). The differences between radar echoes are directly converted to sea ice thickness.225

In April 2019, 125,655 initial points have been measured and grouped to form 50-226

km clusters (N. T. Kurtz et al., 2012). Over the resulting 88 clusters collected by the227

OIB-QL campaign during this period, 78 are south of 88.5° and are collocated with the228

previously described datasets. The mean SIT value and its associated SIT uncertainty229

is provided for each cluster, and the mean SIT values are located on a map (Figure 1).230

OIB-QL SIT

0

1

2

3

4

5

6

SI
T 

(m
)

Figure 1. Sea Ice Thickness (SIT) as estimated from the Operation IceBridge QuickLook

(OIB-QL) campaign data available for this study, in April 2019.
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Figure 2. From top to bottom: ICESat-2 SIT, CS2SMOS SIT, NEMO SIT, SMAP TV
B

1.4 GHz and AMSR2 TV
B 36 GHz, for three 10-days winter periods (from left to right, the second

10-days periods in November 2018, January 2019, and March 2019), when SIC is above 0.8 (as

provided by OSI-SAF estimates).
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3 Method231

3.1 Preliminary Analysis of the Data232

Figure 2 shows, for the second 10-day period of November, January, and March,233

the SIT from ICESat-2, CS2SMOS, and NEMO as well as the V-polarized brightness tem-234

perature TV
B at 1.4 GHz (SMAP) and 36 GHz (AMSR2), when the OSI-SAF SIC is above235

0.8. SIT products from ICESat-2, CS2SMOS, and NEMO show similar broad spatial pat-236

terns, although NEMO exhibits significantly less high SIT north of Greenland and the237

Queen Elizabeth Islands than the satellite estimates. NEMO underestimates the large238

SIT compared to the other products, and CS2SMOS tends to show lower SIT than ICESAT-239

2 for these large SIT values as well. The sea ice emissivity at 1.4 GHz is high, and that240

translates in the maps into high TV
B (>240 K), with a decrease of TV

B in areas where sea241

ice is likely thin and transparent enough for the underneath ocean to contribute to the242

signal with its low emissivity. The TV
B maps at 36 GHz exhibit spatial patterns similar243

to the sea ice thickness derived from the satellites, with a significant decrease of the TV
B244

with increasing SIT.245

To quantify theses spatial relationships, Figure 3 presents the linear correlation be-246

tween the SIT from ICESat-2, CS2SMOS, and NEMO, as well as the correlation between247

the ICESat-2 SIT and TV
B as a function of time during winter, for selected microwave248

channels. While the 1.4 GHz TV
B shows limited correlation with the SIT and the 6 GHz249

TV
B shows almost no correlation, there is a strong anti-correlation between the ICESat-250

2 SIT and TV
B , at 18 and 36 GHz.251

High negative correlation between TV
B at 18 and 36 GHz and the other SIT prod-252

ucts (CS2SMOS and NEMO) is also observed (not shown), with particularly high neg-253

ative correlation between CS2SMOS and TV
B at 18 and 36 GHz (above 0.9 in absolute254

value during the full winter). The spatial linear correlations have also been calculated255

for two SIT ranges, with a threshold at 0.7 m (not shown). For thin ice below 0.7 m, the256

correlation between TV
B at 1.4 GHz and the CS2SMOS SIT is higher than with the other257

SIT products (ICESat-2 and NEMO). This behavior can be related to the use of TB at258

1.4 GHz in the CS2SMOS product, for its expected sensitivity to the thin ice thickness.259

The physical interpretation of this anti-correlation between the TV
B at higher fre-260

quencies and the SIT is not straightforward. These frequencies are not expected to sound261

within the snow and sea ice. A strong decrease of TB with increasing frequency is a sign262

of scattering processes in the radiative transfer (Ulaby & Long, 2014; Soriot et al., 2022).263

In these regions of low TB at 18 and 36 GHz, the microwave signal is likely scattered,264

within the snow pack (volume scattering due to the formation of depth hoar for instance),265

and possibly as well at the surface (surface scattering), as these regions also correspond266

to multi-year ice areas, where snow accumulates and where rafting and ridging occur.267

