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Abstract

Improved understanding of complex hydrosystem processes is key to advance water resources research. Nevertheless, the

conventional way of modeling these processes suffers from a high conceptual uncertainty, due to almost ubiquitous simplifying

assumptions used in model parameterizations/closures. Machine learning (ML) models are considered as a potential alternative,

but their generalization abilities remain limited. For example, they normally fail to predict across different boundary conditions.

Moreover, as a black box, they do not add to our process understanding or to discover improved parameterizations/closures. To

tackle this issue, we propose the hybrid modeling framework FINN (finite volume neural network). It merges existing numerical

methods for partial differential equations (PDEs) with the learning abilities of artificial neural networks (ANNs). FINN is

applied on discrete control volumes and learns components of the investigated system equations, such as numerical stencils,

model parameters, and arbitrary closure/constitutive relations. Consequently, FINN yields highly interpretable results. To

show this, we demonstrate FINN on a diffusion-sorption problem in clay. Results on numerically generated data show that

FINN outperforms other ML models when tested under modified boundary conditions, and that it can successfully differentiate

between the usual, known sorption isotherms. Moreover, we also equip FINN with uncertainty quantification methods to lay

open the total uncertainty of scientific learning, and then apply it to a laboratory experiment. The results show that FINN

performs better than calibrated PDE-based models as it is not restricted to choose among a limited set of sorption isotherms.
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Abstract16

Improved understanding of complex hydrosystem processes is key to advance water re-17

sources research. Nevertheless, the conventional way of modeling these processes suffers18

from a high conceptual uncertainty, due to almost ubiquitous simplifying assumptions19

used in model parameterizations/closures. Machine learning (ML) models are consid-20

ered as a potential alternative, but their generalization abilities remain limited. For ex-21

ample, they normally fail to predict across different boundary conditions. Moreover, as22

a black box, they do not add to our process understanding or to discover improved pa-23

rameterizations/closures. To tackle this issue, we propose the hybrid modeling frame-24

work FINN (finite volume neural network). It merges existing numerical methods for par-25

tial differential equations (PDEs) with the learning abilities of artificial neural networks26

(ANNs). FINN is applied on discrete control volumes and learns components of the in-27

vestigated system equations, such as numerical stencils, model parameters, and arbitrary28

closure/constitutive relations. Consequently, FINN yields highly interpretable results.29

To show this, we demonstrate FINN on a diffusion-sorption problem in clay. Results on30

numerically generated data show that FINN outperforms other ML models when tested31

under modified boundary conditions, and that it can successfully differentiate between32

the usual, known sorption isotherms. Moreover, we also equip FINN with uncertainty33

quantification methods to lay open the total uncertainty of scientific learning, and then34

apply it to a laboratory experiment. The results show that FINN performs better than35

calibrated PDE-based models as it is not restricted to choose among a limited set of sorp-36

tion isotherms.37

1 Introduction38

Scientists and engineers have been trying to model physical phenomena occurring39

in nature for centuries. Among such phenomena, one of the most important yet chal-40

lenging task is to calculate the transport of a quantity in space and in time through nat-41

ural media. A few examples include: subsurface fluid flow modeling (e.g. Ghosh et al.,42

2020; T. Koch et al., 2021), climate modeling (e.g. Marchuk, 1974; IPCC, 2013), and diffusion-43

reaction modeling (e.g. Turing, 1952; Wei & Winter, 2017). Of course, contaminant trans-44

port and attenuation in water resources research also falls into this problem class. Prob-45

lems of this type are usually described mathematically using partial differential equa-46

tions (PDEs) because of their space and time dependencies.47

However, despite promising development in computing power and availability of48

data, the behavior of several of these physical systems is still poorly understood (Winsberg,49

2003). As such, simplifying assumptions are required to model parts of the processes that50

are either still unknown, too complicated, or act on scales much smaller than the one of51

interest. Concrete examples are the choice of sorption isotherms in diffusion-sorption prob-52

lems (Limousin et al., 2007; Al-Ghouti & Da’ana, 2020), the relative permeability and53

saturation relationship in multiphase flow in porous media (K. Li & Horne, 2006; Moghadasi54

et al., 2015), and the reaction formulations in diffusion-reaction system (Klaasen & Troy,55

1984; Allen & Cahn, 1979).56

To address this issue in this work, we propose the finite volume neural network (FINN),57

which is a novel physics-aware ML modeling framework. As its name suggests, FINN com-58

bines the well-established numerical discretization strategy of the finite volume method59

(FVM) and the flexibility and learning ability of artificial neural networks (ANNs). Most60

importantly, this combination allows our method to explicitly and accurately learn parts61

of the unknown or poorly-understood processes mentioned above, while maintaining nu-62

merical stability, producing highly accurate predictions, and providing scientifically in-63

terpretable functions of interest.64

There is a wide range of problems to which FINN can be applied. Here, we focus65

on one of them for the sake of demonstration, namely, diffusion and sorption of ground-66
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water contaminant in fully saturated clay. This process is relevant, e.g., in clay liners of67

landfills (Timms et al., 2018; Hendry et al., 2003) or in long-term tailing of groundwa-68

ter pollution (Huang & Goltz, 2015; Johnson et al., 2003).69

One particularly harmful contaminant is trichloroethylene (TCE), which is cate-70

gorized as a carcinogenic (National Toxicology Program, US Department of Health and71

Human Services, 2021), yet it is still commonly used in industry (World Health Organ-72

ization, Regional Office for Europe, 2000). TCE is particularly dangerous because it is73

a dense non-aqueous phase liquid (DNAPL) (Pankow & Cherry, 1996), meaning that it74

is denser than water and has a very low solubility in water. As a consequence, when TCE75

infiltrates into the subsurface, it migrates downwards until it reaches an impermeable76

barrier and forms a pool there, resulting in difficult remediation (e.g. J. Koch & Nowak,77

2015; G. H. Brown et al., 2012). One of the most common impermeable barriers in the78

subsurface is a layer of clay. However, even though a layer of clay is impermeable, TCE79

can still diffuse into it and constantly contaminate the groundwater in the vicinity for80

a long period of time (e.g. Nowak & Guthke, 2016; Pankow & Cherry, 1996). It is ac-81

cordingly necessary to build a model of such processes in order to predict the longevity82

of contamination, select remediation strategies and assess environmental and health risks.83

Despite numerous works studying the diffusion-sorption process, there are yet many84

conceptual uncertainties associated in the modeling process, such as the choice among85

different isotherms that best describe the sorption behavior at hand (Limousin et al., 2007),86

the unknown parameters of those sorption isotherms (e.g. Nowak & Guthke, 2016), un-87

certain clay/soil parameters and effective diffusion coefficients of dissolved chemicals in88

water (Wilke & Chang, 1955; Hayduk & Laudie, 1974), as well as uncertain initial and89

boundary conditions that the model requires to be satisfied. As a consequence of these90

modeling uncertainties, we are faced with a model choice problem (Höge et al., 2019).91

Furthermore, all of the available models are inherently generated with simplifying as-92

sumptions to different extents, increasing the difficulty of the model choice problem even93

more. In the Bayesian world, this is known as the M-open problem (Höge et al., 2019).94

Thus, a more flexible way of modeling is needed, such that the unknown “true model”95

stands a better chance of being covered by the approach, as opposed to a discrete model96

selection method (i.e. choosing between different sorption isotherms). One promising so-97

lution is to implement a data-driven modeling strategy, but with smart structure and98

all possible hard knowledge (usually forming the core of a model) enforced by constraints,99

to learn these unknown relationships.100

In order to approach the question of conceptual model learning, it is worth look-101

ing at the rapidly evolving field of machine learning (ML), which has revolutionized var-102

ious domains including image and language processing (Krizhevsky et al., 2012; T. B. Brown103

et al., 2020). Recently, ML is also being applied to approximate physical processes, such104

as rigid body interactions, liquid propagation, or weather and sea-surface temperature105

prediction (Battaglia et al., 2016; De Bézenac et al., 2019; Rasp et al., 2020; Sanchez-106

Gonzalez et al., 2020; Espeholt et al., 2021; Lienen & Günnemann, 2022). The benefit107

and charm of applying ML models lies in their ability to learn an input-to-output map-108

ping function without knowing any parts of the underlying process that describes the109

data (i.e. the “true model”). Furthermore, ML models also have potentials to learn more110

complicated functional relationships that are not addressed in the physical models due111

to limited computational power or lack of understanding of the modeled systems. In the112

following, we summarize the related works, separating them in non-physics-motivated113

(pure ML), physics-motivated, and physics-aware ML models.114

An exemplary pure ML method for processing spatiotemporal data—as represented115

by the PDE in equation (1)—is the temporal convolution network (TCN) proposed by116

Lea et al. (2016), an ANN that performs convolution operations along both space and117

time dimension. TCNs are particularly efficient, since convolution operations can be im-118

plemented highly parallel on modern GPU hardware. They have also been proven suc-119
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cessful in various classification tasks (Kalchbrenner et al., 2016; Bai et al., 2018). On the120

other hand, their applicability as autoregressive models in generative forecasting tasks121

is limited (Almqvist, 2019; Karlbauer et al., 2020). ConvLSTM (Shi et al., 2015) is a vari-122

ant of recurrent neural networks that processes temporal data points sequentially and123

is therefore slower than fully parallel operations. It can, however, aggregate and conserve124

any past information in a latent state, which implements a memory. In contrast, the tem-125

poral horizon of TCNs is exclusively limited to the receptive field, that is the number126

of time steps affected by the TCN filters. Moreover, autoregressive RNNs such as Con-127

vLSTM are by training optimized towards maintaining stable predictions within a re-128

current loop, which is why they are superior on related tasks (Almqvist, 2019; Karlbauer129

et al., 2020). However, the freedom of the pure ML models has several limitations to learn130

an unconstrained function that should reflect a physical process. First, they typically131

depend on large amounts of data in order to learn a useful mapping. Second, they can132

be expected to behave adequately only within the range of the data they have been trained133

on. And third, they can produce physically implausible predictions.134

These limitations can be addressed by incorporating structural physical knowledge135

to formulate physics-motivated ML models, using the form of (relational) inductive bi-136

ases (Battaglia et al., 2018). DISTANA (Karlbauer et al., 2019), for example, shares sim-137

ilarities with ConvLSTM, albeit with advanced and physically-motivated lateral infor-138

mation flow between neighboring simulated control volumes. An alternative approach139

is to learn (fourier) neural operators (FNO)—either in frequency or time space (Z. Li140

et al., 2020a, 2020b). By design, these methods are implemented to specifically learn PDEs141

from data, but are not guided or constrained by physical principles that would be already142

known.143

Recently, much effort was directed to finding reasonable ways of connecting the learn-144

ing abilities of ANNs not only with structural, but even with functional knowledge from145

physics, resulting in physics-aware ML methods. The physics-informed neural network146

(PINN), for example, explicitly learns how to solve a given equation, such as Burgers’147

or Navier-Stokes in order to accelerate simulation (Raissi et al., 2019; Jin et al., 2021).148

PINN has also been applied specifically to solve subsurface fluid flow problems (Tartakovsky149

et al., 2020) and perform data assimilation for parameter estimation, accounting for mul-150

tiple physical processes (Q. He et al., 2020). Other methods do not depend on receiv-151

ing the underlying equation but approximate it implicitly via the data. The weaker physics152

constraints are either implemented by means of convolution-like operators that only rep-153

resent derivatives up to a particular degree, e.g. PDE-Net (Long et al., 2018), PhyDNet154

(consisting of a data-driven ConvLSTM and a physics-constrained path) from Guen and155

Thome (2020), or SIREN (Sitzmann et al., 2020); or by directly learning the transition156

function f : Rd 7→ Rd (e.g. in form of a vector field) that maps the d-dimensional obser-157

vation in frame t to the succeeding frame t+1 (Tran & Ward, 2017; De Bézenac et al.,158

2019). More recently, graph-based approaches are formulated by Seo et al. (2019); Salehi159

and Giannacopoulos (2021) to explicitly consider e.g. differences between neighboring160

control volumes on spatially irregularly distributed data.161

Nevertheless, a common downside of all these approaches is the missing facility to162

include explicit physical knowledge—such as the structure of a particular PDE—into the163

learning process. In contrast, and similar to our work, Bar-Sinai et al. (2019); Kochkov164

et al. (2021); Zhuang et al. (2021) propose to learn selected parts of ODEs, but focus more165

on accelerating supersampling procedures and less on predictive, explorative, and explain-166

ability tasks. APHYNITY (Yin et al., 2020) represents an alternative approach, where167

traditional physical models are augmented by ML methods, effectively learning to min-168

imize the residual between an explicitly stated physical model and the observation. A169

survey of methods that combine physics with ML has been proposed by Karniadakis et170

al. (2021) and an extensive collection is maintained by Thuerey et al. (2021).171
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Despite these exciting developments in the areas of physics-motivated and physics-172

aware ML modeling, there are still important issues that are yet to be addressed. More173

specifically, building PINN models requires the complete knowledge of the modeled sys-174

tems, including the aforementioned closure/constitutive relationships, which are usually175

the main source of uncertainty in the modeling process. As a consequence, PINN can176

be trained based on incorrect equations, if the assumptions chosen are also erroneous.177

