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Abstract

In this study, a simple stochastic representation of the microscale spatial variability in thaw depth in permafrost regions

was proposed. Thaw depth distribution measured in the two larch-type forests in eastern Siberia, Spasskaya Pad and Elgeeii,

showed different spatial, seasonal, and interannual variability, respectively. Minor year-to-year variation in active-layer thickness

was observed in Spasskaya Pad, where a transient layer may constrain further thawing. A gamma distribution accurately

represented the thaw depth spatial variability in both sites as the cumulative probability. Thus, a simple model illustrating the

spatiotemporal variation in thaw depth as a function of the mean thaw depth was developed using the gamma distribution. A

hierarchy of models was introduced that sequentially considered the constant state, linearity, and non-linearity in the dependence

of the rate parameter of the gamma distribution for the mean thaw depth. Although the requirements of the model levels differed

between Spasskaya Pad and Elgeeii, the proposed model successfully represented the spatial variability in thaw depth at both

sites during different thaw seasons.
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Key Points:12

• Gamma distribution represented spatial variabilities in thaw depth in two permafrost13

boreal forests in East Siberia.14

• Spatial variability in thaw depth at different thawing stages was modeled using15

the gamma distribution varying with mean thaw depth.16

• A transient layer limited interannual variability of active-layer thickness and al-17

ter seasonal progress in spatial variability thaw depth.18
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Abstract19

In this study, a simple stochastic representation of the microscale spatial variability in20

thaw depth in permafrost regions was proposed. Thaw depth distribution measured in21

the two larch-type forests in eastern Siberia, Spasskaya Pad and Elgeeii, showed differ-22

ent spatial, seasonal, and interannual variability, respectively. Minor year-to-year vari-23

ation in active-layer thickness was observed in Spasskaya Pad, where a transient layer24

may constrain further thawing. A gamma distribution accurately represented the thaw25

depth spatial variability in both sites as the cumulative probability. Thus, a simple model26

illustrating the spatiotemporal variation in thaw depth as a function of the mean thaw27

depth was developed using the gamma distribution. A hierarchy of models was intro-28

duced that sequentially considered the constant state, linearity, and non-linearity in the29

dependence of the rate parameter of the gamma distribution for the mean thaw depth.30

Although the requirements of the model levels differed between Spasskaya Pad and El-31

geeii, the proposed model successfully represented the spatial variability in thaw depth32

at both sites during different thaw seasons.33

Plain Language Summary34

In permafrost regions, the seasonal thaw depth in the soil is distributed heteroge-35

neously. Depending on the local conditions of the climate, surface, and soil, its distri-36

bution varies temporally during the thaw season. Thus, it is challenging to represent the37

spatial thaw depth distribution using a physical model. If we assume that the thaw depth38

is distributed randomly in space, the spatial variability can be represented in a stochas-39

tic manner. We successfully represented the cumulative probability of the measured thaw40

depths in this study in two larch forests in eastern Siberia using a gamma distribution.41

In addition, we developed a model to represent spatiotemporal variability in thaw depth42

as a function of the mean thaw depth.43

1 Introduction44

The active layer, the uppermost soil layer above the permafrost, is subject to sea-45

sonal freezing and thawing. Many biological, ecological, hydrological, geophysical, and46

biogeochemical processes occur in the active layer of the permafrost region (Anisimov47

et al., 2002; Connon et al., 2018; Fisher et al., 2016). Observations of the active layer48

and near-surface permafrost reveal how they respond to climate change. Intensive mon-49
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itoring of the end-of-season thaw depth (active-layer thickness, ALT) has been conducted50

at various locations over long periods, as represented by the Circumpolar Active Layer51

Monitoring (CALM) program (Brown et al., 2000; Nelson et al., 2004). A grid-sampling52

design allowed for intra- and inter-site spatial variability analyses, and ALT was highly53

variable in space and time, even on a microscale (Nelson et al., 1998, 1999; Hinkel & Nel-54

son, 2003; Watanabe et al., 2003). An essential objective of monitoring the spatial and55

temporal variability in ALT was the determination of spatial representativeness (Brown56

et al., 2000).57

Microscale spatial variability in thaw depth can affect the ecophysiological processes58

of permafrost forest ecosystems. At the beginning of the 21st century, from 2004 to 2008,59

a larch forest in Spasskaya Pad in eastern Siberia endured approximately 1.5 to 2 times60

more precipitation than usual (Iwasaki et al., 2010). During this period, high soil wa-61

ter conditions adversely affected larch tree growth (from 2005 to 2008), damaging and62

killing some trees (Iwasaki et al., 2010). Yellowing and browning of larch leaves during63

the growing season (Iwasaki et al., 2010) and significantly reduced sap flow (Iijima et al.,64

2014) confirmed this observation. Overwet soil conditions and subsequent damage and65

death of trees reduced the fluxes of water vapor and carbon dioxide in this larch forest66

ecosystem (Ohta et al., 2014). Most importantly, Iijima et al. (2014) found that dam-67

aged and subsequently dead trees were concentrated within a limited area of a ‘permafrost68

valley’ with a deeper and oversaturated active layer, even in a small 50 m × 50 m plot.69

This finding indicated that the frost table microtopography of soil and the resulting soil70

water redistribution could critically control tree mortality in Siberia’s permafrost for-71

est ecosystems under overwet soil conditions.72

Larch forest productivity in eastern Siberia is mainly constrained by drought stress73

in mountainous regions and flooding stress in the plains (Sato & Kobayashi, 2018). Based74

on these findings, Sato et al. (2020) modified the dynamic global vegetation model, SEIB–75

