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Abstract

Yield forecasting can give early warning of food risks and provide theoretical support for food security planning. Climate change

and land use change directly influence the regional yield and planting area of maize, but few existing studies have examined

their synergistic impact on maize production. In this study, we combine system dynamic (SD), the future land use simulation

(FLUS) and a statistical crop model to predict future maize yield variation in response to climate change and land use change.

Specifically, SD predicts the future land use demand, FLUS simulates future spatial land use patterns, and a statistical maize

yield model based on regression analysis is utilized to adjust the per hectare maize yield under four representative concentration

pathways (RCPs). A phaeozem region in central Jilin Province of China is taken as a case study. The results show that the

future land use pattern will significantly change from 2030 to 2050. Although the cultivated land is likely to reduce by 862.84

km2, the total maize yield in 2050 will increase under all four RCP scenarios due to the promotion of per hectare maize yield.

RCP4.5 will be more beneficial to maize production than other scenarios, with a doubled total yield in 2050. Notably, the yield

gap between different counties will be further widened, which necessitates the differentiated policies of agricultural production

and farmland protection, e.g., strengthening cultivated land protection and crop management in low-yield areas, as well as

taking adaptation and mitigation measures to coordinate climate change and crop production.
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Abstract10

Yield forecasting can give early warning of food risks and provide theoretical support for food11

security planning. Climate change and land use change directly influence the regional yield and12

planting area of maize, but few existing studies have examined their synergistic impact on maize13

production. In this study, we combine system dynamic (SD), the future land use simulation14

(FLUS) and a statistical crop model to predict future maize yield variation in response to climate15

change and land use change. Specifically, SD predicts the future land use demand, FLUS16

simulates future spatial land use patterns, and a statistical maize yield model based on regression17

analysis is utilized to adjust the per hectare maize yield under four representative concentration18

pathways (RCPs). A phaeozem region in central Jilin Province of China is taken as a case study.19

The results show that the future land use pattern will significantly change from 2030 to 2050.20

Although the cultivated land is likely to reduce by 862.84 km2, the total maize yield in 2050 will21

increase under all four RCP scenarios due to the promotion of per hectare maize yield. RCP4.522

will be more beneficial to maize production than other scenarios, with a doubled total yield in23

2050. Notably, the yield gap between different counties will be further widened, which24

necessitates the differentiated policies of agricultural production and farmland protection, e.g.,25

strengthening cultivated land protection and crop management in low-yield areas, as well as26

taking adaptation and mitigation measures to coordinate climate change and crop production.27
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1 Introduction32

Agriculture plays a vital role in food security, poverty elimination and sustainable33

development (Loboguerrero et al., 2019). With the remarkable growth of the global population,34

agricultural production has faced a significant challenge in meeting the increasing food demand35

and varying diet structure of human beings. Moreover, farmland loss and degradation caused by36

urban expansion and economic development have exacerbated this situation (Vermeulen et al.,37

2012). In this context, forecasting food production can give an early warning of food risk and38

support agricultural land use activities and the corresponding policy making([Preprint] Wen et al.,39

2022).40

The existing yield prediction methods can be categorized into statistical models and41

process-based models. The traditional statistical models have been commonly employed to42

forecast seasonal variations of crop yield, e.g., linear and non-linear regression analysis and their43

integration with principal component analysis. Currently, machine learning approaches, e.g.,44

random forest (Sakamoto, 2020), XGBoost, long-short-term memory (LSTM), and convolutional45

neural network (CNN), have received more and more attention due to their ability to describe46

complicated relationships of crop production and the driving forces (Hengl et al., 2017; Kang et47

al., 2020; Leng and Hall, 2020; Poornima and Pushpalatha, 2019; Yang et al., 2019; Zhong et al.,48

2019). These statistical models can relate historical yield data with the agrometeorological49

variables, for example, march temperature difference, daily relative humidity changes, sunshine50

hours, and the remote sensing-based variables (Banakara et al., 2019; Camberlin and Diop, 1999;51

Giri et al., 2017; Sharma et al., 2017), such as Normalized Difference Vegetation Index (Peralta52

et al., 2016), Vegetation Condition Index (Kowalik et al., 2014), and Vegetation Health Index53

(Wang et al., 2010).54

Process-based crop models employ integrated mathematical methods to describe crop55

growth status driven by climate, nutrient and water cycling, soil properties and agricultural56

management practices (Basso et al., 2016). This type of models includes CERES-Millet, EARS-57

CGS, PUTU, WOFOST and SWAP (Manatsa et al., 2011; Roebeling et al., 2004; Rojas, 2007;58

Tripathy et al., 2013), which have been applied to maize, wheat, barley, and millet prediction.59

