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Abstract

Water system operations require subannual streamflow data—e.g., monthly or weekly—that are not readily achievable with

conventional streamflow reconstructions from annual tree rings. This mismatch is particularly relevant to highly seasonal rivers

such as Thailand’s Chao Phraya. Here, we combine tree ring width and oxygen isotope (δ18O) from Southeast Asia to produce

254-year, monthly-resolved reconstructions for all four major tributaries of the Chao Phraya. From the reconstructions, we

derive subannual streamflow indices to examine past hydrological droughts and pluvials, and find coherence and heterogeneity

in their histories. The monthly resolution reveals the spatiotemporal variability in wet season timing, caused by interactions

between early summer typhoons, monsoon rains, catchment location, and topography. Monthly-resolved reconstructions, like

the ones presented here, not only broaden our understanding of past hydroclimatic variability, but also provide data that are

functional to water management and climate-risk analyses, a significant improvement over annual reconstructions.
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Key Points:11

• Monthly-resolved reconstructions of streamflow across the Chao Phraya River Basin12

are produced from tree rings and δ18O.13

• Droughts and pluvials across the Chao Phraya show both coherence and hetero-14

geneity in time and space.15

• The reconstruction reveals the spatiotemporal variability of wet season timing.16
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Abstract17

Water system operations require subannual streamflow data—e.g., monthly or weekly—18

that are not readily achievable with conventional streamflow reconstructions from an-19

nual tree rings. This mismatch is particularly relevant to highly seasonal rivers such as20

Thailand’s Chao Phraya. Here, we combine tree ring width and oxygen isotope (δ18O)21

from Southeast Asia to produce 254-year, monthly-resolved reconstructions for all four22

major tributaries of the Chao Phraya. From the reconstructions, we derive subannual23

streamflow indices to examine past hydrological droughts and pluvials, and find coher-24

ence and heterogeneity in their histories. The monthly resolution reveals the spatiotem-25

poral variability in wet season timing, caused by interactions between early summer ty-26

phoons, monsoon rains, catchment location, and topography. Monthly-resolved recon-27

structions, like the ones presented here, not only broaden our understanding of past hy-28

droclimatic variability, but also provide data that are functional to water management29

and climate-risk analyses, a significant improvement over annual reconstructions.30

Plain Language Summary31

Long records of river discharge, reconstructed from tree rings, help us to understand32

how rivers behaved in past climates, and place projected climate changes in a broader33

perspective. While this knowledge is valuable, streamflow reconstructions have not been34

used to directly inform water management models, because tree rings are annual while35

water system models require streamflow data of higher resolutions, such as monthly, weekly,36

or even daily. In our study, we make use of a rich network of tree ring data, consisting37

of both ring width and stable oxygen isotope ratio, to reconstruct monthly river discharge38

at four key gauging stations that represent the four main tributaries of the Chao Phraya39

River, Thailand, thus bridging the gap between tree rings and water management. Our40

reconstructions, spanning 254 years (1750–2003), are the first monthly streamflow re-41

constructions outside North America, and the first ones that combine tree rings and oxy-42

gen isotope data. Importantly, the reconstructions provide a detailed accounting of past43

droughts, pluvials, and wet season timings. This added knowledge and data could be used44

to inform water management decisions, such as the operation of large freshwater impounds45

supplying hydropower and irrigation water. This functional data set is a significant im-46

provement over conventional annual reconstructions.47
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1 Introduction48

Tree rings, with annual resolution and precise dating, can provide temporally high-49

resolution proxy records of several climate parameters. However, the annual resolution50

of tree ring data still restricts how tree-ring-based paleoclimate reconstructions can be51

used in downstream applications where finer time steps are desirable. Tree-ring-based52

reconstructions are often compared against historical events, but these comparisons are53

at times mismatched: while the reconstruction may target one discreet season or the en-54

tire year, the event of interest was recorded in another season entirely, that is not cap-55

tured by the reconstruction. This may result in what Wise (2021) describes as the “sea-56

sonal bias”. In addition, and specific to water resources, tree ring-based reconstructions57

of streamflow have provided important insights into surface water availability, but can-58

not be used directly in water management models which require monthly, weekly, or even59

daily resolution (Galelli et al., 2021).60

How do we obtain subannual climate reconstructions from annual tree rings? Ear-61

liest attempts used statistical methods to disaggregate each annual value to multiple sub-62

annual ones, assuming a fixed relationship between the two resolutions (Prairie et al.,63

