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Abstract

Yield forecasting can give early warning of food risks and provide theoretical support for food security planning. Climate change

and land use change directly influence the regional yield and planting area of maize, but few existing studies have examined

their synergistic impact on maize production. In this study, we combine system dynamic (SD), the future land use simulation

(FLUS) and a statistical crop model to predict future maize yield variation in response to climate change and land use change.

Specifically, SD predicts the future land use demand, FLUS simulates future spatial land use patterns, and a statistical maize

yield model based on regression analysis is utilized to adjust the per hectare maize yield under four representative concentration

pathways (RCPs). A phaeozem region in central Jilin Province of China is taken as a case study. The results show that the

future land use pattern will significantly change from 2030 to 2050. Although the cultivated land is likely to reduce by 862.84

km2, the total maize yield in 2050 will increase under all four RCP scenarios due to the promotion of per hectare maize yield.

RCP4.5 will be more beneficial to maize production than other scenarios, with a doubled total yield in 2050. Notably, the yield

gap between different counties will be further widened, which necessitates the differentiated policies of agricultural production

and farmland protection, e.g., strengthening cultivated land protection and crop management in low-yield areas, as well as

taking adaptation and mitigation measures to coordinate climate change and crop production.
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Abstract13

Yield forecasting can give early warning of food risks and provide theoretical support for food14

security planning. Climate change and land use change directly influence the regional yield and15

planting area of maize, but few existing studies have examined their synergistic impact on maize16

production. In this study, we combine system dynamic (SD), the future land use simulation17

(FLUS) and a statistical crop model to predict future maize yield variation in response to climate18

change and land use change. Specifically, SD predicts the future land use demand, FLUS19

simulates future spatial land use patterns, and a statistical maize yield model based on regression20

analysis is utilized to adjust the per hectare maize yield under four representative concentration21

pathways (RCPs). A phaeozem region in central Jilin Province of China is taken as a case study.22

The results show that the future land use pattern will significantly change from 2030 to 2050.23

Although the cultivated land is likely to reduce by 862.84 km2, the total maize yield in 2050 will24

increase under all four RCP scenarios due to the promotion of per hectare maize yield. RCP4.525

will be more beneficial to maize production than other scenarios, with a doubled total yield in26

2050. Notably, the yield gap between different counties will be further widened, which27

necessitates the differentiated policies of agricultural production and farmland protection, e.g.,28

strengthening cultivated land protection and crop management in low-yield areas, as well as29

taking adaptation and mitigation measures to coordinate climate change and crop production.30

31

Plain Language Summary32

We propose a simulation framework based on the integration of system dynamic (SD), future33

land use simulation model (FLUS) and a statistical maize yield model. And we predict the effects34

of future climate and land use change under different representative concentration pathways35

(RCPs) on rain-fed maize yield in a typical black-soil region of China, Jilin Province. We find36

that the cultivated land area will decrease, but the total maize yield will increase due to the37

promotion of maize yield per hectare. At the same time, the spatial heterogeneity of regional38

maize production will be intensified.39

Keywords40
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1 Introduction42

Agriculture plays a vital role in food security, poverty elimination and sustainable43

development (Loboguerrero et al., 2019). With the remarkable growth of the global population,44

agricultural production has faced a significant challenge in meeting the increasing food demand45

and varying diet structure of human beings. Moreover, farmland loss and degradation caused by46

urban expansion and economic development have exacerbated this situation (Vermeulen et al.,47

2012). In this context, forecasting food production can give an early warning of food risk and48

support agricultural land use activities and the corresponding policy making.49

The existing yield prediction methods can be categorized into statistical models and50

process-based models. The traditional statistical models have been commonly employed to51

forecast seasonal variations of crop yield, e.g., linear and non-linear regression analysis and their52

integration with principal component analysis. Currently, machine learning approaches, e.g.,53

random forest (Sakamoto, 2020), XGBoost, long-short-term memory (LSTM), and convolutional54

neural network (CNN), have received more and more attention due to their ability to describe55

complicated relationships of crop production and the driving forces (Hengl et al., 2017; Kang et56

al., 2020; Leng and Hall, 2020; Poornima and Pushpalatha, 2019; Yang et al., 2019; Zhong et al.,57

2019). These statistical models can relate historical yield data with the agrometeorological58

variables, for example, march temperature difference, daily relative humidity changes, sunshine59

hours, and the remote sensing-based variables (Banakara et al., 2019; Camberlin and Diop, 1999;60

Giri et al., 2017; Sharma et al., 2017), such as Normalized Difference Vegetation Index (Peralta61

et al., 2016), Vegetation Condition Index (Kowalik et al., 2014), and Vegetation Health Index62

(Wang et al., 2010).63

Process-based crop models employ integrated mathematical methods to describe crop64

growth status driven by climate, nutrient and water cycling, soil properties and agricultural65

management practices (Basso et al., 2016). This type of models includes CERES-Millet, EARS-66

CGS, PUTU, WOFOST and SWAP (Manatsa et al., 2011; Roebeling et al., 2004; Rojas, 2007;67

Tripathy et al., 2013), which have been applied to maize, wheat, barley, and millet prediction.68

Although these models have been proven efficient in practice, they still suffer from significant69

uncertainties because of complex parameters calibration and initialization (Kolotii et al., 2015).70

For example, a number of these models will be calibrated using genetic information of plants that71



Earth's Future

is hardly quantified. In contrast, statistical models allow us to capture essential processes that72

may be overlooked in the process model, including the impact of extreme temperatures on73

canopy transpiration and photosynthesis and the damage to crops caused by weather, pests, and74

diseases (Urban et al., 2012). Therefore, this study adjusted a statistical model to predict maize75

yield per hectare instead of a process-based crop model.76

Climate and land use change have been regarded as two worldwide influencing factors of77

maize production (Basso and Liu, 2019). Climate change affects crop growth by changing78

temperature, precipitation, CO2, nitrogen, and other critical ecological factors, during the79

growing season. Land use change analysis can improve yield forecasts' accuracy by identifying80

the chop's changed planting areas (Vancutsem et al., 2013). However, a better understanding of81

the synergistic effect of climate change and land use change on maize yield in a spatially explicit82

way is still lacking at present. Combining statistical models and spatial land use simulation83

models have been proven promising to address this issue. Land use simulation approaches84

originated from cellular automata enable us to project changes in quantity and spatial pattern of85

agricultural land, and incorporate the effect of land use change into the crop yield estimation86

(Akpoti et al., 2019; Liu et al., 2017). Moreover, these simulation models can be equipped with87

various complex approaches, e.g., neural network, multi-agent system, and multinomial logistic88

regression, to pursue better simulation performance (Basse et al., 2014; Mustafa et al., 2018;89

Yeldan et al., 2012). Due to the flexible model framework, numerous driving factors can also be90

incorporated into maize yields, like urbanization, agricultural machinery advancement, and91

population economic growth, etc. (Abate and Kuang, 2021; Takeshima et al., 2013; Yu et al.,92

2020; Zhang et al., 2017b).93

We demonstrated a new crop prediction framework based on the integration of a94

statistical crop yield approach and a spatial land use simulation model, and examined the95

synergistic effects of climate change and land use change on maize yields. Further, we designed96

four future scenarios based on representative concentration paths (RCPs) to examine the direct97

effects of climate change and socio-economic development on maize yield per hectare. We98

conducted a case study in the phaeozem region of central Jilin Province, China, and validated the99

proposed model. Our work is expected to provide a generic framework for the spatially explicit100

forecast of maize yield.101
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2 Materials and Methods102

2.1 Study area103

A phaeozem region in central Jilin Province of China was selected as the study area,104

consisting of Changchun, Jilin, Siping, Liaoyuan, and Tonghua City (Figure 1). This region is105

located in the major golden maize belts across the world, and plays an irreplaceable role in106

national food security as one of the primary grain production bases and commodity grain export107

bases in China (Asseng et al., 2013; Li et al., 2020). The rain-fed maize system was selected as108

the research object to eliminate the effect of irrigation on crop yield (Urban et al., 2012).109

The region features a short growing season of maize from May to September (Feng et al.,110

2021; Jiang et al., 2021; Yang et al., 2007). Over the past 50 years, the average annual111

temperature has increased significantly by 0.38°C per decade, precipitation has decreased112

slightly, and droughts and floods have become more frequent (Liu et al., 2009; Yin et al., 2016).113

Climate change will directly affect maize production . Existing studies have also shown that114

climate change has an indirect impact on land use (Pan et al., 2020; Yang et al., 2020). Therefore,115

it is necessary to assess the future impact of climate change and land use change on maize yields116

to support the decision-making of agricultural production.117
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118

Figure 1. Location of the Study Area (background: empirical land use map in 2015).119