DGVM (Sato et al., 2007, 2016). They successfully demonstrated that the soil water re-76

distribution caused by the within-grid elevation heterogeneity increased the mortality77

risk of larch trees owing to the overwetting of soils at lower elevations. However, the ef-78

fect of soil frost table microtopography on tree mortality has not yet been implemented79

in the models, partly because of the difficulty in representing the microscale variability80

in thaw depth.81

–3–
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The spatial variability in thaw depth is a complex function of soil conditions (tex-82

ture, components, water/ice content), vegetation, and organic layers. Thus, the deter-83

ministic model requires spatial distribution data on environmental parameters that are84

rarely available (Anisimov et al., 2002). For this reason, Anisimov et al. (2002) proposed85

near-surface permafrost parameters, including ALT, as randomly spatially distributed86

variables consisting of both deterministic and stochastic components and developed a87

stochastic model to represent the ALT mean values and variances, assuming a normally88

distributed ALT. They showed that the ALT spatial variability measured at several sites89

in Alaska followed a normal distribution function. The distributions were not highly skewed,90

indicating that a normal distribution assumption of ALT was sufficient. However, Anisimov91

et al. (2002) also noted that the Shapiro–Wilk test for normality rejected the null hy-92

pothesis of normality in some instances. Therefore, it is uncertain whether a normal dis-93

tribution adequately represents spatial thaw depth variability. Some thaw depth mea-94

surements showed skewed distributions with a long tail on the deeper side, particularly95

during the early thaw season (for example, Wright et al., 2009; Connon et al., 2018). How-96

ever, a stochastic representation of thaw depth variability for the early thaw season has97

not yet been reported. Furthermore, because of soil surface constraints, for the proba-98

bility distribution for the thaw depth at the shallowest limit, the normal distribution sym-99

metric about the mean might fail to represent the thaw depth spatial variability.100

The goal of this study was to represent microscale spatial variability in thaw depth101

in a stochastic manner. Our study included manual thaw depth measurements at two102

boreal forest sites in eastern Siberia over several years at different warm-season times.103

We represent the observed thaw depth variability using a gamma distribution and pro-104

pose a simple model to represent the spatial variability of thaw depth as a function of105

the mean thaw depth using the gamma distribution.106

2 Materials and methods107

2.1 Study sites and experimental design108

We measured the spatial distribution of thaw depth in two larch-dominated forests109

in the middle part of the Lena Basin of the Republic of Sakha, Russia (Fig. 1). The first110

area was the Spasskaya Pad Scientific Forest Station (62◦15′17′′N, 129◦37′07′′E, 214 m111

a.s.l.; hereafter Spasskaya Pad), situated in a 200-year-old cowberry larch forest (Larice-112

–4–
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Figure 1. Map showing the locations of the Spasskaya Pad and Elgeeii Scientific Forest Sta-

tions.

tum vacciniosum), located on a Pleistocene terrace on the western bank of the middle113

sections of the Lena River, approximately 20 km north of Yakutsk city. The second area114

was the Elgeeii Scientific Forest Station (60◦00′57′′N, 133◦49′25′′E, 202 m a.s.l.; here-115

after Elgeeii) in a highly productive 180-year-old cowberry larch forest located in the third116

terrace of the left bank of the middle reaches of the Aldan River, approximately 300 km117

southeast of Yakutsk (Maximov et al., 2019). The mean annual air temperature and pre-118

cipitation observed at a nearby weather station (Yakutsk Meteorological Observatory)119

from 1981 to 2010 were −8.7 ◦C and 236 mm yr−1, respectively (Hiyama et al., 2021).120

Cajander larch (Larix cajanderi Mayr) was the most dominant species at both the121

sites, followed by silver birch (Betula pendula Roth.) and willow (Salix sp.) (Shin et al.,122

2020). Partially, Spasskaya Pad consists of Siberian alder (Alnus viridis subsp. fruticosa123

(Rupr.) Nyman) (Shin et al., 2020) and Elgeeii consists of young Scots pine (Pinus sylvestris124

L.) (Kotani et al., 2014). Both sites had similar forest floors that were dominated by cow-125

berries (Vaccinium vitis-idaea L.) mixed with several herbs, such as red baneberries (Ac-126

taea erythrocarpa Small), and round-leaved wintergreen (Pyrola rotundifolia L.). The Spasskaya127

Pad also contained water-tolerant grasses, such as narrow-leaved meadow grass (Poa an-128

–5–
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Table 1. Periods and numbers of points of thaw depth measurements at Spasskaya Pad and

Elgeeii during this study.

Site Spasskaya Pad Elgeeii

Year Period Points Period Points

2016 4–6 Jul 17a 23–24 Jun 17a

24–26 Sep 25 17–18 Sep 25

2017 15–16 Jun 25 6–8 Jun 25

22–23 Jun 20b

6–10 Sep 25 18–19 Sep 25

2018 30 Sep 25

2019 18 May 25

17, 21–22 Aug 25

15–16 Sep 18c 21–23 Sep 25

a Initial measurement design was 17 points.

b Extra measurements in addition to the regular 25 points.
c Owing to broken penetrometer parts, we were forced to cease

the measurements halfway.

gustifolia L.), and reed grass (Calamagrostis epigeios (L.) Roth) (Kotani et al., 2014, 2019;129

Shin et al., 2020). Fig. 2 shows crown projection maps and photographs of these sites.130