2007, 2008; Saito et al., 2015; Sauchyn & Ilich, 2017). Later works incorporated multi-64

ple species and sites, leveraging the fact that different tree species have different seasonal65

sensitivities to the hydroclimate, and that there can be different time lags in hydrologic66

responses at various sites (Stagge et al., 2018; Stahle et al., 2020; Wise, 2021). A third67

approach uses intra-annual measurements of stable oxygen isotope ratio (δ18O) in tree68

ring cellulose to reconstruct intra-annual precipitation (Xu et al., 2016, 2021). This ap-69

proach is very promising, but at its current state the analysis is time-consuming and ex-70

pensive. Recently, we (Nguyen et al., 2021) proposed a novel modelling framework, called71

mass balance regression (MBR), that addressed two remaining challenges: to combine72

proxies optimally for different targets (months or seasons), and to preserve the annual73

mass balance, ensuring that the subannual flows sum up closely to the annual flow. This74

framework produced a skillful seasonal reconstruction (wet and dry seasons) for the Ping75

River, a tributary of the Chao Phraya, Thailand. Importantly, MBR reduced mass im-76

balances by 45% while maintaining or improving skills compared to ordinary linear re-77

gression.78

This letter presents a follow-up and extension of that work. Using MBR, we pro-79

duce a monthly streamflow reconstruction for all four main tributaries of the Chao Phraya,80

a significant improvement in both temporal resolution and spatial coverage. This is the81

first monthly streamflow reconstruction outside North America, and the first one that82

combines ring width and stable oxygen isotope ratio (δ18O). This record reveals the spa-83

tiotemporal variability of streamflow, especially monsoonal peak flow timing, over 25484

years (1750–2003) across the Chao Phraya River Basin, the most important economic85

region in Thailand. Importantly, this added knowledge is crucial for water management86

in the Chao Phraya, where freshwater availability is a limiting factor for many socioe-87

conomic sectors.88

2 Materials and Methods89

2.1 Study Site and Streamflow Data90

The Chao Phraya Basin (Figure 1) is Thailand’s most important economic region,91

serving the country’s agricultural and electricity needs with 1.45 million hectares of ir-92

rigated land (Divakar et al., 2011) and 3.8 GW of electricity generation capacity from93

both thermal and hydroelectric sources (Chowdhury et al., 2021). The basin has a dom-94

inant monsoon climate. The wet season generally spans from early May to late Octo-95

ber, but monsoon rain timing varies year-to-year due to interactions with the El Niño96

Southern Oscillation (ENSO) and other drivers. El Niño events tend to shorten the rain97
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season, while La Niña events tend to bring more abundant precipitations (B. I. Cook &98

Buckley, 2009).99

The Chao Phraya has four main tributaries, for each of which we obtained stream-100

flow data from the station with the longest available record. The stations and tributaries101

are: station P.1 (Ping River), W.4A (Wang River), Y.17 (Yom River), and N.1 (Nan River102

(Figure 1). Streamflow data at P.1 was naturalized and published by Nguyen et al. (2021)103

to remove the effect of an upstream reservoir, and this naturalized record was also used104

here. Data for other stations were obtained from the Thai Royal Irrigation Department105

(https://www.hydro-1.net). With these four stations we aim to capture the spatial106

variability of streamflow across the basin.107

Figure 1. a) Map of the Chao Phraya River Basin, showing the main tributaries, the largest

reservoirs (Bhumibol and Sirikit), the streamflow gauges selected for reconstruction, and the to-

pography (mountainous areas in darker shades). b) Locations of the tree ring sites in Southeast

Asia used in this study. The location of the Chao Phraya Basin is also shown.