Additionally, most, if not all, of the spatiotemporal ML models adopt convolutional op-178

erations to process the spatial correlation between data points. Convolutional operations,179

however, can only pad constant values on the domain boundaries. Therefore, such ML180

models have no means of sufficient boundary condition implementation if the boundary181

condition is not constant. In other words, they are not able to properly incorporate bound-182

ary conditions that depend on derivatives such as the Neumann or Cauchy boundary con-183

ditions. Furthermore, the generalization ability of all the existing ML models is still ques-184

tionable, especially when confronted with different initial or boundary conditions. Of-185

ten, another training process has to be initialized for different initial and boundary con-186

ditions, which requires a lot of observation data that is often expensive and difficult to187

obtain. In short, the existing physics-motivated and physics-aware ML models are ei-188

ther too restricted by the physical knowledge or too lenient so that they learn relation-189

ships that do not exist (i.e. they overfit).190

Another crucial drawback of most ML models is the lack of practical uncertainty191

quantification (UQ) applications, despite the availability of numerous theoretical foun-192

dations (Jospin et al., 2022). This is mainly caused by computational challenges of ex-193

isting UQ algorithms for large ML models. When dealing with real-world applications,194

however, UQ is critical. For example, when performing a risk assessment about a poorly-195

understood system based on uncertain models trained on uncertain (noisy) and sparse196

data (Wöhling et al., 2015; Nowak & Guthke, 2016; Xu et al., 2020). Moreover, funda-197

mental scientific work needs hypothesis-testable models, and this is strongly supported198

by models with quantifiable uncertainty. Consequently, it is important to design a model199

with few parameters and an interpretable structure to enable feasible implementations200

of available UQ algorithms.201

The goal of this work, therefore, is to provide a framework that merges physics-202

aware ML models with well-selected structures known from numerical solution. This can203

facilitate scientists to produce better models that balance well between the flexibility of204

learning data-driven models and the existing scientific knowledge. It should be empha-205

sized that this work is not intended to develop a faster and more efficient surrogate model206

in place of any existing physical model, but rather to learn unknown constituents of the207

PDE used to model the (not yet fully understood) physical processes. The named TCE208

problem is a very representative problem from a broader class where the model struc-209

ture is only partially known.210

In a wider sense, we are interested in environmental problems where fundamental211

parts of the governing equations (or principles used in their derivation) are accepted as212

“known truth”, but where other parts are uncertain or even unknown, and often treated213

with assumptions, closures, or other approximations. In our TCE example, it is a sorp-214

tion isotherm that is most uncertain. Other instances of the same problem class are wa-215

ter retention curves in the Richards equation; capillary pressure and saturation relations,216

relative permeability and saturation relations, or expressions for hysteresis and dynamic217

effects in multiphase flow in porous media; turbulence closures in rivers, pipe flow or at-218

mospheric flow; scale-dependent expressions for dispersion in heterogeneous porous me-219

dia; effective turnover rate models in chemical or microbiological reactive transport prob-220

lems. When these uncertain or unknown relationships are successfully learned from data,221

exceptional generalization ability and highly accurate predictions will follow consequently.222

For this purpose, we introduce the finite volume neural network (FINN), a hybrid223

method that combines numerical methods (FVM and ordinary differential equation solvers)224
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with physical knowledge in the form of a physics-constraint network architecture, which225

learns unknown constituents of an uncertain set of governing equations. FINN thus be-226

comes able to jointly learn unknown constitutive/closure relationships, PDE terms, and227

parameters from data. The benefits of our hybrid model are an excellent generalization228

ability beyond sparse training data, a proper treatment of different boundary conditions229

other than a constant Dirichlet condition, and an explainable model. Furthermore, with230

the adoption of the FVM structure and physical constraints, FINN utilizes as much ex-231

isting modeling knowledge as possible. Additionally, we formulate FINN to provide an232

uncertainty estimate over its learned constituents when predicting a real-world soil con-233

tamination problem, and affirm FINN’s advantages over a calibrated, conventional PDE-234

based model.235

2 Methodological Background236

In this section, we derive the methodological framework of this paper on the ba-237

sis of an experimental reference setup and the involved equation form which will be learned238

by FINN. Then, we provide some background on the FVM discretization method to solve239

PDEs and on neural ODE as a differentiable numerical integrator as it serves the con-240

ceptual basis for FINN. Finally, we summarize a selection of UQ methods that can be241

implemented in FINN.242

2.1 Experimental Setup and Governing Equations243

The diffusion process in general is governed by a PDE of second-order in space and244

first-order in time:245

∂c

∂t
= ∇ · (D(c)∇c) + q(c), (1)246

where c is the variable of interest, namely, the contaminant concentration in this study,247

t is time, D is a diffusion coefficient that can be a dependent variable on c, and q is the248

source/sink term, for example if there is a reaction or there is an addition/extraction of249

the contaminant to/from the domain of interest. The diffusion through clay, however,250

might be hampered by the presence of organic matter inside the clay that sorbs the TCE,251

therefore slowing down the diffusion process (Parker et al., 2004). Therefore, the sorp-252

tion process has to be taken into account in the governing PDE as well, by including an253

additional variable in form of the retardation factor. The retardation factor is a variable254

that is possibly dependent on the contaminant concentration, and it defines the degree255

to which the diffusion process is hindered by the sorption process. The resulting diffusion-256

sorption equation can be solved with various numerical discretization methods, one of257

the most popular being FVM due to its conservation property (Moukalled et al., 2016).258

This diffusion-sorption process of TCE as contaminant in water-saturated clay was259

studied in a laboratory experiment (Nowak, 2000), and its setup is adopted in the nu-260

merical experiments performed in this work. A clay sample with a radius of 2.54 cm (1261

inch) is placed inside a stainless steel tube of length L. On the upper end of the sam-262

ple, pure-phase TCE is injected through an inlet valve. There, it forms a pool, from which263

it can dissolve into the clay and thus installs a constant concentration condition at the264

upper end of the clay cylinder. The bottom end of the sample is flushed with clean wa-265

ter below the clay cylinder at a constant flow rate, in order to enable measurement of266

the dissolved TCE concentration (as it diffused downward through the clay) at various267

time intervals. At the end of the experiment, the clay sample is cut into horizontal slices268

to allow measurement of the total TCE concentration (i.e. TCE dissolved in the water269

and sorbed in the clay) within the cylinder. In short, there are two main variables of in-270

terest in the experiment, namely the dissolved concentration and the total concentra-271

tion of the contaminant. More details of the experiment can be found in Nowak (2000);272

Parker et al. (2004); Nowak and Guthke (2016).273
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Assuming that the clay sample is homogeneous, the governing diffusion-sorption274

equation can be simplified into a one-dimensional system. Mathematically, the govern-275

ing PDE used to calculate the dissolved concentration could be written as (Nowak & Guthke,276

2016)277

∂c

∂t
=

D

R(c)

∂2c

∂x2
, (2)278

where c is the dissolved TCE concentration, t is time, x is distance along the axis of the279

cylinder, D is the effective diffusion coefficient, and R is the retardation factor, which280

is a function of c. As a consequence, the diffusivity (i.e. D/R) is also dependent on c.281

Because the upper end of the sample is in equilibrium with the TCE in pure-phase,282

a Dirichlet boundary condition is applied:283

c|x=0 = csol ∀t : 0 ≤ t ≤ T, (3)284

where csol is the solubility limit of the TCE in water, and T is the experiment time. On285

the bottom end of the sample, the TCE concentration is not constant, and therefore, a286

Cauchy condition is required to model the flow-dependent boundary condition as a re-287

sult of the flushing with water:288

c|x=L =
D

Q

∂c

∂x
∀t : 0 ≤ t ≤ T, (4)289

where Q is the water flow rate at the bottom of the clay sample. The clay sample is ini-290

tially clean of any contamination, resulting in an initial condition of:291

c|t=0 = 0 ∀x : 0 ≤ x ≤ L. (5)292

To derive a possible equation for the total concentration, the general definition of293

retardation factor R is required. The retardation factor R is defined as the ratio of sorbed294

to non-sorbed material as following (e.g. Fetter, 1999; Nowak & Guthke, 2016):295

R =
1

ϕ

∂ct
∂c

, (6)296

where ϕ is the porosity of the porous medium and ct is total contaminant concentration,297

i.e. the contaminant concentration dissolved in the fluid and sorbed in the solid phase.298

By substituting equation (6) into equation (2), the equation to calculate the total con-299

taminant concentration ct can be written as:300

∂ct
∂t

= Dϕ
∂2c

∂x2
. (7)301

Furthermore, to solve equation (2), the retardation factor is typically also defined302

using a sorption isotherm (e.g. Limousin et al., 2007), which is a parametric model. Three303

of the most commonly used isotherms are linear, Freundlich, and Langmuir. These isotherms304

define the retardation factor differently:305

Rl = 1 +
1− ϕ

ϕ
ρsKd, (8)306

RF = 1 +
1− ϕ

ϕ
ρsKfnfc

nf−1, (9)307

RL = 1 +
1− ϕ

ϕ
ρs

smaxK

(c+K)2
, (10)308

309

where equations (8), (9), and (10) describe the retardation factor formulation based on310

the linear, Freundlich, and Langmuir isotherm, respectively. Here, ρs is the bulk den-311

sity of the porous medium, Kd is the linear isotherm parameter, Kf is the Freundlich312
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isotherm parameter, nf is the Freundlich exponent, smax is the maximum sorption ca-313

pacity of the solid phase, and K is the half-saturation value.314

Traditionally, the retardation factors reported in equations (8), (9), and (10) would315

lead to three different discrete models, one for each sorption isotherm. However, FINN316

allows us to define the retardation factor as a flexible function that is learned from data317

to best support the approximation of the overall process without constraining the model318

by a possibly inaccurate assumption.319

2.2 Numerical Solution320

Obtaining an analytical solution is impossible for many PDEs. Consequently, it is321

common to resort to numerical methods to solve it. The most popular numerical meth-322

ods are the finite difference method (FDM), which approximates the derivatives based323

on Taylor’s expansion (Morton & Mayers, 1994); the finite element method (FEM), which324

reformulates the PDE in a weak form and interpolates the solution through a function325

with limited element support (Logan, 1992); and FVM, which approximates the solu-326

tion using a volume integral combined with the Gauss’ divergence theorem (Moukalled327

et al., 2016).328

The FVM derivation of the PDE is based on conservation laws and is the closest329

to physics compared to the other discretization methods. To be more specific, the ap-330

plied divergence theorem leads to the right-hand side of equation (13), which now rep-331

resents the flux exchanges between any control volume and its neighboring volumes. This332

ensures that conservation is not violated, meaning that the flux entering a control vol-333

ume should be exactly the same as the flux leaving the control volume, given that the334

variable of interest (i.e. the concentration or quantity c) does not change over time. On335

the other hand, FEM does not guarantee this conservation property. Moreover, FVM336

allows straightforward implementation of the boundary conditions without approxima-337

tion. Due to these reasons, we choose to specifically adopt FVM in this work. Note that,338

when the domain is discretized using a Cartesian grid, then the FVM and FDM are iden-339

tical.340

Following the FVM concept, the spatial domain is discretized into a number of N341

control volumes (cells). For each control volume, a volume integral is applied to equa-342

tion (2), resulting in343 ∫

vi

∂c

∂t
dv =

∫

vi

D

R(c)

∂2c

∂x2
dv, (11)344

where vi is the volume, and the subscript i = 1, . . . , N denotes a specific control vol-345

ume i. Since the right-hand side has a divergence term, the Gauss’ divergence theorem346

needs to be applied (Arfken et al., 2013), leading to a surface integral over the enclos-347

ing control volume surfaces/boundaries, and resulting in the equation348

∫

vi

∂c

∂t
dv =

∮

ω⊆Ω

(
D

R(c)

∂2u

∂x2

)
· n̂ dΓ, (12)349

where ω is a continuous surface element and n̂ is the unit normal vector pointing out-350

wards of ω. Furthermore, ω is a subset of all surfaces Ω enclosing the control volume i351

and Γ is a continuous variable along ω. Applying the surface integral in equation (12)352

allows flux evaluation at each enclosing control volume surface. As a result, a spatially353

discrete formulation of the PDE for control volume i using a Cartesian grid leads to the354

following:355

∂ci
∂t

vi = Ai−1
Di

R(ci)

ci−1 − ci
∆x

−Ai+1
Di

R(ci)

ci − ci+1

∆x
, (13)356

where Ai−1 and Ai+1 are the left and right cross-sectional surface areas of control vol-357

ume i, respectively. The equation is spatially discrete, and thus uses ∆x instead, which358

is the length of the control volume.359
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For each i = 1, . . . , N , equations (13) form a coupled set of ordinary differential360

equations (ODEs). The ODEs in the system of equations (13) are coupled through their361

connections with their respective neighbors (i− 1 and i+ 1). To derive equation (13)362

into a spatially and temporally discrete equation, a temporal discretization is required.363