The relationship between TB and SIT is likely to bevery indirect, but it is still strong268

and, as a consequence, it can be potentially exploited for SIT estimation. Given the com-269

plexities of emission and scattering processes within the sea ice and snow pack, this is270

not an uncommon situation and these frequencies (namely 18 and 36 GHz) have already271

been extensively used to estimate snow depth over sea ice as well as sea ice type (first-272

year of multi-year), without a robust and clear physical explanation of the direct link273

between the observation and the snow and ice parameter of interest (see for instance (Rostosky274

et al., 2018)).275

3.2 Statistical Inversion276

Given the statistical relationships observed between TB and SIT, a statistical in-277

version is tested, based on Neural Network (NN) techniques. NNs have already been widely278

used in satellite remote sensing for the retrieval of a large number of geophysical param-279

eters, including sea ice variables (Rösel et al., 2012; Braakmann-Folgmann & Donlon,280
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Figure 3. Spatial linear correlation among SIT and between ICESat-2 SIT and selected TB

(1.4, 6, 18, 36 GHz), as a function of time during winter in the Arctic, when SIC is above 0.8 (as

provided by OSI-SAF estimates).

2019; Chi & Kim, 2021). Here we adopt a specific NN architecture called Multi Layered281

Perceptron (MLP) (Rumelhart et al., 1985). The MLP is appropriate to approximate282

multivariate non-linear mappings (Krasnopolsky, 2007; Cybenko, 1989; Aires et al., 2002),283

and it will be applied here to build the statistical model reproducing the mapping be-284

tween brightness temperatures and SIT. The MLP will contain a first layer with as many285

input neurons as microwave channels used in the retrieval, followed by a hidden layer with286

tansig activation functions, and an output layer with a linear activation functions and287

one node outputting the retrieved SIT. This NN architecture can be represented by a288

function:289

yq = aq0 +

k∑
j=1

+aqj · tanh(bj0 +
n∑

i=1

bji · xi); q = 1, 2...m (1)

where xi and yq are components of the NN input and output vectors respectively, and290

a and b are the matrices of the fitting parameters, i.e, the NN weights and biases. They291

will be determined during the training phase using a database of brightness tempera-292

tures and corresponding SIT, togehter with the training algorithm of (Foresee & Hagan,293

1997). To avoid spatial or temporal overfitting and increase the robustness of the retrieval,294

only a random third of the database will be used for the training, as in Rodŕıguez-Fernández295

et al. (2019), and an early-stop validation technique will be applied during the training296

(Prechelt, 2012).297

The NN is trained on the ICESat-2 SIT, to minimize the inbreeding with the pas-298

sive microwave TB inputs. The ICESat-2 SIT is expected to be independent of passive299

microwave observations (Petty et al., 2020) and is retrieved from a different frequency300

domain (visible versus microwave) (Abdalati et al., 2010). Indeed, the CS2SMOS prod-301

uct is constructed with TB at 1.4 GHz from SMOS (Ricker et al., 2017), and the NEMO302

model assimilates OSI-SAF SIC which is based on microwave TB . However, similar ex-303

ercise could be performed with a NN trained on CS2SMOS or NEMO. In order to min-304

imize the SIC influence, the NN is trained on pixels with SIC>0.8, as estimated from305

OSI-SAF.306
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Several combinations of brightness temperatures have been tested as inputs to the307

NN and the results are compared with the SIT estimates from CS2SMOS, NEMO, and308

OIB-QL. Among the tested TB combinations, two are particularly interesting for further309

studies: the combination of all CIMR frequencies (1.4, 6, 10, 18 and 36 GHz at both V310

and H polarizations) to showcase the future capability of CIMR to estimate SIT, and311

the combination of only 18 and 36 GHz V and H channels, to facilitate the production312

of long time series of SIT (because of the availability of long-time records of these ob-313

servations, with SSM/I, its successor SSMIS, and possibly its ancestor, the Scanning Mul-314

tichannel Microwave Radiometer (SMMR)).315

4 Results and Discussion316

4.1 Global Arctic Results over the Winter317

First, a NN inversion is trained on a subset of the ICESat-2 SIT product, using all318

the frequencies from the CIMR-like database, from 1.4 to 36 GHz (named PMWCIMR319

hereinafter). Over the Arctic winter, the linear correlation between the retrieved SIT and320

the ICESat-2 product is 0.85, with a Root Mean Square Error (RMSE) of 0.54 m.321

Figure 4 shows some statistical analyses comparing the different SIT products, in-322

cluding the PMWCIMR retrieval: the spatial linear correlation between the different SIT323

products as a function of the time (top panel), the RMSE in meter between the differ-324

ent products and the PMWCIMR retrieval as a function of time (middle panel), or as325

a function of the ICESat-2 SIT (bottom panel). The normalized distribution of the ICESat-326