Our proxy data consist of 20 chronologies of ring width and four chronologies of108

stable oxygen isotope ratio (δ18O) from the Southeast Asia Dendrochronology Network109

(Figure 1). These are the same chronologies that were used by Nguyen et al. (2021). In110

that earlier work, we found that our tree ring width chronologies were generally more111

sensitive to the dry season flow than they were to the wet season flow, while the δ18O112

chronologies were more sensitive to the wet season flow than they were to the dry sea-113

son flow (Nguyen et al., 2021, Figure 2). This is the basis for combining them to obtain114

subannual reconstructions. Interestingly, the δ18O chronologies were also the dominant115

predictors for the dry season flow (Nguyen et al., 2021, Figure 6), because correlations116

between dry season flow and δ18O, while smaller in magnitude than those between wet117
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season flow and δ18O, were still higher than correlations between dry season flow and118

ring width in many cases. Those findings corroborate the strong amount effect exhib-119

ited by δ18O in Thailand and northern Vietnam that were reported earlier (e.g., Sano120

et al., 2012; Xu et al., 2015, 2019), and demonstrate the value of adding δ18O as a new121

proxy beside tree ring width. Banking on earlier results, here we use the same proxy net-122

work but striving for a higher temporal resolution and a larger spatial coverage.123

2.2 Reconstruction Model124

The core methodology is the Mass Balance Regression framework (MBR; Nguyen125

et al., 2021), which was tested for a seasonal resolution earlier, and used here for the first126

time to achieve a monthly resolution. The two key ideas are: (1) preserve the annual mass127

balance, that is, ensuring that the sum of the monthly flows matches the annual flow closely,128

and (2) find the optimal combination of proxies that achieves (1). The essences of the129

method are as follows. Supposed we have the predictors X1 for January streamflow y1,130

X2 for February streamflow y2, and so on. We also have predictors Xa for the annual131

flow Ya. Altogether there are thirteen reconstruction models, which can be merged into132

one as follows. Let133

y =


y1

...
y12

ya

 , X =


X1

...
X12

Xa

 . (1)134

We can then form the regression equation135

y = Xβ + ε (2)136

where β = [β1, ...,β12,βa]
′ are the regression coefficients for the thirteen reconstruc-137

tions, and ε is white nose. Equation 2 is solved by least squares:138

min
β

J0 = (y −Xβ)′(y −Xβ), (3)139

which simultaneously yields thirteen reconstruction models. These models are indepen-140

dent of each other, thus there is no guarantee that the sum of the monthly flows would141

match the annual flow. To achieve that, we calculate the mass difference142

δ =

12∑
i=1

Xiβi −Xaβa (4)143

and formulate the following penalized least squares problem144

min
β

J = (Y −Xβ)′(Y −Xβ) + λδ′δ. (5)145

Just as we minimize the squared differences between prediction and observation,146

we also minimize the squared mass differences δ′δ. In equation 5, we also introduce the147

weight λ, which represents the importance of the penalty term: the higher λ is, the more148

important mass balance becomes. Equation 5 has an analytical solution:149

β = (X′X+ λA′A)−1X′y (6)150

where A = [X1 ... X12 −Xa].151

As Nguyen et al. (2021) discussed in great detail, the choice of λ is somewhat sub-152

jective, depending on the analyst’s own priority between model skills and mass balance.153

As such, we compared the cross-validated reconstruction skills and mass balance with154

incremental λ values, and chose an appropriate one for each station.155
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Equation 5 also provides a basis for proxy selection. Each subset p of all chronolo-156

gies yields one penalized least squares value J(p). Thus we can find the optimal subset157

of p over all subsets. This can be done with any suitable combinatorial optimization method.158