The soils of Spasskaya Pad are permafrost pale-solodic, based on a light-old-alluvial131

sandy loam with high sand content and low porosity. In contrast, the Elgeeii soils were132

permafrost dark-humus pale-slightly solodic soils based on carbonated loam with high133

silt, medium to thin particle content, and high porosity (Maximov et al., 2019). The hu-134

mus horizon thickness did not exceed 5 cm on the Spasskaya Pad and averaged 10–15135

cm in Elgeeii (Maximov et al., 2019).136

Plots of 50 m × 50 m were set up at these sites (Fig. 2). We routinely conducted137

multipoint thaw depth measurements at 25 points (the points of the closed circles in Fig.138

2) at both sites from 2016 to 2019 (with some exceptions; see Table 1). To capture more139

detailed spatial variability in thaw depth, we conducted thaw depth measurements at140

an extra 20 points on Spasskaya Pad (the points of open circles in Fig. 2) in June 2017.141
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Figure 2. Measurement grids (upper panels) and photographs of forest floor conditions (lower

panels) in Spasskaya Pad (left panels) and Elgeeii (right panels). In the grid map, closed circles

represent the regular thaw depth measurement points (25 points for each site) and open circles in

Spasskaya Pad represent the additional measurement points in June 2017 (20 points). Measure-

ment grids are shown together with the crown projection maps of the study sites: red is Cajander

larch (Larix cajanderi Mayr. ), blue is silver birch (Betula pendula Roth.), orange is willow (Salix

sp.), and green is Siberian alder (Alnus viridis subsp. fruticosa (Rupr.) Nyman) in Spasskaya

Pad and Scots pine (Pinus sylvestris L.) in Elgeeii. Crown projection area was measured in 2014

in Spasskaya Pad and in 2008 in Elgeeii.
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Measurement
point

Figure 3. Photograph of thaw depth measurement using a penetrometer.

2.2 Thaw depth measurements142

We used a handheld dynamic cone penetrometer (TW-035, Sakatadenki Co., Ltd.,143

Tokyo, Japan; hereafter, penetrometer) to minimize uncertainties in thaw depth mea-144

surements. The penetrometer consisted of a tip cone with a 60◦ angle and a 2.5 cm base145

diameter, guide rod, drive rod with scale, knocking head, and 5 kg slide hammer (Fig.146

3). The slide hammer free-falling 50 cm along the guide rod strikes the knocking head,147

which drives the cone into the soil. The advantage of this method is that it does not de-148

pend on the physical strength or skill of the measurer, unlike conventional measurements149

using a metal rod. Iijima et al. (2017) confirmed the applicability of a penetrometer to150

measure thaw depths by comparing them with traditional methods (metal rods, frost tubes,151

and soil temperature profiles) at three different sites in eastern Siberia.152

In this study, we used the number of impacts required for 10 cm penetration N10153

as an indicator for determining the thaw depth.154

N10 =
N

∆dp
× 10, (1)155

–8–
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where N is the number of impacts and ∆dp (cm) is the corresponding increase in pen-156

etration depth. The procedure for measuring thaw depth was as follows:157

1. The initial depth achieved by the penetrometer’s weight was recorded as the ini-158

tial value.159

2. The slide hammer was dropped once (i.e., N = 1), and penetration depth ∆dp160

was recorded.161

3. Step 2 was repeated until ∆dp was less than a given threshold ε (e.g., 1 cm).162

4. When ∆dp < ε, gradually increased the number of impacts N and the correspond-163

ing ∆dp were recorded.164

5. The depth when N10 reached 50 was defined as the thaw depth.165

After removing the penetrometer, we inserted a rod with thermocouples into the exist-166

ing hole and measured the vertical distribution of the soil temperature to determine whether167

the deepest point reached the frozen soil.168

2.3 Analysis of spatiotemporal variability in ALT169

The most straightforward way of analyzing spatiotemporal variability in ALT is170

to directly compare the measured ALT at each grid node over several years. This method171

shows the absolute interannual variation range of the measured ALT values. However,172

if the spatial mean ALT varies significantly annually, this may affect the interannual ALT173

variation range at each grid node.174

To examine spatial variability in ALT at individual grid nodes over several years’175

time series, Hinkel and Nelson (2003) proposed the normalized index of variability Iv as176

follows.177

Iv =
Zi − Zavg

Zavg
, (2)178

where Zavg is the spatial mean ALT for a particular year and Zi is the node-specific value.179

Hinkel and Nelson (2003) also defined interannual node variability (INV, presented as180

%) as the range in Iv over several years, that is, the difference between the maximum181

and minimum values of Iv each node over several years. In addition, the grid-mean INV182

represents the average degree of variability in ALT over the entire recording period (Smith183

et al., 2009). According to previous results (e.g., Hinkel & Nelson, 2003), Smith et al.184

(2009) presented a quantitative description of the mean INV as follows: i) low variabil-185

–9–
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ity for sites with the mean INV values of 0–19%, ii) moderate variability for sites with186

a mean INV of 20–29%, and iii) high variability for sites with a mean INV of 30% or more.187

2.4 Stochastic representation of spatial variability in thaw depth188

This study adopted the gamma distribution to represent the observed spatial vari-189

ability in thaw depth. Probability density function (PDF) of gamma distribution f(x)190

for positive variable x is given by191

f(x) =
λkxk−1e−λx

Γ(k)
, (3)192

where k is the shape parameter, λ is the rate parameter, and Γ(k) denotes the gamma193

function evaluated at k.194

Γ(k) =

∫ ∞

0

tk−1e−tdt. (4)195

Notably, k, λ > 0; therefore, Γ(k) > 0. The corresponding cumulative distribution func-196

tion (CDF) F (x) is represented by:197

F (x) =

∫ x

0

f(t)dt =
γ(k, λx)

