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Abstract

We examine multiple factors in the representation of satellite-retrieved atmospheric temperature

diagnostics in historical simulations of climate change during the satellite era (specifically

1979-2021) using GISS ModelE contributions to the Coupled Model Intercomparison Project (Phase 6)

(CMIP6). The tropospheric and stratospheric trends in these diagnostics are affected by greenhouse

gases (notably carbon dioxide and ozone), coupling with the ocean, volcanic aerosols, solar

activity and compositional and dynamic feedbacks. We explore the impacts of internal variability,

changing forcing specifications, composition interactivity, the quality of the stratospheric

circulation, vertical resolution, and possible impacts of the mis-specification of volcanic

aerosol optical depths.

Overall trends and patterns over the satellite period are well captured, but discrepancies at

all levels exist and have multiple distinct causes. We find that stratospheric comparisons

(using Stratospheric Sounding Unit (SSU) retrievals and successor instruments) are most affected

by variations in the representation of ozone depletion and feedbacks, followed by the volcanic signals.

Tropospheric skill (using the Microwave Sounding Unit (MSU) retrievals) is affected by the trends

in ocean temperature and tropospheric aerosols, but also by the representation of stratospheric processes

through the impact of the Brewer-Dobson circulation on the height of the tropical tropopause.

We do not find evidence of a systematic problem in the model climate sensitivity.
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Abstract16

We examine multiple factors in the representation of satellite-retrieved atmospheric tem-17

perature diagnostics in historical simulations of climate change during the satellite era18

(specifically 1979–2021) using GISS ModelE contributions to the Coupled Model Inter-19

comparison Project (Phase 6) (CMIP6). The tropospheric and stratospheric trends in20

these diagnostics are affected by greenhouse gases (notably carbon dioxide and ozone),21

coupling with the ocean, volcanic aerosols, solar activity and compositional and dynamic22

feedbacks. We explore the impacts of internal variability, changing forcing specifications,23

composition interactivity, the quality of the stratospheric circulation, vertical resolution,24

and possible impacts of the mis-specification of volcanic aerosol optical depths.25

Overall trends and patterns over the satellite period are well captured, but discrep-26

ancies at all levels exist and have multiple distinct causes. We find that stratospheric27

comparisons (using Stratospheric Sounding Unit (SSU) retrievals and successor instru-28

ments) are most affected by variations in the representation of ozone depletion and feed-29

backs, followed by the volcanic signals. Tropospheric skill (using the Microwave Sound-30

ing Unit (MSU) retrievals) is affected by the trends in ocean temperature and tropospheric31

aerosols, but also by the representation of stratospheric processes through the impact32

of the Brewer-Dobson circulation on the height of the tropical tropopause. We do not33

find evidence of a systematic problem in the model climate sensitivity.34

Plain Language Summary35

The assessment of the ability of climate models to match observed trends and vari-36

ability seen in the real world is a key factor in building the credibility of their projec-37

tions under future scenarios. We focus on the trends in the atmosphere temperatures from38

the surface to the stratosphere whose trends at different levels reflect different processes39

and drivers. The satellite retrievals are weighted averages of atmospheric temperatures40

and so the vertical structure of the model trends matter in the comparison. We find that41

overall the trends throughout the atmosphere are well-captured by the GISS models but42

that discrepancies can occur due to misspecified forcings, internal variability, and model43

structure.44

1 Introduction45

The start of the satellite period (nominally 1979) marked the dawn of a new era46

in global multi-variate monitoring of climate. Over 40 years of data have been collected47

since then and has been sufficient not only to refine our knowledge of the Earth’s clima-48

tology, but also to capture the trends of a changing climate. One suite of important vari-49

ables are the vertically-weighted atmospheric temperature changes seen by the Microwave50

Sounding Units (MSUs) (Spencer & Christy, 1990; Mears et al., 2003), Stratospheric Sound-51

ing Units (SSUs) (Thompson et al., 2012) and their successors, the Advanced Microwave52

Sounding Units (AMSUs). The clear trends at the surface and in both the troposphere53

and stratosphere have long been used in detailed comparisons to climate model simu-54

lations. Those comparisons have led to the discovery of discrepancies between the satel-55

lite retrievals, surface temperatures and models, and therefore understanding them has56

been a focus of scientific attention for more than two decades (e.g. Christy & Spencer,57

1995; Jones et al., 1997; Hansen et al., 1995; CCSP, 2006; Thorne et al., 2011).58

The reasons for any climate model’s mismatch to these trends can arise from mul-59

tiple factors: errors in the model physics; model drivers; observational retrieval errors;60

or simply from an inappropriate comparison, and all of these possible effects have been61

encountered over time with respect to the MSU/SSU/AMSU time-series (for instance,62

Wentz & Schabel, 1998; Santer et al., 1999; Fu et al., 2004; Thompson et al., 2012; San-63

ter et al., 2014; Zou & Qian, 2016). With respect to issues related to the retrievals them-64

–2–



manuscript submitted to Journal of Geophysical Research

selves, there have been multiple updates to the various independent products that have65

progressively dealt with issues in calibrations, orbits, overlaps, diurnal cycle adjustments66

etc. (for instance Mears et al., 2003, 2012; Spencer et al., 2017; Zou & Qian, 2016). Com-67

parisons to the multi-model ensembles have been updated as a consequence (Maycock68

et al., 2018; Seidel et al., 2016), reducing some of the differences, but not all, and not69

with all observational products.70

Mitchell et al. (2020) recently compared model trends at specific heights and found71

little to no improvement in the model ensemble skill as a whole in going from Phase 572

of the Coupled Model Intercomparison Project (CMIP5) (circa 2011) to the 6th phase73

(CMIP6) (2019–2021). Trends in the tropical mid-troposphere still seem too large com-74

pared to radiosonde trends (McKitrick & Christy, 2020). However, both of these papers75

only looked at a single ensemble member from each model and so their results may be76

biased by not looking at the full range of internal variability (Po-Chedley et al., 2021).77

Within those ensembles, however, there are a number of more structured tests that can78

help illuminate the reasons for the continued discrepancies. In particular, controlled vari-79

ations of model structure, initial conditions, forcings and components within a single model80

family can be used to examine reasons for the remaining discrepancies.81

In this paper, we look at the GISS ModelE2.x family of contributions to CMIP682

(Table 1). Model configurations include variations in the ocean component (either ob-83

served sea surface temperatures or two different ocean models), the radiative forcings84

applied, the interactivity of atmospheric composition, vertical resolution and the qual-85

ity of the stratospheric representation (Table 2). Each configuration has multiple ensem-86

ble members (either 5 or 10 members). Additionally, we make use of a suite of single forc-87

ing ensemble experiments (5 members each) that highlight the vertically varying finger-88

prints of specific forcings to help diagnose the changes.89

1.1 Background90

The vertical pattern of temperature change in response to increased greenhouse gases91

has been recognised as a distinct fingerprint since the pioneering work of Manabe and92