Here we used Genetic Algorithms (Holland, 1975; Whitley, 1994). For full details of MBR,159

including mathematical derivations and proofs, please refer to Nguyen et al. (2021). MBR160

code is publicly available in the R package mbr (Nguyen, 2021).161

2.3 Model Evaluation162

We assessed the reconstructions using the contiguous leave-k-out cross-validation163

scheme. In each cross-validation run, a random, contiguous block of k data points was164

left out, and the model is calibrated on the remaining data. Here k was set as 25% of165

the data length. The procedure is repeated 50 times. For this monthly reconstruction166

exercise, it is important that entire years are withheld, that is, the same k data points167

are withheld from all thirteen reconstruction models (January to December, plus annual).168

Otherwise, the reconstruction may inadvertently benefit from data leakage, when some169

months of the year are available in calibration, giving the model partial information about170

the other months.171

The reconstruction was evaluated with the following metrics: coefficient of deter-172

mination (R2), reduction of error (RE), and Nash-Sutcliffe coefficient of efficiency (CE)173

(Fritts et al., 1971; Nash & Sutcliffe, 1970), all of which are commonly used in dendro-174

climatic reconstructions. These metrics are calculated on the full monthly flow time se-175

ries, the time series of each month’s flow, and the annual flow time series. The formu-176

lae for RE and CE are as follows:177

RE = 1−
∑

i∈V(Qi − Q̂i)
2∑

i∈V(Qi −Qc)
2
, (7)178

CE = 1−
∑

i∈V(Qi − Q̂i)
2∑

i∈V(Qi −Qv)
2
. (8)179

180

Here, V is the validation set, Qi the observed flow at time i, Q̂i the reconstructed181

flow at time i, Qc the mean streamflow over the calibration set, and Qv the mean stream-182

flow over the validation set. Essentially, these metrics normalize the model’s sum of squared183

error against that of a benchmark model, one that uses the mean over the calibration184

period in the case of RE, and mean over the validation period in the case of CE.185

2.4 Droughts, Pluvials, and Monsoon Flow Timing186

From the monthly reconstructions, we calculated the Standardized Streamflow In-187

dex (SSI; Shukla & Wood, 2008), which has the same formulation as the Standardized188

Precipitation Index (SPI; McKee et al., 1993) and the Standardized Precipitation-Evapotranspiration189

Index (SPEI; Vicente-Serrano et al., 2010), except that streamflow is the input. Simi-190

larly to the other two indices, SSI can be calculated at multiple time scales, such as 1-191

month (SSI1), 6-month (SSI6), and 12-month (SSI12); these calculations are only pos-192

sible with monthly reconstructions. SSI is calculated as follows. First, streamflow is con-193

verted to rolling averages at the desired window (e.g., 6-month). Then, a log-logistic dis-194

tribution is fitted to the new time series to obtain a non-exceedance probability for each195

value. Finally, a standardized index is obtained by applying the inverse standard nor-196

mal cumulative density function to the probabilities. These calculations were carried out197

using the R package SPEI (Begueŕıa & Vicente-Serrano, 2017).198

Converting streamflow to a standardized index allows us to make comparisons across199

four rivers, thereby providing a basis for assessing droughts and pluvials. Our working200

definition for droughts and pluvials are as follows. A drought starts with two consecu-201

tive months of negative SSI, and ends with two consecutive months of positive SSI (the202
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last two positive months do not count towards its duration). The SSI sign is reverse for203

pluvials. Thus a sequence of alternating positive and negative SSI (e.g., -1 +1 -1 +1)204

can be either a part of a drought, a pluvial, or neither.205

Finally, we explored how the timing of the monsoon flow season changed over time.206

We adopted the season delineation method of B. I. Cook and Buckley (2009). The curve207

of cumulative flow over time was derived for each year. Onsets and withdrawals were then208

determined based on change points in the slope of the curve: a change from mild to steep209

slope marks the onset of the monsoon flow season, and a change from steep to mild slope210

marks the withdrawal. These change points were detected using two-phase linear regres-211

sion (Lund & Reeves, 2002), a method commonly used with meteorological time series.212

