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Abstract

An uncalibrated distributed multiphysics snow model driven by downscaled weather forecasts (30-m, 15-min) was implemented

as a Radar Observing System Simulator (ROSS) in Senator Beck Basin (SBB), Colorado to elucidate topographic controls on

C-, X-and Ku-bands active microwave sensing of mountain snowpacks. Phase-space maps of time-evolving grid-scale ROSS

volume backscatter show the accumulation branch of the backscatter-snow water equivalent (σ-SWE) hysteresis seasonal loop

that is the physical basis for radar retrieval (direct inference) of SWE and snowpack physical properties. ROSS results with

snow-ground scattering correction inferred from snow-free conditions capture well the seasonal march of Sentinel-1 C-band

backscatter, including spatial patterns tied to elevation, slope, and aspect. Root Mean Square Deviations (RMSDs) do not

exceed ±3.2 dB for ripening snowpacks in early spring and ±2.4 dB for dry snowpacks in the accumulation season when

the mean absolute bias is < 1 dB for all land-cover types with topographic slopes 30°. Grid-point RMSDs are attributed to

the underestimation of snowfall on upwind slopes compounded with forecast errors for the weather near the ground. Like

Sentinel-1, ROSS backscatter fields exhibit frequency-independent single-scaling behavior within the 60-150 m scale range for

dry snowpacks in the accumulation season, while frequency-dependent scaling behavior emerges in the ablation season. This

study demonstrates skillful physical modeling capabilities to emulate Sentinel-1 observations in complex terrain. Conversely, it

suggests high readiness to retrieve snow mass and snowpack properties in mountainous regions from radar measurements at

high-spatial resolutions enabled by SAR technology.
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Abstract: An uncalibrated distributed multiphysics snow model driven by
downscaled weather forecasts (30-m, 15-min) was implemented as a Radar
Observing System Simulator (ROSS) in Senator Beck Basin (SBB), Colorado
to elucidate topographic controls on C-, X- and Ku-bands active microwave
sensing of mountain snowpacks. Phase-space maps of time-evolving grid-scale
ROSS volume backscatter show the accumulation branch of the backscatter-
snow water equivalent (�-SWE) hysteresis seasonal loop that is the physical
basis for radar retrieval (direct inference) of SWE and snowpack physical
properties. ROSS results with snow-ground scattering correction inferred from
snow-free conditions capture well the seasonal march of Sentinel-1 C-band
backscatter, including spatial patterns tied to elevation, slope, and aspect.
Root Mean Square Deviations (RMSDs) do not exceed ±3.2 dB for ripening
snowpacks in early spring and ±2.4 dB for dry snowpacks in the accumulation
season when the mean absolute bias is < 1 dB for all land-cover types with
topographic slopes � 30°. Grid-point RMSDs are attributed to the underes-
timation of snowfall on upwind slopes compounded with forecast errors for
the weather near the ground. Like Sentinel-1, ROSS backscatter fields exhibit
frequency-independent single-scaling behavior within the 60-150 m scale range
for dry snowpacks in the accumulation season, while frequency-dependent
scaling behavior emerges in the ablation season. This study demonstrates
skillful physical modeling capabilities to emulate Sentinel-1 observations in
complex terrain. Conversely, it suggests high readiness to retrieve snow mass
and snowpack properties in mountainous regions from radar measurements at
high-spatial resolutions enabled by SAR technology.

Keywords: topographic controls; microwave behavior; seasonal snow; model-
ing framework; scaling analysis

. Introduction
Snowfall deposition and accumulation in mountainous watersheds characterized
by complex topography and marked altitudinal gradients are highly heteroge-
neous and closely tied to elevation and aspect (Essery and Pomeroy, 2004; Lopez-
Moreno and Stahli, 2008). The spatial heterogeneity of the snowpack, in turn,
impacts hydrological processes such as melt and runoff (Anderton et al., 2002;
Colbeck, 1979; DeBeer and Pomeroy, 2017; Marsh and Woo, 1985). There-
fore, capturing the spatial variability of snowfall deposition and accumulation
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is essential to model alpine hydrology and snow water resources in mountainous
areas (Erickson et al., 2005; Jost et al., 2007). Due to the large errors in snowfall
deposition forecasts and the challenges and high costs of ground observations in
remote high elevation watersheds, satellite-based remote sensing monitoring of
snow water equivalent (SWE) is necessary. However, the spatial arrangement
of topography within microwave footprints has a significant non-linear influence
on snowpack radiative signals. For example, topographic reliefs with hillslopes
cast shadows and alter relative viewing angles at different locations within the
same view field (Dong et al., 2005; Smith and Bookhagen, 2016), which can
modify the relative strengths of horizontally and vertically polarized brightness
temperature (Dozier and Warren, 1982), and thus introduce ambiguity in the
estimation (retrieval) of geophysical states at the microwave measurement scale.

In the last decade, significant advances in deploying Synthetic Aperture Radar
(SAR) technology have enabled global remote sensing measurements at high-
spatial resolution. Using Sentinel 1 C-band data, Manickam and Barros (2020)
demonstrated that SAR measurements of seasonal snow exhibit distinctive spa-
tial characteristics uniquely tied to snowpack stratigraphy, landform, and land-
cover resulting in remarkable single-scaling behavior of backscatter imagery at
sub-kilometer scales for dry snow conditions. They also found area-variance
scaling relationships that reach minima at scales in the 100-250 m range over
complex terrain in the backscatter fields consistent with topographic controls
on snow deposition and snowpack stratigraphy in the absence of trees. Multi-
scaling emerges due to the characteristic length-scale of forest patchiness in the
landscape. One important implication of these findings is that Sentinel-1 mea-
surements upscaled to 100-250 m capture optimally physics-driven snowpack
heterogeneity.