Wetherald (1967). The surface warming, enhanced tropospheric warming, and strato-93

spheric (and above) cooling is unlike the pattern generated by increasing solar activity94

(which would have more uniform warming through the whole atmosphere), ozone deple-95

tion, volcanic activity, or ocean-driven internal variability. However, it wasn’t until the96

satellite era and the development of global atmospheric retrievals using the MSU/SSU/AMSU97

series of instruments combined with the radiosonde record that the ability to distinguish98

these vertical fingerprints emerged (Spencer & Christy, 1990; Randel & Cobb, 1994; San-99

ter et al., 1996; Ramaswamy et al., 1996).100

The use of these datasets for the detection and attribution of climate change has101

been complicated by the substantial structural uncertainty associated with the retrievals102

themselves (Hansen et al., 1995; Mears et al., 2003; CCSP, 2006; Thompson et al., 2012;103

Po-Chedley & Fu, 2012; Zou & Qian, 2016), though as the trend signal has grown and104

as successive non-climatic influences have been dealt with, those differences have become105

less relevant. Nonetheless, the differences in atmospheric trends between models and ob-106

servations continue to generate substantial discussion (McKitrick & Christy, 2020; Mitchell107

et al., 2020; Fyfe et al., 2021).108

In the papers referenced above, the structural uncertainty in models is often as-109

sessed through a sampling of the CMIP ensembles (over many generations of this project).110

This is a good way to assess some aspects of that variance - for instance, with respect111

to the treatment of convection, or the sensitivity to variations in climate sensitivity, but112

the use of an ‘ensemble of opportunity’ is not a complete assessment of uncertainty, and113

some real aspects of the uncertainty will not be sampled at all. Within a single model114

or model family however, we can address some structural variations in a more controlled115
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way and specifically address different sources of uncertainty. Specifically, how sensitive116

are the comparisons to the real uncertainties in the forcing functions? Or to included117

interactive composition? We have deliberately added these kinds of model variations to118

the CMIP6 archive, but note that many papers examining the CMIP6 multi-model en-119

semble will only use a single model from a particular model family and sometimes only120

a single ensemble member. This leads to the potential conflation of internal variability121

with structural variability, underestimating both, and doesn’t take advantage of more122

controlled variations with model families. Thus, single model family analyses should be123

seen as complementary and orthogonal to analyses that use the multi-model ensemble.124

2 Observational Data Sources125

Multiple groups have independently analysed the raw MSU, SSU and AMSU data126

retrievals to create time-series of atmospheric temperatures, notably the University of127

Alabama Huntsville (UAH) group and Remote Sensing Systems (RSS) (for the MSU data),128

and the NOAA Center for SaTellite Applications and Research (NOAA STAR) (both129

MSU and SSU products). We use the latest versions that are publicly accessible (UAH130

v6, RSS v4, NOAA STAR v4.1 (MSU) and v3.0 (SSU)). We use the differences between131

them as an indication of the structural uncertainty in the retrieved trends, though we132

recognise this is possibly an underestimate. The structural uncertainty of the SSU di-133

agnostics is unclear, though reduced compared to previous versions (Thompson et al.,134

2012). We also focus on the global means, with the understanding that the vertical sig-135

nal of trend variability in the troposphere is dominated by the moist-lapse-rate controlled136

tropical regions. All datasets are used through to the end of 2021, except for the NOAA137

STAR SSU products for which data only through to the end of 2020 is currently avail-138

able (as of April 2022).139

In comparing Surface Air Temperature (SAT) trends in the models to the obser-140

vations, we are mindful that trends in a blended product of SST and SAT anomalies (the141

Land-Ocean Temperature Index (LOTI)) such as produced by GISTEMP, HadCRUT5142

or the (pending) NOAAGlobalTemp Interim product (Lenssen et al., 2019; Vose et al.,143

2021; Morice et al., 2021) may be systematically different from the pure SAT trends (Richardson144

et al., 2018). For instance, in the 10 simulations with the GISS E2.1-G f2 configuration145

(see below), the global mean SAT trends are 0.036 [0.028,0.044] ◦C/dec (95% range) greater146

than the LOTI trends for the time period 1979–2014. Thus as an alternative measure,147

we also use the SAT trends from the European Centre for Medium Range Weather Fore-148

casts (ECMWF) Reanalysis version 5 (ERA5) (Hersbach et al., 2020; Simmons et al.,149

2021), which is perhaps a more appropriate comparison, although in practice it is sim-150

ilar.151

3 GISS ModelE simulations152

We analyse model simulations performed for the Coupled Model Intercomparison153

Project (Phase 6) (CMIP6) using various configurations of GISS ModelE, namely GISS-154

E2.1-G, GISS-E2.1-H (Kelley et al., 2020) and GISS-E2.2-G (Rind et al., 2020). The E2.1155

model is an update of the GISS-E2 simulations that were used in CMIP5 (Schmidt et156

al., 2014; Miller et al., 2014) with the same basic resolution (2.5◦×2◦ in the atmosphere,157

≈ 1◦ in the ocean), but with multiple fixes and improvements in tuning. The -G and158

-H versions differ in the ocean model while the AMIP simulations use SST as a bound-159

ary forcing (PCMDI-AMIP-v1.1, based on HadISSTv1.1) (Taylor et al., 2000). The E2.2160

versions have a higher model top (0.002 hPa compared to 0.1 hPa) and twice the ver-161

tical resolution of E2.1 in the atmosphere and have been designed to greatly improve strato-162

spheric circulation and variability. There are also some atmospheric retunings that were163

made that affect the base climatology and variability (Orbe et al., 2020), notably there164
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Figure 1. Schematic of the important drivers of atmospheric change over the satellite period.

Each variable is plotted as a normalized index (with zero mean and unit standard deviation over

the period 1979–2021) in order to highlight the pattern of variance over time. Data sources: so-

lar irradiance (NRLTSI2) (Coddington et al., 2016), ozone hole area (Kramarova et al., 2014),

volcanic stratospheric aerosol optical depth (Sato et al., 1993), well-mixed greenhouse gases and

tropospheric aerosol radiative forcing (from the E2.1-G f2 simulations) (Miller et al., 2021).