2.2 Data source120

The data collected in this study includes climate data, land use maps, socio-economic121

data and geographical information. Future climate data, i.e., precipitation and surface122

temperatures, were collected from WDCC (https://cera-www.dkrz.de), which were generated123

using general circulation modelthe Beijing Climate Center Climate System Model version 1.1 m124

(BCC_CSM1.1 m)(Knutti, 2014). The data are at a T106 horizontal resolution (1.125°×1.125°)125

(Liu et al., 2021; Wu et al., 2010), and have been widely used to explore maize, wheat and other126

grain planting systems in northeast China (Gao et al., 2020; He et al., 2018; Jiang et al., 2021).127

Meanwhile, a time series of historical climate data was downloaded from the China128

Meteorological Data Network (http://data.cma.cn).129

https://cera-www.dkrz.de
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Empirical land use maps in 2000, 2005, 2010 and 2015 were derived from the Chinese130

Academy of Sciences (CAS; http://www.resdc.cn), categorized into six land use/cover types:131

cultivated land, woodland, grassland, construction land, unused land and water area(Ning et al.,132

2018). Socio-economic data, including urban/rural population, agriculture production, forestry,133

animal husbandry and fishery, were obtained from the Statistical Yearbook of Jilin Province134

(2000-2015). The raster datasets of population density and GDP(Xinliang, 2017a, b), and other135

geographic maps, including administrative boundaries, roads and railways, were derived from136

the Chinese Academy of Sciences database. On the ArcGIS 10.5 platform, all spatial data were137

converted into raster maps at a spatial resolution of 30m. See Table 1 for detailed data138

information.139

Table 1140

Research data and sources141

Data Data
type

Temporal
coverage

Source

Expenditure and production value of
agriculture, forestry, animal husbandry and
fishery

Excel 2000-2015 Jilin Province
Statistical
Yearbook

Total mechanical power, total grain
production
The proportion of urban population, total
urban and rural population
Science and technology expenditure
County-level maize yield data

Historical climate data Excel 2000-2015 http ://data.cma.cn/

Annual average precipitation and annual
average temperature

NetCDF 2006-2100 https ://cera-
www.dkrz.de

Land use map TIFF 2000-2015 http ://data.casearth
.cn/

GDP spatial distribution 2000,2015 http ://www.resdc.c
n/Spatial distribution of population density

Digital Elevation Model (DEM)
Road network shapefile https ://www.opens

treetmap.org/
Administrative boundary shapefile 2015 http ://www.resdc.c

n/

142

http://www.resdc.cn
http://data.cma.cn/
http://data.casearth.cn/
http://data.casearth.cn/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://www.resdc.cn/
http://www.resdc.cn/
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3 Methods143

3.1 Integrated assessment framework144

To examine the effect of climate change and land use changes on regional maize yield,145

we proposed an analytical framework based on the integration of system dynamics (SD), cellular146

automata (CA) and a statistical maize yield model (Figure 2). The SD projects land use demands147

from a top-down perspective based on socio-economic development and policy planning. The148

CA simulates spatial land use patterns from a bottom-up perspective. The integration of SD and149

CA enable us to predict land use changes in the study area from 2015 to 2050. Next, the150

statistical maize yield model was incorporated to predict maize yield per hectare under the151

impact of temperature, precipitation, agricultural technology and sunshine hours in four152

Representative Concentration Pathways (RCPs). Then, total maize yields under different153

scenarios were assessed based on the product of the simulated maize planting area and the154

predicted maize yield per hectare, and compared at two time periods of 2011-2030 and 2031-155

2050.156

157

Figure 2. The analytical framework of future maize yield.158
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3.2 Future climate scenario design159

Future scenarios are designed based on four RCP descriptions in CMIP5, a standard160

experiment protocol to define a series of coupled atmosphere-ocean general circulation models161

developed by Climate Modeling Groups, World Climate Research Project (WCRP), and162

International Geosphere-Biosphere Project (IGBP) (Kriegler et al., 2014; O'Neill et al., 2014;163

Pan et al., 2020; van Vuuren and Carter, 2014). The four RCPs reflect the radiative forcing levels164

of 2.6, 4.5, 6.0 and 8.5 W/m2 by 2100. Each RCP pathway describes a range of climatic and165

socio-economic characteristics related to different levels of carbon emissions (van Vuuren and166

Carter, 2014), i.e., average temperature and precipitation in the growing season (Figure S1), and167

agricultural mechanization promotion (Rotz et al., 2019). Average temperature and precipitation168

under four RCPs were set according to historical and projected climate datasets. The growth169

rates of agricultural technology under four RCPs were determined to simulate the future maize170

yield based on the actual development of Jilin Province and previous research experience (Table171

2).172

Table 2173

The growth rate of agriculture technology174

Scenarios Growth rate
RCP 2.6 Level High

Growth rate +7%
RCP 4.5 Level Relatively high

Growth rate +5%
RCP 6.0 Level Moderate

Growth rate +3%
RCP 8.5 Level Low

Growth rate 0
175
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3.3 Projection of future land use demand176

The prediction of the planting area of maize consists of two steps: land use demand177

projection and spatial pattern allocation. In the first step, future land use demands were projected178

using the system dynamic (SD) model. The SD model enables us to simulate the complex179

evolution process of the land system through the feedback and interaction between different180

elements (Akhtar et al., 2013).181

The SD model in this study comprises three sections: population, social economy, and182

land use (Figure 3). The population section represents urban and rural changes related to socio-183

economic development and land use demands for urban and rural settlements and agricultural184

production. The socio-economic section considers the effect of agricultural technology185

development and fixed asset investment change on agriculture, forestry, and fishing production.186

Further, the land use section illustrates land use conversions and their driving forces in terms of187

population, socio-economic development and interaction among various land use types (Liu et al.,188

2017). For example, cultivated land may expand due to a series of farmland supplementation189

measures, e.g., the consolidation of rural settlements and the reclamation of wild grassland, and190

will decline because of farmland reforestation and urban encroachment. The interaction and191

feedback among the three sections are defined through regression methods. The time range of the192

SD model in this study is from 2011 to 2050, and the time step is one year. Outputs of the SD193

were used to limit land use quantities in the spatial land use pattern allocation.194

195

Figure 3. Interaction and feedback relationships in the system dynamic model.196
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3.4 Allocation of spatial land use pattern197

The spatial pattern of land use was allocated using the FLUS model based on the land use198

demand from the SD. The FLUS consists of two modules (Liu et al., 2017): (1) estimating the199

occurrence probability of each land use type on a specific grid unit based on a three-layer200

artificial neural network (ANN); (2) determining the land use type of each grid cell based on the201

cellular automata (CA) approach. Specifically, the three-layer ANN was trained using the202

empirical land use data and various driving factors that combine socio-economic and natural203

effects, including population density, GDP, elevation, slope, aspect, distance to main highways,204

distance to primary railways, distance to rivers, and distance to cities (Yang et al., 2020). The205

CA calculates the combined probability of a specific land use type on each grid cell based on the206

product of the occurrence probability, land use conversion cost, spatial neighborhood effect and207

land use inertia coefficient (Li et al., 2017), and then allocates the suitable land use type to each208

grid cell using the roulette selection method (Pan et al., 2020). See Yang et al. (2020) for detailed209

model descriptions and parameterizations.210

3.5 Estimation of maize yield per hector211

Maize yield per hector was estimated using a regression analysis based on the historical212

data of maize production from 2000 to 2015. A series of essential factors for photosynthesis and213

plant growth in terms of county-level differences, socio-economic development and physical214

conditions were selected as independent variables, including the mean and variance of215

temperature and precipitation in the growing season(Lobell et al., 2011; Urban et al., 2012), the216

total power of agricultural machinery, and sunshine hours (Murchie and Niyogi, 2011).217

Considering the non-linear relationship between climate variables and maize yields and218

moderately/strongly skewed distribution of maize yields (Huang et al., 2021), the logarithm of219

the maize yield rather than the yield per se was used as the dependent variable. Moreover, the220

quadratic function has been proved promising in simulating the dynamic relationship between221

climate conditions and maize yield (Grassini et al., 2009; Lobell and Burke, 2010).222

The regression model for the estimation of per unit maize yield can be expressed as223

follows:224

��� �� = �0 + �1���ℎ��� + �2���ℎ���2 + �3� + �4�2 + �5� + �6�2 + �7�� +225
��� ������� (1)226
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where T, P, and �� represent the temperature, precipitation, and sunshine hours during227

the growing season from May to September. county is a dummy variable to capture the spatially228

heterogeneous influence of physical and socio-economic factors at the county level, such as soil229

quality and agronomic. ���ℎ��� accounts for an improvement in agricultural mechanization.230

Square terms of independent variables denote a certain degree of nonlinearity (see Text S1 and231