Two-phase linear regression is usually done with daily time series, and we adapted it for213

monthly time series here.214

3 Results and Discussion215

3.1 Reconstruction Performance216

We first compare the reconstructed monthly time series at each station against the217

corresponding instrumental time series (Figure 2a). All reconstructions match well with218

the instrumental data. R2, RE, and CE values range between 0.74 and 0.91. The sea-219

sonal patterns are also well reproduced. Overall, streamflow variability and seasonality220

are very well captured by the tree ring records and the reconstruction model. However,221

the reconstructions are not perfect, and closer examinations reveal three limitations that222

provide interesting and important insights for future development in high-resolution den-223

drohydrology.224

First, we found that peak flow in the wettest years were under estimated, e.g., Nan225

River’s flow in 1940 and 1941, and Ping River’s flow in 1971 and 1973 (Figure 2a). Peak226

flow underestimation is commonly observed in tree-ring-based reconstructions (see e.g.227

Robeson et al., 2020). There are two possible reasons. First, the relationship between228

tree ring proxies and streamflow may become nonlinear at the extremes (Torbenson &229

Stagge, 2021). Second, a main flood generation mechanism in Thailand is heavy rain on230

saturated soil (Lim & Boochabun, 2012; Stein et al., 2020), but streamflow generated231

by saturation excess overland flow cannot be captured by tree rings. While δ18O in tree232

rings is not limited by soil saturation, there are only four δ18O chronologies in our record,233

limiting the amount of information that can be recovered for peak flows.234

Second, in some years, the annual hydrograph has a bimodal shape instead of a sin-235

gle peak, for example Ping River in 1923 and Nan River in 1936 (Figure 2b). In these236

cases, the first streamflow peak resulted from heavy rains due to tropical cyclones in early237

summer, and the second peak was generated from monsoon rains. This bimodal shape238

was not reproduced in the reconstruction. Trees take time to convert moisture into growth239

of wood cells, and in that process both ring width and δ18O lose some high frequency240

signals.241

The RE and CE values we reported in Figure 2a are higher than typically reported242

in dendroclimatology. This is because we work with monthly time series with distinct243

seasonal patterns, while the benchmark used in the RE and CE metrics is the overall mean,244

which does not contain any seasonality information. Therefore, we conducted a more strin-245

gent assessment where the skill metrics were calculated for each month, against the cor-246

responding monthly means (Figure 2c). In some cases we still observed R2 and RE val-247

ues about 0.8, but most values are (as expected) lower, in the range of 0.3–0.7. High-248

est CE values were about 0.6, while most are in the range of 0.2–0.4. Notably, negative249

CE occurred for February (Ping River) and March (Yom River). This reveals the third250

limitation of the reconstructions. In these driest months the trees are mostly dormant,251

with none or little growth. Information about flow for these months are likely recovered252

–7–
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more from autocorrelations with other months than from tree rings, leading to the low253

out-of-sample predictive skills in these months.254
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Figure 2. a) Comparison of the reconstructed and instrumental monthly flow, and the over-

all skill scores. b) Examples of years that have two peaks in the hydrograph which were not

captured well by tree rings. c) Individual skill scores of thirteen reconstruction models (January–

December, and annual) for each station.
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These limitations occurred only in special cases. Overall, the reconstructions have255

acceptable to very good skills. There are several interesting research directions that can256

help overcome the limitations that we pointed out here. First is the use of nonlinear meth-257

ods (e.g. Nguyen & Galelli, 2018; Torbenson & Stagge, 2021) to account for nonlinear-258

ities in the streamflow–proxy relationship at the extremes. Second, development of more259

δ18O chronologies is needed for the region, as δ18O have been shown to capture well hy-260

drological extremes (Xu et al., 2019; An et al., 2022). Particularly, intra-annual δ18O chronolo-261

gies similar to those developed recently in China (Xu et al., 2016, 2021) would be valu-262

able for high-resolution reconstructions in Southeast Asia. Third is the development of263

more tree ring chronologies in general, so as to enhance the signals contained in the tree264

ring network. The number of tree ring chronologies in the tropics is much lower than that265

in temperate regions.266

3.2 Droughts and Pluvials267

We calculated 1-month, 6-month, and 12-month SSI from the reconstruction for268

each river. Here, we discuss the results related to SSI6 (Figure 3), and results for other269

indices, together with the raw monthly streamflow time series, are shown in Figures S1–270