The vertical dotted line distinguishes the ‘ozone depletion’ and ‘ozone recovery’ periods for the

stratospheric analyses.
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is an overall cold bias but a more realistic spectrum and magnitude of ENSO variabil-165

ity.166

Each model configuration has options for the interactivity of atmospheric compo-167

sition (specifically gas phase chemistry and aerosol physics). The versions denoted physics version=1168

(p1), (NINT) have non-interactive composition, with three-dimensional seasonality (monthly169

means) and trends in radiatively active components (ozone and aerosols) taken from the170

interactive physics version=3 (p3) versions that use the One-Moment Aerosol (OMA)171

scheme and whole-atmosphere chemistry (Bauer et al., 2020). The aerosol number con-172

centrations that impact clouds are obtained from the aerosol mass (Menon & Rotstayn,173

2006). Additionally, physics version=5 (p5) uses the MATRIX aerosol module with174

the same chemistry (Bauer et al., 2008). In MATRIX the number of cloud activating par-175

ticles is based on an aerosol activation parameterization which treats multimodal and176

multicomponent aerosols and provide the activated fraction of the number and mass con-177

centration for each population, based on the population composition and the cloud up-178

draft velocity (Abdul-Razzak et al., 1998; Abdul-Razzak & Ghan, 2000). GISS-E2.1 in-179

cludes only the first indirect effect, which is the effect of aerosols on cloud droplet num-180

ber concentration and thereby on cloud albedo, cloud effective radii and radiation (Menon181

et al., 2008, 2010). Miller et al. (2021) has a fuller description of the differences among182

the physics versions.183

We focus on the ‘historical’ simulations (from 1850–2014) driven by a suite of cli-184

mate drivers, the Shared Socio-Economic Pathway (SSP) scenario 2-4.5 (ssp245) runs185

(from 2015 onward) (Nazarenko et al., 2022), and supplemented by various single-forcing186

simulations for the historical period (Fig. 1). We have more simulations for the histor-187

ical period than for the SSPs, but because of the vagaries of El Niño/La Niña cycles, only188

looking at the trends to 2014 might bias the comparisons. Thus where we have config-189

urations that were run for SSP2-4.5, we also track trends over the longer period. The190

varying composition forcings for E2.1 used in the non-interactive (NINT) cases are de-191

rived from our interactive (OMA) runs. The NINT f1 forcings came from our initial AMIP192

runs with E2.1 (OMA). However, the discovery of an error in the coding for stratospheric193

ozone chemistry led us to later rerun these simulations to generate the f2 suite of forc-194

ings (which differ mainly in the ozone trends in the stratosphere) (Miller et al., 2021).195

These f2 runs also have a complete suite of results with individual forcings to 2014, with196

some simulations going to 2018 or continued using the SSP2-4.5 drivers. Finally, we have197

a set of forcings f3 that are interpolated from the higher vertical resolution E2.2-G (OMA)198

model that had a noticeably improved stratospheric-tropospheric exchange and circu-199

lation, which impacted the ozone climatology, variability and trends. Note that changes200

in stratospheric water vapor associated with solar-cycle related photolysis changes are201

not included in any of the NINT runs. In total, we examine nine separate configurations,202

with over 50 individual simulations.203

The ozone and aerosol forcings in each individual configuration may thus be dif-204

ferent from the schematic in Figure 1, but the overall transient pattern is close. The MA-205

TRIX runs have a faster decline of the magnitude of the tropospheric aerosol effects than206

those in which the aerosols are derived from the OMA runs (Bauer et al., 2020). Sim-207

ilarly, the exact timing of the ozone hole and stabilization is different in the E2.2 mod-208

els than in E2.1 (Orbe et al., 2020). We will return to these issues in the discussion.209

There is a subtle difference between the net anthropogenic forcing in the E2.1-G210

f3 (NINT) runs and the E2.2-G (OMA) runs, from which the ozone and aerosols were211

derived, related to the indirect aerosol effect. In the non-interactive composition model212

configurations, the aerosol indirect effects are tuned so that year 2000 forcing, given the213

aerosol distribution, is around -1 W/m2 (Miller et al., 2021). This tuning is slightly dif-214

ferent for the E2.2 and E2.1 model configurations. Thus, when taking the aerosol dis-215

tribution from E2.2 and using it in the E2.1 model, there is a difference in the aerosol216
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Model version Experiment ripf number DOI

E2.1-G amip r[1-5]i1p1f2 10.22033/ESGF/CMIP6.6984
historical r[1-10]i1p[135]f[123] 10.22033/ESGF/CMIP6.7127

ssp245 r[1-10]i1p[135]f2 10.22033/ESGF/CMIP6.7415
hist-volc r[1-5]i1p1f2 10.22033/ESGF/CMIP6.7111
hist-sol r[1-5]i1p1f2 10.22033/ESGF/CMIP6.7101
hist-aer r[1-5]i1p1f2 10.22033/ESGF/CMIP6.7081

hist-GHG r[1-5]i1p1f2 10.22033/ESGF/CMIP6.7079
hist-totalO3 r[1-5]i1p1f2 N/A

E2.1-H historical r[1-5]i1p1f2 10.22033/ESGF/CMIP6.7128
ssp245 r[1-5]i1p1f2 10.22033/ESGF/CMIP6.7416

E2.2-G historical r[1-5]i1p[13]f1 10.22033/ESGF/CMIP6.6951
ssp245 r[1-5]i1p3f1 10.22033/ESGF/CMIP6.7415

Table 1. Model experiments in CMIP6, simulation identifiers (using standard regular ex-

pression format) and DOIs for the ensemble. The p variable denotes different treatment of

atmospheric composition, with p1 being non-interactive (NINT), p3 using whole atmospheric

chemistry and the One Moment Aerosol (OMA) module, and p5 which uses whole atmosphere

chemistry and the MATRIX aerosol scheme (Bauer et al., 2020). Note that the definition of

the forcing variants are unique to each model and physics variant (so f1 in the p1f1 (NINT)

simulations is not related to the f1 in the p5f1 (MATRIX) simulations). The hist-totalO3 sim-

ulations were not submitted as part of the CMIP6 request, but are included in this analysis for

completeness.

indirect effect that leads to a decrease in net forcing of 0.27 W/m2 compared to the f2217

configuration.218

We analyse the surface air temperatures (SAT), the Temperature of the Lower Tro-219

posphere (TLT) (3km/700 hPa) the Temperature of Mid-Troposphere (TMT)(5 km/500220

hPa), the Temperature of the Lower Stratosphere (TLS) (18 km/80 hPa), and SSU chan-221

nels 1, 2, and 3 (centered on 31, 39, 45 km and 10, 3 and 1.5 hPa respectively). Height222

and pressures are given for the peak in the atmospheric weighting, but the tails of the223

weighting functions are quite broad and extend over a wide vertical range, necessitat-224

ing an appropriate weighted diagnostic in the models for comparison. The MSU and SSU225

diagnostics within the model are based on a fixed weighting in pressure and, although226

more complicated forward models can be applied (Shah & Rind, 1995), they do not no-227

ticeably impact the global trends (Schmidt et al., 2006).228

Santer et al. (2021) (following Fu et al. (2011)) analysed a version of TMT that uses229

the TLS to correct for differing estimates of lower stratospheric cooling. They found that230

the trends in the corrected TMT in CMIP5 and CMIP6 models were not statistically dis-231

tinct from the TLT trends, and so we choose not to additionally analyse the corrected232