The simplest temporal discretization scheme is the Euler method (e.g. Butcher, 2008),364

which is a first-order time integration method. The Euler method itself is categorized365

into explicit and implicit schemes. In the explicit scheme, the time derivative function366

dc/dt is defined with the variable c at the current time step t, whereas in the implicit367

scheme, it is defined with the variable c at the subsequent time step t+1. Applying the368

explicit Euler method to equation (13) leads to369

ct+1
i − cti
∆t

vi = Ai−1
Di

R(cti)

cti−i − cti
∆x

−Ai+1
Di

R(cti)

cti − cti+1

∆x
, (14)370

and applying the implicit Euler method yields371

ct+1
i − cti
∆t

vi = Ai−1
Di

R(ct+1
i )

ct+1
i−i − ct+1

i

∆x
−Ai+1

Di

R(ct+1
i )

ct+1
i − ct+1

i+1

∆x
, (15)372

where the superscript t denotes the time discretization and ∆t is the corresponding time373

step. The same discretization strategy also applies to Equation (7). As can be inferred374

from both equations, the implementation of the explicit method is simpler than the im-375

plicit method, because the value of ct+1
i is still unknown in time step t. Furthermore,376

because we intend to combine numerical methods with ANNs—which fundamentally be-377

long to the class of explicit methods—from here on we will use the explicit scheme and,378

when possible, drop the superscript t for clarity.379

Even though the explicit method is more convenient to implement, it suffers from380

numerical instability. To be more specific, the size of the time step ∆t has to be chosen381

carefully such that it does not surpass the time at which the quantity c is moving from382

one control volume to the other. This requirement can be controlled, e.g., by using the383

Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1967; Isaacson & Keller, 1994).384

According to CFL, a finer spatial discretization (i.e. smaller ∆x) requires a smaller tem-385

poral discretization ∆t. In some cases, this condition becomes very limiting when the386

required ∆t becomes too small, leading to substantially inefficient computation.387

2.3 Neural ODE388

Implementing the explicit integration method from section 2.2 with an unregular-389

ized ANN will likely lead to numerical instability, as the ANN might easily enter unsta-390

ble regimes (e.g. no control of the CFL condition). To mitigate this problem, a higher-391

order ODE integration method, such as Runge-Kutta method (Runge, 1895; Kutta, 1901),392

can be used, in combination with an adaptive time stepping capability, to maintain both393

the numerical stability and the accuracy of the integration. Such ODE solvers, however,394

must be differentiable to propagate an error signal in order to adapt the parameters of395

an ANN that will be used to represent the ODE. For a comprehensive introduction to396

ANNs, we refer the readers to Goodfellow et al. (2016).397

Such a fully differentiable and ANN-based ODE solver, called Neural ODE (NODE),398

has recently been proposed by Chen et al. (2018). In short, NODE assumes an ANN fθ399

with parameters θ to compute the change of a state vector ct over time. NODE param-400

eterizes the change of c over time by treating fθ as a time-continuous function, such that401

402

∂c(t)

∂t
= fθ(c(t), t). (16)403

Accordingly, f(·) is an ANN that learns and represents the system dynamics, i.e. the deriva-404

tive of the variable of interest with respect to time, which directly corresponds to the405
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form of equation (13). Then, the quantity of c in the next time step could, in principle,406

be computed using an explicit Euler discretization:407

ct+1 = ct + fθ(c
t). (17)408

Formulating a dynamic system with Equation (17) has been proposed in the Deep409

Residual Learning (ResNet) architecture (K. He et al., 2016). This approach has been410

shown to improve model training because it can learn particular functions, such as the411

identity function, better and because it minimizes the vanishing gradient problem (Hochreiter412

et al., 2001). In the NODE framework, however, the temporal discretization of equation413

(16) occurs after the forward propagation of the ANN and with a higher-order scheme,414

rather than learning the discretization form as in equation (17).415

In NODE, to integrate from ct to ct+1, fθ is optimized end-to-end in the overall416

training process. This leads to better accuracy and efficiency, as well as to allow adap-417

tive time stepping strategy for better numerical stability (Chen et al., 2018). Note that418

this approach differs from the Elman network, i.e. the traditional recurrent neural net-419

work (Elman, 1990). The Elman network uses the ANN as a function to predict ct+1 di-420

rectly from ct, i.e. without the appearance of ct in equation (17). NODE plays a fun-421

damental role in our model, as detailed in section 3.422

2.4 Uncertainty Quantification Methods423

In this work, we perform uncertainty quantification over the model parameters and424

all learned constituents, such as the retardation factor function R(c). One of the most425

straightforward uncertainty quantification methods on ANNs is the Bayes-by-backprop426

method (Blundell et al., 2015), which parameterizes the variational posterior using the427

mean µ and standard deviation σ of the model parameters θ (i.e. weights and biases).428

In short, for each training iteration, the model parameters are sampled based on429

θ = µ+ log(1 + exp(σ)) · ϵ, (18)430

where ϵ ∼ N (0, I). The goal of the training is then to find the values of µ and σ that431

minimize the Kullback-Leibler divergence (Joyce, 2011) between the variational poste-432

rior q(θ) and the true posterior π(θ), reformulated as433

L = KL[q(θ)||p(θ)]− Eq(θ)[log p(D|θ)], (19)434

where p(θ) is the prior knowledge on the model parameters, and p(D|θ) is the probabil-435

ity of observing the data D given the model parameters θ.436

The Bayes-by-backprop approach, however, assumes independent Gaussian distri-437

butions to define the model parameters, which is an oversimplification of the actual joint438

posterior distribution (Blei et al., 2017). In contrast, Markov chain Monte Carlo (MCMC,439

Bardenet et al. (2017)) provides a sampling of model parameters from the exact poste-440

rior distribution (Jospin et al., 2022). The general MCMC algorithm is summarized in441

Algorithm 1.442

The proposal of drawing θt and the transition/proposal distribution Q are defined443

respectively for the random walk Metropolis-Hastings (MH, Chib and Greenberg (1995)),444

Metropolis-adjusted Langevin algorithm (MALA, Dwivedi et al. (2019)), and Barker pro-445

posal (Barker, Livingstone and Zanella (2019)), as:446

θt = θ(i) + h · ϵ, Q(θt|θ(i)) = exp(−||θt − θ(i)||22/h2), (20)447

θt = θ(i) + h∇π(θ(i)) +
√
2hϵ, Q(θt|θ(i)) = exp(−||θt − θ(i) − h∇π(θ(i))||22/4h), (21)448

θt = θ(i) + b · ϵ, Q(θt|θ(i)) =
1

1 + exp(−(θt − θ(i))T∇ log π(θ(i)))
. (22)449

450
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Algorithm 1 General MCMC algorithm

Require: Initial parameter values θ(0)

Set i = 0
while i < N do

Draw θt given θ(i)

Calculate acceptance probability α(θt|θ(i)) = min
(
1, π(θt)Q(θ(i)|θt)

π(θ(i))Q(θt|θ(i))

)

Draw a random number u ∼ U [0, 1]
if α(θt|θ(i)) > u then

θ(i+1) ← θt
else

θ(i+1) ← θ(i)

end if
i← i+ 1

end while

Here, θt is the proposed sample, θ(i) is the sample from iteration i, h is the step size, π451

is the posterior of the model parameters, and ϵ ∼ N (0, I). For Barker specifically, b =452

1 with the probability p = 1/(1 + exp(−ϵ∇π(θ(i)))), and b = −1 otherwise. It is also453

important to note that both MALA and Barker utilize the gradient information provided454

by the automatic differentiation tools available in various ML libraries, including PyTorch455

(Paszke et al., 2019) that is used in this work.456

3 Finite Volume Neural Network457

In this section, we introduce the finite volume neural network (FINN)1 framework458

by providing derivations and explanations on how FINN relates to the concepts from the459

previous section. FINN is designed to explicitly learn the individual components of the460

PDE using dedicated modules—defined as nonlinear ANN layers—in a compositional man-461

ner (Lake et al., 2017; Battaglia et al., 2018; Lake, 2019; Karlbauer et al., 2022). These462

modules are connected to effectively represent the PDE of interest (see Figure 1). Al-463

though the model has a general from, it can be set up and interconnected individually464

to form a specific architecture that is explicitly motivated and inspired by the physical465

equation that would typically be assumed to govern the modeled system at hand, i.e. the466

diffusion-sorption equation (2) in this work. More specifically, FINN combines the knowledge-467

based structure of the PDE core elements with the FVM discretization as described in468

section 2.2 to obtain a set of ODEs. Then, it adopts the Neural ODE method as described469

in section 2.3 for the time integration and learning of the PDE constituents.470

As outlined in section 2.2, a PDE describes the change of a quantity at a local po-471

sition under influence of its direct neighbors. Accordingly, we propose to model the ad-472

jacent flux exchange—see equation (13)—by so called flux kernels Fi. They learn to rep-473

resent the quantity entering and leaving control volume i from left and right (in the one-474

dimensional case). These flux kernels approximate the surface integral for each control475

volume i as written in equation (12), and therefore are mathematically written as476

Fi =

Mi∑

j=1

fj ≈
∮

ω⊆Ω

(
D(c)

∂2c

∂x2

)
· n̂ dγ, (23)477

1 FINN is implemented in Python 3.8.5, using PyTorch 1.11.0. The code is available online for down-

load at https://github.com/CognitiveModeling/finn.
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where Mi is the number of discrete surface elements of control volume i and fj is478

the subkernel calculated at each surface element. For one-dimensional cases, Mi = 2479

and therefore, each flux kernel is supported by 2 subkernels Fi = {fi−, fi+}.480

The flux kernels Fi are provided with ci and ci−1 or ci+1 as the inputs for fi− or481

fi+, respectively. Each subkernel consists of two modules that are formulated as neu-482

ral network layers. On the one hand, φN is a linear layer to approximate the FVM sten-483

cil to represent the contribution of each neighboring control volume and the direction484

of the flux exchange. Hence, the output of φN is conceptually supposed to become ∂2c/∂x2,485

that is486

φNi−(ci, ci−1) + φNi+(ci, ci+1) ≈
∂2ci
∂x2

. (24)487

Note that φNi− and φNi+
share weights and thus are represented by one and the same488

network. Ideally, in a system with Fickian diffusion and mass conservation fulfilled, the489

parameters of φN should be [−1, 1] with respect to [ci, ci−1] and [ci, ci+1]. When fi− and490

fi+ are combined, i.e. in equation (24), the coefficients become [1,−2, 1] with respect to491

[ci−1, ci, ci+1]. This follows from the central discretization scheme (Fornberg, 1988) of492

the second-order spatial derivative as493

∂2c

∂x2
≈ (∂c/∂x)|i− − (∂c/∂x)|i+

∆x
, (25)494

with (∂c/∂x)|i− ≈ (ci−1 − ci)/∆x and (∂c/∂x)|i+ ≈ (ci − ci+1)/∆x. As a result,495

∂2c

∂x2
≈ (ci−1 − ci)− (ci − ci+1)

∆x2
=

ci−1 − 2ci + ci+1

∆x2
. (26)496

The module φD, on the other hand, is responsible to account for the (variable-dependent,497

possibly nonlinear) diffusion coefficient, thus498

φD(ci) ≈ D(ci), (27)499

if the diffusion coefficient D depends on c. Otherwise, φD is a scalar value φD ≡ D,500

which can also be set as a learnable parameter. For our exemplary diffusion-sorption case,501

φD ≈ D/R(c) for the dissolved concentration, i.e. equation (2), and φD ≈ D for the502

total concentration, i.e. equation (7). Because the diffusion coefficient D can be learned503

from the total concentration, the retardation factor R(c) can also be extracted from the504

learned module φD in the dissolved concentration calculation.505

Finally, subkernels fi− and fi+ are calculated as a combination of both modules506

φN and φD:507

fi− = φD(ci) · φNi−(ci, ci−1), (28)508

fi+ = φD(ci) · φNi+
(ci, ci+1). (29)509

510

Performing calculations of flux kernels at the surface element additionally provides511

advantages for boundary condition treatment. In addition to Dirichlet, boundary con-512

dition types that are flux dependent, such as Neumann or Cauchy conditions (Cheng &513

Cheng, 2005), can easily be adopted. For Dirichlet boundary conditions, a constant value514

c = cb is set as the input ci−1 (for the flux kernel fi−) or ci+1 (for fi+) at the corre-515

sponding boundaries. For a Neumann boundary condition ν, the output of the flux ker-516

nel fi− or fi+ at the corresponding boundaries can be set to be equal to ν. For Cauchy517

boundary conditions, the solution-dependent derivative is calculated and set as ci−1 or518

ci+1 at the corresponding boundary.519

Furthermore, we also introduce the state kernel Si to model ∂c/∂t. The state ker-520

nel Si receives ci of the associated control volume i, along with the output of fi− and521

fi+ (the fluxes to/from each neighboring cell) as inputs:522

Si(ci, fi−, fi+) =
(
Φ(ci) + fi− + fi+

)
≈ ∂ci

∂t
. (30)523
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Optionally, the state kernel includes a neural network module Φ(·), a function that is trained524

to model reaction terms related to the quantity ci in control volume i. In the processes525

considered in this work, however, the only source of change comes from neighboring vol-526

umes. Particularly, there are no external effects that locally modify the quantity of in-527

terest (such as e.g. sun radiation would increase temperature locally without sensible528

or latent heat entering from adjacent volumes). Therefore, in this work, Φ(·) is the iden-529

tity function and, hence, Si is only responsible for integrating information coming from530

neighboring cells.531

Taking the bigger picture into account, all control volumes share the same kernels,532

and thus FINN is parsimonious, exploiting translation equivariance of physical laws. Flux533

kernels specifically are designed similarly to message passing neural networks (Gilmer534

et al., 2017; Brandstetter et al., 2022) to exploit PDE-type structural knowledge upon535

discretization. The main difference lies in the fact that all flux kernels are uniquely la-536

beled with a physical meaning through derivation from FVM and NODE. Additionally,537

boundary conditions can be switched explicitly.538

During training, FINN only receives the initial condition c(x, t = 0) as input. This539

input is processed first by the flux kernels to calculate the flux exchanges between neigh-540

boring control volumes, and then by the state kernels to be integrated through all sur-541

face elements. The output of the state kernels are then fed into a differentiable ODE solver542