Table S1 for detailed parameters).232

Moreover, the average change of maize yield often accompanies its variance change. The233

variance of per hectare yield can measure the stability of the inter-annual production of maize,234

which is significant in maintaining the steady income of farmers and ensuring regional food235

security. The yield variance can be calculated in the following:236

��� � = (� log �� )2 × ��� log � + (� log � )2 × ��� log �� +237
��� log �� × ��� log � (2)238

where ��� � refers to the variance of yield per hectare in each county, and � refers to239

the residual yield per hectare.240

We used the residuals of training data (Table S2) to calculate the expected ��� � .241

Therefore, we assumed that the yield residual would not change with the change of predicted242

climate. To verify this hypothesis, we conducted least square regression between the yield243

residuals' square [���(�)]2 and the average � and � in the training period. The results showed244

that climate change causes a slight change in [���(�)]2 (Figure S2). Therefore, in this study, the245

assessment results of yield variation under future climate will be relatively conservative.246

3.6 Model implementation and evaluation247

The SD model was built with Vensim (https://vensim), and the FLUS was performed in248

the GEOSOS platform. The empirical land use data in 2000 and 2015 were used to train and249

validate the simulation model. Kappa coefficient was used to evaluate the accuracy of land use250

simulation. Overall, the average accuracy rate exceeds 80%, and the Kappa coefficient reaches251

0.65, indicating the positive performance of the FLUS. Further, regression analysis was252

conducted in SPSS. The standardized residuals of the regression model obey the normal253

distribution, and R2 equals 0.436. These experimental results indicate the good performance of254

the proposed framework for maize yield projections.255

https://vensim
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4 Results and analysis256

4.1 Dynamic land use changes257

The study area will experience slight changes in cultivated land and woodland, and258

remarkable changes in construction land, grassland, water areas and unused land by 2050. Land259

use changes will exhibit evident spatially differences across the study area (Figure 4 and Figure260

S3). As for cultivated land, the total area will slightly increase from 43,321.70 km2 in 2010 to261

43,556.00 km2 in 2050, with an inverted U-shaped trend. Specifically, the cultivated land will262

increase to 44,424.08 km2 in 2030 and then drop by 867.61 km2 from 2030 to 2050. However,263

the trend will differ from at the city level. The cultivated land in Changchun and Liaoyuan will264

increase by 485.68 km2 and 19.62 km2 in 2010-2050, while those in Tonghua, Jilin and Siping265

will decrease by 252.12 km2, 11.33 km2, and 3.88 km2 .266

267
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268

Figure 4. The changes in land use quantities from 2010 to 2050.269

The gain and loss of cultivated land will be 3,796.69 km2 and 3,561.53 km2, respectively270

(Figure 5f). Specifically, 43.09% and 40.03% of farmland gain will be attributed to the reduction271

of woodland and construction land, for example, the consolidation of scattered rural settlements272

originating from rural population shrinkage (Liu et al., 2013b). In turn, 63.71% of farmland loss273

will be attributed to farmland reforestation, which indicates the Chinese government's emphasis274
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on ecological protection (Shan et al., 2020). At the city level, Changchun has the highest275

farmland gain (Figure 5a). The gain of cultivated land will be 1,080.04 km2, and 59.45% comes276

from the consolidation of construction land. As a central city in Northeast China, increasing277

cultivated land will alleviate the pressure of increasing population on food production (Zhang et278

al., 2012). Conversely, Tonghua has the largest reduction of arable land (Figure 5e). The gain279

and loss of cultivated land will be 471.00 km2 and 722.52 km2, respectively. It can be observed280

that 627.28 km2 of cultivated land in this city will be converted into forest land. Liaoyuan, Siping281

and Jilin are likely to experience slight farmland gain or loss; these changes are less than 20 km2282

(Figure 5b, c, and d).283

284

Figure 5. Land use conversions from 2010 to 2050.285
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4.2 Changes in maize yield per hectare in different scenarios286

The maize yield per hectare is likely to exhibit a two-stage upward trend from 2011 to287

2050 (Figure 6). From 2011 to 2030, it will moderately increase by 76.32%, 70.63%, 63.278%,288

49.66% under RCP2.6, 4.5, 6.0, 8.5, respectively. From 2031 to 2050, however, it will289

experience a corresponding sharp promotion of 280.74%, 344.91%, 299.64%, and 233.352%.290

291

Figure 6. Changes in average maize yield per hectare under four RCP scenarios from292

2011 to 2050. Standard Errors of Mean (SEM) of RCP 2.6, 4.5, 6.0, and 8.5 are 1575.51,293

1401.41, 1252.26, and 975.38 kg/ha, respectively.294

Climate change (Figure S4) may exert different effects on per unit maize yield over time.295

RCP 2.6 will have the maximum annual growth rate of the per-unit yield up to 34.73%, with a296

mean value of 14175.00 kg/ha. Conversely, RCP 8.5 is likely to exhibit the minimum increase of297

the per-unit yield by 11324.47 kg/ha with an annual growth rate of 33.78%. A positive298

correlation between the per-unit yield promotion and the radiative forcing levels caused by299

greenhouse gas emissions can be observed, and a growing gap in the per unit yields under four300

RCP scenarios will also arise over time. We further found that temperature strongly correlates301

with the changing rate of the maize yield variance (Figure 7). In RCP2.6, RCP6.0, RCP8.5, R2302

can reach up to 0.99 (p<0.0001), while that in RCP4.5 is only 47.21%. The temperature changes303

primarily lead to yield variance.304
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305

Figure7. Correlation analysis between temperature and variance transformation rate306

under four RCP scenarios.307

At the county level, the yield variations under the four RCPs range from 0.72 to 32.82308

from 2011 to 2030, varying from 0.82 to 32.87 in 2031-2050. In contrast, the mean per unit yield309

gap in the four RCPs will be much greater from 2031 to 2050. For example, the range of RCP2.6310

in 2031-2050 can expand to 10 times that in 2011-2030. Despite the different distribution of311

values, the mean yields still exhibit a positive correlation with the variances. The spatial312

distribution of relative change in the mean yield per hectare and its variance in these two periods313

are similar, with a significant increase in the northern and central regions and a slight increase or314

decrease in the western region. Most counties had a similar change rate of average yield under315

the four RCPs, but the gaps under RCP2.6 and RCP6.5 are much larger (Figure 8a). From the316

perspective of the distribution area, RCP6.5 and RCP8.5 have a greater relative reduction of317

variance from 2011-2030 to 2031-2050 (Figure 8b).318



Earth's Future

319

Figure 8. Rate of changes in means (a) and variances (b) of the per unit maize yield320

during the periods of 2011-2030 and 2031-2050.321

4.3 Changes in total maize yield322

The total maize yield will significantly increase from 2011 to 2050, with a growth rate of323

78.71% (RCP2.6), 79.40% (RCP4.5), 79.01% (RCP6.0) and 78.63% (RCP8.5). In the first two324

decades, the total yield under RCP2.6, RCP4.5, RCP6.0, and RCP8.5 moderately increase by325

38.61%, 35.61%, 30.03% and 18.28%, then exhibit sharp promotion to 124.92%, 149.01%,326

148.19% and 161.00% in the latter twenty years. The total maize yields under four RCP327

scenarios will remarkably differ. Specifically, RCP 2.6 has the maximum total yield of 24.02328

megatons in 2030, but it will rank third in 2050. RCP4.5 ranks second in 2030 with 23.50329

megatons of maize yield, while it will reach the highest value of 58.52 megatons in 2050.330

Notably, the total maize yield under RCP 8.5 will remain the minimum in 2030 and 2050 (Table331

3).332

333
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Table 3334

Total maize yields in 2030 and 2050 under four RCP scenarios335

Scenarios 2030(megatons) change rate
2011-2030 2050(megatons) change rate

2030-2050
RCP2.6 24.02 38.61% 54.03 124.92%
RCP4.5 23.50 35.61% 58.52 149.01%
RCP6.0 22.54 30.03% 55.93 148.19%
RCP8.5 20.50 18.28% 53.50 161.00%

336

Changes in total maize yields will be simultaneously influenced by the per-unit yield and337

the planting area. In urban areas, e.g., Changchun, Jilin, and Chaoyang, Nanguan and Erdao338

District of Liaoyuan only have low total yields of maize even if the per-unit yield is at the middle339

or upper level. In contrast, some counties, such as Nong'an and Gongzhuling, with low per-unit340

yields will feature higher maize production due to their larger maize planting areas (Figure 9).341

From 2030 to 2050, 67% of counties will experience a decline in cultivated land (Figure S5), but342

the total maize yields of these counties will increase due to the promotion of per hectare maize343

yield. Furthermore, climate change will alter the orders of some counties with large planting344

areas of maize in terms of total yields, e.g., Liuhe, Lishu, Fengman, Dongliao, and Dongfeng345