TMT product.233

4 Methods234

We focus on the annual global anomalies and linear trends in the ensembles for each235

of the diagnostics described above over the 1979–2014 or 1979–2020/2021 periods. Where236

needed, we reference anomalies to a 1980–1999 baseline. Ensemble spread is denoted us-237

ing a 95% confidence interval derived from the 5 or 10 ensemble members.238

Using an ordinary least squares linear regression on the annual anomaly data, we239

calculated the trends in ◦C per decade for each run and for each variable in the ensem-240

–7–



manuscript submitted to Journal of Geophysical Research

Model Configuration SAT (oC) ECS (oC) TCR (oC) Model Top/Layers

E2.1-G f1 (NINT) 14.3 2.7 1.8 0.1 hPa/40L
E2.1-G f2 (NINT) 14.1 2.7 1.8 "

E2.1-G f3 (NINT) 14.2 2.7 1.8 "

E2.1-G (OMA) 14.7 2.6 1.6 "

E2.1-G (MATRIX) 14.8 2.8 1.8 "

E2.1-H f2 (NINT) 14.5 3.1 1.9 "

E2.2-G (NINT) 12.3 2.4 1.7 0.002 hPa/102L
E2.2-G (OMA) 11.7 2.1 1.4 "

Observations 14.3±0.5 2.0–5.0 1.2–2.4

Table 2. Selected model characteristics for the different configurations used. Global Mean

Surface Air Temperature (SAT, ◦C) is for the period 1981–2010. ECS and TCR are calculated

from the abrupt4xCO2 and 1pctCO2 experiments, respectively. Observations are inferred from

Jones et al. (1999), and the ‘very likely’ sensitivity ranges from the IPCC AR6 report (Masson-

Delmotte et al., 2021).

ble and for the ensemble mean. Where relevant, uncertainties are given as the 95% con-241

fidence interval on the linear regression on the annual data. We construct density plots242

using the computed decadal trends for each run in an ensemble using the density func-243

tion in R, following the methods of Sheather and Jones (1991). These plots are used to244

visualize the spread of decadal trend values within the ensemble and to compare vari-245

ous ensembles for comparison to the observational products for each metric.246

In an effort to isolate the effects of stratospheric ozone depletion, we separate our247

calculation of trends in the stratosphere between the ozone depletion era (1979–1998)248

and the recovery period (after 1999) following Mitchell et al. (2013) and Seidel et al. (2016).249

For the TLS data in particular, a single linear trend is not a good fit, and so the sep-250

aration of these periods can be used to more clearly distinguish the impact of the ozone251

depletion, as can the inclusion of volcanic and solar predictors in a multiple linear re-252

gression.253

Consistency of the trends with observational products is assessed in two ways. First,254

we perform a simple test of whether the ensemble mean from the model configuration255

is within the 95% confidence interval from one of the observational product(s). This tests256

whether the observed trend is consistent with our estimate of the forced signal. A bet-257

ter test is whether an observational trend could be plausibly drawn from the model dis-258

tribution of forced signal plus internal variability. This statistic is calculated following259

Eqn. 12 in Santer et al. (2008) (assuming a single model) using260

d = |Tm − To|/
√

s{< Tm >}2 + s{To}2 (1)

where s{< Tm >} is the standard deviation of the ensemble of model temperature trends261

Tm and s{To} is the standard deviation in the linear regression the observed tempera-262

tures, respectively. This d statistic is assumed to follow a Student’s t-distribution, and263

so the probability of getting as high a value as d can be assessed (assuming the degrees264

of freedom are one less than the ensemble size). If the probability is less than 95% in a265

two-tailed test, we conclude that the observations are consistent with the specific model266

ensemble. Since we are using annual data to compute the trends, the degree of autocor-267

relation in the residuals is small and neglected here. Inclusion of this effect would lead268
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to slightly broader confidence intervals, and slightly greater consistency, but this does269

not impact the pattern of results we see nor any conclusions.270

In the troposphere, models and observations indicate that the ratio of tropospheric271

trends to the SAT trends (related to the effective lapse rate) is more stable than the trends272

themselves (Wigley, 2006; Santer et al., 2005, 2017). Thus we also examine the ratios273

of TLT and TMT data to the SAT products in each configuration.274

By contrasting specific pairs or sets of simulations in our archive, we can isolate275

many different aspects of the drivers and responses. For instance, in the troposphere,276

we can distinguish the impacts of changes in sea surface temperature (SST) (via differ-277

ent ocean models or observed ocean temperatures) by comparing the E2.1-G f2, E2.1-278

H f2 and E2.1 (AMIP) simulations. One such difference arises by varying rates and struc-279

ture of ocean heat uptake in E2.1-H f2 compared to E2.1-G f2. There is more overall280

ocean heat uptake in E2.1-H f2, however the uptake is localized to the upper ocean rather281

than the deep ocean. This creates a larger SST increase in E2.1-H f2 than in E2.1-G f2282

simulations with identical forcings (but see Miller et al. (2021) for a more thorough ex-283

ploration of the ocean heat content changes in the GISS E2.1 simulations). We can also284

compare E2.2-G to E2.1-G f3 and f2 to examine whether there is significant improve-285

ment related to the higher vertical resolution model and better resolved stratosphere,286

and whether changes between simulations relates to the forcings or model structure. We287

have multiple realizations of the forcing fields (notably, aerosols and ozone) with the same288

underlying climate model to examine the sensitivity to those fields. Also, within each289

ensemble, we can estimate the impact of the modeled internal variability on the trends.290

The impact of specific large volcanic eruptions in the first half of the satellite pe-291

riod (El Chichon in 1982 and Mt. Pinatubo in 1991) could bias the trend comparisons292

if there are issues in either the volcanic forcings used in the models or the model radia-293

tive response to the volcanic aerosol inputs. Similarly, there is clear evidence of a solar294

cycle signal in the stratospheric diagnostics. We therefore use stratospheric volcanic aerosol295

depth and solar irradiance estimates in an additional multiple linear regression to reduce296

the influence of potential errors in natural forcings and/or response.297

5 Results298

5.1 Tropospheric Trends299

We first examine the time-series from a subset of the configurations in figure 2. This300

shows not only the contrasting trends, but also the degree of simulated internal variabil-301

ity. As expected, the AMIP configurations (driven with observed SST) have very little302

spread and are a very good match to the RSS and NOAA STAR TLT and TMT changes,303

though they diverge from UAH TLT, notably after 2000. However, we should note that304

the AMIP SST files are based on HadSST2 (Rayner et al., 2006). Recent revisions (to305

HadSST4, (Kennedy et al., 2019)) have dealt with many non-climate discontinuities, and306

the net effect has been to increase the reported trends - by about 50% in the tropics and307

globally over the 1979–2019 period. These changes will have an impact on future AMIP-308

style runs (Flannaghan et al., 2014), likely increasing the tropospheric SAT and TLT trends.309