2 SIT is also shown in grey shades on the bottom panel.327

The general agreement between the satellite products ICESat-2 and CS2SMOS is328

better (both in terms of spatial correlation and RMSE) than between the satellite prod-329

ucts and the NEMO SIT estimates (Figure 4 top panels), as already expected from Fig-330

ure 2. The agreements are rather stable during the winter, with a slight degradation (de-331

creased correlation and increased RMSE) at the end of the winter season (Figure 4 two332

top panels). The PMWCIMR retrieval using all frequencies shows better spatial corre-333

lation and smaller RMSE with all SIT products at each time step (Figure 4 two top pan-334

els, symbols with solid lines), as compared to the initial correlation and RMSE between335

the ICESat-2 original product and the other SIT products (Figure 4 two top panels, sym-336

bols without solid lines). Note that the spatial correlation between PMWCIMR and CS2SMOS337

SIT is even higher than the correlation between PMWCIMR SIT and the original ICESat-338

2 SIT used to train it, meaning that the passive microwave information in the PMWCIMR339

retrieval adds to the agreement between the existing SIT estimates.340

The RMSE between products tend to significantly increase between most products,341

for SIT above ∼ 2 m (Figure 4 bottom panel). The SIT population above 2 m is rather342

limited for all SIT products (the ICESat-2 SIT distribution is indicated in grey shades343

on Figure 4). For the full SIT range, and especially for the lower and higher SIT, the344

RMSE between the PMWCIMR retrieval and the other products decreases (symbols with345

solid lines on Figure 4 bottom panel) as compared to the initial RMS error between ICESat-346

2 and the other products (symbols without solid lines on the same panel).347

Figure 5 shows the maps of the PMWCIMR SIT and the difference between its es-348

timates and the ICESat-2-based SIT estimates for three different 10-days winter peri-349

ods (11/2018, 01/2019, and 04/2019) not used in the NN training. The maps of the ICESat-350

2 SIT were already shown (Figure 2). The PMWCIMR SIT maps show the same gen-351

eral patterns as seen in Figure 2, with high SIT north of Greenland and in the Canada352

Basin, with an increase of the SIT over the winter in the Chukchi Sea. Noticeable dif-353

ferences between PMWCIMR and ICESat-2 SIT are located along the east coast of Green-354

land, especially in January, where PMWCIMR exhibits higher SIT values than ICESat-355

2. In this region, note that both CS2SMOS and NEMO have SIT larger than the ini-356
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Figure 4. Statistics for inter-prodcut differences, including the PMWCIMR retrieval. Top:

Spatial linear correlation (R) between PMWCIMR estimates as a function of time in the winter.

Middle: RMSE in m between the variables, also as a function of time in the winter. Bottom: the

RMSE between the SIT estimates, as a function of the ICESat-2 SIT (with the ICESat-2 SIT

distribution indicated in grey shades).

tial ICESat-2, and closer to the PMWCIMR retrieval (Figure 2). North of the islands357

of Novaya Zemlya, especially in March, the PMWCIMR predicts higher SIT than ICESAT-358

2, where also both CS2SMOS and NEMO have higher SIT than ICESat-2. On the con-359

trary, PMWCIMR shows thinner SIT than ICESat-2, in the Bering Strait in January.360

The SIT retrieval has also been tested using less frequencies in the training of the361

NN. Suppressing only the 1.4 GHz channels in the NN does not change much the results362

(not shown): the correlation with ICESat-2 over the full winter decreases from 0.85 to363

0.83, and the RMSE increases from 0.54 m to 0.57 m. It tends to degrade the retrieval364

of small SIT (<1 m), as compared to the original ICESAT-2 SIT, and to the CS2SMOS365

SIT, as expected, but only slightly.366

Tests are then performed using only the 18 and 36 GHz channels (both V and H367

polarizations), named PMW1836 hereinafter. With this combination, longer SIT time368

series could be producted, using previous radiometers such as SSM/I (launched in 1987),369

its successors SSMIS, or even SMMR (launched in 1978) that all include the 18 and 36 GHz370

channels. The results are presented in Figure 6. The correlation between PMW1836 and371

ICESat-2 SIT decreases over the full winter (from 0.85 with all channels to 0.80 using372

only 18 and 36 GHz channels), and the RMSE increases (from 0.54 m to 0.62 m), sug-373

gesting that the retrieval using only two frequencies would slightly degrade the SIT re-374
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Figure 5. From top to bottom: maps of PMWCIMR SIT, and PMWCIMR SIT minus