Systematic characterization of the active microwave behavior of seasonal snow-
packs under realistic natural conditions is necessary to establish the physical
basis for interpreting SAR measurements and retrieval algorithms. For this pur-
pose, the Multilayer Snow Hydrology Model (MSHM, Cao and Barros, 2020)
coupled to the Microwave Emission Model of Layered Snowpacks (MEMLS,
Proksch et al., 2015) was introduced into the framework of the spatially dis-
tributed Duke Coupled Hydrology model (DCHM, Tao and Barros, 2018, 2019),
hereafter referred to as the Distributed Snow Multiphysics Model (DSMM).
DSMM was implemented at high spatial resolution (30-m) in High-Mountain
Colorado as a Radar Observing System Simulator (ROSS) of the seasonal snow-
pack in the Senator Beck Basin (SBB) to examine how topographic controls
on snow hydrologic processes are manifest in multi-frequency radar backscatter
(C-, X- and Ku-bands). Further, distributed synthetic radar measurements pre-
dicted by ROSS driven by weather forecasts were evaluated extensively against
Sentinel-1 C-band SAR daytime orbit data. This manuscript is organized as
follows: Section 2 describes the study area and available datasets. Methods are
detailed in Section 3, and the results and data analysis are presented in Section
4. Section 5 is the conclusions.
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2. Study Area and Datasets
2.1 Senator Beck Basin
The 2.91 km2 Senator Beck Basin area (37.85°N ~ 37.94°N, 107.75°W ~
107.67°W) is nestled in the western San Juan Mountains of southwestern
Colorado (Fig. 1). SBB is a typical Hight Mountain headwaters catchment
with elevations ranging from 3362 m (basin outlet) to 4118 m (basin summit).
SBB landcover is principally cold grassland with the alpine forest at low
elevations (Landry et al., 2014).

2.2 Atmospheric Forcing and Ancillary Data
The High-Resolution Rapid Refresh (HRRR) weather prediction model produces
hourly forecasts at 3 km resolution across the continental United States with
up to 18 h lead time (Benjamin et al., 2016). The first HRRR hour (+01 hr)
forecasts of near-surface air temperature, snowfall and rainfall rate, air pressure,
incoming shortwave and longwave radiation, wind speed, and specific humidity
were meteorological forcings in this study. The HRRR data were downloaded
from the Center for High-Performance Computing at the University of Utah
(Blaylock et al., 2017) for nine grid points encompassing SBB (Fig. 1). The
native (3km, hourly) data were bi-linearly interpolated into 3030 m2 grid cells,
and then linearly interpolated in time to 15-min intervals from September 1st,
2016 to July 28th, 2017. Air temperature at 2-m above ground and incom-
ing shortwave radiation were topographically corrected as per Tao and Barros
(2018). Spatially distributed gap-filled shortwave broadband albedo data were
derived directly from MODIS products (Table 1, Section 3.2 for methodology)
following Tao and Barros (2019).

2.3 Sentinel-1 SAR Measurements
The C-band (5.405 GHz) Sentinel-1 Level-1 single-look complex data in the In-
terferometric Wide swath mode processed to 1515 m2 were fractally upscaled
to 3030 m2 following Bindlish and Barros (1996). The geometric distortions in
Sentinel images were identified and screened out via the Sentinel Application
Platform modules. Data consisting of co-pol (VV) and cross-pol (VH) backscat-
tering intensity in descending path were explored in this study.

2.4 Ground Observations
The Center for Snow and Avalanche Studies (CSAS) has operated two field sites
(SBSP and SASP in Fig. 1) including instrumented meteorological towers and
a broad-crested notched weir (SBSG in Fig. 1) in the SBB since 2003. Data
collected at the sites contain hourly measurements of meteorological variables
(precipitation, temperature, humidity, wind, radiation fluxes, and atmospheric
pressure), snow depth, as well as streamflow starting in the water year 2005
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(Landry et al., 2014). Time series of snow profiles are manually collected at
SBSP and SASP throughout the winter season. The archived data (Center for
Snow and Avalanche Studies, 2013) can be obtained from https://snowstudies.
org/archived-data/.

In the present study, observations of SWE, snow depth, and streamflow between
September 1st, 2016 and July 28th, 2017 were selected to evaluate the downscaled
HRRR weather forecasts and assess the DSMM seasonal snow hydrology regime
in the SBB (Section 4.3.1).

3. Methods
3.1 Air Temperature Correction
To bridge the large spatial gap between the raw HRRR forecasts resolution (3
km) and the DSMM high-spatial one (30-m) needed to capture complex topog-
raphy, simple interpolation of air temperature with altitude is not adequate,
and a geopotential correction is necessary (Hamill, 2020; Hamill and Scheuerer,
2020; Tao and Barros, 2018). Consequently, the dynamic lapse rate (� in K/m)
was estimated from the HRRR temperature profile at two isobaric levels (700
and 500 hPa) above the local elevation for each 30-m pixel at each time step
(15-min), and the corrected HRRR air temperature 𝑇cor (K) at 2-m height is as
follows:

𝑇cor = 𝑇HRRR + Γ × �𝑧 = 𝑇HRRR + 𝑇700−𝑇500
𝐻700−𝐻500

× �𝑧#(1)

where �𝑧 is the elevation difference between the HRRR terrain elevation and
the 30-m SRTM DEM (Shuttle Radar Topography Mission Digital Elevation
Model) elevation; 𝑇700 and 𝑇500 are the HRRR temperature data at 700 hPa
and 500 hPa, respectively; and 𝐻700 and 𝐻500 are HRRR geopotential heights
at the corresponding pressure levels.

3.2 Surface Shortwave Broadband Albedo
The sequential workflow to produce 30-m, 15-min land surface albedo from
MODIS and HRRR products adapted from Tao and Barros (2019) is laid out
in Fig. 2. The raw MODIS and HRRR data over the SBB were spatially, bi-
linearly interpolated to the 3030 m2, then temporally, linearly interpolated to
15-min steps. Quality control includes filtering to eliminate cloud artifacts and
data gap-filling to replace missing data.