Assessing the importance of these changes will be the subject of future study.310

The various flavors of E2.1-G coupled models have more spread due to over-estimated311

magnitude of internal variability (principally the frequency of ENSO (Kelley et al., 2020))312

but broadly capture the observed trends. The response to volcanoes in 1982 and 1991313

is clearer with the f2 and f3 forcing, demonstrating the impact of the stratospheric ozone314

chemistry correction from f1 even on surface temperatures. The E2.1-H model (same315

forcings, but with a different ocean model) and the E2.2-G model (with higher vertical316

resolution) have slightly lower (and more realistic) estimates of internal variability. Note317
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Figure 2. Tropospheric trends in various configurations showing the SAT, TLT and TMT

changes, specifically the E2.1 AMIP; E2.1-G f1, f2, and f3; E2.1-H f2; and E2.2-G configura-

tions for 1979–2014 (or to 2021 where available). The three diagnostics are offset by 1◦C for

clarity. The spread is the 95% confidence interval of the envelope of individual ensemble mem-

bers. Observations from GISTEMP, UAH, RSS and NOAA STAR are in solid, dashed, dotted

and dash-dotted lines, respectively.
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that in the coupled models, the timing of ENSO variability will not in general be cor-318

related with the observations.319

Quantitative comparisons of the trends (in the historical period 1979–2014, and also320

in the extended period to 2021 for those ensembles that were continued under SSP2-4.5)321

can be seen in Table 3 for all nine model configurations. These results demonstrate more322

finely that there are notable differences in the trends among the configurations (and also323

the observational products) even within a broad qualitative agreement. For reference,324

differences in the ensemble mean trends that are greater than about 0.02± are statis-325

tically significant.326

Before we address why specific ensembles have different trends, it’s worth noting327

that even for a multi-decadal trend in the global mean temperature, there is significant328

spread across the individual ensemble members. For E2.1-G f2, for which we have ten329

simulations, the 1979–2021 SAT trends range from 0.18◦C/dec to 0.26◦C/dec, so even330

with 43 years of data, the spread can be important (see also Fyfe et al. (2021)). The anal-331

ogous range for the E2.1-H and E2.2-G (OMA) configurations are [0.22,0.30] and [0.15,0.18]oC/dec332

respectively.333

In comparing the model ensemble to the real world signal, the appropriate consis-334

tency test is whether the real world trend is a plausible draw from the modelled distri-335

bution. Thus even if the trend in the ensemble mean is outside the confidence interval336

for the observed trend, the real world changes are potentially still consistent with the337

modeled distribution (Santer et al., 2008). Bolding in Table 3 is based on whether the338

ensemble mean is within the uncertainty of the observed trend (a test of whether the ob-339

served trend is consistent with our estimate of the forced trend), while the superscripts340

denote whether each observational product can be considered a plausible draw from the341

specific modeled ensemble.342

Most configurations have a reasonable ensemble mean estimate of the tropospheric343

trends, and are consistent with ERA5, GISTEMP SAT and RSS TLT products. Only344

two configurations are also consistent with the UAH TLT estimates (both versions of E2.2-345

G model). Given the wide spread in estimated TMT trends across the observations, this346

diagnostic is less discriminating, though notably again, the E2.2-G configurations are con-347

sistent with the UAH trend.348

Three configurations have ensemble SAT trends significantly greater than obser-349

vations (and for two of them, this is also true for the longer 1979–2021 trend); E2.1-G350

f2, E2.1-H f2, and the E2.1-G (MATRIX) configurations. For E2.1-H, the Transient Cli-351

mate Response (TCR) is higher than for the other configurations (Table 2) due to a re-352

duced uptake of heat into the ocean (compared to the E2.1-G configurations), while the353

E2.1 (MATRIX) simulations have a more rapid decrease of (negative) aerosol forcings354

than with the OMA and non-interactive versions (Bauer et al., 2020).355

Figure 3 show the 1979–2014 trends for the configurations. For each ensemble we356

show the density plot for each ensemble, with the exception of E2.1 (AMIP) which has357

a very narrow distribution. Across the configurations there is a wide range of trends for358

each diagnostic, skewed slightly higher than the observations, but on the whole mostly359

consistent with the RSS and NOAA STAR products. There are significant differences360

in the spread for specific configurations.361

To better assess reasons for the spread in the trends, it’s useful to also calculate362

the ratios of trends in the troposphere which removes the issues of overall global forc-363

ing and global mean temperature response, and allows for a focus on the global mean364

lapse rate, which is possibly more sensitive to model convective processes and other pa-365

rameterizations (Santer et al., 2017). Table 4 gives the TLT to SAT, and TMT to SAT,366

ratios for each ensemble for the historical period and for the extended period to 2021.367
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The ratios of the trends in the troposphere are relatively stable and similar to those368

seen in the CMIP5 multi-model ensemble (Santer et al., 2017). Whether these ratios in369

the models are calculated using the ensemble mean, or the mean of the individual trends370

for each ensemble member, or from a linear regression passing through the origin and371

through the individual annual points from each ensemble member, the values are basi-372

cally the same. There is some suggestion that the trends get larger over time as the cli-373

mate change signal increasingly dominates over the internal variability.374

The observation-based trend ratios depend strongly on whether we use the UAH375

data or the RSS/NOAA STAR data. With respect to UAH, the TLT/SAT trend ratio376

is around 0.75, which is contrary to our basic physical understanding of the lapse rate,377

indicating that there is likely a systematic problem in either all the SAT products or specif-378

ically the UAH TLT product. With respect to the other data products, the ratio is around379

1.2, significantly greater than one (as expected). The TMT trends (and hence ratios) are380

smaller because of the greater influence of the (cooling) stratosphere, but vary widely381

across the products from around 0.55 (using UAH), 0.8 (using RSS) or 0.9 (using NOAA382

STAR).383

In the models, the TLT to SAT ratios are all greater than one, slightly less than384

observational trend ratio using RSS, but entirely inconsistent with the trend ratio us-385

ing UAH. There is little spread in this value across different time periods, model struc-386

ture or forcing. However, there is a much wider spread in the trend ratios for the TMT387

to SAT ratio, which vary by a factor of two between E2.1-G f1 and E2.2-G (OMA). This388

result is tied to the spread in the TLS trends (see below), with the model configurations389

with the largest cooling trends in the lower stratosphere having the smallest TMT/SAT390

trend ratios. This underscores the importance of ozone, volcanic aerosols and possibly391

even solar forcing in affecting the TMT trends and the TMT/SAT trend ratio. The E2.1-392

G f1 configuration had an error in the stratospheric ozone chemistry and the smallest393

TLS cooling (to 1998), the f2 runs were corrected and had a more realistic stratospheric394

cooling and a TMT/SAT trend close to that seen with the RSS products.395

E2.1-G f2 visibly shows much clearer agreement with historical observations than396