Γ(k)
. (5)198

where γ(k, λx) denotes the lower incomplete gamma function evaluated at k.199

γ(k, λx) =

∫ λx

0

tk−1e−tdt. (6)200

The advantages of the gamma distribution are that it can be represented by only two201

parameters, k and λ, and the mean of the distribution is given by k/λ. Because the skew-202

ness of the gamma distribution is 2/k, the gamma distribution is positively skewed (k >203

0) and converges with the normal distribution when k is large.204

The fitting of the gamma distribution to the observed thaw depth data was con-205

ducted using the R package “fitdistrplus” version 1.1-6 (Delignette-Muller & Dutang,206

2015; Delignette-Muller et al., 2021). This package was also used for bootstrap analy-207

sis when determining confidence intervals.208

3 Results209

3.1 Thaw depth measurements210

The thaw depth DT (cm) measured by the penetrometer was confirmed to reach211

frozen soil based on soil temperature measurements (Fig. 4). In Fig. 4a, the penetrom-212

eter first reached N10 = 50 at 55 cm depth. However, it encountered the softer soil layer213

–10–
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Figure 4. Plots showing examples of the vertical profiles of N10 and soil temperature along

with the thaw depth DT determined in Spasskaya Pad. (a) Point A1 in June 15, 2017, (b) point

C3 in August 21, 2019.

(N10 < 50) thereafter, penetrated another 12 cm, and again reached N10 = 50 at 67214

cm depth. We confirmed that the soil deeper than this point was N10 ≥ 50. Accord-215

ing to the soil temperature profile data, the deepest part was confirmed to reach the frozen216

soil, whereas the first N10 = 50 depth (i.e., 55 cm) did not. Therefore, we judged the217

second N10 = 50 depth (i.e., 67 cm) to be the thaw depth DT. In contrast, in the case218

shown in Fig. 4b, the penetration depth of N10 = 50 was determined to reach the frozen219

soil; thus, it was the thaw depth. These results confirmed that our penetrometer method220

accurately measured thaw depth.221

DT measured at each grid location in September, regarded as the ALT, showed con-222

sistent spatial variation in both Spasskaya Pad (Fig. 5a) and Elgeeii (Fig. 5b), irrespec-223

tive of year. For example, the ALT at location C11 in Elgeeii was always shallower than224

that at other points (Fig. 5b). This point was located in a depression slightly lower than225

the others, with high soil moisture and occasional waterlogging. This probably meant226

that the higher ice content at this point than others necessitated greater latent heat to227

–11–
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Figure 5. The thaw depth DT measured at each grid location in Spasskaya Pad (a) and El-

geeii (b).

thaw, resulting in shallower ALT (Clayton et al., 2021). These results indicated that the228

thaw depths at individual grid points were forced by temperature and various local fac-229

tors, and the point-specific ALT responded consistently across years, as suggested by Hinkel230

and Nelson (2003). The consistent spatial variability in ALT over several years was also231

confirmed by the normalized index of variability Iv (Fig. 6).232

The year-to-year fluctuation range of ALT at each point was much smaller for Spasskaya233

Pad (mean: 5.7 cm, maximum: 13.5 cm) than for Elgeeii (mean: 15.2 cm, maximum: 35.0234

cm) (Fig. 5). The INV of Spasskaya Pad was also smaller than that of Elgeeii (Fig. 6c).235

In Central Yakutia, including Spasskaya Pad, permafrost covered by forests (middle taiga)236

is known to have a thick (up to 1.0 m) shielding layer (Fedorov et al., 2019; Iijima & Fe-237

dorov, 2019). This layer, also referred to as the transient layer (Shur et al., 2005), is lo-238

cated between the base of the active layer and the upper part of the permafrost, con-239

tains a sufficient amount of ice, and functions as a buffer between the active layer and240

permafrost by increasing the latent heat required for thawing. In addition, Spasskaya241

Pad experienced unusually high rainfall between 2004 and 2008, resulting in increased242

soil moisture and partial waterlogging. Therefore, we speculated that these overwet soil243
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Figure 6. Normalized index of variability Iv of ALT in Spasskaya Pad (a) and Elgeeii (b), and

their interannual node variability (INV) in both sites (c).
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conditions in Spasskaya Pad enhanced the ice-rich transient layer beneath the active layer,244

constraining the maximum thaw depth. Despite such differences in the interannual ALT245

variability between the two sites, grid-mean INV was 3.7% for Spasskaya Pad and 8.2%246

for Elgeeii, both of which fell into “low variability” (Smith et al., 2009).247

In contrast, DT variability during the middle of the thaw period poorly corresponded248

to ALT variability. Note that we measured DT near the grid points and were not pre-249

cise at the same point every time, which would cause inevitable variability in measure-250

ments. Nevertheless, considering that such uncertainty also occurs for ALT, this result251

indicates the processes determining the spatial distribution of DT during the middle of252

the thaw periods might be much more complicated than that for ALT.253

3.2 Fitting of the gamma distribution254

Although the measurements of DT of each field experiment are distributed hetero-255

geneously and irregularly in space (Fig. 5), sorting these data for each experiment in as-256

cending order represented the cumulative probability distribution, showing a sigmoidal257

shape (Fig. 7). The distribution pattern differed at each measurement, but the distri-258

bution generally ranged wider in Elgeeii than in Spasskaya Pad and became wider when259