Before calculating blue sky (actual) albedo, HRRR surface pressure, 30-m
SRTM DEM, and MODIS MOD11B1 & MYD11B1 land surface temperature
data were fed into the Solar Position Algorithm from the National Renewable
Energy Laboratory (Reda and Andreas, 2004) to compute the hourly solar
zenith angle (SZA) for each grid point. Since the multi-angle implementation
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of atmospheric correction (MAIAC) aerosol optical depth data that contain
multiple orbit overpasses from both Terra and Aqua satellites did not produce
reliable Atmospheric Optical Depth (AOD) over snow (Lyapustin and Wang,
2018), we employed HRRR cloudiness and snow cover information to extract
AOD values on “clean air” days (snow cover and total cloud cover were both
less or equal to 30%). After that, the AOD for cloudy pixels was corrected by
the value on the nearest “clean air” day, and the mean AOD from all “clean
air” days was computed for snow-covered pixels.

Due to the lack of finer resolution albedo data accounting for local illumination
geometry and instantaneous SZA, we restored to the MCD43A3 product that
has been evaluated globally over representative locations and periods (Jin et al.,
2003; Liang et al., 2002; Schaaf et al., 2008; Wang et al., 2019b) to obtain the
SZA-dependent black-sky albedo (BSA) 𝛼bs and the white-sky albedo (WSA)
𝛼ws in terms of the Ross-Thick/Li-Sparse BRDF model (Schaaf et al., 2002):

𝛼bs(𝜃, 𝜆) =
𝑓iso(𝜆) × (𝑔0,𝑖𝑠𝑜 + 𝑔1,𝑖𝑠𝑜𝜃2 + 𝑔2,𝑖𝑠𝑜𝜃3) +
𝑓vol(𝜆) × (𝑔0,𝑣𝑜𝑙 + 𝑔1,𝑣𝑜𝑙𝜃2 + 𝑔2,𝑣𝑜𝑙𝜃3) +
𝑓geo(𝜆) × (𝑔0,𝑔𝑒𝑜 + 𝑔1,𝑔𝑒𝑜𝜃2 + 𝑔2,𝑔𝑒𝑜𝜃3)

#(2)

𝛼ws(𝜆) = 𝑓iso(𝜆) + 0.189184 × 𝑓vol(𝜆) − 1.377622 × 𝑓geo(𝜆)#(3)

of which 𝜃 is the SZA; 𝜆 indicates a MODIS spectral band (specifically 1-7 in
this paper); 𝑓iso(𝜆), 𝑓vol(𝜆), and 𝑓geo(𝜆) are the kernel parameters marking the
isotropic, volumetric, and geometric scattering, respectively; 𝑔0,𝑘, 𝑔1,𝑘, and 𝑔2,𝑘
(𝑘 ∈ {𝑖𝑠𝑜, 𝑣𝑜𝑙, 𝑔𝑒𝑜}) are constants.

To mitigate unreliable aerosol retrievals of the MCD43’s upstream surface re-
flectance data (Lyapustin and Wang, 2018), albedo quality flags (MCD43A2)
were utilized to isolate and retain the retrieved results with “best” and “good”
quality. However, this quality filtering resulted in extensive missing data over
the SBB. So the robust “smoothn” function combining bi-square weights with
Studentized residuals (Garcia, 2010) was applied to fill in data gaps.

Finally, the narrow-band actual sky albedo 𝛼 at seven MODIS bands were mod-
eled from the corresponding 𝛼bs and 𝛼ws weighted by the fraction of diffuse sky-
light 𝑆 (𝜃, 𝜏(𝜆)) which is a function of 𝜃 and band-dependent AOD 𝜏(𝜆) (Schaaf
et al., 2002):

𝛼(𝜃, 𝜆) = [1 − 𝑆 (𝜃, 𝜏(𝜆))] × 𝛼bs(𝜃, 𝜆) + 𝑆 (𝜃, 𝜏(𝜆)) × 𝛼ws(𝜆)#(4)

then the shortwave broadband albedo 𝐴(𝜃) is the weighted sum of 𝛼 at bands
1-7:

𝐴(𝜃) = 0.0036 + ∑7
𝑖=1 𝑐𝑖 × 𝛼(𝜃, 𝜆)#(5)
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in which 𝑐𝑖 is the conversion weight corresponding to MODIS bands 1-7 listed
in Table S2 (Liang et al., 1999).

3.3 Shortwave Radiation Correction
Following the workflow (Fig. 3) adapted from Tao and Barros (2018), the
topographic correction of the HRRR downward shortwave radiation flux mainly
relies on three auxiliary parameters: the local illumination angle 𝜃𝑖, the sky view
factor 𝑉𝑓 , and the terrain configuration factor 𝐶𝑓 . Apart from the local terrain
slope, the height and azimuth of the Sun influence the diurnal and seasonal
variations of the local illumination angle. 𝑉𝑓 measures the total fraction of
unobstructed sky seen on a slope in all directions, with a value of one indicating
that the sky is entirely unobstructed while zero indicates that the sky (and
diffuse radiation) is completely blocked by the surrounding terrain (e.g., at the
bottom of narrowed valleys). 𝐶𝑓 is the percentage of the hemispheric view
receiving reflected radiation from the surrounding terrain at a certain pixel
position and varies from 0 (only sky visible) to 1 (only terrain visible). Generally,
a larger sky view factor leads to a smaller terrain configuration factor (𝐶𝑓 ≈
1 − 𝑉𝑓). Parameters 𝑉𝑓 and 𝐶𝑓 were calculated by the Topographic Horizons
Toolbox (Dozier, 2021).

The total incoming shortwave radiation SWtot
↓ is composed of three components:

the diffuse radiation flux 𝐹 diff
↓ , direct irradiance 𝐹 dirct

↓ , and upwelling reflected
radiation 𝐹↑ from surrounding topography.