County. Under PCR2.6, a slowdown of growth rate in maize yield per hectare in these counties346

leads to the decline of the total yield ranking. Conversely, RCP8.5 will ensure that most counties347

have a high total production ranking due to its relatively high growth rate of per-unit yield.348
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349

Figure 9. Total maize production at the county level under four scenarios.350

5 Discussion351

5.1 Comprehensive impact on maize yield352

Unlike the previous study, our framework examines the synergistic effects of climate353

change and land use change on the yield of rain-fed maize in a phaeozem region of Jilin Province.354

The results show that there appears to be a clear contrast in total yield, potential increment, and355

spatial pattern between different scenarios, and balanced development is more conducive to356

maintaining a steady increase in total maize production. For example, Potential maize yield per357

hectare will significantly increase under the four climate change scenarios from 2011 to 2050,358

ranked as: RCP2.6> RCP4.5> RCP6.0> RCP8.5. However, RCP2.6 and RCP6.0 will have359

differences in the maize yield among counties, while RCP4.5 will exhibit a balanced regional360

pattern of maize production (Figure 8a).The total maize yield in 2050 will peak under the361

RCP4.5 scenario, suggesting the combined effect of temperature, precipitation, and technological362



Earth's Future

progress on maize growth is the best. This scenario's moderate carbon emissions and population363

and economic growth will help coordinate the conflicts between farmland protection and364

vegetation conservation and increase overall maize production simultaneously (Hou and Li,365

2021; Zhang and Qi, 2010). Notably, an increase in per hectare yield could mitigate the impact366

of farmland loss on maize yields. The total yield of RCP2.6, RCP4.5, RCP6.0, and RCP8.5 will367

reach 54.03, 58.52, 55.93, and 53.50 megatons by 124.92%, 149.01%, 148.19% and 161.00%368

from 2030 to 2050. Although a large amount of cultivated land will be occupied by forest and369

grassland, the total maize yield under all scenarios still increased exponentially.370

The variance of temperature and precipitation during the growing season will affect yield371

variance (Urban et al., 2012). With the increase in precipitation variance, the variance of maize372

yields during the period of 2031-3050 will get higher than that in 2011-2030. Under the threat of373

maize yield reduction caused by variable or extreme climates (Feng et al., 2021; Malik et al.,374

2021), how to formulate adaptation and mitigation strategies will be a challenging long-term375

issue for land managers (Iglesias and Garrote, 2015; Zobeidi et al., 2021).376

5.2 Policy implications377

Our study suggested several implications for agricultural land use and maize production.378

We can solve many uncertain problems in agricultural production by considering the present and379

predicted near future land-use, economic and climate scenarios. For example, agricultural380

technology development can balance land use change, climate change and maize production due381

to its positive impact on per unit yield (Rojas-Downing et al., 2017). Previous studies suggested382

that diversification of maize varieties can improve maize resistance to external disturbances383

caused by extreme weather events and human activities (Lin et al., 2008) (Altieri and Nicholls,384

2017). Maize breeding and biotechnology also have the enormous biological potential to increase385

grain yield (Foulkes et al., 2011). Researchers have proven that organic matter enhances386

underground biodiversity, thereby creating suitable conditions for plant roots (Diaz-Zorita et al.,387

1999). Moreover, regular training and technical guidance for farmers can improve their risk388

awareness and ability to deal with the risk (Olesen et al., 2011). We suggest that the investment389

in maize variety and planting technology development should be encouraged to promote the per390

unit yield of maize. Indeed, accurate prediction of climate change and rational planning of391
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planting scale and planting pattern can advance the reasonability of agricultural management392

strategies.393

5.3 Advantages and limitations394

By combining the FLUS and the statistical yield model, this research framework can395

better describe the joint impact of climate change and land use change on maize yield.396

Meanwhile, the framework is flexible and can be used as a general decision-making tool for land397

planning and maize management in different situations. This study documented that climate398

change will positively impact maize yields in the study area, which is consistent with other399

simulation studies (Liang et al., 2019; Pu et al., 2020; Zhang et al., 2017a). Since the study area400

locates in the cold temperate zone, global warming could reduce cold damage and extend the401

growing season, which will benefit maize yields (Zongruing et al., 2007). From an optimistic402

point of view, we expect further improvement in planting efficiency (maize yield) as agricultural403

technology advances and planting management improves in the future. Moreover, the effect of404

human irrigation on maize growth has been excluded by selecting the study area in a rain-fed405

region.406

This work still has several limitations. First, uncertainty in future climate change will407

impact the simulation accuracy. The climate conditions shown by different general circulation408

models (GCMs) in the same region may be quite different (Liu et al., 2013a; Tatsumi et al.,409

2011). The BCC_CSM1.1 m model was selected for this study to better eliminate the possible410

errors in the prediction results. Although the BCC has been applied to a number of studies on411

grain production in northeast China (Pu et al., 2020; Xie et al., 2020), there is still room for412

improvement. Second, existing studies have shown that incorporating remote sensing into413

statistical models can improve forecasting accuracy, especially for large-scale regions (Laudien414

et al., 2020).415

6 Conclusion416

This study proposes an integrated framework for maize yield prediction by combining the417

SD and the FLUS model with the statistical model. Future maize yield change can be simulated418

under the four RCP scenarios. The proposed framework is flexible and suitable for applications419
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in any other regional studies. The simulations help provide scientific guidance for the decision-420

making of agricultural management.421

We conclude that an increase in per-unit yield in the study area will mitigate the negative422

impact of farmland loss on the total maize yield. Although cultivated land is likely to decrease423

from 2030 to 2050, the total maize yields under RCP2.6, 4.5, 6.0, and 8.5 will still increase by424

124.92%, 149.01%, 148.19% and 161.00%. Under the four RCPs, disparities in total maize425

yields will differ across the region, especially under RCP2.6. In comparison, RCP 4.5 features426

more balanced and stable, which will be conducive to ensuring maize yields and benefitting427

regional sustainable development in the future.428

Facing the threat of variable or extreme climates and the further widened yield gap429

between different counties, we need to implement the differentiated policies of agricultural430

production and farmland protection, including strengthening cultivated land protection and crop431

management in low-yield areas, as well as adoption of adaptation and mitigation measures.432

433

Acknowledgments434

This research was funded by the National Natural Science Foundation of China [Grant435

number: 41771429; 42171414].436

437

Data Availability Statement438

In this study, GCMs data are downloaded on the WDCC platform through439

https://doi.org/10.1594/WDCC/ETHr2(Knutti, 2014). Historical climate data are available at the440

National Meteorological Sciences Data Center (http://data.cma.cn/) by searching the "China441

Terrestrial Climate Standard Monthly Values Dataset". The grid dataset of China's GDP and442

population spatial distribution are derived from the resource and environmental science data443

registration and publication system(Xinliang, 2017a, b), and can be obtained through444

http://www.resdc.cn/DOI. Empirical land use maps were derived from the Chinese Academy of445

Sciences (CAS; http://www.resdc.cn) (Ning et al., 2018).446

447

https://doi.org/10.1594/WDCC/ETHr2
http://data.cma.cn/
http://www.resdc.cn/DOI
http://www.resdc.cn