S4. SSI6 represents the seasonal time scale of droughts and pluvials.271
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In the Ping and Wang Rivers (the two western tributaries), we note a common pro-272

longed dry period between 1982–1995 that stands out across the full time series. This273

period consists of two consecutive droughts. In the Ping River, the droughts lasted from274

01/1982–05/1985 (77 months) and from 09/1988–04/1994 (68 months); these are the two275

longest droughts in the Ping record. In the Wang, the droughts lasted from 11/1982–276

02/1987 (52 months) and 01/1990–04/1995 (64 months); these droughts rank third and277

first among all droughts at this station in terms of duration. The two eastern tributaries278

(Yom and Nan) also experienced a dry period during these times, but droughts are less279

prominent. Almost immediately before the 1982–1995 droughts were another that was280

shorter but more severe. Peak SSI6 values of -2.81 in December 1979 at P.1, -2.46 in March281

1981 at W.4, and -3.05 in October 1977 at N.1 were the lowest SSI6 in the whole record282

at each station, respectively. Another notable drought occurred around 1780–1786 that283

affected all four tributaries, but streamflow reduction was less severe in the Nan com-284

pared to the other three rivers.285

In the reconstruction we also found the footprints of the post-1750 megadroughts286

that E. R. Cook et al. (2010) reported, namely the Strange Parallel Droughts (1756–1768),287

the East India Drought (1790–1796), and the Victorian Great Drought (1876–1878). Each288

megadrought was expressed differently in each tributary. The Strange Parallels was most289

severe in the Nan River. The East India Drought led to moderately dry conditions in290

the Ping and Wang, and a mix of wet and dry periods in the Yom, but curiously it was291

not felt in the Nan at all.292

There are notable pluvials as well, particularly between 1807–1823 at W.4A, when293

a series of pluvials occurred, including the wettest one in the record. Each pluvial lasted294

between 10–45 months, interspersed with two-to-three-month bursts of mildly dry con-295

ditions. This wet period is also seen in the Ping and Yom Rivers, but not in the Nan.296

Contrarily, the Nan went through a prominent pluvial between 04/1937–04/1944. Last-297

ing 85 months with a peak SSI6 of 2.82, this is the wettest and second longest among298

all pluvials in our record. Interestingly, in all four rivers we observe clusters of pluvials,299

but the frequencies of these clusters appearing are different among the tributaries. Episodic300

floodplain stripping has been documented on the Ping River, by a geomorphic and mor-301

phostratigraphic analysis by Wasson et al. (2021). These events were caused by extreme302

floods, or clusters of extreme floods, the last being a single flood in 1831. This flood was303

captured by our reconstructions: September 1831 was the seventh highest monthly flow304

among 3,048 months of record (Figure S2 and Code S1).305

Overall, the reconstruction shows both similarities and differences in the drought306

and pluvial histories of the four rivers. There is a degree of coherence: droughts and plu-307

vials often occur in more than one tributary. But there is also spatial heterogeneity: there308

are differences in magnitude and timing of events across the tributaries, and few events309

affect all four.310

3.3 Wet Season Onset311

We used the method of B. I. Cook and Buckley (2009) to determine the onset and312

withdrawal timing of the wet season in each year (Section 2.4). We also calculated the313

z-score of the total annual flow to determine whether each year was dry (z < 0; low to-314

tal flow) or wet y(z > 0; high total flow). The procedure was applied to each tributary315

separately. We found that the withdrawal month was always the same: October, but the316

onset months varied between May and September (Figure 4a). For the Ping, 137 years317

(54%) have onset in July, 76 years (30%) in May or June, and 41 years (16%) in Septem-318

ber. Onsets tend to be later in the Wang and Yom Rivers compared to the Ping, with319