ICESat-2 SIT, for the PMWCIMR retrieval. For 10-days periods in November 2018 (left), Jan-

uary 2019 (center), and April 2019 (right).

sults compared to the use of all the frequencies available on CIMR, at least when con-375

sidering ICESat-2 as the reference.376

However, surprisingly, compared to CS2SMOS, the correlation and the RMSE do377

not change much when using all frequencies or 18 and 36 GHz only, with even a slight378

increase of the correlation (from 0.85 with the CIMR frequencies to 0.88 with only the379

18 and 36 GHz channels) and a slight decrease of the RMSE when suppressing all the380

lower frequencies (from 0.58 m with the CIMR frequencies to 0.54 m with only the 18381

and 36 GHz). An explanation could be related to the use of the passive microwave 18382

and 36 GHz channels in the CS2SMOS retrieval, for the estimation of the snow depth.383

Indeed, the CS2 altimeter data processing involves passive microwaves TB at 18 and 36 GHz384

to modify the original Warren (Warren et al., 1999) snow depth climatology, following385

the N. T. Kurtz and Farrell (2011) method. To overcome the need for external snow depth386

information, future altimeters such as CRISTAL (Kern et al., 2020) will be equipped with387

dual-frequency radar altimeters, with the snow depth estimation being derived from the388

difference between the signals at Ku (13 GHz) and Ka (35 GHz) frequencies. Garnier389

et al. (2021) already tested this possibility for snow depth and SIT retrievals with en-390

couraging results, using two different altimetric missions, CS2 at 13 GHz and SARAL/AltiKa391

at 35 GHz (Verron et al., 2015). With SARAL/AltiKa limited to 82°N (thus excluding392

most of the multi-year ice), we did not consider this product in the current comparison.393

4.2 Evaluation with the IOB-QL Campaign Measurements394

The PMWCIMR estimates are now evaluated with the OIB-QL campaign measure-395

ments. Figure 7 shows the results of the comparison between the OIB-QL SIT measure-396

ments with the satellite and model retrievals, including the NN retrieval PMWCIMR us-397

ing all the frequencies from 1.4 to 36 GHz. The clusters were organized by increasing398

OIB-QL SIT measurement, and their location is provided for each cluster. For each OIB-399

QL cluster, the mean OIB-QL SIT is shown with its associated uncertainty (red crosses400

–12–



manuscript submitted to JGR: Oceans

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ICESat-2 SIT (m)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

RM
SE

 (m
)

(b)

0.6
0.7
0.8
0.9
1.0

Co
rre

la
tio

n

(a)

Nov
 18

Dec 
18

Jan
 19

Feb
 19

Mar 
19

Apr 
19

Time

0.4

0.6

0.8

1.0

RM
SE

 (m
)

PMWCIMR/CS2SMOS
ICESat-2/CS2SMOS

PMWCIMR/ICESat-2
CS2SMOS/NEMO

PMWCIMR/NEMO
ICESat-2/NEMO

Figure 6. Same as Figure 4, but using the PMW1836 retrieval.

and error bars). For the same clusters, the mean SIT retrieved (crosses) and their as-401

sociated standard deviation (error bars) are shown for PMWCIMR in black, ICESat-2402

in green, CS2SMOS in orange and the NEMO model in blue. The normalized distribu-403

tion of the ICESat-2 SIT is also shown in grey shades.404

The range of SIT measured by the OIB-QL campaign shows that most of the sea405

ice observe is multi-year, with the OIB-QL cluster in the tail of the distribution of the406

ICESat-2 SIT. CS2SMOS and NEMO show small range of SIT, which can be explained407

by the fact that these products are spatially smooth (see Figure 2), with consequently408

few variations over a flight. The NEMO model tends to systematically underestimate409

the SIT, compared to the measurements campaign, as well as compared to the satellite410

retrievals.411

Table 1 shows the bias, the RMSE, the relative RMSE (in relation to the OIB-QL412

measurements), and the linear correlation coefficient, between the OIB-QL SIT and the413

others SIT retrievals (including PMW1836). PMWCIMR shows rather good agreement414

with the OIB-QL measurements with linear correlations of 0.72, a bias of 16 cm, and a415

RMSE of 57 cm. The differences between PMWCIMR and PMW1836 results are rather416

limited,considering that 10 channels are used in the first algorithm and only 4 in the sec-417

ond. The CS2SMOS SIT product shows the best agreements with OIB-QL measurements418

with low mean bias of 11 cm, a RMSE of 49 cm, and a high correlation of 0.8. The PMWCIMR419

SIT performs slightly better than the ICESat-2 product. NEMO tends to underestimate420

the OIB-QL values, with a mean bias nearly three times higher than the next worst re-421

sult (PMW1836), and a RSME nearly two times more important than the other prod-422

ucts.423
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Figure 7. Comparison of SIT measurements from OIB-QL (red), PMWCIMR retrieval

(black), ICESat-2 (green), CS2SMOS (orange) and NEMO (blue) products. The error bars

represent the mean SIT uncertainty for OIB-QL measurements and one standard deviation for

the other SIT estimations. The normalized distribution of the ICESat-2 SIT is shown in grey

shades on the left y-axis.