Although these models have been proven efficient in practice, they still suffer from significant60

uncertainties because of complex parameters calibration and initialization (Kolotii et al., 2015).61
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For example, a number of these models will be calibrated using genetic information of plants that62

is hardly quantified. In contrast, statistical models allow us to capture essential processes that63

may be overlooked in the process model, including the impact of extreme temperatures on64

canopy transpiration and photosynthesis and the damage to crops caused by weather, pests, and65

diseases (Urban et al., 2012). Therefore, this study adjusted a statistical model to predict maize66

yield per hectare instead of a process-based crop model.67

Climate and land use change have been regarded as two worldwide influencing factors of68

maize production (Basso and Liu, 2019). Climate change affects crop growth by changing69

temperature, precipitation, CO2, nitrogen, and other critical ecological factors, during the70

growing season. Land use change analysis can improve yield forecasts' accuracy by identifying71

the chop's changed planting areas (Vancutsem et al., 2013). However, a better understanding of72

the synergistic effect of climate change and land use change on maize yield in a spatially explicit73

way is still lacking at present. Combining statistical models and spatial land use simulation74

models have been proven promising to address this issue. Land use simulation approaches75

originated from cellular automata enable us to project changes in quantity and spatial pattern of76

agricultural land, and incorporate the effect of land use change into the crop yield estimation77

(Akpoti et al., 2019; Liu et al., 2017). Moreover, these simulation models can be equipped with78

various complex approaches, e.g., neural network, multi-agent system, and multinomial logistic79

regression, to pursue better simulation performance (Basse et al., 2014; Mustafa et al., 2018;80

Yeldan et al., 2012). Due to the flexible model framework, numerous driving factors can also be81

incorporated into maize yields, like urbanization, agricultural machinery advancement, and82

population economic growth, etc. (Abate and Kuang, 2021; Takeshima et al., 2013; Yu et al.,83

2020; Zhang et al., 2017b).84

We demonstrated a new crop prediction framework based on the integration of a statistical85

crop yield approach and a spatial land use simulation model, and examined the synergistic86

effects of climate change and land use change on maize yields. Further, we designed four future87

scenarios based on representative concentration paths (RCPs) to examine the direct effects of88

climate change and socio-economic development on maize yield per hectare. We conducted a89

case study in the phaeozem region of central Jilin Province, China, and validated the proposed90

model. Our work is expected to provide a generic framework for the spatially explicit forecast of91

maize yield.92
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2 Materials and Methods93

2.1 Study area94

A phaeozem region in central Jilin Province of China was selected as the study area,95

consisting of Changchun, Jilin, Siping, Liaoyuan, and Tonghua City (Figure 1). This region is96

located in the major golden maize belts across the world, and plays an irreplaceable role in97

national food security as one of the primary grain production bases and commodity grain export98

bases in China (Asseng et al., 2013; Li et al., 2020). The rain-fed maize system was selected as99

the research object to eliminate the effect of irrigation on crop yield (Urban et al., 2012).100

The region features a short growing season of maize from May to September (Feng et al.,101

2021; Jiang et al., 2021; Yang et al., 2007). Over the past 50 years, the average annual102

temperature has increased significantly by 0.38°C per decade, precipitation has decreased103

slightly, and droughts and floods have become more frequent (Liu et al., 2009; Yin et al., 2016).104

Climate change will directly affect maize production. Existing studies have also shown that105

climate change has an indirect impact on land use (Pan et al., 2020; Yang et al., 2020). Therefore,106

it is necessary to assess the future impact of climate change and land use change on maize yields107

to support the decision-making of agricultural production.108
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109

Figure 1. Location of the Study Area (background: empirical land use map in 2015).110

2.2 Data source111

The data collected in this study includes climate data, land use maps, socio-economic data112

and geographical information. Future climate data, i.e., precipitation and surface temperatures,113

were collected from WDCC (https://doi.org/10.1594/WDCC/ETHr2), which were generated114

using general circulation modelthe Beijing Climate Center Climate System Model version 1.1 m115

(BCC_CSM1.1 m)(Knutti, 2014). The data are at a T106 horizontal resolution (1.125°×1.125°)116

(Liu et al., 2021; Wu et al., 2010), and have been widely used to explore maize, wheat and other117

grain planting systems in northeast China (Gao et al., 2020; He et al., 2018; Jiang et al., 2021).118

Meanwhile, a time series of historical climate data was downloaded from the China119

Meteorological Data Network (http://data.cma.cn).120
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Empirical land use maps in 2000, 2005, 2010 and 2015 were derived from the Chinese121

Academy of Sciences (CAS; http://www.resdc.cn), categorized into six land use/cover types:122

cultivated land, woodland, grassland, construction land, unused land and water area(Ning et al.,123

2018). Socio-economic data, including urban/rural population, agriculture production, forestry,124

animal husbandry and fishery, were obtained from the Statistical Yearbook of Jilin Province125