(within a Neural ODE framework) to be integrated in time to obtain the solution c at543

the subsequent time step. This solution is fed back into FINN, and the same operations544

are recurrently applied until the final simulation time t = T is reached. This way, FINN545

uses a closed-loop setting to propagate the dynamics forward, leading to a more stable546

prediction during testing (Praditia et al., 2020). This workflow is visualized in Figure 1,547

where the black arrows depict the direction of the input processing, and the red arrows548

depict the direction of the error backpropagation during training. The dashed arrows549

depict the closed-loop feedback between subsequent time steps, as well as coupling be-550

tween neighboring control volumes.551

For this particular case, FINN is trained by minimizing the loss function, defined552

as553

L =
1

Ne

Ne∑

i

(ci − ĉi)
2 +

1

Np

Np∑

j

Ep,j , (31)554

where Ne is the number of data points of c(x, t), Ep is an additional physical constraint,555

and Np is the number of data points used to calculate the physical constraint. The phys-556

ical constraint Ep in our current example enforces that the retardation factor is a monotonous557

function of c, i.e. R(ci) ≥ R(cj) for all ci < cj and positiveness of the diffusion coeffi-558

cient, i.e. D > 0. To enforce these conditions, the ReLU operator is used. Other think-559

able constraints could ab initio dictate mass conservation, energy balances or thermo-560

dynamic principles. Likewise, soft information (like staying close to an often-successful561

but not fully accurate law) could also be added. This loss function is also used as the562

negative log posterior −π(θ) in the uncertainty quantification, which will be discussed563

later.564

4 Learning Experiments565

To demonstrate FINN’s capability, both synthetic and real-world datasets of the566

TCE diffusion-sorption process are used. Recall that the hypothesized advantages of FINN,567

by construction and due to the physics constraints, are little data requirements, robust568

generalization beyond the training data distribution (i.e. applicability to different bound-569

ary conditions), and high interpretability, allowing it to learn when known models fail.570

First, we generate synthetic data based on the setup described in section 2.1 in or-571

der to perform an elaborated analysis in a controlled setting. By doing so, we will also572
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Figure 1: Schematic illustration of a flux kernel for one finite volume in FINN (top) and
alignment of network modules with their corresponding parts in a PDE of interest (bot-
tom). Black lines indicate forward information flow whereas red lines indicate gradient
flow during backpropagation through time. Dashed lines indicate closed-loop feedback
between subsequent time steps.

assess the performance of FINN against already existing pure deep learning models such573

as TCN and ConvLSTM, physics-motivated deep learning models, such as DISTANA574

and FNO, as well as physics-aware architectures, i.e. PINN and PhyDNet. Second, we575

also show that FINN is not only suitable for synthetic data, but also for real-world ap-576

plication by modeling real laboratory experimental data.577

4.1 Synthetic Dataset578

We simulate the experimental setup described in section 2.1 numerically and gen-579

erate synthetic datasets solving the related (assumed-to-be-true for now) PDE. The nu-580

merical simulator is a simple finite difference code with explicit Euler, made available581

along with our code2. These synthetic datasets are generated using the three different582

sorption isotherms: linear, Freundlich, and Langmuir. The parameters for each isotherm583

are set so that they yield similar concentration distribution, thus we can show that our584

proposed method is able to distinguish various isotherms even with similar looking data.585

The parameter values are given in Table 1.586

To compare the generalization ability of FINN to that of the aforementioned ex-587

isting methods, for each data generated with different sorption isotherms, we define three588

different types of synthetic datasets: train, in-distribution test (in-dis-test), and out-of-589

distribution test (out-dis-test). The differences between these datasets lie in the time do-590

main and boundary condition used. The train data is generated with x = [0, 1]m, t =591

[0, 2 500] days, and csol = 1.0 kg/m3. The in-dis-test data is generated with x = [0, 1]m,592

t = [2 500, 10 000] days, and csol = 1.0 kg/m3. The out-dis-test data is generated with593

x = [0, 1]m, t = [0, 10 000] days, and a modified upper boundary value of csol = 0.7 kg/m3.594

The simulation domain for all three types of data is discretized with ∆x = 0.04m and595

∆t = 5 days. The train data, as its name suggests, is used to train the models. Both596

in-dis-test and out-dis-test are used to test the models. The difference is that in-dis-test597

data is generated with the same parameter as the train data, but extrapolated for a longer598

time span, whereas out-dis-test data is generated with a different boundary condition599

value, to test the models’ generalization under a different situation than during train-600

ing. A different type of boundary condition will be tested in section 4.2.601

2 https://github.com/CognitiveModeling/finn
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4.1.1 State-of-the-Art Benchmark Models602

In this work, we compare FINN’s performance against other models that are ca-603

pable of processing spatiotemporal data. These models are either pure ML models or mod-604

els that possess a form of physical inductive bias.605

Pure ML models. For the pure ML models, we choose TCN and ConvLSTM.606

TCN performs convolution operations over both the spatial and temporal domain (Lea607

et al., 2016), and it exploits the benefits of features such as dilated convolution to pro-608

cess a larger receptive field. In other words, the TCN structure allows for processing in-609

formation contained in more distant preceding time steps. For TCN, the chosen struc-610

ture has 2 input channels, a hidden layer with 32 channels, and 2 output channels.611

ConvLSTM takes a more classical approach, which is to capitalize on the recur-612

rent structure of the long short-term memory (LSTM) model to handle the temporal cor-613

relation of the data, and replaces the internal operations with convolutional operations614

to handle the spatial correlation of the data (Shi et al., 2015). For ConvLSTM, the cho-615

sen structure is 2 input and output channels, with a hidden layer containing 24 chan-616

nels.617

Physics-motivated ML models. The physics-motivated methods chosen as bench-618

mark models in this work are namely DISTANA, FNO, and CNN-NODE. While DIS-619

TANA is similar to ConvLSTM, the main difference is that DISTANA propagates620

information laterally via additional latent feature maps (and not only by applying con-621

volutions on the input). This can also be seen as an analogue to a flux exchange between622

neighboring control volumes—even though in DISTANA, the lateral latent informa-623

tion does not have any physical meaning. The lateral and dynamic input and output sizes624

of the DISTANA model are set to 1 and 2, respectively, while a hidden layer of size 16625

is used.626

CNN-NODE is a combination of a conventional convolutional network stem that627

is augmented by NODE and thus formulates an ablation of FINN to determine the rel-628

evance of FINN’s modular network architecture. We use a three-layered, batch-normalized629

and tanh-activated convolution stem.630

Table 1: Parameter values for synthetic data generation.

Parameter Symbol Unit Value

Common parameters

Effective diffusion coefficient D m2/day 5.00× 10−4

Porosity ϕ - 0.29

Density ρs kg/m3 2880

Linear isotherm

Partitioning coefficient Kd m3/kg 4.30× 10−4

Freundlich isotherm

Freundlich’s K Kf (m3/kg)nf 3.50× 10−4

Freundlich exponent nf - 0.87

Langmuir isotherm

Half-concentration K kg/m3 1.00

Sorption capacity smax m3/kg 5.90× 10−4
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Due to a point-wise formulation (similarly to PINN), FNO approximates PDEs631

by learning a continuous mapping from space-time inputs to the desired outputs, i.e. Rx×t 7→ Rd,632

where x and t are space and time coordinates and d is the dimensionality of the target.633

However, FNO differs from PINN in two fundamental aspects: First, FNO learns the ac-634

cording mapping in frequency instead of in time domain by applying fast (inverse) Fourier635

transformations. Second, FNO learns purely from data and does not depend on explicit636

physical process knowledge. In our experiments, we apply the identical model architec-637

ture as suggested by Z. Li et al. (2020a).638

Physics-aware ML models. In the class of physics-aware ML models, we chose639

PINN and PhyDNet as benchmark candidates. PINN is one of the pioneering physics-640

motivated ML models. It makes use of the capability of ANN to calculate analytical deriva-641

tives through backpropagation to approximate derivatives in the PDE (Raissi et al., 2019).642

For this problem, PINN is defined as a feedforward network with the size of [2, 20, 20,643

20, 20, 20, 20, 20, 20, 2] (i.e. 2 input and output neurons, with 8 hidden layers, each con-644

taining 20 neurons),645

PhyDNet consists of two main branches: one for calculating the physical compo-646

nent and the other for calculating the residual component of the data, assuming that the647

PDE does not fully describe the modeled system. The physical branch is inspired by the648

Kalman Filter, which is a data assimilation technique to recurrently update the model649

parameters based on observation (i.e. training) data. The residual branch adopts the Con-650

vLSTM structure. With a specific condition of the PhyDNet structure, it reduces to651

a PDE-Net model (Guen & Thome, 2020). PhyDNet is defined with the PhyCell con-652

taining 32 input dimensions, 7 hidden dimensions, 1 hidden layer, and the ConvLSTM653

containing 32 input dimensions, 32 hidden dimensions, 1 hidden layer.654

In the last class of physics-aware ML models, FINN is implemented with the use655

of the modules φN and φD. Here, the module φN is defined as a linear layer that takes656

2 inputs, namely the dissolved concentration c of two neighboring control volumes. For657

the dissolved concentration c, the module φD is defined as a feedforward network with658

the size of [1, 10, 20, 10, 1] that takes c as an input and outputs the retardation factor659

R(c). For the total concentration ct, φD is defined as a scalar parameter to learn the un-660

known diffusion coefficient D.661

4.1.2 Benchmark Performance of ML models662

All models are trained with the objective to minimize the deviation between the663

model predictions of c and ct with the training data. They are trained until convergence664

using the L-BFGS optimizer (Malouf, 2002), except for PhyDNet and FNO, which are665

trained with the Adam optimizer (Kingma & Ba, 2015) and a learning rate of 1×10−3
666

due to stability issues when training with the L-BFGS optimizer. The L-BFGS optimizer667

is chosen because it is a quasi-Newton optimization algorithm, which means it uses an668

approximation of the second-order derivative (Hessian matrix). Second-order optimiza-669

tion algorithms are shown to be more effective in reaching the (local) optima (Kochenderfer670

& Wheeler, 2019). The pure ML models are trained on the first 400 time steps and val-671

idated on the remaining 100 time steps of the train data, applying early stopping (Goodfellow672

et al., 2016). Additionally, all models are trained with 10 different random initializations673

to learn about their consistency and to show better representation of each model’s per-674

formance.675

Table 2 shows the summary of all the trained models’ performance. For each dataset676

and each model, the mean and standard deviation values of the prediction mean squared677

error (MSE) across the 10 different initializations are presented. A more detailed pre-678

sentation of the MSE values for each random training initialization can be found in Ap-679

pendix A. Note that PINN is not implemented for out-dis-test data. The reason behind680

this is that PINN learns the explicit relationship of the prediction as a function of x and681
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Table 2: Comparison of MSE and according standard deviation scores across ten repe-
titions between different deep learning (TCN and ConvLSTM), physics-motivated (DIS-
TANA, CNN-NODE, and FNO), and physics-aware neural networks (PINN, PhyDNet,
and FINN) methods on the different isotherms. Best results are reported in bold.