SWtot
↓ = 𝐹 diff

↓ × 𝑉𝑓 + 𝐹 dirct
↓ × cos 𝜃𝑖 + 𝐹↑ × 𝐶𝑓#(6)

𝐹↑ = 𝐴(𝜃) × [𝐹 diff
↓ × (1 − 𝑉𝑓) + 𝐹 dirct

↓ × cos 𝜃𝑖] #(7)

3.4 Distributed Snow Multiphysics Model (DSMM)
Figure 4 presents a schematic depiction of DSMM integrating three sub-models:
MSHM for snowpack processes, DCHM for distributed hydrology, and MEMSL
for microwave emission and scattering. In the implementation, runoff from snow
melting is routed as overland flow into the channel directly without accounting
for refreezing and remelting during routing. Therefore, temporary ponding on
ice layers is not represented, resulting in a more flashy streamflow response (Col-
beck, 1979). Also, the scattering contribution from the vegetation canopy with
and without intercepted snow is not explicitly represented. Detailed descriptions
and evaluations of the multilayer snow hydrology and the microwave emission
and scattering models can be found respectively in Kang and Barros (2012)
and Cao and Barros (2020). The distributed hydrology modeling framework is
described by Tao and Barros (2013) and Tao et al. (2016).

6



Since wet-bulb temperature 𝑇𝑤 is a better indicator than air temperature 𝑇𝑎
for snow-rain partitioning (Ding et al., 2014), especially in the higher and drier
continental mountainous regions in the Western United States (Wang et al.,
2019a), this study calculated 𝑇𝑤 as a function of 𝑇𝑎 and relative humidity RH
via an empirical equation (Stull, 2011):

𝑇𝑤 =
𝑇𝑎× tan−1 [0.151977 × (𝑅𝐻 + 8.313659)0.5] +
tan−1 (𝑇𝑎 + 𝑅𝐻) − tan−1 (𝑅𝐻 − 1.676331)+

0.00391838 × RH1.5 × tan−1(0.023101 × 𝑅𝐻) − 4.686035
#(8)

where the temperature units are [℃] and RH is expressed in [%].

Elevation-corrected downscaled HRRR air temperature (𝑇𝑎) time-series at the
two grid points coinciding with the two ground-validation sites’ locations cap-
ture well the variation throughout the hydrologic year within the realistic range
defined by the observational maxima and minima at the two meteorological tow-
ers (Fig. 5). Note that the HRRR data are gridded areal estimates, whereas
the tower observations are point measurements, and thus the amplitude of the
observed diurnal range is expected to be more significant.

The observational albedo value 𝐴obs can be derived from radiation observations
at the two tower sites as follows:

𝐴obs = 𝑅up

𝑅down+𝑅diff #(9)

where 𝑅up, 𝑅down, and 𝑅diffare respectively pyranometer-measured upward,
downward, and diffusive shortwave broadband radiation fluxes in [W/m2]. De-
spite quality control, the raw radiation flux data exhibit unphysical behavior,
which results in unrealistic variability in the derived albedo estimates at SASP
and SBSP, and thus post-processing is required.

The gridded albedo data derived for this study differs from the local tower
estimates in two ways: 1) higher values in the second half of the accumulation
season (e.g., February and March), thus leading to colder snowpack surface
temperatures and delaying the onset of melt, and 2) persistent higher values
through the end of June corresponding to a nearly two-week delay snowpack
retreat. The latter was corrected by interpolating linearly between June 1st and
the date when snow-free conditions are reached at SASP and SBSP (Fig. 6)
and distributing the correction linearly with elevation. The spatial maps in Fig.
7 illustrate the intra-seasonal variations of the shortwave broadband albedo
linked to snow cover and intrinsic land surface properties indicated by Eqs. 2
and 3. Independent evaluation of this albedo product can be done indirectly
by monitoring the temporal evolution of melt runoff against the streamflow
observations at the SBB outlet.
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3.5 Scaling Analysis
The spatial statistics of simulated snowpack backscattering behavior at C-, X-,
and Ku-bands as a function of scale were examined by aggregating the backscat-
tering from 900 m2 to ~0.13 km2 as listed in Table 2 to isolate relatively ho-
mogenous square areas within the heterogeneous SBB. Specifically, as marked
in Fig. 8, three 720720 m2 (= 2424 pixels) subregions (A, B, and C) with
different landcover types were carefully identified at different altitudinal bands
for scaling analysis. The closeness to the basin divide limited the size of the
subregions, which is an expected constraint in complex terrain. Scaling analysis
was conducted by examining variance changes with spatial scale and tracking
slope changes in the power spectra of simulated and observed backscattering
fields through different snowpack phases (accumulation, ripening, and thawing).
The power spectra of simulated and observed fields |𝐸(𝑘)|2, where 𝑘 is the
wavenumber, can be modeled via a power-law like the form:

|𝐸(𝑘)|2 ∝ 𝑘𝛽#(10)

in which the spectral slope 𝛽 between two selected scales (or wavenumbers) can
be estimated by applying the log transform to Eq. 10:

𝛽 ∝ � log(|𝐸(𝑘)|2)
� log 𝑘 #(11)

The spectral slope quantifies the backscatter energy distribution across scales,
and changes in spectral slope between adjacent scales (i.e., scaling break) in-
dicate a shift in scaling behavior. Following Manickam and Barros (2020),
the working hypothesis is that snowpack physical property evolution leading
to active microwave backscattering variation (Cao and Barros, 2020) can be
identified by weather-driven changes in the scaling factor 𝛽. Identifying single-
scaling behavior (𝛽 = constant) between two characteristic scales means that
the backscatter fields at smaller scales can be upscaled to larger scales via fractal
upscaling while preserving the spatial statistical structure (Bindlish and Barros,
1996).