DT deepened. These results motivated us to represent the spatial variability of DT in260

a stochastic manner.261

To capture more detailed thaw depth spatial variability, we measured DT at an ex-262

tra 20 points in addition to regular measurements at 25 points in June 2017, but the cu-263

mulative probabilities of these two DT were quite different because of about a week in-264

terval between the measurements (Fig. 8a). The mean DT of additional measurements265

(June 22–23, 2017) was 14.4 cm deeper than that of regular measurements (June 15–16,266

2017). Therefore, if we merge these two measurements without correction, the obtained267

cumulative probability will be erroneous.268

Because June is mid-thawing, we assumed that this difference in mean depth oc-269

curred during the progress of seasonal thawing. Figure 9 shows the seasonal variation270

in DT in 2017 for the Spasskaya Pad. To estimate the seasonal progress of DT, we adopted271

the following simplified Stefan equation (Hinkel & Nicholas, 1995).272

DT = α
√
ITS, (7)273
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Figure 7. Cumulative probability distribution of the thaw depth DT measured at Spasskaya

Pad (a) and Elgeeii (b). The boxplots shown together represent the distribution characteristics

of the individual measurements, with the box showing the median and the 25th and 75th per-

centiles, the whiskers showing the 10th and 90th percentiles, and the cross showing the average.

The dates shown are representative of each measurement period shown in Table 1.

 !"

"!#

"!$

"!%

"!&

"!"

'
(
)
(
*+
,-
.
/
01
23
4
+
4
-*-
,5

 ""#"$"%"

67+809/1,70 60:;)<

0=/>(*+20&?013-@,A0
000000000:$&! 0B0 ?!C0;)<0

0DE,2+0&"013-@,A
000000000:F$!?0B0 &! 0;)<

G1+AAH+5+0I+9
J(@/0&" F

:+<
 !"

"!#

"!$

"!%

"!&

"!"

'
K
L

 ""#"$"%"

67+809/1,70 60:;)<

0=/>(*+20&?013-@,A
0DE,2+0&"013-@,A

000000000:M %!%0;)0+9N(A,/9<00

:4<

G1+AAH+5+0I+9
J(@/0&" F
:O/2>/90%?09+,+<

0'KL03P0>+))+09-A,2-4(,-3@
000000000:!0Q0&"!F#R0"0Q0"!CC%<

Figure 8. Cumulative probability distribution of thaw depths DT from regular (June 15–16,

2017, 25 points), and additional measurements (June 22–23, 2017, 20 points) on the Spasskaya

Pad. (a) Original data. (b) Merged data using regular measurements and additional measure-

ments adjusted by −14.4 cm. The dashed line in (b) represents the cumulative distribution

function of the gamma distribution fitted to the merged data.

–15–



manuscript submitted to JGR: Earth Surface

 !"

 ""

!"

"

#
$
%
&
'(
)
*
+$
' 

#
',
-
.
/

0%1' 234' 235' 637' 8)*' 

9%+)':;'<" =

'8>.*5>;>)('8+);%4')?3%+>:4
'@)735%A'.)%B3A).)4+B',<!'*+B/
'6((>+>:4%5'.)%B3A).)4+',<"'*+B/

 CD234D<" =

 "D8)*D<" =

<ED234D<" =

Figure 9. Measured and estimated seasonal variation in thaw depth DT in 2017 in Spasskaya

Pad. The symbols and error bars of measurements show the mean and standard deviation, re-

spectively.

where α is a quasi-constant scaling parameter (cm K−1/2 d−1/2) that represents the soil’s274

thermal conductivity, density, moisture content, and latent heat effects, and ITS denotes275

the surface thawing index (K d) calculated by the accumulated degree days of the daily276

mean surface (0 cm depth) soil temperature measurements above freezing. We determined277

the α value, such that Eq. (7) matches the measured mean thaw depth DT in Septem-278

ber 2017. Both measurements in June agreed well with the estimation by the simplified279

Stefan equation, implying that the difference between the two measurements was caused280

by the seasonal thawing progress; thus, the 14.4 cm difference was reasonable. There-281

fore, we adjusted the additional DT measurements by −14.4 cm and merged them with282

the regular ones to create data with 45 measurements for fitting the gamma function.283

The cumulative distribution function (CDF) of gamma distribution was in good284

agreement with the cumulative probability of the merged DT data (Fig. 8b). The fit-285

ting of the gamma distribution was much better than that of the normal and Weibull286

distributions and similar to other asymmetric distributions (lognormal, Gumbel, and in-287

verse Gaussian; see Fig. S1 and Table S1). Although the fitting of the gamma distribu-288

tion was not the best of these various distributions, we adopted the gamma distribution289

in this study because of the advantages mentioned in section 2.4.290
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Figure 10. Results of bootstrapping analysis (n = 1000) for the merged data in June 2017.

(a) and (b) shows the histogram of shape parameter k (a) and rate parameter λ (b) of the

gamma distribution, respectively, and (c) shows the cumulative distribution function of the

gamma distribution. Continuous and dashed lines represent the median and 95% confidence in-

terval, respectively.