(2000-2015). The raster datasets of population density and GDP(Xinliang, 2017a, b), and other126

geographic maps, including administrative boundaries, roads and railways, were derived from127

the Chinese Academy of Sciences database (http://www.resdc.cn/DOI). On the ArcGIS 10.5128

platform, all spatial data were converted into raster maps at a spatial resolution of 30m. See129

Table 1 for detailed data information.130

Table 1131

Research data and sources132

Data Data type Temporal

coverage

Source

Expenditure and production value of

agriculture, forestry, animal husbandry and

fishery

Excel 2000-2015 Jilin Province

Statistical Yearbook

Total mechanical power, total grain

production

The proportion of urban population, total

urban and rural population

Science and technology expenditure

County-level maize yield data

Historical climate data Excel 2000-2015 http ://data.cma.cn/

Annual average precipitation and annual

average temperature

NetCDF 2006-2100 https://doi.org/10.15

94/WDCC/ETHr2

Land use map TIFF 2000-2015 http ://data.casearth.c

n/

GDP spatial distribution 2000,201 http ://www.resdc.cn

Spatial distribution of population density

http://www.resdc.cn
http://data.cma.cn/
http://data.casearth.cn/
http://data.casearth.cn/
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5 /Digital Elevation Model (DEM)

Road network shapefile https ://www.openstr

eetmap.org/

Administrative boundary shapefile 2015 http ://www.resdc.cn

/

133

3 Methods134

3.1 Integrated assessment framework135

To examine the effect of climate change and land use changes on regional maize yield, we136

proposed an analytical framework based on the integration of system dynamics (SD), cellular137

automata (CA) and a statistical maize yield model (Figure 2). The SD projects land use demands138

from a top-down perspective based on socio-economic development and policy planning. The139

CA simulates spatial land use patterns from a bottom-up perspective. The integration of SD and140

CA enable us to predict land use changes in the study area from 2015 to 2050. Next, the141

statistical maize yield model was incorporated to predict maize yield per hectare under the142

impact of temperature, precipitation, agricultural technology and sunshine hours in four143

Representative Concentration Pathways (RCPs). Then, total maize yields under different144

scenarios were assessed based on the product of the simulated maize planting area and the145

predicted maize yield per hectare, and compared at two time periods of 2011-2030 and 2031-146

2050.147

https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://www.resdc.cn/
http://www.resdc.cn/
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148

Figure 2. The analytical framework of future maize yield.149

3.2 Future climate scenario design150

Future scenarios are designed based on four RCP descriptions in CMIP5, a standard151

experiment protocol to define a series of coupled atmosphere-ocean general circulation models152

developed by Climate Modeling Groups, World Climate Research Project (WCRP), and153

International Geosphere-Biosphere Project (IGBP) (Kriegler et al., 2014; O'Neill et al., 2014;154

Pan et al., 2020; van Vuuren and Carter, 2014). The four RCPs reflect the radiative forcing levels155

of 2.6, 4.5, 6.0 and 8.5 W/m2 by 2100. Each RCP pathway describes a range of climatic and156

socio-economic characteristics related to different levels of carbon emissions (van Vuuren and157

Carter, 2014), i.e., average temperature and precipitation in the growing season (Figure A1), and158

agricultural mechanization promotion (Rotz et al., 2019). Average temperature and precipitation159

under four RCPs were set according to historical and projected climate datasets. The growth160

rates of agricultural technology under four RCPs were determined to simulate the future maize161

yield based on the actual development of Jilin Province and previous research experience (Table162

2).163
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Table 2164

The growth rate of agriculture technology165

Scenarios Growth rate
RCP 2.6 Level High

Growth rate +7%
RCP 4.5 Level Relatively high

Growth rate +5%
RCP 6.0 Level Moderate

Growth rate +3%
RCP 8.5 Level Low

Growth rate 0
166
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3.3 Projection of future land use demand167

The prediction of the planting area of maize consists of two steps: land use demand168

projection and spatial pattern allocation. In the first step, future land use demands were projected169

using the system dynamic (SD) model. The SD model enables us to simulate the complex170

evolution process of the land system through the feedback and interaction between different171

elements (Akhtar et al., 2013).172

The SD model in this study comprises three sections: population, social economy, and land173

use (Figure 3). The population section represents urban and rural changes related to socio-174

economic development and land use demands for urban and rural settlements and agricultural175

production. The socio-economic section considers the effect of agricultural technology176

development and fixed asset investment change on agriculture, forestry, and fishing production.177

Further, the land use section illustrates land use conversions and their driving forces in terms of178

population, socio-economic development and interaction among various land use types (Liu et al.,179

2017). For example, cultivated land may expand due to a series of farmland supplementation180

measures, e.g., the consolidation of rural settlements and the reclamation of wild grassland, and181

will decline because of farmland reforestation and urban encroachment. The interaction and182

feedback among the three sections are defined through regression methods. The time range of the183