4. Results and Analysis
4.1 DSMM Simulations
4.1.1 Snow Hydrology Regime

The predictive skill of the coupled MSHM-DCHM framework driven by HRRR
1st hour forecasts from the beginning of September 2016 to the end of June 2017
was assessed by comparison against streamflow observations at the SBB outlet,
as well as time-series of observed SWE and snow depth at the two CSAS sites.
Fig. 9a shows that the distributed model captures well the runoff peak time and
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the major melting periods after the onset of persistent melt in mid-May through
the end of June. The discrepancy between cumulative HRRR and observed pre-
cipitation at SASP is ~0.2 m at the end of June, indicating an approximate 20%
underestimation by HRRR. Interestingly, the difference was only 0.1 m on 3/1
and then doubled by 4/1 (Fig. 9b) because of a series of rain-on-snow events as
illustrated by concurrent increased SWE and decreased snow depth (Fig. 10a
and c) in the last two weeks of March, as well as temporarily lower albedo at
SASP and SBSP (Fig. 6) in late March. The total HRRR snowfall underesti-
mation inferred from the difference between the observed and simulated runoff
is ~0.3 m (Fig. 9a). Fig. 10b and d suggest snowfall underestimation at high
elevations (e.g., SBSP) is much smaller than that at lower elevations.

One implication of the HRRR precipitation underestimation and colder air tem-
peratures (Fig. 5) is that the simulated volume backscattering in February and
effective attenuation of snow-ground backscatter in April should be significantly
lower than those detected by Sentinel-1. In addition, cold temperatures delay
snowpack ripening, constrain daytime surficial melting, and hence reduce the
number of refreeze-melt cycles (nighttime freeze followed by daytime melt) that
impact snowpack microphysics, specifically the coarsening of the snowpack top
layers.

4.1.2 Snow Microwave Behavior

The MEMLS-simulated total backscatter 𝜎total is the combination of volumetric
backscatter �, backscatter at the snow-air interface 𝜎𝑠−𝑎, and backscatter at
the snow-ground interface 𝜎𝑠−𝑔. The temporal evolution of areal mean volume
backscatter at X- (9.6 GHz) and Ku- (17.2 GHz) bands for each subregion and
grid point (Fig. 8) across the SBB are illustrated in Fig. 11 for HH and VH
polarizations at 7 AMMST when surficial melting tied to insolation is minimized
until the transition season. The phase-space maps reveal �-SWE hysteresis loops
similar to those over the Grand Mesa at 3 km resolution (Cao and Barros, 2020).
The accumulation branch of the �-SWE hysteresis loop presents a monotonic
increase in backscatter with SWE throughout the cold season with stronger
heterogeneity at grid-point scale and thus strong sensitivity that is the physical
basis for immediate inference of SWE (i.e., SWE retrieval) from backscatter
measurements when the snowpack is dry. There is negligible sensitivity in the
ablation branch of the �-SWE hysteresis loops at areal or point scales.

𝜎𝑠−𝑎 is tied to snow surface roughness patterns typically associated with wind re-
distribution of dry snow and surficial or deep snowmelt patterns. 𝜎𝑠−𝑔 depends
on roughness characteristics at the sub-grid scale as well as dielectric properties
of the substrate. To quantitatively understand the time-evolving backscatter-
ing contribution at the air-snow and ground-snow interface as the snowpack
stratigraphy and wetness change in response to weather, a suite of ensemble
experiments was conducted for varying roughness patterns of snow and ground
surface reflectivity (Table 3). In short, Ensemble 0 neglects 𝜎𝑠−𝑎 and 𝜎𝑠−𝑔,
Ensemble 1 neglects 𝜎𝑠−𝑔, and Ensembles 2-5 explore the sensitivity to reflec-
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tivity and the specular fraction of reflectivity (null for Ensemble 2 and 80% for
Ensemble 5).

The temporal evolution of ensemble mean variability at C-band (5.6 GHz) in
subregion A as a function of top-layer snow correlation length, top-layer liquid
water content (LWC), and total SWE is examined in Fig. 12 from February
through June. Surficial melting caused by warming events results in large di-
urnal backscatter fluctuations, of which amplitude increases from February to
June. Note the remarkable contribution of 𝜎𝑠−𝑔 to total backscattering, as illus-
trated by the contrast between the backscatter range in Ensemble 1 (Fig. 12a)
and Ensembles 2 (Fig. 12d) and 5 (Fig. 12g). For dry snowpacks in Febru-
ary, the uncertainty stemmed from ground surface reflectivity (Ensemble 5) is
much more considerable than that at the snow-air interface (Ensemble 1) corre-
sponding to an offset of about 10 dB. Further, the specular fraction of ground
surface reflectivity controls backscattering sensitivity with an extensive � range
(uncertainty) when the snowpack is dry in February (Figs. 12d and g) that
contracts as the snowpack ripens, LWC increases, and attenuation dominates
(Figs. 12e and h, Figs. 12f and i). Strong daytime attenuation is associated
with increased top-layer LWC, especially in June (Fig. 12f). Thus, the surficial
melting pattern tied to topography is translated into spatial variability in the
microwave domain. By the end of June, the amplitude of the diurnal cycle is
controlled by LWC, and uncertainty within subregion A is determined by the
diurnal cycle of shallow snowpacks with coarse grain size.

The temporal evolution of ensemble average backscatter variability in subregions
A and C as a function of top-layer snow correlation length, top-layer liquid water
content (LWC), and total SWE is examined in Fig. 13a (C-band) and b (X-
band). The objective is to explore the frequency-dependent behavior at high
(A) and low (B) elevations in late spring when snowpack melt is ongoing. The
diurnal cycle of air temperature is characterized by warm daytime and cold
nighttime values, with the durations above freezing being longer in C than in A.
As the snowpack becomes progressively depleted and shallower, there is a rapid
coarsening of the microphysics. This process, combined with melting that lasts
longer in C than in A, results in negative diurnal fluctuations of backscatter.
The contribution of 𝜎𝑠−𝑔 is fully attenuated during daytime because of high
LWC, and thus increment in total backscatter (Ensemble 1 v.s. Ensembles 2
and 5) only presents at night after the snowpack liquid water refreezes. Fig.
13b shows that the nighttime uncertainty is lower at X-band compared to C-
band and higher in subregion C (low elevations, shallower snowpacks) compared
to A (high elevations) in May, owing to the dominant contribution of ground
backscatter to total backscatter. The sensitivity to daytime attenuation is higher
at X-band, with no significant differences in the diurnal amplitude of backscatter
fluctuations between A and C as the LWC in the top layer is the dominant
control.