Because the number of measurement points is limited, the fitting of the function291

inevitably involves sampling uncertainty. For this reason, we conducted a nonparamet-292

ric bootstrap analysis with 1000 iterations to obtain the 95% confidence intervals (CIs)293

of k and λ of the gamma distribution. Figure 10 shows the results of the bootstrapping294

analysis of the merged data in June 2017. The obtained 95% CIs for k and λ were 14.43 ≤295

k ≤ 35.87 and 0.229 ≤ λ ≤ 0.582, respectively (Figs. 10a and 10b). As a result, CIs296

around the CDF of the estimated gamma distribution was constructed (Fig. 10c) with297

a depth uncertainty of approximately 10–20 cm. The cumulative probability of the merged298

DT was within this uncertainty. The measured cumulative probability of DT at other299

times in Spasskaya Pad and Elgeeii was also mainly within the range of uncertainty (Fig.300

11). The range of uncertainty in Elgeeii was wider than that in Spasskaya Pad, prob-301

ably partly because of the wider DT spatial variability in Elgeeii.302

3.3 Modeling of spatial variability in thaw depth303

The shape parameter k and rate parameter λ showed dependencies on the mean304

thaw depth DT for both the Spasskaya Pad and Elgeeii (Fig. 12). Using these depen-305

dencies, we developed a simple model of representing spatial variability in thaw depth306

as a function of DT. According to the characteristics of the gamma distribution, k is ex-307

pressed as the product of λ and DT as follows.308

k = λDT (8)309
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Figure 12. The models of shape parameter k and rate parameter λ in Spasskaya Pad and

Elgeeii as functions of the mean thaw depth, DT. The measured values, bootstrapping medians,

and 95% confidence intervals of k and λ are also shown.

Therefore, we only need to parameterize λ to represent the spatial distribution of thaw310

depth. Compared with k, λ is less variable against DT (Fig. 12). Using this character-311

istic, we developed the following three-level models.312

Model 1 provides λ as a constant. In this model, k becomes a linear function of DT313

through the origin. Because λ was less sensitive to DT in Elgeeii, we represented Model314

1 for Elgeeii by the mean value of all measured λ.315

λ = 0.292 (Model 1 for Elgeeii) (9)316

However, in the Spasskaya Pad, λ increased significantly with DT. Large λ values at deep317

DT may have been caused by the effects of the transient layer. Moreover, a large λ value318

at DT = 87.3 cm (July 2016) may have been possibly caused by the fewer data points319

(17 points). Note that the λ values measured in May and June were similar and close320

to the values in Elgeeii’s Model 1 (Eq.(9)). Additionally, the λ of June 2017 was the most321

reliable because it was evaluated from 45 data points and other λ from 25 or fewer data322
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points. Therefore, if it is not for the transient layer, we expected that λ in May and June323

would represent all ranges of DT. Considering these circumstances, we tested two val-324

ues for Model 1 on the Spasskaya Pad. Model 1-1 is the mean value of λ measured in325

May and June, and Model 1-2 is the mean value of all measured λ.326

λ = 0.371 (Model 1-1 for Spasskaya Pad) (10)327

λ = 0.959 (Model 1-2 for Spasskaya Pad) (11)328

Model 2 considers the linearity of λ against DT. λ generally increased with DT in329

both Spasskaya Pad and Elgeeii (Fig. 12). Model 2 represents this increasing trend by330

a linear function. In this model (and Model 3 as well), k becomes a nonlinear function331

of DT through the origin.332

λ = 7.977× 10−3 ·DT + 0.083 (Model 2 for Spasskaya Pad) (12)333

λ = 1.030× 10−3 ·DT + 0.171 (Model 2 for Elgeeii) (13)334

Model 3 considers the non-linearity of λ against DT. The λ value in the Spasskaya335

Pad was significantly larger in September, whereas it was smaller in May and June. There-336

fore, the linear function cannot represent λ properly for the entire DT range. Further-337

more, Model 2 (Eq.(12)) did not represent the most reliable λ of June 2017 evaluated338

from 45 data points. To represent non-linearly changing λ, including this June 2017 value,339

we tested a nonlinear function in Spasskaya Pad.340

λ = 0.238 exp
(
1.106× 10−2 ·DT

)
(Model 3 for Spasskaya Pad) (14)341

When fitting Model 3 to the measured λ, the λ in July 2016 was excluded because it had342

fewer measurements (17 points) and was considered less reliable. We did not test Model343

3 for Elgeeii because k and λ in Elgeeii were satisfactorily represented by Models 1 and344

2.345

In Elgeeii, Model 1 acceptably represented the spatial variability in DT at differ-346

ent thawing stages (Fig. 13b). Although the cumulative probability of DT measured in347

Elgeeii had some variability in their sigmoidal shape, the distribution shape and its evo-348

lution with depth were reasonably reproduced by both Models 1 and 2. The difference349

between Models 1 and 2 was subtle; thus, Model 1 was considered sufficient for this site.350

This result indicates that Model 1 can be used as the first approximation for spatial vari-351
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Figure 13. Examples of models of the cumulative distribution function (CDF) and probabil-

ity density function (PDF) that represent the spatial variability in thaw depth DT at different

timings during the thawing season.

ation in thaw depth at most sites where only the end-season thaw depth (ALT) was ob-352

tained.353

However, in Spasskaya Pad, both Models 1-1 and 1-2 were insufficient to represent354

the spatial variability of DT across the thawing period, and Models 2 and 3 were required355

(Fig. 13a). Model 1-1 represented the distribution of DT in May and June reasonably356

but deviated from the results in September. However, Model 1-2 represented the distri-357

bution of DT measured in September but differed from the results in May and June. If358

λ is constant, the gamma distribution predicts a gradual increase in the variation range359

in DT with increasing mean thaw depth DT because k is proportional to DT (see Eq.360

(8)) and the variance of the gamma distribution is given by k/λ2. But in Spasskaya Pad,361

the range of variation in ALT was similar to that in DT during the mid-thawing season362

(Fig. 7a), probably because the maximum thaw depth was restricted by the ice-rich tran-363

sient layer underneath the active layer. This might explain the discrepancy between Model364

1-1 (or 1-2) and the measured cumulative probability of DT, and why the change in λ365

should be considered in Spasskaya Pad.366
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Figure 14. Depth adjustment dependencies for various statistics. (a) Shape parameter k, (b)

rate parameter λ, and (c) Akaike Information Criterion (AIC) and Bayesian Information Crite-

rion (BIC) by gamma distribution fitting. (d) The p-value of the Shapiro–Wilk normality test of

the dataset. The red-colored markers represent the dataset with a −14.4 cm depth adjustment.