Earth's Future

References448

Abate, M.C., Kuang, Y.-p. (2021). "The impact of the supply of farmland, level of agricultural mechanisation, and449
supply of rural labour on grain yields in China." Studies in Agricultural Economics 123, 33-42.450
https://doi.org/10.7896/j.2081451
Akhtar, M.K., Wibe, J., Simonovic, S.P., MacGee, J. (2013). "Integrated assessment model of society-biosphere-452
climate-economy-energy system." Environmental Modelling & Software 49, 1-21.453
https://doi.org/10.1016/j.envsoft.2013.07.006454
Akpoti, K., Kabo-bah, A.T., Zwart, S.J. (2019). "Agricultural land suitability analysis: State-of-the-art and outlooks455
for integration of climate change analysis." Agricultural Systems 173, 172-208.456
https://doi.org/10.1016/j.agsy.2019.02.013457
Altieri, M.A., Nicholls, C.I. (2017). "The adaptation and mitigation potential of traditional agriculture in a changing458
climate." Climatic Change 140, 33-45. https://doi.org/10.1007/s10584-013-0909-y459
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane, A.C., Boote, K.J., Thorburn, P.J., Rotter,460
R.P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P.K., Angulo, C., Bertuzzi, P., Biernath, C.,461
Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J.,462
Izaurralde, R.C., Kersebaum, K.C., Mueller, C., Kumar, S.N., Nendel, C., O'Leary, G., Olesen, J.E., Osborne, T.M.,463
Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stoeckle, C., Stratonovitch, P.,464
Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., Wallach, D., White, J.W., Williams, J.R., Wolf, J. (2013).465
"Uncertainty in simulating wheat yields under climate change." Nature Climate Change 3, 827-832.466
https://doi.org/10.1038/nclimate1916467
Banakara, K.B., Pandya, H.R., Garde, Y.A. (2019). "Pre-harvest forecast of kharif rice yield using PCA and MLR468
technique in Naysari district of Gujarat." Journal of Agrometeorology 21, 336-343.469
Basse, R.M., Omrani, H., Charif, O., Gerber, P., Bodis, K. (2014). "Land use changes modelling using advanced470
methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover471
dynamics at the cross-border region scale." Applied Geography 53, 160-171.472
https://doi.org/10.1016/j.apgeog.2014.06.016473
Basso, B., Liu, L. (2019). "Seasonal crop yield forecast: Methods, applications, and accuracies." in: Sparks, D.L.474
(Ed.), Advances in Agronomy, Vol 154, pp. 201-255. https://doi.org/10.1016/bs.agron.2018.11.002475
Basso, B., Liu, L., Ritchie, J.T. (2016). "A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models'476
Performances." in: Sparks, D.L. (Ed.), Advances in Agronomy, Vol 136, pp. 27-132.477
https://doi.org/10.1016/bs.agron.2015.11.004478
Camberlin, P., Diop, M. (1999). "Inter-relationships between groundnut yield in Senegal, interannual rainfall479
variability and sea-surface temperatures." Theoretical and Applied Climatology 63, 163-181.480
https://doi.org/10.1007/s007040050101481
Diaz-Zorita, M., Buschiazzo, D.E., Peinemann, N. (1999). "Soil organic matter and wheat productivity in the482
semiarid argentine pampas." Agronomy Journal 91, 276-279.483
https://doi.org/10.2134/agronj1999.00021962009100020016x484
Feng, S., Hao, Z., Zhang, X., Hao, F. (2021). "Changes in climate-crop yield relationships affect risks of crop yield485
reduction." Agricultural and Forest Meteorology 304. https://doi.org/10.1016/j.agrformet.2021.108401486
Foulkes, M.J., Slafer, G.A., Davies, W.J., Berry, P.M., Sylvester-Bradley, R., Martre, P., Calderini, D.F., Griffiths,487
S., Reynolds, M.P. (2011). "Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining488
lodging resistance." Journal of Experimental Botany 62, 469-486. https://doi.org/10.1093/jxb/erq300489
Gao, J., Yang, X., Zheng, B., Liu, Z., Zhao, J., Sun, S. (2020). "Does precipitation keep pace with temperature in the490
marginal double-cropping area of northern China?" European Journal of Agronomy 120.491
https://doi.org/10.1016/j.eja.2020.126126492
Giri, A.K., Bhan, M., Agrawal, K.K. (2017). "Districtwise wheat and rice yield predictions using meteorological493
variables in eastern Madhya Pradesh." Journal of Agrometeorology 19, 366-368.494
Grassini, P., Yang, H., Cassman, K.G. (2009). "Limits to maize productivity in Western Corn-Belt: A simulation495
analysis for fully irrigated and rainfed conditions." Agricultural and Forest Meteorology 149, 1254-1265.496
https://doi.org/10.1016/j.agrformet.2009.02.012497
He, Y., Liang, H., Hu, K., Wang, H., Hou, L. (2018). "Modeling nitrogen leaching in a spring maize system under498
changing climate and genotype scenarios in arid Inner Mongolia, China." Agricultural Water Management 210, 316-499
323. https://doi.org/10.1016/j.agwat.2018.08.017500
Hengl, T., de Jesus, J.M., Heuvelink, G.B.M., Gonzalez, M.R., Kilibarda, M., Blagotic, A., Shangguan, W., Wright,501
M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars,502

https://doi.org/10.7896/j.2081
https://doi.org/10.1016/j.envsoft.2013.07.006
https://doi.org/10.1016/j.agsy.2019.02.013
https://doi.org/10.1007/s10584-013-0909-y
https://doi.org/10.1038/nclimate1916
https://doi.org/10.1016/j.apgeog.2014.06.016
https://doi.org/10.1016/bs.agron.2018.11.002
https://doi.org/10.1016/bs.agron.2015.11.004
https://doi.org/10.1007/s007040050101
https://doi.org/10.2134/agronj1999.00021962009100020016x
https://doi.org/10.1016/j.agrformet.2021.108401
https://doi.org/10.1093/jxb/erq300
https://doi.org/10.1016/j.eja.2020.126126
https://doi.org/10.1016/j.agrformet.2009.02.012
https://doi.org/10.1016/j.agwat.2018.08.017


Earth's Future

J.G.B., Ribeiro, E., Wheeler, I., Mantel, S., Kempen, B. (2017). "SoilGrids250m: Global gridded soil information503
based on machine learning." Plos One 12. https://doi.org/10.1371/journal.pone.0169748504
Hou, R., Li, H. (2021). "Spatial-Temporal Change and Coupling Coordination Characteristics of Land Use505
Functions in Wuhan City:Based on the Comparison Before and After the Resource-economical and Environment-506
friendly Society Experimental Zone Establishment." China Land Science 35, 69-78.507
Huang, J.Y., Hartemink, A.E., Kucharik, C.J. (2021). "Soil-dependent responses of US crop yields to climate508
variability and depth to groundwater." Agricultural Systems 190. https://doi.org/10.1016/j.agsy.2021.103085509
Iglesias, A., Garrote, L. (2015). "Adaptation strategies for agricultural water management under climate change in510
Europe." Agricultural Water Management 155, 113-124. https://doi.org/10.1016/j.agwat.2015.03.014511
Jiang, R., He, W., He, L., Yang, J.Y., Qian, B., Zhou, W., He, P. (2021). "Modelling adaptation strategies to reduce512
adverse impacts of climate change on maize cropping system in Northeast China." Scientific Reports 11.513
https://doi.org/10.1038/s41598-020-79988-3514
Kang, Y., Ozdogan, M., Zhu, X., Ye, Z., Hain, C., Anderson, M. (2020). "Comparative assessment of environmental515
variables and machine learning algorithms for maize yield prediction in the US Midwest." Environmental Research516
Letters 15. https://doi.org/10.1088/1748-9326/ab7df9517
Knutti, R. (2014). "IPCC Working Group I AR5 snapshot: The rcp26 experiment." [Dataset].518
https://doi.org/10.1594/WDCC/ETHr2519
Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., Lavreniuk, M., Oliinyk, T., Ostapenko,520
V. (2015). "COMPARISON OF BIOPHYSICAL AND SATELLITE PREDICTORS FOR WHEAT YIELD521
FORECASTING IN UKRAINE." in: Schreier, G., Skrovseth, P.E., Staudenrausch, H. (Eds.), 36th International522
Symposium on Remote Sensing of Environment, pp. 39-44. https://doi.org/10.5194/isprsarchives-XL-7-W3-39-523
2015524
Kowalik, W., Dabrowska-Zielinska, K., Meroni, M., Raczka, T.U., de Wit, A. (2014). "Yield estimation using525
SPOT-VEGETATION products: A case study of wheat in European countries." International Journal of Applied526
Earth Observation and Geoinformation 32, 228-239. https://doi.org/10.1016/j.jag.2014.03.011527
Kriegler, E., Edmonds, J., Hallegatte, S., Ebi, K.L., Kram, T., Riahi, K., Winkler, H., van Vuuren, D.P. (2014). "A528
new scenario framework for climate change research: the concept of shared climate policy assumptions." Climatic529
Change 122, 401-414. https://doi.org/10.1007/s10584-013-0971-5530
Laudien, R., Schauberger, B., Makowski, D., Gornott, C. (2020). "Robustly forecasting maize yields in Tanzania531
based on climatic predictors." Scientific Reports 10. https://doi.org/10.1038/s41598-020-76315-8532
Leng, G., Hall, J.W. (2020). "Predicting spatial and temporal variability in crop yields: an inter-comparison of533
machine learning, regression and process-based models." Environmental Research Letters 15.534
https://doi.org/10.1088/1748-9326/ab7b24535
Li, X., Chen, G.Z., Liu, X.P., Liang, X., Wang, S.J., Chen, Y.M., Pei, F.S., Xu, X.C. (2017). "A New Global Land-536
Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human-Environment537
Interactions." Annals of the American Association of Geographers 107, 1040-1059.538
https://doi.org/10.1080/24694452.2017.1303357539
Li, Y., Hu, Z., Wang, X., Wu, M., Zhou, H., Zhang, Y. (2020). "Characterization of a polysaccharide with540
antioxidant and anti-cervical cancer potentials from the corn silk cultivated in Jilin province." International Journal541
of Biological Macromolecules 155, 1105-1113. https://doi.org/10.1016/j.ijbiomac.2019.11.077542
Liang, S., Zhang, X.B., Sun, N., Li, Y.F., Xu, M.G., Wu, L.H. (2019). "Modeling crop yield and nitrogen use543
efficiency in wheat and maize production systems under future climate change." Nutrient Cycling in Agroecosystems544
115, 117-136. https://doi.org/10.1007/s10705-019-10013-4545
Lin, B.B., Perfecto, I., Vandermeer, J. (2008). "Synergies between Agricultural Intensification and Climate Change546
Could Create Surprising Vulnerabilities for Crops." Bioscience 58, 847-854. https://doi.org/10.1641/b580911547
Liu, J., Folberth, C., Yang, H., Rockstrom, J., Abbaspour, K., Zehnder, A.J.B. (2013a). "A Global and Spatially548
Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use." Plos One 8.549
https://doi.org/10.1371/journal.pone.0057750550
Liu, M., Zhang, X., Ma, Y., Xu, H. (2013b). "Evaluation of rural residential land consolidation potential using551
entropy weight extension model -A case study of Taihang Mountain piedmont plain in Hebei Province." Chinese552
Journal of Eco-Agriculture 21, 1166-1172.553
Liu, X.P., Liang, X., Li, X., Xu, X.C., Ou, J.P., Chen, Y.M., Li, S.Y., Wang, S.J., Pei, F.S. (2017). "A future land554
use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects."555
Landscape and Urban Planning 168, 94-116. https://doi.org/10.1016/j.landurbplan.2017.09.019556