The Taylor diagrams in Fig. S2a synthesize �-SWE sensitivity to model pa-
rameters (Table 3) quantified in terms of the standard deviation of the differ-
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ences and the correlation coefficient between Ensemble 0 and each of Ensemble
1 (snowpack surface roughness), Ensemble 2 (ground surface reflectivity), and
Ensemble 5 (Ensemble 2 with specified specular component) for the three sub-
regions (A, B, and C) as a function of frequency (C-, X-, and Ku-bands) from
December through June. For dry shallow snowpack conditions in December (~20
cm SWE, Fig. S2b), ground reflectivity is the dominant driver of sensitivity
independently of frequency. Increasing specular reflectivity increases sensitivity
at C-band for all snow-on conditions but only at X- and high Ku-bands for dry
shallow snowpacks. The step-change in sensitivity between shallow and deep
snowpack conditions at Ku-band is tied to the shallow penetration depth. The
distinct behavior between C- and X- band for deeper snowpacks hints at the pos-
sibility of using changes in dual-frequency backscatter behavior to learn about
snowpack vertical structure. Sensitivity to surface roughness is significant for
shallow snowpacks; it can be neglected for deep snowpacks unless there are snow
drifts and snow dunes as a consequence of wind redistribution and, or grid-scale
mass transport processes that have not been considered here.

4.2 Scaling Behavior of Simulated Volumetric Backscatter
Following the aggregation scheme in Table 2 and using Ensemble 0 simulations
at Sentinel-1 overpass time, the variance-area scaling relationship of simulated
C-, X- and Ku-bands volume scattering �-VV and �-VH over the three subre-
gions A, B, and C at 13:15 MST on three dates corresponding to accumulation
(2017/2/19), ripening (4/25), and thawing (6/19) stages of the seasonal snow-
pack, are shown in Fig. 14. The variance is maximum at the native spatial
resolution (i.e., the grid size of 30-m) and decreases with upscaling. The vari-
ance is higher in subregion C across all scales and decreases with elevation from
C to A. Scaling breaks, regardless of subregion and frequency, occur between
120-180 m length scales, in agreement with results obtained by Manickam and
Barros (2020) for Sentinel -1. This is confirmed by Fig. S3 displaying simi-
lar Sentinel-1 area-variance curves for each subregion. Note the strong scaling
break at 150 m over high-elevated subregion A for X- and Ku-bands capturing
the emergence of snow on-off patterns in SBB (Fig. S1) in June, but not for
C-band. This result suggests that X-and Ku-band measurements are more apt
to contain information about snowpack spatial heterogeneity (i.e., snow cover
gaps) than C-band.

The 2D spatial power spectra of simulated volume backscatter (Fig. 15) were
examined to characterize scale-dependent backscattering structures tied to snow
mass accumulation and snowpack stratigraphy during the snow season. The
power spectra exhibited persistent single-scaling behavior in the 60-150 m scale
range with a scaling break (denoted by the brown dashed vertical line at 150
m) and the flattening of spectra at longer wavelengths like the variance scaling
break identified in Fig. 15. The flattening of the spectra is an artifact owing
to the small domain size of SBB, thus constraining the range of scaling analysis.
The spectral slopes in the 60-150 m wavelength range (delimited by green and
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brown vertical lines in Fig. 15 top left panel) are summarized in Tables S3-S5
for �-HH and �-VH). Sentinel-1 spectra exhibit single-scaling behavior (Fig. S4)
with slopes that closely match the ones from the simulations.

The minor differences in the shape of the power spectra in February (accumu-
lation season, left panels in Fig. 15) for the same frequency imply that the
distribution of snow mass on the terrain dominantly controls the volume scatter
scaling behavior similar to that exhibited by Sentinel-1 observations over Grand
Mesa (Manickam and Barros, 2020). The frequency-independent behavior per-
sists through the end of April (mid-panels in Fig. 15), highlighting the robust
physical basis of simulated backscattering structures for dry snowpacks, as well
as the potential to exploit multi-frequency simulations to retrieve snow prop-
erties. By mid-June, the snowpack is shallower and patchy at high elevations
reflecting solar insolation patterns and has vanished at low elevations, result-
ing in distinctive scaling behavior at 17.2 GHz (Fig. 15 and Fig. S1). This
suggests the potential utility of exploring these differences to infer snowpack
conditions.

4.3 Radar Observing System Simulator (ROSS)
An intercomparison of simulated Sentinel-1 C-band SAR backscatter measure-
ments and simulated total backscatter for daytime orbits over the SBB was
conducted to evaluate DSMM’s utility as a Radar Observing System Simulator
(ROSS). Neglecting 𝜎sr as per the sensitivity analysis in Section 4.1.2, the total
backscattering 𝜎total from the ground-snow-vegetation system at the grid scale
can be decomposed as the following:

𝜎total(𝑡) = 𝜎(𝑡) + 𝜎𝑠−𝑔(𝑡)+𝜎veg(𝑡)�
𝜎bkg(𝑡)

#(12)

where the snowpack volume backscattering � and the backscatter at the
snowpack-ground surface interface 𝜎𝑠−𝑔 are simulated by the DSMM forward
modeling system. Here, we refer to the sum of the backscattering contribution
from the snow-ground interface 𝜎𝑠−𝑔 and from the double-bounce scattering
𝜎veg representing snow-vegetation interactions that are not described in the
DSMM as the background field 𝜎bkg in Eq. 12. Details on the ground dielectric
properties, surface roughness, and landform at sub-grid scale (< 30 m) are
unavailable, i.e., effective surface reflectivity is unavailable for SBB or generally
elsewhere. Due to the complex topography and high spatial heterogeneity of
land-cover and geological features in the SBB, calibration of model parameters
at the grid-point scale is required, and forested areas would have to be
masked off since vegetation scattering processes are not described in the model.
Because the HRRR weather forecasts underestimate precipitation, calibration
would result in anomalous estimates of surface reflectivity to compensate for
the propagation of forecast errors in snow mass and snowpack conditions.
Instead of calibration, we investigated the feasibility of utilizing Sentinel-1
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backscatter information from snow-free conditions to estimate the upper bound
𝜎+

bkg which is the background contribution when the snowpack is dry and
essentially transparent. As the snowpack changes include significant coarsening
of microstructure, layering, and surficial melt, 𝜎bkg(𝑡) contributed to the total
backscatter can be described as a non-linear modification of 𝜎+

bkg:

𝜎bkg(𝑡) = 𝜎+
bkg × [1 − 𝛾(𝑡)] #(13)

where the effective attenuation parameter 𝛾(𝑡) quantifies the integrated impact
of snowpack vertical structure.