4 Discussion367

4.1 Effect of time lag in measurements on statistics368

If we measure the thaw depth spatial distribution when the soil thaws rapidly, tak-369

ing time to measure the multi-point thaw depths DT may produce an inappropriate prob-370

ability distribution. Because of the one-week time lag between the regular and additional371

measurements in June 2017, we adjusted the extra 20 data by −14.4 cm in merging the372

data (section 3.2). To confirm the validity of this adjustment, we analyzed the effect of373

the depth adjustment on the results using the datasets from June 2017 (Fig. 14).374

If depth adjustment is not applied, the shape parameter k (Fig. 14a) and rate pa-375

rameter λ (Fig. 14b) were slightly smaller than those for the depth adjustment of −14.4376

cm. According to the Akaike information criterion (AIC) and Bayesian information cri-377

terion (BIC), the gamma distribution fitting score without depth adjustment was the378
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highest (i.e., worst), which gradually declined with increasing depth adjustment (Fig.379

14c). The −14.4 cm depth adjustment resulted in nearly the best fitting score in this ex-380

periment. Moreover, according to the Shapiro–Wilk normality test, when depth adjust-381

ment was −12 cm or larger negative values, the p-value was less than 0.05, i.e., the null382

hypothesis of normality was rejected (Fig. 14d). Otherwise, the probability distribution383

of data did not significantly depart from the normal distribution. These results indicated384

that if the thaw depth measurement takes a long time or is conducted at different times385

with a specific interval, the obtained uncorrected or unadjusted data may not represent386

the probability distribution characteristics of the original (or “true”) data (e.g., gamma387

distribution) but rather approach a normal distribution. Therefore, if the thaw depth388

spatial distribution is measured during the mid-thaw season when the soil thaws rapidly,389

we highly recommend conducting the measurement for as short a period as possible or390

adjusting the measured thaw depth.391

4.2 Effect of plot size on statistics392

The experimental plots in this study were squares with a side length of 50 m, but393

it should be noted that thaw depth statistics can be affected by the plot size. To assess394

the effect of plot size on thaw depth statistics, we calculated the mean, standard devi-395

ation, and range of distribution (from minimum to maximum) of DT by changing the396

plot sizes from 10 m to 45 m at 5 m intervals. Here, the plot size is expressed as the side397

length of the square plot. For each plot size, all possible non-overlapping combinatorial398

patterns of grid data within the square frame were considered, using the merged data399

from June 2017, measured at the 45 grid nodes in the Spasskaya Pad.400

The plot size dependency of the thaw depth statistics was most pronounced in the401

range of distribution (Fig. 15). Although the values of the mean (Fig. 15a) and stan-402

dard deviation of DT (Fig. 15b) varied significantly when the plot size was small, their403

average values remained relatively unchanged with respect to the plot size. In contrast,404

the distribution range significantly increased with plot size (Fig. 15c). This result sug-405

gests that if the plot size is larger than ours (50 m), the spatial variation in DT can be406

even greater. Because of the limited plot size in this study, further investigation of mea-407

surements from plots of various spatial sizes is necessary to reveal the plot size depen-408

dencies on a larger scale. Nevertheless, given that the mean and standard deviation of409
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Figure 15. Plot size dependency of statistics of thaw depth DT. (a) the mean value of DT,

(b) the standard deviation of DT, and (c) the distribution range of DT (i.e. the difference be-

tween the maximum and the minimum values of DT). The plot size is expressed as the side

length of a square plot.

DT were relatively unchanged against the plot scale, the gamma distribution obtained410

in this study is expected to represent the general characteristics of our research site.411

4.3 Effect of sample size on statistics412

How many data points are needed to capture the representative spatial variabil-413

ity in the thaw depth DT is an essential question for field researchers. If we could fur-414

ther increase the sample size, the reliability of the thaw depth spatial variability anal-415

ysis would be further improved, but the measurement effort would also increase accord-416

ingly. In reality, the minimum sample size required to capture the representative spa-417

tial variability in thaw depth would be of interest. To assess the minimum sample size,418

we focused on CIs for k and λ, which we obtained by bootstrapping in Section 3.2. We419

defined the normalized uncertainty range (NUR) of a parameter as width of 95% CI di-420

vided by the value obtained from the observed data. The NUR of k and λ are given as421

follows:422

NURk =
k97.5 − k2.5

kobs
(15)423

NURλ =
λ97.5 − λ2.5

λobs
(16)424

where k2.5 and k97.5 are the 2.5th and 97.5th percentiles of k, λ2.5 and λ97.5 are the 2.5th425

and 97.5th percentiles of λ, and kobs and λobs are k and λ obtained from the observed426

data, respectively.427

Though the widths of CIs for k and λ varied significantly depending on the tim-428

ing (mean thaw depth DT) and site (see Fig. 12), the relationship between NUR and429
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Figure 16. Sample size dependency of the normalized uncertainty range (NUR) for shape

parameter k (NURk) and rate parameter λ (NURλ) in Spasskaya Pad and Elgeeii. The dashed

line shows the common curve fitted to all the NUR data represented by an exponential function

of the reciprocal of sample size n.