Dataset

Iso. Model Train In-dis-test Out-dis-test

L
in
ea

r

P
u
re

M
L TCN (2.4± 3.1)× 10−1 (3.5± 4.4)× 10−1 (2.9± 3.1)× 10−1

ConvLSTM (3.7± 3.9)× 10−2 (4.0± 3.9)× 10−2 (5.3± 4.9)× 10−2

P
h
y
si
c
s

m
o
ti
v
. DISTANA (2.8± 6.5)× 10−4 (1.9± 2.6)× 10−3 (3.9± 2.3)× 10−3

CNN-NODE (2.1± 3.2)× 10−3 (1.6± 1.9)× 10−1 (1.5± 1.8)× 10−1

FNO (7.6± 3.3)× 10−5 (1.0± 0.3)× 10−3 (1.9± 0.4)× 10−2

P
h
y
si
c
s

a
w
a
re

PINN (6.3± 11)× 10−5 (3.9± 7.8)× 10−3 -

PhyDNet (3.3± 1.5)× 10−5 (6.1± 17)× 10−3 (1.6± 1.0)× 10−2

FINN (2.1± 1.5)× 10−7 (2.7± 1.9)× 10−7 (1.8± 1.3)× 10−7

F
re
u
n
d
li
ch

P
u
re

M
L TCN (1.1± 3.5)× 10−1 (1.6± 1.5)× 10−1 (1.3± 1.3)× 10−1

ConvLSTM (1.9± 2.8)× 10−2 (2.4± 1.9)× 10−2 (4.3± 3.8)× 10−2

P
h
y
si
c
s

m
o
ti
v
. DISTANA (8.1± 7.0)× 10−6 (1.8± 1.6)× 10−4 (1.5± 1.4)× 10−3

CNN-NODE (4.3± 8.9)× 10−3 (2.6± 5.2)× 10−1 (2.2± 4.3)× 10−1

FNO (6.7± 17.6)× 10−4 (1.4± 2.7)× 10−3 (1.4± 0.5)× 10−2

P
h
y
si
c
s

a
w
a
re

PINN (4.3± 2.4)× 10−6 (9.7± 16)× 10−4 -

PhyDNet (7.1± 20)× 10−4 (2.2± 3.7)× 10−3 (1.2± 0.1)× 10−2

FINN (2.9± 0.4)× 10−5 (2.7± 0.4)× 10−5 (2.3± 0.3)× 10−5

L
a
n
g
m
u
ir

P
u
re

M
L TCN (1.3± 0.6)× 10−1 (1.2± 0.7)× 10−1 (1.5± 0.5)× 10−1

ConvLSTM (3.9± 3.4)× 10−2 (3.1± 2.3)× 10−2 (6.2± 4.4)× 10−2

P
h
y
si
c
s

m
o
ti
v
. DISTANA (2.3± 2.6)× 10−5 (9.8± 14)× 10−4 (3.3± 3.5)× 10−3

CNN-NODE (1.8± 3.1)× 10−4 (1.2± 1.2)× 10−1 (9.7± 10.7)× 10−2

FNO (3.5± 7.2)× 10−4 (1.1± 1.4)× 10−3 (1.7± 0.7)× 10−2

P
h
y
si
c
s

a
w
a
re

PINN (3.3± 8.9)× 10−5 (6.4± 17)× 10−3 -

PhyDNet (4.6± 4.2)× 10−5 (1.3± 1.4)× 10−3 (1.3± 0.2)× 10−2

FINN (7.3± 7.2)× 10−5 (7.9± 7.8)× 10−5 (6.1± 6.1)× 10−5

t based on a specific initial and boundary condition implemented in the train data. When682

the boundary condition is changed to generate the out-dis-test data, this functional re-683

lationship no longer holds, and as such, PINN is no longer applicable. As a further com-684

parison, we present the number of learnable parameters used by the different models in685

Table 3. To clarify, the benchmark does not include computational time, since the main686

purpose of our work is not to build a fast surrogate model, but rather to learn unknown687

functions in an interpretable fashion from the data and to generalize well to unseen data688

with different initial and boundary conditions.689

As shown in Table 2, the pure ML models perform very poorly even during train-690

ing, failing to capture/approximate the system’s behavior. The physics-motivated and691

physics-aware models, on the other hand, perform comparably during training, showing692

adequate learning (except for CNN-NODE). Also, note that the pure ML models in gen-693

eral require more parameters compared to the physics-motivated and physics-aware mod-694

els, as shown in Table 3. Even then, their performance is still not comparable. However,695

PhyDNet is an exception, because most of its parameters originate from the ConvLSTM696

branch, which is the data-driven part and not the physics-aware part of PhyDNet. Dur-697

ing training, FINN achieves the lowest prediction error for the data generated with the698
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Figure 2: Plots of the dissolved concentration data generated with the Langmuir
isotherm (red) and in-dis-test prediction (blue) using different models. The left column
shows the solution over x and t (red lines mark the transition from train to in-dis-test),
the right column visualizes the best solution of each model distributed in x at t=10 000.
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Figure 3: Plots of the dissolved concentration data generated with the Langmuir
isotherm (red) and out-dis-test prediction (blue) using different models. The left col-
umn shows the solution over x and t, the right column visualizes the best solution of each
model distributed in x at t = 10 000.
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Table 3: Comparison of the number of learnable parameters used by the different models.
Each model uses the same number of parameters for the linear, Freundlich, and Langmuir
cases.

TCN ConvLSTM DISTANA CNN-

NODE

FNO PINN PhyDNet FINN

10 782 8 216 6 519 1 026 5 878 3 042 37 815 464

linear sorption isotherm, while PINN achieves the lowest prediction error for the data699

generated with the other sorption isotherms, namely Freundlich and Langmuir.700

It is, however, more interesting to see how the models perform when confronted with701

unseen data, both extrapolation (in-dis-test) and different boundary condition (out-dis-702

test). For both test cases, all models perform significantly worse compared to the train-703

ing phase. Nevertheless, FINN produces the best predictions with the lowest MSE, sur-704

passing the other models by several orders of magnitude. More importantly, FINN is the705

only model with a consistently low prediction error with the same order of magnitude706

for all train, in-dis-test, and out-dis-test data. This model performance comparison is707

also visualized in Figure 4 for better clarity.708

We also plot the predictions of the considered models for better visualization and709

understanding. For conciseness, we only show the plots for the dissolved concentration710

data generated with the Langmuir sorption isotherm due to similarities of the other plots.711

Figure 2 and Figure 3 show the best prediction of each model, that is the one that pro-712

duces the lowest MSE among the ten randomly initialized trainings, when predicting the713

in-dis-test and the out-dis-test data, respectively. Figure 2 shows that most models, ex-714

cept for TCN and CNN-NODE, have at least one trained version that produces accept-715

able results even after extrapolation to a significantly longer time span (T = 10 000 days)716

compared to the one covered during training (T = 2500 days). More interestingly and717

importantly, Figure 3 shows that when the boundary condition is changed to csol = 0.7,718

all models still tend to overfit to the boundary condition value used during training, i.e.719

TC
N

Con
vLS

TM

DIST
ANA

CNN-NODE
FN

O
PIN

N

Ph
yD

Net
FIN

N

10 6

10 4

10 2

100

train
in-dis-test
out-dis-test

Figure 4: Average MSE comparison of different ML models with the error bars denoting
the MSE standard deviation. The MSEs are calculated on the train (blue), in-dis-test
(yellow), and out-dis-test (red) dataset generated using the Langmuir isotherm.
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Figure 5: Prediction mean over ten different trained models (with 95% confidence inter-
val) of the dissolved concentration generated using the Langmuir isotherm at t=10 000
for the in-dis-test dataset.

csol = 1.0, demonstrating the tendency of all models to overestimate the dissolved con-720

centration close to x = 0. One distinguishing feature of FINN is its ability to properly721

treat different values of numerical boundary conditions, and thus, FINN is the only model722

that does not suffer from the same overfitting issue of the other models, as also shown723

in Figure 2. Plots for data generated with other sorption isotherms and for the total con-724

centration are presented in Appendix B.725

To assess the robustness of the considered ML models, Figure 5 and Figure 6 show726

the prediction averaged over the ten different training initializations for the in-dis-test727

and out-dis-test data, respectively. Moreover, Figure 5 and Figure 6 are also equipped728

with 95% confidence intervals, to show the consistency of each model. These intervals729

are approximated with the t-distribution (Oliphant, 2006). Figure 5 shows that, even730

though each model has at least one good result, the other training result can still pro-731

Figure 6: Prediction mean over ten different trained models (with 95% confidence inter-
val) of the dissolved concentration generated using the Langmuir isotherm at t = 10 000
for the out-dis-test dataset.
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Figure 7: Learned retardation factor of FINN for the linear (left), Freundlich (middle),
and Langmuir (right) sorption isotherm, compared with the retardation factor generated
with the three isotherms.

duce incorrect predictions. To be more specific, the average predictions by TCN, Con-732

vLSTM, and CNN-NODE do not fit the data. Additionally, we observe that most of the733

models produce highly inconsistent predictions with wide confidence intervals. Figure 6734

(for out-dis-test) shows worse consistency of all models, evidenced by the wider confi-735

dence intervals. Additionally, all existing ML models still overfit to the boundary con-736

dition value used in the train data, as discussed earlier. FINN, in contrast, produces very737

consistent predictions, making the confidence interval hardly visible in Figure 5. Fur-738

thermore, FINN shows excellent consistency and adjustment to the new boundary con-739

dition value in Figure 6. The performance comparison between FINN and CNN-NODE740

emphasizes the relevance of FINN’s modularized structure. Apparently, NODE alone does741

not guarantee accurate function approximations, which is reflected in the larger train-742

ing errors of CNN-NODE compared to FINN, as well as in the test errors—consistently743

over all experiments. We show with this example that a structurized method to design744

the model using the FVM discretization as a basis is extremely beneficial.745

Focusing on the physics-aware ML modeling concepts, we could state that PINN746

and PhyDNet lie on different extremes. PINN requires the modeler to know the com-747

plete form of the PDE to be solved. As a consequence, variables such as the diffusion748

coefficient or the retardation factor function also have to be known in advance to train749

the model. PhyDNet puts more emphasis on the data-driven part, shown by the high750

number of parameters in the ConvLSTM branch compared to the physics-aware branch.751

Therefore, PhyDNet has more freedom in learning, but can suffer from overfitting issues.752

This is shown by the fact that PhyDNet achieves a very low prediction error during train-753

ing, but its result significantly deteriorates when predicting in-dis-test and out-dis-test754

data. The introduced FINN concept lies somewhere in the middle of these extremes, com-755

promising between the freedom of learning and the rigidity of (assumed) physical knowl-756

edge. As a result, FINN outperforms the other models, especially on the out-dis-test data,757

which is considered a particularly challenging task for ML models. Finally, while FNO758

can—in contrast to PINN—still be applied to different initial and boundary conditions,759

it suffers from a noticeable performance drop when applied to the new boundary con-760

dition. This is not surprising, as the explicit function learned during training (mapping761

continuous space-time coordinates to c) does not hold in the out-dis-test scenario any-762

more.763

4.1.3 Learning the PDE Constituents with FINN764

The most important feature of FINN is its ability to interpretably learn the build-765

ing blocks of the sought PDE. In our example, the numerical stencil, the diffusion co-766
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Table 4: Learned PDE constituents by using FINN.

Sorption isotherm Numerical stencil D [m2/day] Normalized D [m2/day]

Linear −1.06± 0.02 and 1.06± 0.02 4.59± 0.19× 10−4 4.87± 0.19× 10−4

Freundlich −0.99± 0.04 and 0.99± 0.04 4.83± 0.19× 10−4 4.78± 0.34× 10−4

Langmuir −1.08± 0.06 and 1.08± 0.06 4.13± 0.19× 10−4 4.46± 0.74× 10−4

efficient and the retardation factor function are learned during the training process. The767

learned numerical stencils and the learned diffusion coefficient D for the linear, Freundlich,768

and Langmuir sorption isotherm data are shown in the second and third column of Ta-769

ble 4. All the learned numerical stencils are symmetrical, meaning that the prediction770

is mass-conservative and clearly diffusive.771

Assuming that the ideal numerical stencils should be −1 and 1, we normalize the772

learned diffusion coefficient (by multiplying it with the learned numerical stencils) and773

compare it to the real diffusion coefficient value (D = 5.0× 10−4 m2/day) to evaluate774

the prediction error. The normalized diffusion coefficient for the linear, Freundlich, and775

Langmuir data are shown in the last column of Table 4. In terms of relative error to the776

real D value, these amount to 2.6%, 4.4%, and 10.8% error for the linear, Freundlich,777

and Langmuir isotherm, respectively. The prediction of the diffusion coefficient values778

has the highest error and variance for the Langmuir data, and the lowest error and vari-779

ance for the linear data. As a consequence, FINN predicted the linear data with the high-780

est accuracy, and Langmuir data with the lowest accuracy (see Table 2). Nevertheless,781

FINN’s prediction is still highly consistent, as shown by the low MSE in Table 2 and the782

almost invisible confidence interval in Figure 5 and Figure 6.783

Furthermore, a very strong advantage of FINN is its ability to successfully learn784

closure/constitutional relationships, which are often unknown when modeling a system.785

In our diffusion-sorption example, the major source of uncertainty is the retardation fac-786

tor R(c), which can be defined with various empirical functions. Figure 7 shows the re-787

tardation factor learned by FINN, when trained on data generated with the three afore-788

mentioned sorption isotherms. FINN is able to learn the retardation factor through its789

module φD. The learned retardation factor also captures the linearity of the linear sorp-790

tion isotherm, shown by the straight red line on the left plot in Figure 7. The retarda-791

tion factors from the Freundlich and Langmuir isotherms are also captured well, even792

with less accuracy compared to the linear isotherm. This also contributes to the slightly793

higher prediction error for the Freundlich and Langmuir data compared to the linear data.794

Nevertheless, FINN is still able to distinguish between these different isotherms very well.795

Higher accuracy would need more informative data, especially at larger values of c.796

4.2 Learning using an Experimental Dataset797

Synthetic datasets provide good insights into FINN’s performance in a controlled798

experiment, where the dataset is clean and abundant. However, real-world data is of-799

ten only sparsely available due to costs or restrictions of equipments, the amount of time800

required to obtain useful data, or the difficulty in direct measurement of the system’s801

internal states.802

In the experimental setup described in section 2.1, the dissolved TCE concentra-803

tion distribution inside the clay sample is unobservable throughout the experiment. The804

only means of measuring the dissolved TCE concentration is through the water flush-805

ing below the lower end of the clay cylinder, as of now called a breakthrough curve. Fur-806

thermore, the total TCE concentration can only be measured at the end of the exper-807
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Table 5: Parameter values of various clay core samples for the laboratory experiment.