SD model in this study is from 2011 to 2050, and the time step is one year. Outputs of the SD184

were used to limit land use quantities in the spatial land use pattern allocation.185
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186

Figure 3. Interaction and feedback relationships in the system dynamic model.187

3.4 Allocation of spatial land use pattern188

The spatial pattern of land use was allocated using the FLUS model based on the land use189

demand from the SD. The FLUS consists of two modules (Liu et al., 2017): (1) estimating the190

occurrence probability of each land use type on a specific grid unit based on a three-layer191

artificial neural network (ANN); (2) determining the land use type of each grid cell based on the192

cellular automata (CA) approach. Specifically, the three-layer ANN was trained using the193

empirical land use data and various driving factors that combine socio-economic and natural194

effects, including population density, GDP, elevation, slope, aspect, distance to main highways,195

distance to primary railways, distance to rivers, and distance to cities (Yang et al., 2020). The196

CA calculates the combined probability of a specific land use type on each grid cell based on the197

product of the occurrence probability, land use conversion cost, spatial neighborhood effect and198

land use inertia coefficient (Li et al., 2017), and then allocates the suitable land use type to each199

grid cell using the roulette selection method (Pan et al., 2020). See Yang et al. (2020) for detailed200

model descriptions and parameterizations.201
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3.5 Estimation of maize yield per hector202

Maize yield per hector was estimated using a regression analysis based on the historical data203

of maize production from 2000 to 2015. A series of essential factors for photosynthesis and plant204

growth in terms of county-level differences, socio-economic development and physical205

conditions were selected as independent variables, including the mean and variance of206

temperature and precipitation in the growing season(Lobell et al., 2011; Urban et al., 2012), the207

total power of agricultural machinery, and sunshine hours (Murchie and Niyogi, 2011).208

Considering the non-linear relationship between climate variables and maize yields and209

moderately/strongly skewed distribution of maize yields (Huang et al., 2021), the logarithm of210

the maize yield rather than the yield per se was used as the dependent variable. Moreover, the211

quadratic function has been proved promising in simulating the dynamic relationship between212

climate conditions and maize yield (Grassini et al., 2009; Lobell and Burke, 2010).213

The regression model for the estimation of per unit maize yield can be expressed as follows:214

��� �� = �0 + �1���ℎ��� + �2���ℎ���2 + �3� + �4�2 + �5� + �6�2 + �7�� +215
��� ������� (1)216

where T, P, and �� represent the temperature, precipitation, and sunshine hours during the217

growing season from May to September. county is a dummy variable to capture the spatially218

heterogeneous influence of physical and socio-economic factors at the county level, such as soil219

quality and agronomic. ���ℎ��� accounts for an improvement in agricultural mechanization.220

Square terms of independent variables denote a certain degree of nonlinearity (see Text A1 and221

Table A1 for detailed parameters).222

Moreover, the average change of maize yield often accompanies its variance change. The223

variance of per hectare yield can measure the stability of the inter-annual production of maize,224

which is significant in maintaining the steady income of farmers and ensuring regional food225

security. The yield variance can be calculated in the following:226

��� � = (� log �� )2 × ��� log � + (� log � )2 × ��� log �� + ��� log �� ×227
��� log � (2)228

where ��� � refers to the variance of yield per hectare in each county, and � refers to the229

residual yield per hectare.230
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We used the residuals of training data (Table A2) to calculate the expected ��� � .231

Therefore, we assumed that the yield residual would not change with the change of predicted232

climate. To verify this hypothesis, we conducted least square regression between the yield233

residuals' square [���(�)]2 and the average � and � in the training period. The results showed234

that climate change causes a slight change in [���(�)]2 (Figure A2). Therefore, in this study, the235

assessment results of yield variation under future climate will be relatively conservative.236

3.6 Model implementation and evaluation237

The SD model was built with Vensim (https://vensim), and the FLUS was performed in the238

GEOSOS platform. The empirical land use data in 2000 and 2015 were used to train and validate239

the simulation model. Kappa coefficient was used to evaluate the accuracy of land use simulation.240

Overall, the average accuracy rate exceeds 80%, and the Kappa coefficient reaches 0.65,241

indicating the positive performance of the FLUS. Further, regression analysis was conducted in242

SPSS. The standardized residuals of the regression model obey the normal distribution, and R2243

equals 0.436. These experimental results indicate the good performance of the proposed244

framework for maize yield projections.245

4 Results & discussion246

4.1 Dynamic land use changes247

The study area will experience slight changes in cultivated land and woodland, and248

remarkable changes in construction land, grassland, water areas and unused land by 2050. Land249

use changes will exhibit evident spatially differences across the study area (Figure 4 and Figure250

A3). As for cultivated land, the total area will slightly increase from 43,321.70 km2 in 2010 to251