55–60% occurred in August, while the months between May–July each shares about 8–320

15% of the distribution. Another 8% of the Yom’s wet season started in September. In321
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stark contrasts to these three tributaries, the Nan’s wet season almost exclusively be-322

gin in July; in only four years (2%) was onset occurred in June.323
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Figure 4. a) Histograms of wet season onset timing (month). Each bar contains a number of

stacked dots which is the number of years having the same onset month, from April to Septem-

ber. Each dot is colored by the z-score of the total annual flow. Thus the color distribution in

each bar tells whether years having onset in that month would be more likely to have high flow

(more blue dots) or low flow (more red dots). b) Annual hydrographs (first row) and cumulative

flow curves (second row) of station Y.17 on Yom River. The grey lines show all 254 years in the

reconstruction. The red lines highlight the years with early wet season onset but low total annual

flow; each column highlights the years with onsets in the corresponding month.

For the Ping, years with onset between May–July are slightly more likely to be wet324

(55% of the time) while years with late onset (August) are more likely to be dry (73%).325
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Similarly, wet seasons that start in May–July in the Wang are more likely to produce326

high annual flows (65–70% of the time) while those starting in August tend to produce327

low flow (63% of the time). These patterns make intuitive sense. Counter-intuitive is the328

Yom River: early onsets (May–July) are less likely to produce high total flow (z > 0329

in only 24-43%) than those in August (64%), yet onsets in September always produced330

dry years. To seek an explanation for this curious case, we explore the annual hydrographs331

and the cumulative flow curves of this river (Figure 4b). The hydrographs of the Wang332

River at Y.17 have prominent peaks in June, more so than the other tributaries. This333

is because Y.17 is located in the lowlands and is not shielded from early summer trop-334

ical typhoons like the other three stations that are surrounded by mountains. Consequently,335

this area receives more typhoon rain, leading to higher June flows. Interestingly, years336

with the highest June flows are associated with lower peak flows, causing a slope change337

in May for the cumulative flow curve (Figure 4b, first column). This effect is also ob-338

served with slope changes in June and July (Figure 4b, second and third columns). More339

research is needed to determine the mechanism behind this behavior. If the association340

between higher summer flow and lower peak flow can be further verified, it would equip341

irrigation planners with a better forecasting tool, as a more robust estimation of peak342

flow distribution could then be obtained based on the summer flow.343

The unique distribution of wet season timing at N.1 could also be explained with344

the same mechanism concerning typhoon rain. N.1 is located further most inland, sur-345

rounded by mountains (Figure 1), thus shielded from early summer typhoon rain. As346

a result, the hydrograph of N.1 is much more homogeneous from year to year. Stream-347

flow in the Chao Phraya is generated from both typhoons and monsoon rains. Each sub-348

catchment is exposed differently to these sources due to its location and topography. The349

interaction between the moisture sources and catchment characteristics lead to the spa-350

tiotemporal variability of wet season timing.351

4 Conclusions352

Using a network of 20 ring width and four δ18O chronologies, we produce 254-year,353

monthly resolved reconstructions of streamflow for four major tributaries of the Chao354

Phraya, Thailand. The reconstructions have very good skills in capturing streamflow vari-355

ability, except for the driest months (February and March), the wettest years, and some356

years with two hydrograph peaks. Our reconstructions provide a detailed record of stream-357

flow variability, showing both coherence and heterogeneity of droughts and pluvials across358

the Chao Phraya Basin. Owing to the monthly resolution, our reconstructions also re-359

veal how wet season timing has varied. Rainfall supply to wet season flow comes from360

tropical typhoons and monsoon rains, the interactions between which create the spatial361

and temporal variability of wet season timing.362

These results are particularly important when seen through the lens of water man-363

agement. The Chao Phraya is water-stressed: freshwater availability per capita is about364

2,230 m3/year (Divakar et al., 2011; World Bank, 2011), less than the national average365