Soil parameters

Parameter Unit Core #1 Core #2 Core #2B

D m2/day 2.00× 10−5 2.00× 10−5 2.78× 10−5

ϕ - 0.288 0.288 0.288

ρs kg/m3 1957 1957 1957

Simulation domain

Parameter Unit Core #1 Core #2 Core #2B

L m 0.0254 0.02604 0.105

r m 0.02375 0.02375 N/A

T days 38.81 39.82 48.88

Q m3/day 1.01× 10−4 1.04× 10−4 N/A

csol kg/m3 1.4 1.6 1.4

iment, by cutting the clay specimen into slices to enable direct (but destructive) mea-808

surement of the total TCE concentration. Hence, the dissolved concentration data is avail-809

able as a breakthrough curve, which has only a single data point at each time step; and810

the spatial distribution of the total concentration data is available only at the final time811

step, and at coarse spatial resolution. Additionally, the observation data obtained from812

the experiment is very sparse and also noisy. All these challenges associated with the use813

of real-world data prompt the implementation of uncertainty quantification methods on814

FINN to provide honest and reliable predictions that would be useful for aiding critical815

decision making processes or hypothesis testing.816

For this real-world application, three core samples are retrieved from the same ge-817

ographical area, namely core samples #1, #2, and #2B (Nowak, 2000). Consequently,818

similar soil parameters can be assumed for all three samples, which are summarized in819

Table 5. The breakthrough curve of core sample #2 is the least noisy, and hence is cho-820

sen as the training data; whereas the breakthrough curve of core #1 is chosen to test821

the trained model. Additional test is also performed with the data from core sample #2B.822

However, core #2B is significantly longer than the other samples and the bottom of the823

setup is closed (no flushing). By the end of the experiment, no measurable TCE has yet824

arrived at the bottom end of the sample. Numerically, the experiment is modeled with825

the setup as described in section 2.1, with the initial condition written in Equation (5)826

and the boundary conditions written in Equations (3) and (4) for both core samples #1827

and #2. For core sample #2B, because it is closed on the bottom, a no-flow Neumann828

boundary condition is used instead:829

∂c

∂x

∣∣∣
x=L

= 0 ∀t : 0 ≤ t ≤ T. (32)830

The breakthrough curve of core #2 used as training data only serve for model train-831

ing using the Cauchy boundary condition described in equation (4). As a consequence,832

no other benchmark models can be used, since all of them, except for PINN, have no means833

of properly implementing numerical boundary conditions other than Dirichlet or peri-834

odic. PINN also cannot be applied in this example, because the test dataset from core835

sample #1 and #2B have different boundary conditions, and therefore the PINN model836

trained on core sample #2 no longer holds for the other samples. Moreover, one of the837

most interesting goals of this experiment is to learn the retardation factor, whereas all838

the considered ML models have no capability to do so explicitly. Therefore, we assess839
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the performance of FINN using a comparison to the PDE-based physical model—the same840

as used to generate synthetic data in section 4.1—calibrated to the experimental data841

as a benchmark. The best fit of the physical model is found with the retardation fac-842

tor modeled using the Freundlich sorption isotherm, with Kf = 5.20× 10−4 (m3/kg)nf
843

and nf = 0.35.844

For this application, FINN is implemented with the use of the module φD. Here,845

the module φD is defined as a feedforward network with the size of [1, 10, 20, 10, 1] that846

takes c as an input and outputs the retardation factor R(c). The diffusion coefficient is847

assumed to be known and measurable for all the core samples (Nowak, 2000), and there-848

fore is not learned by FINN. As in the synthetic case, FINN is trained with the objec-849

tive to minimize the deviation between the model predictions of c as a breakthrough curve850

and the total concentration ct at the end of the experiment. Also, and in contrast to the851

synthetic data scenario, FINN is now trained using the Bayes-by-backprop method as852

outlined in section 2.4 using Equation 19 as the loss function formulation. Even though853

the Bayes-by-backprop method manages to provide reasonable uncertainty quantifica-854

tion of FINN’s prediction, it fails to learn the standard deviation parameter σ sufficiently855

(i.e. the learned σ values do not differ much from the initial values).856

Due to the limitations of the Bayes-by-backprop method, we alternatively use three857

different MCMC methods, namely the random walk Metropolis-Hastings (MH), Metropolis-858

adjusted Langevin algorithm (MALA), and Barker proposal (Barker). Starting with ran-859

dom initial values of FINN’s parameters, samplings are performed with these three meth-860

ods for 102 000 iterations, with the 2 000 initial iterations discarded as the burn-in pe-861

riod, resulting in 100 000 effective iterations. This number is chosen as the upper limit,862

to investigate which MCMC method provides decent convergence and offers the most863

efficient sampling under acceptable computational time.864

Out of the 100 000 iterations, we thin out the samples by saving only every 10th865

iteration, resulting in a total of 10 000 samples. The step size h is chosen so that the ac-866

ceptance rate amounts to approximately 23% (Reuschen et al., 2021). This corresponds867

to h = 10−2 for MH, h = 7× 10−6 for MALA, and h = 4× 10−3 for Barker. As shown868

by the trace plot (the left plot in Figure 8), all methods improve the log posterior sub-869

stantially after only a few iterations. However, looking at the zoomed-in plot (the right870

plot in Figure 8), none of the used MCMC methods converge well to an equilibrium dis-871

tribution, as evidenced by the downward trend of the log posterior even until the last872

iteration. Even though MALA has better convergence compared to the other methods,873

the acceptance rate quickly deteriorates. This can be attributed to the fact that MALA874

is less robust to high step size (Livingstone and Zanella (2019), although the step size875

used for MALA is already very low in this case).876

To improve the performance of the MCMC chains, we start the sampling with op-877

timized parameter values of FINN. To obtain this, FINN is first trained deterministically878

as in the synthetic data scenario, and the parameter values of the trained FINN model879

are used as the starting point of the MCMC chain. Samplings are then performed for880

100 000 iterations, without the burn-in period (since we start with optimized values), again881

thinning by a factor of 10, resulting in a total of 10 000 samples. The corresponding step882

sizes are h = 10−2 for MH, h = 3× 10−5 for MALA, and h = 5× 10−3 for Barker.883

As shown by the log posterior trace plot (the left plot in Figure 9), there is a down-884

ward trend in the log posterior of the samples. This is fundamentally caused by using885

an excellent starting point with minimized error (statistically too good to be a represen-886

tative sample), resulting in less good (but as of then statistically valid) subsequent sam-887

ples. When zooming in after 5 000 iterations, we observe that the performance of both888

the gradient-based MCMC methods, namely MALA and Barker, is better than that of889

MH. Among these two methods, however, Barker shows the best behavior with the high-890

est and most stable log posterior values, indicating proper sampling from the desired pos-891
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Figure 8: Trace plot of the log posterior starting with random initial values (left) and
the zoomed-in plot after 5 000 iterations (right) for the Metropolis Hastings (MH, blue),
Metropolis-adjusted Langevin algorithm (MALA, orange), and Barker (green) MCMC
methods.

Figure 9: Trace plot of the log posterior starting with optimized initial values (left) and
the zoomed-in plot after 5 000 iterations (right) for the Metropolis Hastings (MH, blue),
Metropolis-adjusted Langevin algorithm (MALA, orange), and Barker (green) MCMC
methods.

terior. On the other hand, the log posterior value of the samples obtained using MALA892

is still slightly decreasing. This result shows that Barker scales well for higher dimen-893

sionality, especially when the chain is properly initialized. All in all, only the optimized894

Barker MCMC finishes its burn-in properly and reaches an equilibrium distribution, that895

is the desired posterior, within the 100 000 iterations window.896

Another way to quantify the predictive performance/sharpness of the MCMC meth-897

ods is to plot the reliability curve as defined in Jospin et al. (2022), which is calculated898

using the cumulative distribution function (CDF) across all samples, compared to its ob-899

served probability (i.e. ordered against the actual data). The reliability plot enables eval-900

uation of the model’s predictive performance. The model is described as underconfident901

if the reliability curve lies above the baseline, and overconfident otherwise. As shown in902

Figure 10, all the methods with random initialization (left plot) lie further from the ideal903
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Figure 10: Reliability curves of the MH (blue), MALA (orange), and Barker (green)
MCMC methods initialized randomly (left) and with optimized values (right). The base-
line for the ideal condition is shown by the black dashed line.

condition compared to the methods with optimized starting point (right plot). Among904

all the methods, Barker MCMC with optimized initialization lies the closest to the ideal905

condition, confirming further that the samples generated by the optimized Barker MCMC906

provides the best predictive performance. It is also interesting to note that the models907

are overconfident for lower extremes and underconfident for higher extremes. One pos-908

sible explanation is that the data error is not Gaussian.909

The predictions obtained using the optimized Barker MCMC are shown in Figure 11.910

The MCMC method augment FINN’s prediction with a confidence interval, which cap-911

tures most of the noisy observation data inside, showing sufficient uncertainty quantifi-912

cation. Quantitatively, FINN achieves lower training error on core sample #2 data with913

MSE = 5.43× 10−4, compared to the physical model with MSE = 1.06× 10−3. During914

testing with data from core sample #1, FINN also outperforms the physical model with915

MSE = 1.41× 10−3 compared to MSE = 2.50× 10−3, because the calibrated physical916

model underestimates the TCE breakthrough curve. When tested against data from core917

sample #2B, which has a different type of numerical boundary condition implemented,918

FINN again achieves lower prediction error with MSE = 1.16× 10−3 compared to the919

calibrated physical model that overestimates the TCE concentration with MSE = 2.73× 10−3.920

Because there is no breakthrough curve data available for this specific sample, we com-921

pare the prediction against the total concentration profile c(x, t = T ) at the end of the922

experiment.923

Moreover, we also plot FINN’s learned retardation factor in comparison to the cal-924

ibrated Freundlich retardation factor, which shows that the best-fitting available sorp-925

tion isotherm model fails to capture the retardation factor shape as learned by FINN,926

possibly leading to the higher prediction error of the calibrated physical model in both927

cases of training and testing. Overall, FINN outperforms the calibrated physical model928

by learning the retardation factor better than the parametric sorption isotherm model929

using only the breakthrough curve of core sample #2 (i.e. only 55 data points) and suc-930

cessfully applies it to the other samples with relatively high accuracy.931

As a side note, this real-world application example adopted in this work was per-932

formed in a small-scale laboratory experiment. With the corresponding scale, homogene-933

ity could be assumed for the modeled soil parameters. For a larger-scale application (i.e.934
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Figure 11: Breakthrough curve average prediction of FINN (blue line) and its 95% con-
fidence interval (blue shade) during training on core sample #2 (top left), during testing
on core sample #1 (top right) and total concentration profile of core sample #2B (bot-
tom left). The predictions are compared with the experimental data (red circles) and the
results obtained using the physical model (orange dashed line). The learned retardation
factor R(c) is shown in the bottom right plot.

field-scale), the assumption might no longer hold, and thus heterogeneity would have to935

be taken into account. To account for heterogeneity, FINN has to either adopt a geo-936

statistical approach to model the heterogeneous distribution of the parameter, (e.g. the937

diffusion coefficient), or a graph representation.938

Finally, even though we only showed the application of FINN to a subsurface con-939

taminant transport problem, it is also applicable to a range of other problems or equa-940

tions, such as the 2D Burgers’ the diffusion-reaction equation, and the Allen-Cahn equa-941

tion. For further details, we refer the interested readers to our ML-focused paper (Karlbauer942

et al., 2022). FINN lays the groundwork for further development of hybrid modeling frame-943

works in this area, and hopefully can be used for an even wider range of problems in the944

future, such as weather and climate simulation or investigation of improved constitutive945

relations in multiphase flow.946
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5 Summary and Conclusion947

In this work, we applied FINN, a hybrid modeling framework that induces phys-948

ical inductive biases into an ANN learning paradigm. FINN is based on the numerical949

structure of the FVM for solving PDEs, as well as conditions such as monotonicity and950

non-negativity of functions or parameters to constrain the model training. FINN learns951

numerical stencils, unknown constitutional/closure relationships, and/or parameters to952

predict variables of interest in spatiotemporal physical systems. Using a well-controlled953

subsurface contaminant transport benchmark study, we showed that FINN is beneficial954

in comparison to pure ML models as well as physics-motivated and physics-aware ML955

models for several reasons.956

First, FINN demonstrates superior generalization when tested against extrapolated957

data and data generated with different boundary condition. The other ML models par-958

ticipating in our comparison have the tendency to overfit, while PINN is not even ap-959

plicable to the same system with a different boundary condition.960

Second, FINN allows proper treatment of different boundary condition types, whereas961

other models are only applicable to boundary condition types with constant values such962

as Dirichlet or periodic ones, because of the convolutional structure adopted in most of963

the other models. As a result, only FINN can be trained on data under a Cauchy bound-964

ary condition in the form of a diffusive breakthrough curve in the real-world experimen-965

tal data example.966

Third, FINN can be trained with a sparse dataset without compromising its learn-967

ing ability and its prediction accuracy. It was shown in the real-world data example that968