E2.1-G f1. While the f2 improvements are easily noticeable in the period from the 1980’s397

through the 90’s, there is also a notable discrepancy in predicted and observed warm-398

ing in the late 2000’s and early 2010’s.399

The contrast between the E2.1-G f2 and f3 configurations is also instructive. These400

runs differ only in the aerosol and ozone fields, and show that the trends are quite sen-401

sitive to plausible changes in the aerosol forcing in particular. The TMT/SAT trend ra-402

tios however show more difference even though the underlying model processes are iden-403

tical. This is plausibly connected with a lower tropopause in the E2.2 simulations from404

which the f3 forcings are drawn, implying a greater stratospheric contribution to the TMT405

trends.406

The E2.1-G f2 ensemble runs hindcast more warming in the 2000’s than the AMIP407

ensemble does. As the AMIP ensemble mean in use in these figures is the same as E2.1-408

G f2 runs except for its reliance on observational surface ocean temperature data, this409

indicates that, at least in part, the atmospheric-ocean dynamics in the coupled ensem-410

ble are contributing to more warming. However, it should be noted that the 95% con-411

fidence envelope of E2.1-G f2 does still overlap with the satellite observations in the ma-412

jority of the temperature anomaly charts even as the model approaches the present.413
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Figure 3. Trend analysis across the non-interactive configurations for the tropospheric diag-

nostics for the period 1979–2014. Uncertainties on the observational trends are the 95% confi-

dence intervals. E2.1 (AMIP) results are plotted as a 95% spread. All other model ensembles are

plotted as a density plot.
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Figure 4. Stratospheric time-series for MSU TLS and SSU products for E2.1-G f1, f2 and f3,

and for E2.2-G compared to the observations (each offset by 1◦C for clarity). Observations from

RSS, UAH and NOAA STAR are dotted, dashed and solid respectively.
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Figure 5. Ensemble trends and observations for the TLS and SSU channels in the strato-

sphere. Uncertainties in the observations are the 95% confidence interval on the linear regression.
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5.2 Stratospheric Trends414

Figure 4 shows a selection of model anomalies in the stratospheric diagnostics, TLS415

and the three SSU channels. The effect of the ocean module is not significant, so the re-416

sults of the E2.1-H or E2.1 (AMIP) configurations are omitted for clarity. Overall cool-417

ing trends increase as a function of height as the CO2 impact increases, while the im-418

pact of volcanic aerosols decreases. It’s clear that a single linear trend is not a good fit419

for these diagnostics over this period because of the impacts of volcanic aerosols early420

in the period, the changing impact of ozone depletion (strong in the first 20 years of the421

record, and less important subsequently, see fig. 1) and the impact of solar cycles. The422

overall structure of the changes is reasonable in all configurations, but there are clear423

discrepancies. The difference in the volcanic response between the E2.1-G f1 and f2 sim-424

ulations is directly related to the correction of bug in the stratospheric chemistry, which425

clearly improved the simulations. However, in all cases, the response to El Chichon in426

1982 is muted compared to that for Mt. Pinatubo (1991) which appears to be too large.427

The other clear difference is the between the f2 and f3 runs which have markedly dif-428

ferent upper stratospheric trends. The high-top simulations using E2.2-G have a much429

closer match to the observations than E2.1-G f2, which is mimicked by the results in E2.1-430

G f3 which uses the E2.2-G (OMA) ozone fields, but has the same radiative effects from431

CO2.432

More quantitatively, the ensemble mean linear trends in the stratosphere are given433

in Table 5. The ozone depletion signal is dominant in the TLS trends so, following Seidel434

et al. (2016), we separate the stratospheric linear analysis into two periods, 1979–1998435

(the ‘ozone depletion’ period) and the subsequent evolution 1999–2014 (or with a con-436

tinuation to 2021 or 2022). In the lower stratosphere, the different E2.1-G configurations437

behave similarly in the early period. However, trends in the recovery period vary as a438

function of the specific forcings. The f2 forcings indicate more cooling than other con-439

figurations in the SSU channels. This is not the case in the lower stratosphere, though,440

which is driven more by the ozone trends. E2.1-G f2 results track the TLS observations441

more closely than E2.1-G f3 or E2.2 do. Notably, in the decadal trend diagrams (fig. 5),442

the E2.1-G f3 configuration has the widest difference between the ozone depletion and443

recovery period while f2 is more centered around the observational data without signif-444

icant differentiation between the two periods. The improvements in model agreement445

from the E2.1-G f2/f3 to E2.2 models configurations is increasingly pronounced in the446

higher altitudes.447

While the internal variability in the stratospheric trends is greatly muted compared448

with the troposphere, there is significant spread in each ensemble for the two periods (fig. 5)449

due to the different forcings. With the exception of SSU-3 (the upper stratospheric chan-450

nel) in the ozone depletion period, the model ensembles using the high-top model (or the451

ozone fields derived from it) are a much better match to the observed trends. All model452

cooling trends in the ozone depletion period in SSU-3 are too large.453

Some insight into the reasons behind the trend disparities can be gained by look-454

ing at the ozone trends in the different ensembles (fig. 6). We look at the 60◦S–60◦N mean455

total column ozone (since the satellite observations don’t completely capture the changes456

at the high latitudes). The model ensembles are slightly depleted total ozone in the early457

1980’s (by 7–9 DU) compared to the SBUV (v8.7) data, but all show a steady decline458

over the ‘ozone depletion’ period in line with the observations at least through to 1994.459

In the E2.1 configurations, the depletion period lasts longer than observed (by 5 years460

or so), while in the E2.2 configuration there is a greater perturbation associated with Mt461

Pinatubo and a deeper depletion towards the the end of the 1990’s.462

In these ModelE simulations, stratospheric chlorine loading (and hence overall ozone463

depletion) was set using a relationship based on the concentrations of CFC-11 and CFC-464

12. In the real world, the Equivalent Effective Stratospheric Chlorine (EESC) (Newman465
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Figure 6. Time-series of the 12-month running mean total column ozone (DU) (60◦S–60◦N)

for the ensembles with interactive composition from 1979–2021. Thick lines are the ensemble

mean, with individual members in the thin lines. The vertical dashed line denotes the separa-

tion of the ‘ozone depletion’ and ‘ozone recovery’ periods. Observations are from SBUV v8.7

(McPeters et al., 2013, and updates).
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SSU-2 Multiple Linear Regression Coefficients 1979–1998

Model Configuration Intercept Linear trend (◦C/dec) Volcanic AOD Solar TSI

E2.1-G f2 -460 -1.15 4.4 0.48
E2.1-G f3 -563 -0.98 5.6 0.56
E2.2-G -463 -1.02 5.1 0.49
E2.2-G (OMA) -445 -1.13 5.8 0.49

NOAA STAR -549 ± 240 -0.87±0.11 4.9±1.9 0.53±0.17

Table 6. Multiple linear regression results for the SSU-2 diagnostics for selected ensemble

mean model configurations and observations for the ‘ozone depletion’ period. All coefficients are

significant at the 95% level. Uncertainties on the regression of the NOAA STAR observations are

the 95% confidence levels.