Table 1. Bias, root-mean-square errors, relative root-mean-square errors and Pearson correla-

tion coefficient between the OIB-QL SIT and the others SIT retrievals.

Mean
Difference (m)

RMSE
(m)

Relative
RMSE (%)

R

PMWCIMR 0.16 0.57 17 0.72

PMW1836 0.28 0.61 18 0.74

IS2 0.17 0.66 20 0.69

CS2SMOS 0.11 0.49 14 0.80

NEMO 0.94 1.09 28 0.69

The SIT distribution of the OIB-QL mission is heavily weighted toward very high424

SIT values (mainly above 3 m) representing mostly multi-year ice. That does not cor-425

respond to the whole Arctic SIT distribution, where first-year ice with lower SIT are dom-426

inating (see the gray shades on Figure 4). The conclusions drawn from this evaluation427

cannot be extended on the validity of the estimates for low SIT. Note that in the SIT428

range measured by the OIB-QL campaign (mainly above 3 m), the NN retrieval errors429

with respect to the other satellite products (ICESat-2 or CS2SMOS) were expected to430

have RMSE ∼ 0.6 m, (see Figure 4).431

5 Conclusion432

A simple and yet efficient statistical approach is developed to estimate the Sea Ice433

Thickness (SIT) from passive microwave brightness temperatures between 1.4 and 36 GHz.434
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It is based on the evidence of high absolute correlations between the observed passive435

microwave brightness temperatures (especially at 36 GHz) and existing available satellite-436

derived SIT products. The 1.4 to 36 GHz frequency range will be covered by the future437

CIMR mission to be launched by the end of the 2020’s. Using a combination of SMAP438

and AMSR2 observations, a neural network (NN) inversion is trained on a subset of ICESat-439

2 SIT product derived from independent laser-altimeter measurements, and the NN SIT440

is estimated over the Arctic for a full winter season.441

The resulting passive microwave NN SIT using all the CIMR frequencies shows a442

significant correlation with the ICESat-2 SIT data during the whole Arctic winter (0.85)443

and an identical spatio-temporal correlation with the CS2SMOS SIT product (0.85). The444

NN inversion using only the 18 and 36 GHz frequencies also performs satisfactorily, over445

the full SIT range. That would make it possible to calculate long time series of SIT from446

former passive microwave imagers such as SMM/I and SSMIS back to the end of the 80’s,447

or even from SSMR, launched in 1978, with all these instruments being equipped with448

radiometers at 18 and 36 GHz, at both V and H polarizations. Note that there are on-449

going efforts to inter-calibrate all these microwave imagers for climate purposes, and this450

SIT estimation could benefit from this very long record of high quality TB at 18 and 36 GHz.451

The NN retrievals were compared to OIB-QL measurement campaign performed452

in 2019. Both NN retrievals (with all frequencies and with 18 and 36 GHz only) show453

encouraging performances, comparable to the results obtained with the current ICESat-454

2 or CS2SMOS SIT products, at least for the SIT range (mainly above 3 m) covered by455

the OIB-QL measurements.456

Several satellite-based SIT exist, each with limitations due to their operating fre-457

quency or their algorithm assumptions. The CS2SMOS and ICESat-2 SIT products both458

require a characterization of the snow cover (snow depth and snow density). The use of459

dual frequency (Ku/Ka) radar altimeters (as in Kwok et al. (2020) or Garnier et al. (2021))460

can help reduce the uncertainties related to the snow depth, and the future CRISTAL461

mission, to be launched approximately at the same time as CIMR, will be equipped with462

this dual frequency capability (Kern et al., 2020). The passive microwave SIT retrieval463

proposed here is based on a pragmatic approach. It does not require any ancillary in-464

formation. It is easy to apply on a daily basis, on past, current, or future observations,465

providing close-to global Arctic coverage every day over long time records.466
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