FINN was trained with only 55 data points, yet it generalized well to other unseen sam-969

ples, even one with a different boundary condition type. This also means that FINN is970

applicable to real-world data that is noisy and sparse. Hence, FINN offers a data-driven971

modeling approach that goes beyond a surrogate modeling tool.972

Fourth, FINN provides flexibility in choosing between different uncertainty quan-973

tification methods, especially due to its comparatively low number of parameters. FINN974

can be paired not only with the variational inference type of uncertainty quantification975

(i.e. Bayes-by-backprop), but also with MCMC methods. Additionally, the widely avail-976

able automatic differentiation tools in various ML libraries enable the use of gradient in-977

formation in both MALA and Barker MCMC, leading to better performance compared978

to a random walk MH. Furthermore, these automatic differentiation tools also promote979

finding an optimal starting point for the MCMC chain, by first training FINN determin-980

istically.981

Fifth, and probably most importantly, FINN’s structure provides a high degree of982

model explainability. Through its structure, FINN can explicitly learn unknown consti-983

tutive/closure relationships or parameters, which are usually the main source of uncer-984

tainty in physical systems modeling. The particular example shown in this work is the985

unknown retardation factor as a function of concentration. Because the available sorp-986

tion isotherm models describe the retardation factor function using few parameters, they987

are not flexible enough to be calibrated to learn the “true” shape of the function. FINN,988

on the other hand, has the full flexibility to learn it.989

To re-emphasize, in this work we did not intend to develop FINN as a faster and990

more efficient surrogate model in place of known equations and their numerical solvers.991

The only comparison between FINN and a traditional numerical simulation model was992

presented on the real-world problem example. The purpose of this comparison was to993

show that, when calibrating the physical model, we are faced with discrete choices of mod-994

els that lead to difficulties in capturing the “true” functional relationship. FINN, on the995

other hand, alleviates this problem by providing a flexible way of learning the unknown996

relationship, as shown in section 4.2.997
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Table A1: Closed-loop MSE on the train data from ten different training runs for each
model for the linear isotherm.

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

8.2×10−1 1.2×10−1 1.1×10−5 1.3 × 10−4 2.6×10−5 6.3×10−6 3.6×10−5 1.8×10−7

1.1×10−1 1.2×10−2 8.5×10−5 6.0 × 10−5 8.9×10−5 2.3×10−4 4.2×10−5 5.2×10−7

2.8×10−3 6.9×10−2 1.2×10−5 9.4 × 10−3 5.7×10−5 3.4×10−4 4.1×10−5 2.3×10−8

7.8×10−2 1.2×10−5 3.2×10−5 2.4 × 10−6 6.5×10−5 1.4×10−5 5.2×10−5 3.2×10−7

3.0×10−1 1.4×10−5 7.5×10−6 2.4 × 10−5 1.2×10−4 4.5×10−6 5.9×10−5 1.5×10−7

9.7×10−2 4.4×10−2 4.1×10−4 4.1 × 10−6 6.4×10−5 1.9×10−6 1.8×10−5 3.0×10−7

1.3×10−1 6.4×10−2 2.2×10−3 7.4 × 10−5 5.4×10−5 1.3×10−6 3.4×10−5 1.0×10−7

3.9×10−2 4.8×10−5 3.2×10−5 9.0 × 10−4 1.4×10−4 7.0×10−6 1.4×10−5 3.0×10−7

1.8×10−3 3.8×10−3 2.6×10−5 5.9 × 10−3 5.5×10−5 1.7×10−5 2.2×10−5 1.5×10−7

8.6×10−1 5.2×10−2 7.5×10−6 4.3 × 10−3 8.2×10−5 2.8×10−6 1.5×10−5 6.0×10−9

Despite the promising benefits of FINN, we realized that there is still a lot of room998

for improvement. For instance, the computation time of FINN is still not optimized, be-999

cause the implementation is highly dependent on the available Neural ODE package. It1000

will not be as fast as PINN, because PINN models the system as an explicit function of1001

x and t, allowing to parallelize the computation. FINN and the other models such as Con-1002

vLSTM, DISTANA, and PhyDNet, on the other hand, rely on recurrent structures, which1003

prohibit full parallelization.1004

Additionally, FINN offers room for possible extension of the underlying physical1005

theory behind the framework. For example, in non-Fickian diffusion or dispersion, where1006

the diffusion coefficient could be a highly complex function of many variables, or if there1007

are neglected processes that contribute significantly to the modeled system such as chem-1008

ical transformation, evaporation, or advection. In these cases, FINN’s structure would1009

need to be modified to allow for a more complicated representation of the unknown func-1010

tional relationships.1011

Uncertainty quantification of ML models is still a broad and open research area,1012

due to the complicated nature of ML models, and ANNs in particular. More rigorous1013

analysis of uncertainty quantification on FINN can further improve the predictive per-1014

formance and foster the interpretability of the model itself. Furthermore, it would also1015

be beneficial to reach a fully accurate total uncertainty quantification over inferred sci-1016

entific hypotheses. This could include not only the uncertainty from parameters, closures,1017

and stencils as done in this work, but also over entirely different conceptualizations of1018

a system. The latter could result in different structural set-ups of FINN. In order to follow-1019

up on these questions, additional research is necessary.1020

Appendix A Details of All Model Runs1021

For all benchmark models that are used in this work and for each sorption isotherm1022

used to generate the synthetic dataset, ten different random initializations are conducted1023

to have a more comprehensive analysis of all the models’ performance. Table A1, Ta-1024

ble A2, and Table A3 show the results of the linear sorption isotherm applied to the train,1025

in-dis-test, and out-dis-test data, respectively. Table A4, Table A5, and Table A6 show1026

the results of the Freundlich sorption isotherm applied to the train, in-dis-test, and out-1027

dis-test data, respectively. Table A7, Table A8, and Table A9 show the results of the Lang-1028

muir sorption isotherm applied to the train, in-dis-test, and out-dis-test data, respectively.1029
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Table A2: Closed-loop MSE on the in-dis-test data from ten different training runs for
each model for the linear isotherm.

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

1.1 × 100 8.7×10−2 1.3×10−3 7.2 × 10−2 5.6×10−4 2.8×10−4 2.6×10−4 2.3×10−7

9.6×10−2 2.9×10−2 1.3×10−3 3.5 × 10−2 1.4×10−3 4.9×10−3 5.1×10−4 6.6×10−7

6.1×10−2 6.1×10−2 1.7×10−4 6.3 × 10−1 9.6×10−4 2.2×10−3 2.9×10−4 4.0×10−8

6.3×10−2 2.1×10−4 5.8×10−4 3.0 × 10−2 9.3×10−4 1.5×10−5 5.7×10−2 4.0×10−7

4.6×10−1 1.9×10−4 4.8×10−4 3.9 × 10−2 1.5×10−3 8.1×10−5 4.7×10−4 1.7×10−7

1.7×10−1 3.8×10−2 2.5×10−3 1.6 × 10−2 1.1×10−3 2.6×10−5 3.2×10−4 4.1×10−7

9.8×10−2 1.2×10−1 9.2×10−3 6.8 × 10−2 8.0×10−4 1.2×10−5 5.5×10−4 1.3×10−7

1.0×10−1 1.7×10−3 1.6×10−4 1.3 × 10−1 1.3×10−3 2.0×10−3 3.1×10−4 4.1×10−7

4.1×10−2 9.3×10−3 2.8×10−3 3.6 × 10−1 6.4×10−4 2.7×10−2 4.1×10−4 2.1×10−7

1.3 × 100 5.3×10−2 8.3×10−5 2.4 × 10−1 9.0×10−4 2.7×10−3 2.7×10−4 1.5×10−8

Table A3: Closed-loop MSE on the out-dis-test data from ten different training runs for
each model for the linear isotherm.

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

8.4×10−1 1.5×10−1 1.5×10−3 7.5 × 10−2 2.4×10−2 N/A 1.1×10−2 1.6×10−7

1.5×10−1 5.2×10−2 7.6×10−3 3.3 × 10−2 1.7×10−2 N/A 9.7×10−3 4.5×10−7

7.1×10−2 1.1×10−1 1.2×10−3 6.3 × 10−1 2.6×10−2 N/A 1.1×10−2 1.6×10−8

1.0×10−1 1.2×10−4 7.9×10−3 3.1 × 10−2 1.6×10−2 N/A 3.5×10−2 2.8×10−7

3.4×10−1 7.5×10−3 2.7×10−3 3.1 × 10−2 1.9×10−2 N/A 3.7×10−2 1.2×10−7

1.1×10−1 4.8×10−2 1.9×10−3 1.6 × 10−2 1.8×10−2 N/A 1.2×10−2 2.7×10−7

1.6×10−1 5.0×10−2 5.2×10−3 8.7 × 10−2 1.3×10−2 N/A 1.2×10−2 9.5×10−8

1.3×10−1 7.1×10−3 3.6×10−3 1.4 × 10−1 1.9×10−2 N/A 1.2×10−2 2.7×10−7

5.9×10−2 8.2×10−3 4.7×10−3 2.5 × 10−1 1.7×10−2 N/A 1.2×10−2 1.4×10−7

9.4×10−1 9.9×10−2 2.4×10−3 2.4 × 10−1 2.2×10−2 N/A 1.2×10−2 6.0×10−9

Table A4: Closed-loop MSE on the train data from ten different training runs for each
model for the Freundlich isotherm.

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

1.2×10−2 2.2×10−2 2.4×10−6 4.3 × 10−4 4.2×10−5 6.3×10−6 3.0×10−5 2.7×10−5

3.1×10−1 2.9×10−4 5.9×10−6 1.4 × 10−5 6.0×10−3 1.8×10−6 4.5×10−5 3.8×10−5

1.5×10−1 1.4×10−4 1.3×10−5 9.1 × 10−3 1.1×10−4 3.2×10−6 4.5×10−5 2.6×10−5

1.3×10−1 2.2×10−3 1.6×10−5 4.2 × 10−5 8.5×10−5 2.6×10−6 6.8×10−3 2.6×10−5

2.7×10−4 5.8×10−2 1.2×10−6 3.0 × 10−2 2.5×10−4 2.6×10−6 2.7×10−5 3.4×10−5

3.8×10−1 6.6×10−3 3.0×10−6 4.4 × 10−5 5.6×10−5 2.1×10−6 3.7×10−5 3.1×10−5

8.8×10−3 8.6×10−2 5.3×10−6 2.6 × 10−3 3.6×10−5 8.3×10−6 3.3×10−5 2.4×10−5

1.5×10−2 1.6×10−2 2.4×10−5 1.0 × 10−4 4.5×10−5 7.4×10−6 2.9×10−5 2.6×10−5

1.2×10−3 1.6×10−5 6.5×10−6 1.5 × 10−4 3.4×10−5 2.1×10−6 2.9×10−5 2.9×10−5

1.2×10−1 9.5×10−6 3.2×10−6 2.9 × 10−4 7.1×10−5 6.6×10−6 3.2×10−5 2.7×10−5

Table A5: Closed-loop MSE on the in-dis-test data from ten different training runs for
each model for the Freundlich isotherm.

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

3.0×10−2 2.8×10−2 9.7×10−6 1.1 × 10−1 4.1×10−4 1.9×10−3 1.0×10−3 2.5×10−5

3.5×10−1 2.1×10−2 2.2×10−4 5.7 × 10−2 9.4×10−3 6.0×10−4 2.9×10−4 3.6×10−5

2.4×10−1 1.1×10−2 2.9×10−4 3.4 × 10−2 6.7×10−4 1.0×10−4 4.8×10−3 2.4×10−5

1.5×10−1 5.6×10−3 4.7×10−4 2.3 × 10−2 4.8×10−4 4.2×10−4 1.3×10−2 2.4×10−5

8.6×10−3 4.7×10−2 8.3×10−6 1.8 × 100 1.0×10−3 5.5×10−5 1.2×10−3 3.3×10−5

4.7×10−1 3.5×10−2 7.8×10−5 8.3 × 10−2 4.2×10−4 3.2×10−4 2.4×10−4 2.9×10−5

1.3×10−1 5.8×10−2 8.5×10−5 2.3 × 10−1 3.3×10−4 5.6×10−3 1.5×10−4 2.2×10−5

1.6×10−2 3.0×10−2 4.6×10−4 1.2 × 10−1 1.5×10−4 1.9×10−4 1.2×10−4 2.4×10−5

4.3×10−3 4.5×10−4 4.9×10−5 4.9 × 10−2 4.5×10−4 1.4×10−4 1.4×10−4 2.7×10−5

2.0×10−1 2.9×10−4 1.4×10−4 6.1 × 10−2 7.7×10−4 4.6×10−4 1.4×10−3 2.6×10−5
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Table A6: Closed-loop MSE on the out-dis-test data from ten different training runs for
each model for the Freundlich isotherm.