43,556.00 km2 in 2050, with an inverted U-shaped trend. Specifically, the cultivated land will252

increase to 44,424.08 km2 in 2030 and then drop by 867.61 km2 from 2030 to 2050. However,253

the trend will differ from at the city level. The cultivated land in Changchun and Liaoyuan will254

increase by 485.68 km2 and 19.62 km2 in 2010-2050, while those in Tonghua, Jilin and Siping255

will decrease by 252.12 km2, 11.33 km2, and 3.88 km2.256

https://vensim
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257

Figure 4. The changes in land use quantities from 2010 to 2050.258

The gain and loss of cultivated land will be 3,796.69 km2 and 3,561.53 km2, respectively259

(Figure 5f). Specifically, 43.09% and 40.03% of farmland gain will be attributed to the reduction260

of woodland and construction land, for example, the consolidation of scattered rural settlements261

originating from rural population shrinkage (Liu et al., 2013b). In turn, 63.71% of farmland loss262

will be attributed to farmland reforestation, which indicates the Chinese government's emphasis263

on ecological protection (Shan et al., 2020). At the city level, Changchun has the highest264

farmland gain (Figure 5a). The gain of cultivated land will be 1,080.04 km2, and 59.45% comes265

from the consolidation of construction land. As a central city in Northeast China, increasing266

cultivated land will alleviate the pressure of increasing population on food production (Zhang et267
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al., 2012). Conversely, Tonghua has the largest reduction of arable land (Figure 5e). The gain268

and loss of cultivated land will be 471.00 km2 and 722.52 km2, respectively. It can be observed269

that 627.28 km2 of cultivated land in this city will be converted into forest land. Liaoyuan, Siping270

and Jilin are likely to experience slight farmland gain or loss; these changes are less than 20 km2271

(Figure 5b, c, and d).272

273

Figure 5. Land use conversions from 2010 to 2050.274

4.2 Changes in maize yield per hectare in different scenarios275

The maize yield per hectare is likely to exhibit a two-stage upward trend from 2011 to 2050276

(Figure 6). From 2011 to 2030, it will moderately increase by 76.32%, 70.63%, 63.278%,277
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49.66% under RCP2.6, 4.5, 6.0, 8.5, respectively. From 2031 to 2050, however, it will278

experience a corresponding sharp promotion of 280.74%, 344.91%, 299.64%, and 233.352%.279

280

281

Figure 6. Changes in average maize yield per hectare under four RCP scenarios from 2011 to282

2050. Standard Errors of Mean (SEM) of RCP 2.6, 4.5, 6.0, and 8.5 are 1575.51, 1401.41,283

1252.26, and 975.38 kg ha^-1, respectively.284

Climate change (Figure A4) may exert different effects on per unit maize yield over time.285

RCP 2.6 will have the maximum annual growth rate of the per-unit yield up to 34.73%, with a286

mean value of 14175.00 kg ha^-1. Conversely, RCP 8.5 is likely to exhibit the minimum increase287

of the per-unit yield by 11324.47 kg ha^-1 with an annual growth rate of 33.78%. A positive288

correlation between the per-unit yield promotion and the radiative forcing levels caused by289

greenhouse gas emissions can be observed, and a growing gap in the per unit yields under four290

RCP scenarios will also arise over time. We further found that temperature strongly correlates291

with the changing rate of the maize yield variance (Figure 7). In RCP2.6, RCP6.0, RCP8.5, R2292

can reach up to 0.99 (p<0.0001), while that in RCP4.5 is only 47.21%. The temperature changes293

primarily lead to yield variance.294
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295

Figure7. Correlation analysis between temperature and variance transformation rate under four296

RCP scenarios.297

At the county level, the yield variations under the four RCPs range from 0.72 to 32.82 from298

2011 to 2030, varying from 0.82 to 32.87 in 2031-2050. In contrast, the mean per unit yield gap299

in the four RCPs will be much greater from 2031 to 2050. For example, the range of RCP2.6 in300

2031-2050 can expand to 10 times that in 2011-2030. Despite the different distribution of values,301

the mean yields still exhibit a positive correlation with the variances. The spatial distribution of302

relative change in the mean yield per hectare and its variance in these two periods are similar,303

with a significant increase in the northern and central regions and a slight increase or decrease in304

the western region. Most counties had a similar change rate of average yield under the four RCPs,305
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but the gaps under RCP2.6 and RCP6.5 are much larger (Figure 8a). From the perspective of the306

distribution area, RCP6.5 and RCP8.5 have a greater relative reduction of variance from 2011-307

2030 to 2031-2050 (Figure 8b).308

309

Figure 8. Rate of changes in means (a) and variances (b) of the per unit maize yield during the310

periods of 2011-2030 and 2031-2050.311

4.3 Changes in total maize yield312

The total maize yield will significantly increase from 2011 to 2050, with a growth rate of313

78.71% (RCP2.6), 79.40% (RCP4.5), 79.01% (RCP6.0) and 78.63% (RCP8.5). In the first two314

decades, the total yield under RCP2.6, RCP4.5, RCP6.0, and RCP8.5 moderately increase by315