Because the local incidence angle of an airborne or satellite-based instrument is
modified by complex topography (Fig. S5), the viewing geometry was corrected
pixel-by-pixel to account for the effect of the local slope steepness angle 𝛼:

𝜃𝑐 = |𝜃 − 𝛼|#(14)

where 𝜃 is the Sentinel-1 incidence angle and 𝜃𝑐 is the terrain-corrected viewing
angle (Hoekman and Reiche, 2015; Vollrath et al., 2020). Sentinel-1 mid-day
measurements in February over the SBB exhibit localized patterns of enhanced
𝜎total-VV and -VH backscatter (Figs. 16a and b) associated with high snowfall
accumulation in mid-February at low elevations and moderate slopes (Figs. 16c
and d), as well as attenuation owing to shallow snowpacks on steep slopes at
high elevations when configuring the observational incidence angle within the
29.1° ~ 46° range (De Zan and Guarnieri, 2006).

Sentinel-1 backscatter measurements from eight daytime (descending) over-
passes for snow-free conditions in the 2016 summer were first selected (Fig. S6)
to estimate 𝜎bkg by averaging the backscatter fields in descending (daytime)
orbits. 𝜎bkg ranges from -20 dB to 0 dB for VV polarization and captures
well defined landform features showing much lower values over the west-facing
steep slopes above the Senator Beck Mine, as well as the enhancement over
the low-elevation forested areas and the rocky grasslands with mild slopes at
mid-elevations (Fig. S7 and Fig. S8). The utility of Sentinel-1 snow-free
daytime measurements from individual overpasses in the summer and the fall
several days after the last precipitation event (i.e., dry surface conditions) were
also investigated to isolate the effects of soil moisture and surface temperature.
A summary of mean Root Mean Square Deviation (RMSD) between the
modified 𝜎total (sum of DSMM volume backscatter 𝜎 from Ensemble 0 and
𝜎bkg without attenuation correction) and Sentinel-1 backscatter measurements
is presented in Table 4 for different land-cover classes in SBB (see Fig. S8 for
land-cover map) on the same two dates in February (dry snowpack conditions)
and April (ripening snowpack conditions) used in the scaling analysis.

Employing the summer daytime average backscatter to estimate 𝜎bkg yields the
best RMSD with values below ±2.5 dB for dry snowpack conditions and below
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±3.5 dB in the spring transition. The corresponding scatter plots in February
and April are shown by Fig. 17 and Fig. 18, respectively. The results
are in good agreement with the Sentinel-1, especially for gentle and moderate
slopes (� 30°) and bare ground and forested areas, albeit with lower bias and
RMSD in February (Table 5). This is expected since dry snowpacks are almost
transparent at C-band, and the backscatter at the snow-ground interface is
dominant (Veyssiere et al., 2019) as opposed to the presence of surficial melting
in April depending on topographic aspects.

The complex structure and heterogeneous distribution of intercepted snow in
dense forests greatly reduce the SAR signal’s sensitivity to the snowpack beneath
the canopy (Montomoli et al., 2016). Indeed, there is a substantial underesti-
mation of the highest backscatter values in Sentinel-1 (Fig. 17b) in February
in the forest areas but not in April (Fig. 18b), which can be interpreted as the
evidence of snow accumulation on the tree canopy tied to the interception that
is not considered in DSMM and has melted by the end of April. This implies
the potential challenges for independent SAR retrievals of SWE in forested ar-
eas if unconstrained by the time-series antecedent snow accumulation history to
provide situational context regarding the snowpack below the canopy.

The statistics are generally poorer for the grasslands in the central SBB (Table
4 and Fig. 18c), and more so in April during the spring transition when the
ripening snowpack is also shallower. Fig. S7 and Fig. S8 illustrate that the
grassland class from the 2016 National Land Cover Dataset should be reclassified
into two distinct types: G1 - rocky outcrops with patches of alpine grass, and
G2 - sparse forest and alpine grass on a complex escarpment. The high values of
𝜎bkg are therefore consistent with the ground surface roughness characteristics
in G1. This points to the importance of accurate landcover classification at high
spatial resolution (Löw et al., 2002) with critical implications for SAR remote-
sensing. The DSMM predicts high LWC for grassland snowpack, which suggests
that neglecting attenuation may be the principal cause for the overestimation
of total backscatter on the moderate slopes of the central basin.

Since the separate contributions of volume and effective background scattering
contributions are not known, the actual effective attenuation parameter 𝛾(𝑡)
inherent to the Sentinel-1 measurements is unavailable. To address this limi-
tation, we hypothesize that the change in the difference between Ensemble 5
and Ensemble 0 backscatter from dry snowpack to ripe snowpack conditions
can be used to estimate the effective spatially attenuation parameter that cap-
tures the evolution of simulated snowpack structure (Fig. S9a). Applying the
attenuation correction in Eq. 13 results in significant improvements in mean
bias on 2017/4/25 for moderate slopes up to 30°: a decrease from -1.1 to -0.2
dB for barren land and a decrease of -0.9 to -0.1 dB for grassland. Note that
HRRR snowfall underestimation at mid-elevations where grassland dominates
is slight (e.g., SBSP in Fig. 10). The improvement in RMSD is small because
of high spatial variability in the aspect that affects the spatial distribution of
surficial melt and the range of the attenuation parameter (Fig. S9b). The
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positive bias and RMSD increase for landcover classes in slopes > 30°, albeit for
a small number of grid points with very steep slopes (e.g., Fig. 18c) at high
elevations, suggesting the dry snowpack mass overestimation on steep slopes
compounded with HRRR forecast errors in air temperature and wind. This
overestimation could not be assessed in Section 4.1.1 due to the lack of ground
observations. Nevertheless, substantial improvement suggests a straightforward
path toward estimating surface reflectivity aided by physical modeling and ob-
servations in complex terrain. Therefore, ROSS experiments could be designed
to backpropagate corrections from SAR measurements to improve the spatial
snowfall distribution in the future.