https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1016/j.agsy.2021.103085
https://doi.org/10.1016/j.agwat.2015.03.014
https://doi.org/10.1038/s41598-020-79988-3
https://doi.org/10.1088/1748-9326/ab7df9
https://doi.org/10.1594/WDCC/ETHr2
https://doi.org/10.5194/isprsarchives-XL-7-W3-39-2015
https://doi.org/10.5194/isprsarchives-XL-7-W3-39-2015
https://doi.org/10.1016/j.jag.2014.03.011
https://doi.org/10.1007/s10584-013-0971-5
https://doi.org/10.1038/s41598-020-76315-8
https://doi.org/10.1088/1748-9326/ab7b24
https://doi.org/10.1080/24694452.2017.1303357
https://doi.org/10.1016/j.ijbiomac.2019.11.077
https://doi.org/10.1007/s10705-019-10013-4
https://doi.org/10.1641/b580911
https://doi.org/10.1371/journal.pone.0057750
https://doi.org/10.1016/j.landurbplan.2017.09.019


Earth's Future

Liu, Y., Ren, H.-L., Klingaman, N.P., Liu, J., Zhang, P. (2021). "Improving long-lead seasonal forecasts of557
precipitation over Southern China based on statistical downscaling using BCC_CSM1.1m." Dynamics of558
Atmospheres and Oceans 94. https://doi.org/10.1016/j.dynatmoce.2021.101222559
Liu, Z.-j., Yang, X.-g., Wang, W.-f., Li, K.-n., Zhang, X.-y. (2009). "Characteristics of agricultural climate560
resources in three provinces of northeast China under global climate change." Ying yong sheng tai xue bao = The561
journal of applied ecology 20, 2199-2206.562
Lobell, D.B., Burke, M.B. (2010). "On the use of statistical models to predict crop yield responses to climate563
change." Agricultural and Forest Meteorology 150, 1443-1452. https://doi.org/10.1016/j.agrformet.2010.07.008564
Lobell, D.B., Schlenker, W., Costa-Roberts, J. (2011). "Climate Trends and Global Crop Production Since 1980."565
Science 333, 616-620. https://doi.org/10.1126/science.1204531566
Loboguerrero, A.M., Campbell, B.M., Cooper, P.J.M., Hansen, J.W., Rosenstock, T., Wollenberg, E. (2019). "Food567
and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems."568
Sustainability 11. https://doi.org/10.3390/su11051372569
Malik, M.A., Wani, A.H., Mir, S.H., Ul Rehman, I., Tahir, I., Ahmad, P., Rashid, I. (2021). "Elucidating the role of570
silicon in drought stress tolerance in plants." Plant Physiology and Biochemistry 165, 187-195.571
https://doi.org/10.1016/j.plaphy.2021.04.021572
Manatsa, D., Nyakudya, I.W., Mukwada, G., Matsikwa, H. (2011). "Maize yield forecasting for Zimbabwe farming573
sectors using satellite rainfall estimates." Natural Hazards 59, 447-463. https://doi.org/10.1007/s11069-011-9765-0574
Murchie, E.H., Niyogi, K.K. (2011). "Manipulation of Photoprotection to Improve Plant Photosynthesis." Plant575
Physiology 155, 86-92. https://doi.org/10.1104/pp.110.168831576
Mustafa, A., Heppenstall, A., Omrani, H., Saadi, I., Cools, M., Teller, J. (2018). "Modelling built-up expansion and577
densification with multinomial logistic regression, cellular automata and genetic algorithm." Computers578
Environment and Urban Systems 67, 147-156. https://doi.org/10.1016/j.compenvurbsys.2017.09.009579
Ning, J., Liu, J., Kuang, W., Xu, X., Zhang, S., Yan, C., Li, R., Wu, S., Hu, Y., Du, G., Chi, W., Pan, T., Ning, J.580
(2018). "Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015." Journal of581
Geographical Sciences 28, 547-562. https://doi.org/10.1007/s11442-018-1490-0582
O'Neill, B.C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T.R., Mathur, R., van Vuuren, D.P. (2014).583
"A new scenario framework for climate change research: the concept of shared socioeconomic pathways." Climatic584
Change 122, 387-400. https://doi.org/10.1007/s10584-013-0905-2585
Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvag, A.O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J.,586
Micale, F. (2011). "Impacts and adaptation of European crop production systems to climate change." European587
Journal of Agronomy 34, 96-112. https://doi.org/10.1016/j.eja.2010.11.003588
Pan, Z., He, J., Liu, D., Wang, J. (2020). "Predicting the joint effects of future climate and land use change on589
ecosystem health in the Middle Reaches of the Yangtze River Economic Belt, China." Applied Geography 124.590
https://doi.org/10.1016/j.apgeog.2020.102293591
Peralta, N.R., Assefa, Y., Du, J., Barden, C.J., Ciampitti, I.A. (2016). "Mid-Season High-Resolution Satellite592
Imagery for Forecasting Site-Specific Corn Yield." Remote Sensing 8. https://doi.org/10.3390/rs8100848593
Poornima, S., Pushpalatha, M. (2019). "Prediction of Rainfall Using Intensified LSTM Based Recurrent Neural594
Network with Weighted Linear Units." Atmosphere 10. https://doi.org/10.3390/atmos10110668595
Pu, L.M., Zhang, S.W., Yang, J.H., Chang, L.P., Xiao, X.M. (2020). "Assessing the impact of climate changes on596
the potential yields of maize and paddy rice in Northeast China by 2050." Theoretical and Applied Climatology 140,597
167-182. https://doi.org/10.1007/s00704-019-03081-7598
Roebeling, R.A., Van Putten, E., Genovese, G., Rosema, A. (2004). "Application of Meteosat derived599
meteorological information for crop yield predictions in Europe." International Journal of Remote Sensing 25, 5389-600
5401. https://doi.org/10.1080/01431160410001705024601
Rojas-Downing, M.M., Nejadhashemi, A.P., Harrigan, T., Woznicki, S.A. (2017). "Climate change and livestock:602
Impacts, adaptation, and mitigation." Climate Risk Management 16, 145-163.603
https://doi.org/10.1016/j.crm.2017.02.001604
Rojas, O. (2007). "Operational maize yield model development and validation based on remote sensing and agro-605
meteorological data in Kenya." International Journal of Remote Sensing 28, 3775-3793.606
https://doi.org/10.1080/01431160601075608607
Rotz, S., Gravely, E., Mosby, I., Duncan, E., Finnis, E., Horgan, M., LeBlanc, J., Martin, R., Neufeld, H.T., Nixon,608
A., Pant, L., Shalla, V., Fraser, E. (2019). "Automated pastures and the digital divide: How agricultural technologies609
are shaping labour and rural communities." Journal of Rural Studies 68, 112-122.610
https://doi.org/10.1016/j.jrurstud.2019.01.023611

https://doi.org/10.1016/j.dynatmoce.2021.101222
https://doi.org/10.1016/j.agrformet.2010.07.008
https://doi.org/10.1126/science.1204531
https://doi.org/10.3390/su11051372
https://doi.org/10.1016/j.plaphy.2021.04.021
https://doi.org/10.1007/s11069-011-9765-0
https://doi.org/10.1104/pp.110.168831
https://doi.org/10.1016/j.compenvurbsys.2017.09.009
https://doi.org/10.1007/s11442-018-1490-0
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1016/j.eja.2010.11.003
https://doi.org/10.1016/j.apgeog.2020.102293
https://doi.org/10.3390/rs8100848
https://doi.org/10.3390/atmos10110668
https://doi.org/10.1007/s00704-019-03081-7
https://doi.org/10.1080/01431160410001705024
https://doi.org/10.1016/j.crm.2017.02.001
https://doi.org/10.1080/01431160601075608
https://doi.org/10.1016/j.jrurstud.2019.01.023