38.61%, 35.61%, 30.03% and 18.28%, then exhibit sharp promotion to 124.92%, 149.01%,316

148.19% and 161.00% in the latter twenty years. The total maize yields under four RCP317

scenarios will remarkably differ. Specifically, RCP 2.6 has the maximum total yield of 24.02318

megatons in 2030, but it will rank third in 2050. RCP4.5 ranks second in 2030 with 23.50319
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megatons of maize yield, while it will reach the highest value of 58.52 megatons in 2050.320

Notably, the total maize yield under RCP 8.5 will remain the minimum in 2030 and 2050 (Table321

3).322

Table 3323

Total maize yields in 2030 and 2050 under four RCP scenarios324

Scenarios 2030(megatons) change rate
2011-2030 2050(megatons) change rate

2030-2050
RCP2.6 24.02 38.61% 54.03 124.92%
RCP4.5 23.50 35.61% 58.52 149.01%
RCP6.0 22.54 30.03% 55.93 148.19%
RCP8.5 20.50 18.28% 53.50 161.00%

325

Changes in total maize yields will be simultaneously influenced by the per-unit yield and326

the planting area. In urban areas, e.g., Changchun, Jilin, and Chaoyang, Nanguan and Erdao327

District of Liaoyuan only have low total yields of maize even if the per-unit yield is at the middle328

or upper level. In contrast, some counties, such as Nong'an and Gongzhuling, with low per-unit329

yields will feature higher maize production due to their larger maize planting areas (Figure 9).330

From 2030 to 2050, 67% of counties will experience a decline in cultivated land (Figure A5),331

but the total maize yields of these counties will increase due to the promotion of per hectare332

maize yield. Furthermore, climate change will alter the orders of some counties with large333

planting areas of maize in terms of total yields, e.g., Liuhe, Lishu, Fengman, Dongliao, and334

Dongfeng County. Under PCR2.6, a slowdown of growth rate in maize yield per hectare in these335

counties leads to the decline of the total yield ranking. Conversely, RCP8.5 will ensure that most336

counties have a high total production ranking due to its relatively high growth rate of per-unit337

yield.338



21

339

Figure 9. Total maize production at the county level under four scenarios.340

341

5 Discussion342

5.1 Comprehensive impact on maize yield343

Unlike the previous study, our framework examines the synergistic effects of climate344

change and land use change on the yield of rain-fed maize in a phaeozem region of Jilin Province.345

The results show that there appears to be a clear contrast in total yield, potential increment, and346

spatial pattern between different scenarios, and balanced development is more conducive to347

maintaining a steady increase in total maize production. For example, Potential maize yield per348

hectare will significantly increase under the four climate change scenarios from 2011 to 2050,349
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ranked as: RCP2.6> RCP4.5> RCP6.0> RCP8.5. However, RCP2.6 and RCP6.0 will have350

differences in the maize yield among counties, while RCP4.5 will exhibit a balanced regional351

pattern of maize production (Figure 8a). The total maize yield in 2050 will peak under the352

RCP4.5 scenario, suggesting the combined effect of temperature, precipitation, and technological353

progress on maize growth is the best. This scenario's moderate carbon emissions and population354

and economic growth will help coordinate the conflicts between farmland protection and355

vegetation conservation and increase overall maize production simultaneously (Hou and Li,356

2021; Zhang and Qi, 2010). Notably, an increase in per hectare yield could mitigate the impact357

of farmland loss on maize yields. The total yield of RCP2.6, RCP4.5, RCP6.0, and RCP8.5 will358

reach 54.03, 58.52, 55.93, and 53.50 megatons by 124.92%, 149.01%, 148.19% and 161.00%359

from 2030 to 2050. Although a large amount of cultivated land will be occupied by forest and360

grassland, the total maize yield under all scenarios still increased exponentially.361

The variance of temperature and precipitation during the growing season will affect yield362

variance (Urban et al., 2012). With the increase in precipitation variance, the variance of maize363

yields during the period of 2031-3050 will get higher than that in 2011-2030. Under the threat of364

maize yield reduction caused by variable or extreme climates (Feng et al., 2021; Malik et al.,365

2021), how to formulate adaptation and mitigation strategies will be a challenging long-term366

issue for land managers (Iglesias and Garrote, 2015; Zobeidi et al., 2021).367

5.2 Policy implications368

Our study suggested several implications for agricultural land use and maize production.369

We can solve many uncertain problems in agricultural production by considering the present and370

predicted near future land-use, economic and climate scenarios. For example, agricultural371

technology development can balance land use change, climate change and maize production due372

to its positive impact on per unit yield (Rojas-Downing et al., 2017). Previous studies suggested373

that diversification of maize varieties can improve maize resistance to external disturbances374

caused by extreme weather events and human activities (Altieri and Nicholls, 2017). Maize375

breeding and biotechnology also have the enormous biological potential to increase grain yield376