5. Conclusions
The objective of this study to elucidate topographic controls on snow hydrol-
ogy and active microwave behavior of seasonal alpine snowpacks. To this end,
a coupled distributed snow hydrology-radiative transfer modeling framework ����
DSMM (Distributed Snow Multiphysics Model), forced by interpolated weather
forecasts (HRRR) at high spatio-temporal resolution (30-m, 15-min), was de-
ployed to predict the spatial and temporal distribution of the snowpack struc-
ture and multifrequency radar backscatter across the Senator Beck Basin (SBB)
in the Rocky Mountains, Colorado for the hydrologic year 2016-2017. The high
resolution is necessary to capture the complex topography in the SBB and to
match the spatial resolution of SAR measurements for forward modeling studies.
Because of the resolution gap between the native resolution of the atmospheric
forcing (3-km) and the DSMM resolution (30 m), elevation-pressure corrections
were applied to improve the fidelity of the HRRR forecasts. DSMM fixed pa-
rameters are specified based on information about stable land-surface attributes
from ancillary data and the literature, whereas time-varying parameters such
as albedo are estimated from remote-sensing measurements wherever and when-
ever possible. Because existing standard albedo products at high elevations in
the SBB were strongly affected by cloud contamination, a new high-resolution
albedo product (30-m, 15-min) was derived from MODIS reflectance measure-
ments using HRRR weather information to guide spatial interpolation. The
SBB-specific albedo values compare well with albedo values derived from tower-
based radiation fluxes, albeit overestimated late in the melt season. The latter
could indicate spatial heterogeneity not being captured at the tower point-scale;
however, the missed early spring melt runoff in the simulated streamflow sug-
gests that the albedo is indeed overestimated at lower elevations, which has a
positive feedback resulting in colder temperatures and delayed melt. Despite
HRRR underestimation of precipitation at low elevations, DSMM prognostic
simulations over the SBB capture well the observed runoff at the outlet, specif-
ically the peak melt time.

Sensitivity analysis of parameters governing backscatter throughout the evolu-
tion of the seasonal snowpack agrees with the theory (e.g., Tsang and Kong,
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2001; Tsang et al., 2000; Tsang et al., 1985). Ground surface reflectivity is
the dominant driver of sensitivity and uncertainty at C- and X-bands in the
accumulation season, and it decreases with frequency for deep snowpacks. For
shallow snowpacks up to ~20 cm, sensitivity is independent of frequency. For
the high Ku-band (17.2 GHz) sensitivity decreases qsharply after the dry snow-
pack exceeds 20 cm SWE. In the transition season, the temporal evolution of
the ensemble variability shows the space-time distribution of surficial LWC and
melt-refreeze cycles, which follows closely insolation patterns determined by to-
pography.

The 2D power spectra of simulated backscattering fields exhibit consistent multi-
scaling behavior for dry snowpacks in the accumulation season: amplitude de-
creases uniformly with increasing frequency (and with decreasing penetration
depth), and scaling breaks occur at ~150 m. During the ripening season start-
ing in April, the spectra overlap consistent with frequency-independent behav-
ior due to surficial melt effects dominating scattering. During the melt sea-
son (June), distinct power spectrum magnitudes at scales below the scaling
break (< 150 m) are tied to the patchiness of snow-free gaps that also impacts
the variance-area relationships at small scales. Overall, the scaling analysis
of DSMM simulations is in agreement with results for Sentinel-1 in the SBB
(this work) and in mountainous regions elsewhere (e.g., Manickam and Barros,
2020). The generality and physical-basis of these findings supports upscaling
high-resolution SAR measurements in complex topography to spatial scales of
120-150 m, above which frequency-independent scaling behavior that depends
only on SWE and snowpack physical properties prevails.

The Radar Observing System Simulator (ROSS) study further confirms there
is a robust skill in state-of-the-art forward-modeling and interpretation of cou-
pled snow hydrology and microwave backscattering at high resolution in com-
plex terrain. Root Mean Square Deviations (RMSDs) between DSMM simual-
tions and Sentinel-1 do not exceed ±3.2 dB for ripening snowpacks in early
spring and ±2.4 dB for dry snowpacks in the accumulation season. Grid-point
RMSDs result from underestimated snowfall forecasts on upwind slopes and
close-to-ground weather forecasting errors. Mean absolute bias is < 1 dB for
all land-cover types on topographic slopes up to 30°, except for alpine grass
on rocky outcrops (slopes � 30°) due to underestimated attenuation of snow-
ground interface backscatter. Application of a model-derived spatially and tem-
porally varying attenuation correction of snow-ground scattering that captures
place-based present-time snowpack conditions lead to decreases in bias at mid-
elevations and moderate slopes by nearly one order of magnitude in the SBB.
This suggests a pathway for physics-guided operational estimation of snowpack
properties at high-spatial resolution enabled by SAR technology. Specifically, a
modeling framework such as DSMM constrained by previous measurements via
data-assimilation can be used to simulate snowpack structure and to separate
ground scattering from volume scattering from SAR measurements either in the
context of immediate or Bayesian inference, and thus improve the performance
of SWE retrieval where ground-validation (GV) is not available for algorithm
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calibration.
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