Earth's Future

Sakamoto, T. (2020). "Incorporating environmental variables into a MODIS-based crop yield estimation method for612
United States corn and soybeans through the use of a random forest regression algorithm." Isprs Journal of613
Photogrammetry and Remote Sensing 160, 208-228. https://doi.org/10.1016/j.isprsjprs.2019.12.012614
Shan, Y., Huang, Q., Guan, D., Hubacek, K. (2020). "China CO2 emission accounts 2016-2017." Scientific Data 7.615
https://doi.org/10.1038/s41597-020-0393-y616
Sharma, L.K., Bali, S.K., Dwyer, J.D., Plant, A.B., Bhowmik, A. (2017). "A Case Study of Improving Yield617
Prediction and Sulfur Deficiency Detection Using Optical Sensors and Relationship of Historical Potato Yield with618
Weather Data in Maine." Sensors 17. https://doi.org/10.3390/s17051095619
Takeshima, H., Nin-Pratt, A., Diao, X. (2013). "MECHANIZATION AND AGRICULTURAL TECHNOLOGY620
EVOLUTION, AGRICULTURAL INTENSIFICATION IN SUB-SAHARAN AFRICA: TYPOLOGY OF621
AGRICULTURAL MECHANIZATION IN NIGERIA." American Journal of Agricultural Economics 95, 1230-622
1236. https://doi.org/10.1093/ajae/aat045623
Tatsumi, K., Yamashiki, Y., da Silva, R.V., Takara, K., Matsuoka, Y., Takahashi, K., Maruyama, K., Kawahara, N.624
(2011). "Estimation of potential changes in cereals production under climate change scenarios." Hydrological625
Processes 25, 2715-2725. https://doi.org/10.1002/hyp.8012626
Tripathy, R., Chaudhari, K.N., Mukherjee, J., Ray, S.S., Patel, N.K., Panigrahy, S., Parihar, J.S. (2013). "Forecasting627
wheat yield in Punjab state of India by combining crop simulation model WOFOST and remotely sensed inputs."628
Remote Sensing Letters 4, 19-28. https://doi.org/10.1080/2150704x.2012.683117629
Urban, D., Roberts, M.J., Schlenker, W., Lobell, D.B. (2012). "Projected temperature changes indicate significant630
increase in interannual variability of U.S. maize yields." Climatic Change 112, 525-533.631
https://doi.org/10.1007/s10584-012-0428-2632
van Vuuren, D.P., Carter, T.R. (2014). "Climate and socio-economic scenarios for climate change research and633
assessment: reconciling the new with the old." Climatic Change 122, 415-429. https://doi.org/10.1007/s10584-013-634
0974-2635
Vancutsem, C., Marinho, E., Kayitakire, F., See, L., Fritz, S. (2013). "Harmonizing and Combining Existing Land636
Cover/Land Use Datasets for Cropland Area Monitoring at the African Continental Scale." Remote Sensing 5, 19-41.637
https://doi.org/10.3390/rs5010019638
Vermeulen, S.J., Aggarwal, P.K., Ainslie, A., Angelone, C., Campbell, B.M., Challinor, A.J., Hansen, J.W., Ingram,639
J.S.I., Jarvis, A., Kristjanson, P., Lau, C., Nelson, G.C., Thornton, P.K., Wollenberg, E. (2012). "Options for support640
to agriculture and food security under climate change." Environmental Science & Policy 15, 136-144.641
https://doi.org/10.1016/j.envsci.2011.09.003642
Wang, Y.-P., Chang, K.-W., Chen, R.-K., Lo, J.-C., Shen, Y. (2010). "Large-area rice yield forecasting using643
satellite imageries." International Journal of Applied Earth Observation and Geoinformation 12, 27-35.644
https://doi.org/10.1016/j.jag.2009.09.009645
Wu, T., Yu, R., Zhang, F., Wang, Z., Dong, M., Wang, L., Jin, X., Chen, D., Li, L. (2010). "The Beijing Climate646
Center atmospheric general circulation model: description and its performance for the present-day climate." Climate647
Dynamics 34, 123-147. https://doi.org/10.1007/s00382-008-0487-2648
Xie, W., Huang, J., Wang, J., Cui, Q., Robertson, R., Chen, K. (2020). "Climate change impacts on China's649
agriculture: The responses from market and trade." China Economic Review 62.650
https://doi.org/10.1016/j.chieco.2018.11.007651
Xinliang, X. (2017a). "Spatially distributed kilometer grid dataset of China's GDP." [Dataset]. System,652
R.a.E.S.D.R.a.P. http://www.resdc.cn/DOI/10.12078/2017121102653
Xinliang, X. (2017b). "Spatially distributed kilometer grid dataset of Chinese population." [Dataset]. System,654
R.a.E.S.D.R.a.P. http://www.resdc.cn/DOI/10.12078/2017121101655
Yang, H., Huang, J., Liu, D. (2020). "Linking climate change and socioeconomic development to urban land use656
simulation: Analysis of their concurrent effects on carbon storage." Applied Geography 115.657
https://doi.org/10.1016/j.apgeog.2019.102135658
Yang, Q., Shi, L., Han, J., Zha, Y., Zhu, P. (2019). "Deep convolutional neural networks for rice grain yield659
estimation at the ripening stage using UAV-based remotely sensed images." Field Crops Research 235, 142-153.660
https://doi.org/10.1016/j.fcr.2019.02.022661
Yang, X., Lin, E., Ma, S., Ju, H., Guo, L., Xiong, W., Li, Y., Xu, Y. (2007). "Adaptation of agriculture to warming662
in Northeast China." Climatic Change 84, 45-58. https://doi.org/10.1007/s10584-007-9265-0663
Yeldan, O., Colorni, A., Lue, A., Rodaro, E. (2012). "A stochastic continuous cellular automata traffic flow model664
with a multi-agent fuzzy system." 15th Meeting of the Euro-Working-Group-on-Transportation (EWGT), Cite665
Descartes, Paris, FRANCE, pp. 1350-1359. https://doi.org/10.1016/j.sbspro.2012.09.849666

https://doi.org/10.1016/j.isprsjprs.2019.12.012
https://doi.org/10.1038/s41597-020-0393-y
https://doi.org/10.3390/s17051095
https://doi.org/10.1093/ajae/aat045
https://doi.org/10.1002/hyp.8012
https://doi.org/10.1080/2150704x.2012.683117
https://doi.org/10.1007/s10584-012-0428-2
https://doi.org/10.1007/s10584-013-0974-2
https://doi.org/10.1007/s10584-013-0974-2
https://doi.org/10.3390/rs5010019
https://doi.org/10.1016/j.envsci.2011.09.003
https://doi.org/10.1016/j.jag.2009.09.009
https://doi.org/10.1007/s00382-008-0487-2
https://doi.org/10.1016/j.chieco.2018.11.007
http://www.resdc.cn/DOI/10.12078/2017121102
http://www.resdc.cn/DOI/10.12078/2017121101
https://doi.org/10.1016/j.apgeog.2019.102135
https://doi.org/10.1016/j.fcr.2019.02.022
https://doi.org/10.1007/s10584-007-9265-0
https://doi.org/10.1016/j.sbspro.2012.09.849