(3,244 m3/year) and only 39% of the world’s average (5,732 m3/year) (FAO, 2017). Worse366

still, water availability is not constant throughout the year, as the monsoon brings stark367

contrasts to the annual hydrograph. Our monthly reconstruction could be used to op-368

erate the Chao Phraya water system better. For example, it could help coordinate the369

operations of Thailand’s two largest reservoirs—Bhumibol and Sirikit—both of which370

are in the Chao Phraya, to mitigate concurrent floods or droughts while meeting irri-371

gation and hydropower demands, which vary greatly from month to month (Divakar et372

al., 2011). With monthly-resolved reconstructions, we have partly bridged the gap be-373

tween what tree rings can offer and what water management needs.374

–12–



manuscript submitted to Geophysical Research Letters

5 Open Research375

All data and code used in this project is available on GitHub at https://github376

.com/ntthung/chao-phraya-monthly (DOI: 10.5281/zenodo.6830888). On the GitHub377

repository we provide a document that details the step-by-step workflow with code, dis-378

cussion, as well as all intermediate and final results. This document is also included in379

the Supporting Information (Code S1). The reconstructions will be uploaded to the In-380

ternational Tree Ring Data Bank if the paper is accepted. All analyses were conducted381

using the open source R statistical computing environment.382

Acknowledgments383

We are indebted to the helpful comments and suggestions by Robert Wasson and Lim384

Han She. Hung Nguyen is supported by the Lamont-Doherty Earth Observatory Post-385

doctoral Fellowship; part of this work was conducted while he was a PhD student sup-386

ported by the Singapore University of Technology and Design President’s Graduate Fel-387

lowship. Chenxi Xu is supported by the National Natural Science Foundation of China,388

Grant Number: 42022059, 41888101; the Chinese Academy of Sciences (CAS) Pioneer389

Hundred Talents Program, the Strategic Priority Research Program of the Chinese Academy390

of Sciences, Grant Number: XDB26020000, and the Key Research Program of the In-391

stitute of Geology and Geophysics (CAS Grant IGGCAS-201905). Brendan Buckley is392

supported by the US National Science Foundation grants AGS-1602629 and AGS-2001949.393

We acknowledge computing resources from Columbia University’s Shared Research Com-394

puting Facility project, which is supported by NIH Research Facility Improvement Grant395

1G20RR030893-01, and associated funds from the New York State Empire State Devel-396

opment, Division of Science Technology and Innovation (NYSTAR) Contract C090171,397

both awarded April 15, 2010. We also acknowledge computing support from the Singa-398

pore National Super Computing Centre for the initial phase of this project.399

References400

An, W., Li, J., Wang, S., Xu, C., Shao, X., Qin, N., & Guo, Z. (2022). Hydrologi-401

cal Extremes in the Upper Yangtze River Over the Past 700 yr Inferred From402

a Tree Ring δ18O Record. Journal of Geophysical Research: Atmospheres,403

127 (10), e2021JD036109. doi: 10.1029/2021JD036109404
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Introduction

Figures S1 to S5 provide additional results complementing those presented in the main

text. Code S1 is an HTML file detailing the step-by-step workflow with all code, explana-

tions, discussions, as well as intermediate and final results. The code to reproduce all the

figures in the main text as well as the SI is also included. The HTML file was produced

from an R Markdown document, which is available on the GitHub repository of this paper

https://github.com/ntthung/chao-phraya-monthly.
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Code S1. Code to reproduce the paper, as well as additional results (HTML file).
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Figure S1. Comparison of observed and reconstructed monthly time series, same as

Figure 2a in the main text, but zoom in more closely.
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Figure S2. Full monthly reconstruction time series.
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Figure S3. Monthly reconstructed time series of the Ping River around 1831 CE.
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Figure S4. Same as Figure 3 in the main text but showing for SSI1. The highlighted

periods remain the same as in the main text.
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Figure S5. Same as Figure 3 in the main text but showing for SSI12. The highlighted

periods remain the same as in the main text.
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