(Foulkes et al., 2011). Researchers have proven that organic matter enhances underground377

biodiversity, thereby creating suitable conditions for plant roots (Diaz-Zorita et al., 1999;378

Morugan-Coronado et al., 2022). And proper agricultural management, such as organic379
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agriculture, residue management and crop rotation, can also improve soil quality(Morugan-380

Coronado et al., 2022).Moreover, regular training and technical guidance for farmers can381

improve their risk awareness and ability to deal with the risk (Olesen et al., 2011). We suggest382

that the investment in maize variety and planting technology development should be encouraged383

to promote the per unit yield of maize. Indeed, accurate prediction of climate change and rational384

planning of planting scale and planting pattern can advance the reasonability of agricultural385

management strategies.386

5.3 Advantages and limitations387

By combining the FLUS and the statistical yield model, this research framework can better388

describe the joint impact of climate change and land use change on maize yield. Meanwhile, the389

framework is flexible and can be used as a general decision-making tool for land planning and390

maize management in different situations. This study documented that climate change will391

positively impact maize yields in the study area, which is consistent with other simulation studies392

(Liang et al., 2019; Pu et al., 2020; Zhang et al., 2017a). Since the study area locates in the cold393

temperate zone, global warming could reduce cold damage and extend the growing season,394

which will benefit maize yields (Zongruing et al., 2007). From an optimistic point of view, we395

expect further improvement in planting efficiency (maize yield) as agricultural technology396

advances and planting management improves in the future. Moreover, the effect of human397

irrigation on maize growth has been excluded by selecting the study area in a rain-fed region.398

This work still has several limitations. First, uncertainty in future climate change will399

impact the simulation accuracy. The climate conditions shown by different general circulation400

models (GCMs) in the same region may be quite different (Liu et al., 2013a; Tatsumi et al.,401

2011). The BCC_CSM1.1 m model was selected for this study to better eliminate the possible402

errors in the prediction results. Although the BCC has been applied to a number of studies on403

grain production in northeast China (Pu et al., 2020; Xie et al., 2020), there is still room for404

improvement. Second, existing studies have shown that incorporating remote sensing into405

statistical models can improve forecasting accuracy, especially for large-scale regions (Laudien406

et al., 2020).407

408

409
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6 Conclusion410

This study proposes an integrated framework for maize yield prediction by combining the411

SD and the FLUS model with the statistical model. Future maize yield change can be simulated412

under the four RCP scenarios. The proposed framework is flexible and suitable for applications413

in any other regional studies. The simulations help provide scientific guidance for the decision-414

making of agricultural management.415

We conclude that an increase in per-unit yield in the study area will mitigate the negative416

impact of farmland loss on the total maize yield. Although cultivated land is likely to decrease417

from 2030 to 2050, the total maize yields under RCP2.6, 4.5, 6.0, and 8.5 will still increase by418

124.92%, 149.01%, 148.19% and 161.00%. Under the four RCPs, disparities in total maize419

yields will differ across the region, especially under RCP2.6. In comparison, RCP 4.5 features420

more balanced and stable, which will be conducive to ensuring maize yields and benefitting421

regional sustainable development in the future.422

Facing the threat of variable or extreme climates and the further widened yield gap between423

different counties, we need to implement the differentiated policies of agricultural production424

and farmland protection, including strengthening cultivated land protection and crop425

management in low-yield areas, as well as adoption of adaptation and mitigation measures.426
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Text A1.

The improvement in agricultural mechanization (���ℎ���, ���ℎ��� 2) and county-fixed effects

(������) explain 40.3% of the county-level yield variance, which reflects the mean and the rapid

improvement pace of crop have presented uneven spatial distribution since 2000. T, P, and their

square terms explain 3.3% of the county-level production variance. Sunshine hours (��) has an

insignificant coefficient of determination, and is excluded in the final model (Equation A1).

Table A1 shows the model coefficient and significance test.

��� ����� = 0.000128 ∗ ���ℎ���2 − 0.0055 ∗ ���ℎ��� + 1.598 ∗ � − 0.043 ∗ �2 +
0.006394 ∗ � − 0.0000262 ∗ �2 − 6.234 (A1)

Considering the error value, the model can be written as:

��� �������,���� = ��� ��������,���� + ��� �������,���� (A2)

The hat symbol (^) indicates the estimated value of yield production. Assume that the error is

independent of the estimated value log � . All terms in the above equation are logarithmic. We

first take the exponents on both sides of (Equation A2) to calculate the yield per hectare.