et al., 2007) depends on many lower concentration gases which are not explicitly tracked466

in the GCM. While the parameterized EESC is a good approximation to about 2000,467

there is an increasing divergence with the real world afterwards, with the real EESC re-468

ducing more rapidly than in the model. Notably, the peak in the real world was around469

2001, while in our parameterization it does not occur until 2005, and the real world EESC470

has decreased by 14% from its peak in 2020, while in our parameterization, it has only471

decreased 8%. Thus in all the model configurations, the ozone depletion period extends472

a few more years than observed, and does not recover as quickly. Given the cooling im-473

pact of ozone depletion on the TLS and SSU channels, this issue can explain a portion474

of the mismatched trends in the ozone recovery period.475

5.2.1 Multiple linear regression using volcanic and solar predictors476

The clear impacts of volcanic eruptions and solar cycles in the stratospheric diag-477

nostics increase the non-linearity of the temperature trends in the stratosphere. We there-478

fore redo the linear regressions including predictors for these effects to assess whether479

the longer term trends are being affected by potential errors in the modeling of the vol-480

canic or solar responses. If those errors are significant, we should see a better match in481

the modeled and observed linear trends.482

We use a volcanic predictor based on the aerosol optical depth history (Sato et al.,483

1993, and updates) and a solar index derived from a historical total solar irradiance dataset484

(Coddington et al., 2016). We highlight the results with respect to SSU-2 in figure 7 and485

for the ensemble means for all diagnostics in figure 8. As expected, the linear trends for486

both the models and the observations in the ozone depletion period are both smaller in487

magnitude and less uncertain when the volcanic and solar predictors are included. The488

added predictors make the most difference in the TLS trends where the resulting linear489

trends are all more consistent.490

For the SSU channels the impacts are more muted, but there aren’t any major shifts491

in the consistency with the observations. Notably, the E2.1-G f2 simulations are show492

notably stronger stratospheric cooling than observed regardless of which additional pre-493

dictors are included. The E2.1-G f3 and E2.2-G results for the SSU-3 channel get closer494

to the observed trends, but are still too strong, suggesting that further investigation of495

the time-series of ozone depletion is required.496

There are some interesting aspects of these regressions in the ozone depletion pe-497

riod. This is illustrated for SSU Channel 2 in Table 6. First, the solar regressions (ef-498
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SSU-2 Linear Trends 1979–1998 w/ and w/o Solar and Volcanic Predictors
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Figure 7. Ensemble linear trends with and without volcanic aerosol and solar predictors in

the mid-stratosphere (SSU-2) (1979–1998). Uncertainties on the observations represent a 95%

confidence interval on the linear regression. a) The linear trends in each ensemble in the multiple

linear regression and, b) trends in the ensemble mean for each configuration with and without the

MLR.

fectively over two solar cycles are in line with the inference from the observations, as are499

the volcanic effects. It’s noticeable that the volcanic signal is stronger in the E2.2-G (OMA)500

and E2.1-G f3 configurations than in the other two configurations and the observations501

(though all coefficients are consistent with the observations). In all cases the linear trends502

are now more coherent with the observations, but collectively they are still a little too503

steep (except for E2.1-G f3 which is just about compatible). The slightly enhanced so-504

lar effects in E2.1-G f3 may arise from the lack of solar-cycle related changes in photol-505

ysis which would causes upper stratospheric water vapor to decrease at solar maxima,506

damping the temperature impact.507
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Figure 8. Ensemble linear trends with and without using volcanic and solar predictors for the

stratospheric diagnostics (1979–2014). Error bars on the observations represent a 95% confidence

interval on the linear regression.
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Impact of individual drivers in the E2.1-G f2 ensemble
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Figure 9. Breakdown of the ensemble mean SAT, TMT, TLS, and SSU-2 anomalies for

E2.1-G f2 as a function of relevant single forcings from 1880–2021 with respect to a baseline of

1880–1910. The uncertainty on the ‘All drivers’ line is the derived from the 95% confidence inter-

val from the pre-industrial control run, which in practice is indistinguishable from the envelope

of the individual ensemble member spread. For the tropospheric diagnostics, we apply a 4-year

running mean filter to reduce the ‘weather’ noise that still remains in the ensemble mean for each

single forcing (which only used 5 ensemble members). Illustrative observations are the GISTEMP

LOTI, RSS MSU, and the NOAA-STAR SSU. SAT observations are plotted with the same base-

line as the models, but for the satellite era diagnostics we align them so that their mean is equal

to the model ‘All drivers’ ensemble mean over 1980–1999.

6 Single-forcing results508

For the E2.1-G f2 (NINT) configuration, we performed a complete set of single forc-509

ing simulations for the historical period (5 ensemble members each). Thus for each di-510

agnostic, we can illustrate the modeled response to each of the drivers individually (fig. 9).511

Because of the way the historical composition files were derived (from an OMA simu-512

lation), the solar-only and volcanic-only forcing simulations include compositional responses513

(notably in ozone) which is a new feature compared to how similar exercises were done514

in previous iterations (Marvel et al., 2015). Some forcings (such as orbital forcing or land-515

use/land-cover change) don’t have a significant expression in the global mean diagnos-516

tics (very close to zero for orbital forcing, and slightly negative for land-use/land-cover517

on SAT) and are not included in the figures. The impact of ‘Tropospheric Aerosols’ is518

only significant for the tropospheric diagnostics, though there is a very slight stratospheric519

warming associated with them (not shown). The ozone-only results used composition520

files from anthropogenic-only simulations (with no natural drivers), and thus include both521

tropospheric ozone increases and stratospheric ozone decreases, driven by emissions of522

chemical precursors and ozone-depleting substances. The Greenhouse Gas (GHG)-only523
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simulations include the radiative impacts of CO2, CH4, N2O and CFCs (but not any chem-524

istry related impacts).525

For the SAT, TMT and SSU2 diagnostics illustrated in figure 9, the dominance of526

GHGs in driving the long-term trend is clear, however, other forcings (tropospheric aerosols,527

ozone, volcanic aerosols) all play key roles, though their importance varies through the528

atmosphere. Volcanic and ozone forcings are relevant throughout the atmosphere, while529

solar forcing increases in importance with height. GHG, volcanic and ozone impacts all530

change sign in going from the troposphere to the stratosphere. The breakdown for TLT531

is similar to that for SAT, and the two other SSU channels resemble SSU-2 (not shown).532