Earth's Future

Yin, X.G., Jabloun, M., Olesen, J.E., Ozturk, I., Wang, M., Chen, F. (2016). "Effects of climatic factors, drought667
risk and irrigation requirement on maize yield in the Northeast Farming Region of China." Journal of Agricultural668
Science 154, 1171-1189. https://doi.org/10.1017/s0021859616000150669
Yu, D., Hu, S., Tong, L., Xia, C. (2020). "Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain670
Production Potential in Hunan Province, China." Land 9. https://doi.org/10.3390/land9120510671
Zhang, H., Qi, Y. (2010). "Strategic Thinking on China Low Carbon Economy Development:Taking the Jingjinji672
Zone as the Example." China Population·Resources and Environment 20, 6-11.673
Zhang, P., Yang, Q., Zhao, Y. (2012). "Relationship between social economic agglomeration and labor productivity674
of core cities in Northeast China." Chinese Geographical Science 22, 221-231. https://doi.org/10.1007/s11769-012-675
0522-4676
Zhang, Q., Zhang, W., Li, T.T., Sun, W.J., Yu, Y.Q., Wang, G.C. (2017a). "Projective analysis of staple food crop677
productivity in adaptation to future climate change in China." International Journal of Biometeorology 61, 1445-678
1460. https://doi.org/10.1007/s00484-017-1322-4679
Zhang, X., Yang, J., Thomas, R. (2017b). "Mechanization outsourcing clusters and division of labor in Chinese680
agriculture." China Economic Review 43, 184-195. https://doi.org/10.1016/j.chieco.2017.01.012681
Zhong, L., Hu, L., Zhou, H. (2019). "Deep learning based multi-temporal crop classification." Remote Sensing of682
Environment 221, 430-443. https://doi.org/10.1016/j.rse.2018.11.032683
Zobeidi, T., Yaghoubi, J., Yazdanpanah, M. (2021). "Developing a paradigm model for the analysis of farmers'684
adaptation to water scarcity." Environment Development and Sustainability. https://doi.org/10.1007/s10668-021-685
01663-y686
Zongruing, W., Kaishan, S., Xiaoyan, L.I., Bai, Z., Dianwei, L.I.U. (2007). "Effects of Climate Change on Yield of687
Maize in Maize Zone of Songnen Plain in the Past 40 Years." Journal of Arid Land Resources and Environment 21,688
112-117.689

690

https://doi.org/10.1017/s0021859616000150
https://doi.org/10.3390/land9120510
https://doi.org/10.1007/s11769-012-0522-4
https://doi.org/10.1007/s11769-012-0522-4
https://doi.org/10.1007/s00484-017-1322-4
https://doi.org/10.1016/j.chieco.2017.01.012
https://doi.org/10.1016/j.rse.2018.11.032
https://doi.org/10.1007/s10668-021-01663-y
https://doi.org/10.1007/s10668-021-01663-y


1

Earth's Future

Supporting Information for

Estimation of maize yield incorporating the synergistic effect of climatic and land

use change: A case study of Jilin, China

Xinyuan Wen1, Dianfeng Liu1,2*, Mingli Qiu1 and Yinjie Wang1

1 School of Resources and Environmental Sciences, Wuhan University,430079, Wuhan, China.

2 Key Laboratory of Digital Cartography and Land Information Application Engineering, Ministry of Natural

Resources, 430079, Wuhan, China.

*Corresponding author: Dianfeng Liu (liudianfeng@whu.edu.cn)

Contents of this file

Text S1

Figures S1 to S5

Tables S1 to S2



2

Text S1.

The improvement in agricultural mechanization (���ℎ���, ���ℎ��� 2) and county-fixed effects

(������) explain 40.3% of the county-level yield variance, which reflects the mean and the rapid

improvement pace of crop have presented uneven spatial distribution since 2000. T, P, and their

square terms explain 3.3% of the county-level production variance. Sunshine hours (��) has an

insignificant coefficient of determination, and is excluded in the final model (Equation S1).

Table S1. shows the model coefficient and significance test.

��� ����� = 0.000128 ∗ ���ℎ���2 − 0.0055 ∗ ���ℎ��� + 1.598 ∗ � − 0.043 ∗ �2 +
0.006394 ∗ � − 0.0000262 ∗ �2 − 6.234 (S1)

Considering the error value, the model can be written as:

��� �������,���� = ��� ��������,���� + ��� �������,���� (S2)

The hat symbol (^) indicates the estimated value of yield production. Assume that the error is

independent of the estimated value log � . All terms in the above equation are logarithmic. We

first take the exponents on both sides of (Equation S2) to calculate the yield per hectare.

� = ���� �� ���� � (S3)

It is crucial to consider the yield error when comparing the yield variance between 2011-

2030 and 2031-2050. We can calculate the variance of the final production, substituting the

variance values of the residuals at all levels (Attached Table S2.):

��� � = (� log �� )2 × ��� log � + (� log � )2 × ��� log �� + ��� log �� ×
��� log � (S4)
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Figure S1. (a)Average temperature in the study area from May to September under RCPs; (b)

Average precipitation in the study area from May to September under RCPs.
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Figure S2. Least-squares regression diagram of the square of the production residuals and the

average T and P during the training period.

Figure S3. Land use maps in 2010, 2030 and 2050.



5

Figure S4. (a) Temperature variation by county from 2011-2030 to 2031-2050; (b) Precipitation

varies by county from 2011-2030 to 2031-2050.

Figure S5. Changes in cultivated land areas at county level from 2030 to 2050.
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Table S1

Regression coefficients.

Model
Unstandardized coefficient

t Sig.
B Standard error

(constant) -6.226 7.759 -0.802 0.423

� 1.598 0.788 2.029 0.043

�2 -0.043 0.020 -2.163 0.031

� 0.006 0.003 2.254 0.025

�2 -2.622E-05 0.000 -2.146 0.032

���ℎ��� -0.006 0.001 -4.633 0.000

���ℎ���2 1.284E-04 0.000 3.153 0.002

�� 2.750E-04 8.02 E-04 0.342 0.732

Area=Dongfeng County 0.243 0.104 2.329 0.020

Area=Dongchang District 0.265 0.135 1.971 0.049

Area=Dongliao County 0.251 0.105 2.392 0.017

Area = Fengman District 0.095 0.115 0.821 0.412

Area=Jiutai City 0.035 0.104 0.342 0.733

Area = Erdao District -0.409 0.102 -4.025 0.000

Area = Erdaojiang District 0.148 0.134 1.105 0.269

Area=Yitong County 0.267 0.102 2.623 0.009

Area=Gongzhuling City 0.652 0.105 6.212 0.000

Area=Nong'an County 0.431 0.105 4.085 0.000

Area = Nanguan District -0.019 0.109 -0.173 0.863

Area=Shuangyang District 0.316 0.108 2.920 0.004

Area = Kuancheng District -0.400 0.102 -3.920 0.000

Area=Dehui City 0.298 0.106 2.813 0.005

Area=Changyi District 0.092 0.103 0.888 0.375

Area=Chaoyang District -0.106 0.113 -0.942 0.346

Area = Liuhe County 0.255 0.112 2.263 0.024

Area = Huadian City -0.020 0.121 -0.167 0.867

Area=Meihekou City 0.087 0.104 0.834 0.405

Area = Lishu County 0.724 0.105 6.916 0.000

Area = Elm City 0.313 0.104 3.019 0.003

Area=Yongji County 0.028 0.103 0.268 0.788

Area=Panshi City 0.106 0.103 1.024 0.306

Area = Green Park 0.055 0.119 0.461 0.645
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Area = Shulan City 0.200 0.111 1.810 0.071

Area = Ship Camp Area 0.063 0.105 0.599 0.549

Area = Jiaohe City 0.102 0.116 0.877 0.381

Area = Xi'an District -0.042 0.103 -0.412 0.680

Area=Huinan County 0.351 0.112 3.130 0.002

Area=Tonghua County -0.051 0.110 -0.460 0.646

Area=Tiedong District 0.236 0.107 2.200 0.028

Area = Tiexi District 0.449 0.185 2.427 0.016

Area = Ji'an City -0.098 0.109 -0.894 0.372

Area = Longshan District -0.055 0.102 -0.538 0.591

Area=Longtan District 0.091 0.105 0.868 0.386

Note: B and Beta are regression coefficients; Sig. is the P-value, which represents the significance in the

hypothesis test.
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Table S2

Variance of county residual error.

region ���( log � ) region ���( log � )

Changyi District 0.025572075 Liuhe County 0.044541441

Chaoyang District 0.195618882 Yongsan District 0.088251022

Ship Camp Area 0.014275893 Longtan District 0.019158748

Dehui 0.033632781 Green Park 0.249584034

Dongchang District 0.014318566 Meihekou 0.009294256

Dongfeng County 0.026302486 Nanguan District 0.14462959

Dongliao County 0.049171297 Nong'an County 0.011689685

Erdaojiang District 0.031237137 rock city 0.01400162

Erdao District 0.431996676 Shulan 0.01074008

plump area 0.048536536 Shuangliao 0.038542727

Gongzhuling 0.010237088 Shuangyang District 0.072074432

Huadian 0.026221195 Tiedong District 0.039590128

Huinan County 0.070030835 Tiexi District 0.079287917

Ji'an 0.023745877 Tonghua County 0.011766734

Jiaohe 0.046481507 Xi'an District 0.344605244

Jiutai District 0.0508169 Yitong County 0.071153589

Kuancheng District 0.28749462 Yongji County 0.043845527

Lishu County 0.030609236 Elm City 0.012829379
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