� = ���� �� ���� � (A3)

It is crucial to consider the yield error when comparing the yield variance between 2011-

2030 and 2031-2050. We can calculate the variance of the final production, substituting the

variance values of the residuals at all levels (Attached Table A2):

��� � = (� log �� )2 × ��� log � + (� log � )2 × ��� log �� + ��� log �� ×
��� log � (A4)
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Figure A1. (a)Average temperature in the study area from May to September under RCPs; (b)

Average precipitation in the study area from May to September under RCPs.
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Figure A2. Least-squares regression diagram of the square of the production residuals and the

average T and P during the training period.

Figure A3. Land use maps in 2010, 2030 and 2050.
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Figure A4. (a) Temperature variation by county from 2011-2030 to 2031-2050; (b) Precipitation

varies by county from 2011-2030 to 2031-2050.

Figure A5. Changes in cultivated land areas at county level from 2030 to 2050.
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Table A1

Regression coefficients.

Model
Unstandardized coefficient

t Sig.
B Standard error

(constant) -6.226 7.759 -0.802 0.423

� 1.598 0.788 2.029 0.043

�2 -0.043 0.020 -2.163 0.031

� 0.006 0.003 2.254 0.025

�2 -2.622E-05 0.000 -2.146 0.032

���ℎ��� -0.006 0.001 -4.633 0.000

���ℎ���2 1.284E-04 0.000 3.153 0.002

�� 2.750E-04 8.02 E-04 0.342 0.732

Area=Dongfeng County 0.243 0.104 2.329 0.020

Area=Dongchang District 0.265 0.135 1.971 0.049

Area=Dongliao County 0.251 0.105 2.392 0.017

Area = Fengman District 0.095 0.115 0.821 0.412

Area=Jiutai City 0.035 0.104 0.342 0.733

Area = Erdao District -0.409 0.102 -4.025 0.000

Area = Erdaojiang District 0.148 0.134 1.105 0.269

Area=Yitong County 0.267 0.102 2.623 0.009

Area=Gongzhuling City 0.652 0.105 6.212 0.000

Area=Nong'an County 0.431 0.105 4.085 0.000

Area = Nanguan District -0.019 0.109 -0.173 0.863

Area=Shuangyang District 0.316 0.108 2.920 0.004

Area = Kuancheng District -0.400 0.102 -3.920 0.000

Area=Dehui City 0.298 0.106 2.813 0.005

Area=Changyi District 0.092 0.103 0.888 0.375

Area=Chaoyang District -0.106 0.113 -0.942 0.346

Area = Liuhe County 0.255 0.112 2.263 0.024

Area = Huadian City -0.020 0.121 -0.167 0.867

Area=Meihekou City 0.087 0.104 0.834 0.405

Area = Lishu County 0.724 0.105 6.916 0.000

Area = Elm City 0.313 0.104 3.019 0.003

Area=Yongji County 0.028 0.103 0.268 0.788

Area=Panshi City 0.106 0.103 1.024 0.306

Area = Green Park 0.055 0.119 0.461 0.645
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Area = Shulan City 0.200 0.111 1.810 0.071

Area = Ship Camp Area 0.063 0.105 0.599 0.549

Area = Jiaohe City 0.102 0.116 0.877 0.381

Area = Xi'an District -0.042 0.103 -0.412 0.680

Area=Huinan County 0.351 0.112 3.130 0.002

Area=Tonghua County -0.051 0.110 -0.460 0.646

Area=Tiedong District 0.236 0.107 2.200 0.028

Area = Tiexi District 0.449 0.185 2.427 0.016

Area = Ji'an City -0.098 0.109 -0.894 0.372

Area = Longshan District -0.055 0.102 -0.538 0.591

Area=Longtan District 0.091 0.105 0.868 0.386

Note: B and Beta are regression coefficients; Sig. is the P-value, which represents the significance in the

hypothesis test.
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Table A2

Variance of county residual error.

region ���( log � ) region ���( log � )

Changyi District 0.025572075 Liuhe County 0.044541441

Chaoyang District 0.195618882 Yongsan District 0.088251022

Ship Camp Area 0.014275893 Longtan District 0.019158748

Dehui 0.033632781 Green Park 0.249584034

Dongchang District 0.014318566 Meihekou 0.009294256

Dongfeng County 0.026302486 Nanguan District 0.14462959

Dongliao County 0.049171297 Nong'an County 0.011689685

Erdaojiang District 0.031237137 rock city 0.01400162

Erdao District 0.431996676 Shulan 0.01074008

plump area 0.048536536 Shuangliao 0.038542727

Gongzhuling 0.010237088 Shuangyang District 0.072074432

Huadian 0.026221195 Tiedong District 0.039590128

Huinan County 0.070030835 Tiexi District 0.079287917

Ji'an 0.023745877 Tonghua County 0.011766734

Jiaohe 0.046481507 Xi'an District 0.344605244

Jiutai District 0.0508169 Yitong County 0.071153589

Kuancheng District 0.28749462 Yongji County 0.043845527

Lishu County 0.030609236 Elm City 0.012829379
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