For TLS, the ozone changes are the dominant factor in recent decades (c.f. Ramaswamy533

et al. (1996)), although the GHG (CO2) impact is increasing in importance. The vari-534

ations across the other model configurations, particularly in the stratosphere, can be thought535

of as being driven by small changes in the secondary components - notably stratospheric536

ozone and the volcanic response.537

7 Discussion538

The vertical profile of atmospheric trends over recent decades is a key metric in as-539

sessing the fidelity of climate models, and ultimately in understanding why the current540

climate is changing. While the overall patterns are robust and clear - warming in the tro-541

posphere, cooling in the stratosphere, punctuated by volcanic effects, and modulated by542

solar activity - there are sufficient discrepancies between models and observations and543

among observational products to merit closer attention.544

Among the dozens of simulations with the GISS Earth System Models in nine dif-545

ferent configurations, there is sufficient structural variety to help us more easily iden-546

tify some key modeling choices that have impacted those comparisons than when look-547

ing across the whole multi-model ensemble.548

Most obviously, even for trends over four decades, there is substantial intra-ensemble549

spread due to the different realizations of internal variability in the troposphere and which550

is essential to take into account when comparing a model to the single real world real-551

ization (Santer et al., 2008; Po-Chedley et al., 2021).552

Secondly, two factors for which there is still substantial uncertainty - the tropospheric553

aerosol forcing changes and the rate and manner of heat uptake into the ocean - still make554

a notable difference in the troposphere. Model configurations with less deep ocean heat555

uptake and those with a faster decrease in aerosols have stronger surface trends than those556

without. Additionally, while the spread of climate sensitivity in these configurations (2.1◦C557

to 3.1◦C) is not as wide as in the broader CMIP6 ensemble (1.8–5.6◦C) (Zelinka et al.,558

2020), it is sufficient for the trends under similar forcings to diverge. Unfortunately, the559

intersection of these three factors means that it is hard to constrain one of them alone.560

Thirdly, it is likely that there will be further refinements and better estimates of561

structural uncertainty for the satellite retrievals themselves. If so, the conclusions here562

may need to be revised.563

Nonetheless, there are robust conclusions that can be drawn. There is clearly more564

work to be done related to the response of the models to volcanic eruptions. The dis-565

crepancies seen in the magnitude and time-evolution of volcanic signal suggest that ei-566

ther the input aerosol fields are not accurate, and/or that the model response (perhaps567

in the heterogeneous chemistry) is flawed. More first principles modeling via injection568

of volcanic gases and subsequent aerosol modeling (LeGrande et al., 2016) and the re-569

sults of the VolMIP exercise might lead to more coherent and hopefully more accurate570

impacts (Timmreck et al., 2018; Zanchettin et al., 2022).571
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Our results underline the importance of ozone climatology and chemistry responses.572

The difference in SSU trends in the E2.1-G f2 and f3 configurations can only be due573

to the different ozone files. There are two facets to these differences, a more accurate base574

climatology, with a lower altitude ozone layer (consistent with a more accurate (weaker)575

Brewer-Dobson circulation and older stratospheric age-of-air in the E2.2 models (Orbe576

et al., 2020)) and different trends over time. We find that E2.2-G is much better than577

E2.1-G in its agreement with ozone depletion and recovery observations. Our results sug-578

gest that the magnitude of the SSU cooling trends (driven mainly by the CO2 forcing)579

are mediated by the ozone response in the models. Ozone responds differently in the high-580

top versus low-top models because of the climate changes in the Brewer-Dobson circu-581

lation and because the slower circulation in the high-top versions changes the response582

of ozone to increased CO2. Improvements in the modeling of stratospheric halogen loads583

may also make a difference to the trends in the ’ozone recovery’ period.584

It should be noted that, in agreement with other CMIP6 models, GISS ModelE out-585

put tends to agree more with RSS and NOAA STAR tropospheric observations than with586

the UAH data. The results from the AMIP results are very suggestive that the UAH re-587

sults start to anomalously deviate from expectations around the year 2000. Updates to588

the SST inputs for the AMIP simulations are likely to worsen the comparison further.589

Also, since the ratio of TLT to SAT trends is a robust metric across configurations, in-590

dependent of the climate sensitivity, vertical resolution or ocean component, the fact that591

this is not consistent with any UAH/SAT trend ratio is suggestive of a systematic prob-592

lem.593

To summarise, it is too simplistic to attribute all model discrepancies with the MSU594

and SSU observational to a single dominant cause. This analysis has demonstrated that595

even within a single model family, multiple factors are at play: ozone chemistry, clima-596

tology and feedbacks are clearly important to the TMT and stratospheric channels; cor-597

rect simulations of volcanic aerosol and consequent compositional changes are also im-598

portant. Both are targets for future development. However, internal variability and struc-599

tural uncertainty in the observations are essential components to address in any anal-600

ysis. Attempts to classify the responses in the multi-model ensemble by using only sin-601

gle ensemble members from each model or model family will, simply by chance, conflate602

internal variability with structural uncertainty (e.g. McKitrick and Christy (2020); Mitchell603

et al. (2020)) and may give misleading results.604

Open Science605

The observed MSU/SSU data products are available at ftp://ftp.remss.com/606

msu/graphics/, https://www.nsstc.uah.edu/data/msu/v6.0/ and ftp://ftp.star607

.nesdis.noaa.gov/pub/smcd/emb/mscat/data/. The GISTEMP data is available from608

https://data.giss.nasa.gov/gistemp. ERA5 data is from https://climate.copernicus609

.eu/sites/default/files/ftp-data/temperature/2021/12/ERA5 1991-2020/ts 1month610

anomaly Global ERA5 2T 202112 1991-2020 v01.csv. Indicies of various drivers are611

from the following sites: ozone hole area from NASA Ozone Watch https://ozonewatch612

.gsfc.nasa.gov/statistics/annual data.txt, total column ozone https://acd-ext613

.gsfc.nasa.gov/Data services/merged/data/sbuv v87 mod.int lyr.70-20.za.r1614

.txt, volcanic aerosol optical depth https://data.giss.nasa.gov/modelforce/strataer/615

tau.line 2012.12.txt, Total Solar Irradiance https://lasp.colorado.edu/lisird/616

latis/dap/nrl2 tsi P1Y.csv?&time%3E=1610-01-01T00:00:00.000Z&time%3C=2021617

-12-31T00:00:00.000Z , and radiative forcing https://data.giss.nasa.gov/modelforce/618

Miller et al21/ERFs SSP245 MillerFig10 2021.txt. CMIP6 data is available from619

the Earth System Grid Federation (ESGF) https://esgf-node.llnl.gov/search/cmip6/620

or from the NASA Center for Climate Simulations (NCCS) https://portal.nccs.nasa621

.gov/datashare/giss cmip6/. Non-CMIP6 simulations and derived data (such as the622
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model MSU and SSU diagnostics) are available from https://portal.nccs.nasa.gov/623

datashare/giss cmip6/NON-CMIP/.624
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