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

3.4×10−3 6.6×10−2 8.2×10−4 1.0 × 10−1 1.4×10−2 N/A 1.3×10−2 2.1×10−5

2.9×10−1 2.8×10−3 1.0×10−3 4.3 × 10−2 3.6×10−3 N/A 1.1×10−2 3.0×10−5

1.3×10−1 2.4×10−2 2.1×10−3 2.5 × 10−2 1.1×10−2 N/A 1.1×10−2 2.1×10−5

1.5×10−1 1.5×10−2 6.2×10−4 2.0 × 10−2 1.6×10−2 N/A 1.1×10−2 2.0×10−5

1.2×10−2 8.8×10−2 5.8×10−4 1.5 × 100 2.2×10−2 N/A 1.2×10−2 2.7×10−5

4.2×10−1 6.1×10−2 1.6×10−3 9.3 × 10−2 1.5×10−2 N/A 1.1×10−2 2.4×10−5

9.5×10−2 1.1×10−1 2.0×10−3 2.2 × 10−1 1.4×10−2 N/A 1.2×10−2 1.9×10−5

3.4×10−2 6.2×10−2 5.2×10−3 9.2 × 10−2 1.6×10−2 N/A 1.2×10−2 2.1×10−5

1.1×10−2 1.2×10−3 1.2×10−3 4.6 × 10−2 1.0×10−2 N/A 1.2×10−2 2.3×10−5

1.3×10−1 4.2×10−5 7.1×10−5 5.5 × 10−2 1.5×10−2 N/A 1.5×10−2 2.1×10−5

Table A7: Closed-loop MSE on the train data from ten different training runs for each
model for the Langmuir isotherm.

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

2.2×10−1 6.6×10−3 2.6×10−6 1.0 × 10−4 2.1×10−5 2.0×10−6 2.1×10−5 1.3×10−4

1.4×10−1 8.1×10−2 1.3×10−5 1.7 × 10−5 1.8×10−4 1.1×10−6 1.5×10−4 7.7×10−7

1.3×10−1 1.3×10−5 2.3×10−5 6.0 × 10−5 8.3×10−5 4.0×10−6 3.3×10−5 3.1×10−7

7.7×10−2 8.5×10−2 1.4×10−5 1.1 × 10−3 7.1×10−5 1.6×10−6 2.0×10−5 1.4×10−4

1.3×10−1 3.3×10−2 3.0×10−6 3.4 × 10−5 1.1×10−4 1.9×10−6 1.7×10−5 2.1×10−7

1.2×10−1 4.3×10−6 1.1×10−5 1.5 × 10−4 8.1×10−5 1.2×10−5 5.1×10−5 6.0×10−8

2.4×10−1 6.0×10−4 9.4×10−5 2.7 × 10−4 2.5×10−3 3.0×10−4 1.5×10−5 1.6×10−4

9.0×10−2 6.0×10−2 2.5×10−5 8.7 × 10−5 3.8×10−4 2.4×10−6 2.6×10−5 1.5×10−4

7.5×10−3 3.7×10−2 3.9×10−5 4.0 × 10−6 5.7×10−5 6.2×10−6 3.7×10−5 2.8×10−6

1.1×10−1 8.3×10−2 7.7×10−6 4.1 × 10−5 2.6×10−5 2.7×10−6 9.0×10−5 1.5×10−4

Table A8: Closed-loop MSE on the in-dis-test data from ten different training runs for
each model for the Langmuir isotherm.

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

1.2×10−1 2.0×10−2 3.9×10−5 3.2 × 10−2 2.3×10−4 5.3×10−4 4.9×10−4 1.5×10−4

1.2×10−1 6.8×10−2 1.2×10−3 8.3 × 10−2 1.1×10−3 1.0×10−4 6.6×10−4 1.1×10−6

8.2×10−2 6.4×10−4 3.9×10−4 4.4 × 10−1 5.6×10−4 1.1×10−4 1.0×10−3 2.2×10−7

1.1×10−1 4.7×10−2 4.8×10−4 2.3 × 10−1 6.1×10−4 1.4×10−3 1.3×10−4 1.5×10−4

1.2×10−1 4.5×10−2 3.2×10−4 3.8 × 10−2 7.9×10−4 8.9×10−4 9.1×10−5 1.6×10−7

1.7×10−1 6.3×10−4 1.0×10−4 4.3 × 10−2 3.6×10−4 1.6×10−3 1.5×10−3 9.2×10−8

2.9×10−1 3.2×10−3 5.2×10−3 1.1 × 10−1 5.0×10−3 5.8×10−2 3.1×10−4 1.7×10−4

5.6×10−2 3.9×10−2 9.3×10−4 1.2 × 10−1 1.8×10−3 8.5×10−4 1.2×10−3 1.6×10−4

2.1×10−2 3.6×10−2 7.7×10−4 9.2 × 10−3 5.9×10−4 5.3×10−5 3.6×10−3 3.9×10−6

7.5×10−2 5.2×10−2 3.9×10−4 4.5 × 10−2 2.6×10−4 1.7×10−4 4.2×10−3 1.6×10−4

Table A9: Closed-loop MSE on the out-dis-test data from ten different training runs for
each model for the Langmuir isotherm.

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

2.0×10−1 4.9×10−2 3.6×10−4 4.4 × 10−2 1.4×10−2 N/A 9.4×10−3 1.1×10−4

1.5×10−1 1.2×10−1 2.2×10−3 5.6 × 10−2 2.6×10−2 N/A 1.3×10−2 5.9×10−7

1.4×10−1 1.6×10−4 2.1×10−3 3.8 × 10−1 1.7×10−2 N/A 1.3×10−2 2.9×10−7

1.2×10−1 9.9×10−2 3.7×10−3 2.0 × 10−1 1.1×10−2 N/A 1.2×10−2 1.2×10−4

1.8×10−1 8.3×10−2 3.4×10−4 3.9 × 10−2 1.3×10−2 N/A 1.2×10−2 2.0×10−7

1.6×10−1 2.6×10−3 9.8×10−4 1.6 × 10−2 2.8×10−2 N/A 1.2×10−2 4.5×10−8

2.4×10−1 1.6×10−3 1.3×10−2 9.9 × 10−2 4.2×10−3 N/A 1.6×10−2 1.3×10−4

1.1×10−1 8.8×10−2 3.4×10−3 8.2 × 10−2 1.6×10−2 N/A 1.5×10−2 1.2×10−4

3.3×10−2 7.6×10−2 6.2×10−3 8.8 × 10−3 2.4×10−2 N/A 1.5×10−2 2.3×10−6

1.2×10−1 1.1×10−1 1.1×10−3 4.4 × 10−2 1.3×10−2 N/A 1.4×10−2 1.2×10−4
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Appendix B Complete Plots of Results1030

In this appendix, the complete plots for all predictions are presented to comple-1031

ment the discussion in section 4.1.2. For the dataset generated with the linear sorption1032

isotherm, Figure B1 and Figure B2 show the plots of the best model predictions of the1033

in-dis-test data for the dissolved and total concentration, respectively. Figure B3 and1034

Figure B4 show the plots of the best model predictions of the out-dis-test data for the1035

dissolved and total concentration, respectively. Figure B5 and Figure B6 show the plots1036

of the model predictions with the confidence interval of the in-dis-test data for the dis-1037

solved and total concentration, respectively. Figure B7 and Figure B8 show the plots of1038

the model predictions with the confidence interval of the out-dis-test data for the dis-1039

solved and total concentration, respectively.1040

For the dataset generated with the Freundlich sorption isotherm, Figure B9 and1041

Figure B10 show the plots of the best model predictions of the in-dis-test data for the1042

dissolved and total concentration, respectively. Figure B11 and Figure B12 show the plots1043

of the best model predictions of the out-dis-test data for the dissolved and total concen-1044

tration, respectively. Figure B13 and Figure B14 show the plots of the model predictions1045

with the confidence interval of the in-dis-test data for the dissolved and total concen-1046

tration, respectively. Figure B15 and Figure B16 show the plots of the model predictions1047

with the confidence interval of the out-dis-test data for the dissolved and total concen-1048

tration, respectively.1049

For the dataset generated with the Langmuir sorption isotherm, Figure B17 shows1050

the plots of the best model predictions of the in-dis-test data for the total concentra-1051

tion. Figure B18 shows the plots of the best model predictions of the out-dis-test data1052

for the total concentration. Figure B19 shows the plots of the model predictions with1053

the confidence interval of the in-dis-test data for the total concentration. Figure B20 show1054

the plots of the model predictions with the confidence interval of the out-dis-test data1055

for the total concentration.1056
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Figure B1: Plots of the dissolved concentration data generated with the linear isotherm
(red) and in-dis-test prediction (blue) using different models. The left column shows the
solution over x and t (red lines mark the transition from train to in-dis-test), the right
column visualizes the best solution of each model distributed in x at t = 10 000.
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Figure B2: Plots of the total concentration data generated with the linear isotherm (red)
and in-dis-test prediction (blue) using different models. The left column shows the so-
lution over x and t (red lines mark the transition from train to in-dis-test), the right
column visualizes the best solution of each model distributed in x at t = 10 000.
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Figure B3: Plots of the dissolved concentration data generated with the linear isotherm
(red) and out-dis-test prediction (blue) using different models. The left column shows
the solution over x and t, the right column visualizes the best solution of each model dis-
tributed in x at t = 10 000.
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Figure B4: Plots of the total concentration data generated with the linear isotherm (red)
and out-dis-test prediction (blue) using different models. The left column shows the solu-
tion over x and t, the right column visualizes the best solution of each model distributed
in x at t = 10 000.
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Figure B5: Prediction mean over ten different trained models (with 95% confidence inter-
val) of the dissolved concentration generated using the linear isotherm at t = 10 000 for
the in-dis-test dataset.

Figure B6: Prediction mean over ten different trained models (with 95% confidence in-
terval) of the total concentration generated using the linear isotherm at t = 10 000 for the
in-dis-test dataset.
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Figure B7: Prediction mean over ten different trained models (with 95% confidence inter-
val) of the dissolved concentration generated using the linear isotherm at t = 10 000 for
the out-dis-test dataset.

Figure B8: Prediction mean over ten different trained models (with 95% confidence in-
terval) of the total concentration generated using the linear isotherm at t = 10 000 for the
out-dis-test dataset.
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Figure B9: Plots of the dissolved concentration data generated with the Freundlich
isotherm (red) and in-dis-test prediction (blue) using different models. The left column
shows the solution over x and t (red lines mark the transition from train to in-dis-test),
the right column visualizes the best solution of each model distributed in x at t = 10 000.
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Figure B10: Plots of the total concentration data generated with the Freundlich isotherm
(red) and in-dis-test prediction (blue) using different models. The left column shows the
solution over x and t (red lines mark the transition from train to in-dis-test), the right
column visualizes the best solution of each model distributed in x at t = 10 000.
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Figure B11: Plots of the dissolved concentration data generated with the Freundlich
isotherm (red) and out-dis-test prediction (blue) using different models. The left column
shows the solution over x and t, the right column visualizes the best solution of each
model distributed in x at t = 10 000.
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Figure B12: Plots of the total concentration data generated with the Freundlich isotherm
(red) and out-dis-test prediction (blue) using different models. The left column shows
the solution over x and t, the right column visualizes the best solution of each model dis-
tributed in x at t = 10 000.
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Figure B13: Prediction mean over ten different trained models (with 95% confidence
interval) of the dissolved concentration generated using the Freundlich isotherm at
t = 10 000 for the in-dis-test dataset.

Figure B14: Prediction mean over ten different trained models (with 95% confidence in-
terval) of the total concentration generated using the Freundlich isotherm at t = 10 000
for the in-dis-test dataset.
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Figure B15: Prediction mean over ten different trained models (with 95% confidence
interval) of the dissolved concentration generated using the Freundlich isotherm at
t = 10 000 for the out-dis-test dataset.

Figure B16: Prediction mean over ten different trained models (with 95% confidence in-
terval) of the total concentration generated using the Freundlich isotherm at t = 10 000
for the out-dis-test dataset.
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Figure B17: Plots of the total concentration data generated with the Langmuir isotherm
(red) and in-dis-test prediction (blue) using different models. The left column shows the
solution over x and t (red lines mark the transition from train to in-dis-test), the right
column visualizes the best solution of each model distributed in x at t = 10 000.
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Figure B18: Plots of the total concentration data generated with the Langmuir isotherm
(red) and out-dis-test prediction (blue) using different models. The left column shows
the solution over x and t, the right column visualizes the best solution of each model dis-
tributed in x at t = 10 000.
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Figure B19: Prediction mean over ten different trained models (with 95% confidence in-
terval) of the total concentration generated using the Langmuir isotherm at t = 10 000 for
the in-dis-test dataset.

Figure B20: Prediction mean over ten different trained models (with 95% confidence in-
terval) of the total concentration generated using the Langmuir isotherm at t = 10 000 for
the out-dis-test dataset.
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