sample size n showed similar characteristics regardless of site, timing, or whether k or430

λ, which falls along a single common curve (Fig. 16; the numerical data are listed in Ta-431

ble S2). An exponential function of 1/n, obtained empirically from the relationship be-432

tween NUR and 1/n, represented this curve.433

NUR = 0.693 exp (16.637/n) (17)434

The NUR with a sample size of n = 25 had the highest number of measurements for435

regular observations and varied more than other sample sizes, ranging from 1.204 to 1.396436

including all NURk and NURλ in the Spasskaya Pad and Elgeeii. However, the mean437

and standard deviation was 1.331±0.051, showing that most of the data concentrated438

within a narrow range, around the mean. Figure 16 and Eq. (17) show that the NUR439

increased as the sample size n decreased. The difference in NUR between n = 25 and440

45 was relatively small, whereas the NUR was significantly larger when n = 17 and 18441

compared to others. In other words, uncertainty did not decrease significantly with in-442

creasing sample size n when n ≥ 25, whereas it sharply increased with decreasing n when443

n < 25. This result confirmed that the sample size n = 25 for regular measurements444

in this study was adequate.445
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The prediction function obtained in this study (Eq. (17)) can be applicable to other446

sites for uncertainty and sample size assessment. Note that the results in this study were447

obtained using nonparametric bootstrapping. If parametric bootstrapping is adopted,448

the obtained results can differ from ours.449

5 Conclusions450

To simply represent the microscale spatial variability in thaw depth in permafrost451

regions, this study discussed the applicability of a gamma distribution to the measured452

thaw depth distributions in two larch forests in eastern Siberia. The thaw depth spa-453

tial variability characteristics differed between Spasskaya Pad and Elgeeii, with less vari-454

ation in Spasskaya Pad, particularly for its seasonal maximum (i.e., active-layer thick-455

ness). In Spasskaya Pad, a transient layer underneath the active layer is speculated to456

constrain the maximum thaw depth.457

The gamma distribution well represented the measured thaw depth spatial distri-458

bution at both sites with a 95% confidence interval. We found that the shape param-459

eter k and rate parameter λ of the gamma distribution depended on the mean thaw depth.460

Based on this finding, we developed a simple stochastic model that uses the gamma dis-461

tribution to represent the spatiotemporal variation in thaw depth as a function of the462

mean thaw depth. This model consists of three-level models expressing λ dependency463

on the mean thaw depth. Model 1 represents λ by a constant, Model 2 considers the lin-464

earity in λ, and Model 3 considers the nonlinearity in λ. Although the requirements of465

the model levels differed between the Spasskaya Pad and Elgeeii, the proposed model suc-466

cessfully represented the spatial variability in thaw depth in both sites at different thaw467

seasons. If the transient layer limits the active-layer thickness, λ significantly increases468

with the mean thaw depth; otherwise, Model 1 (i.e., constant λ) can be used as the first469

approximation for the spatial thaw depth variation. This may allow most sites where only470

the active layer thickness is available to roughly estimate the spatiotemporal variabil-471

ity in thaw depth.472

The limitations of this study were that we only measured thaw depth variability473

in boreal forests, with a limited plot scale of 50 m × 50 m. Therefore, further investi-474

gation is required to discuss the applicability of the gamma distribution and model pro-475

posed in this study to sites other than boreal forests, such as tundra, and confirmed the476
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spatial variability in larger areas. Moreover, our model’s coefficients for the rate param-477

eter λ are expected to be represented by other environmental conditions, such as climate478

zone, soil types, and plant functional types. This may cultivate a further understand-479

ing of phenomena and allow robust modeling regarding the active-layer dynamics and480

their impact on ecological and ecohydrological processes (including carbon, water, en-481

ergy, and nutrient cycles) in permafrost boreal forests in a changing climate.482
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Introduction

Figure S1 and Table S1 provide the results of fitting six popular probability distributions

to the merged data obtained in June 2017 on Spasskaya Pad.

Table S2 lists the statistics of the shape parameter k and rate parameter λ of the gamma

distribution obtained by bootstrapping together with the normalized uncertainty range.

Figures S2–S5 show the contour plots of thaw depths measured on Spasskaya Pad and

Elgeeii, the comparison of thaw depths between the regular measurements (25 points) and

merged data (45 points total) in June 2017 on Spasskaya Pad, and the comparison of the

interannual node variability (INV) of active layer thickness on Spasskaya Pad and Elgeeii.
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Figure S1. Results of fitting the gamma, normal, lognormal, Gumbel, Weibull, and inverse

Gaussian distributions to the merged data from June 2017 obtained at Spasskaya Pad. The prob-

ability density function (PDF) plot, Q-Q (quantile-quantile) plot, cumulative density function

(CDF) plot, and P-P (probability-probability) plot are shown.
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Table S1. Comparison of the log-likelihood, the Akaike Information Criterion (AIC), and the

Bayesian Information Criterion (BIC) for various probability distributions fitted to the merged

data measured at Spasskaya Pad in June 2017, using maximum likelihood estimation.

Probability distributions Log-likelihood AIC BIC
Gamma distribution −180.6626 365.3253 368.9386
Normal distribution −182.7123 369.4247 373.038
Lognormal distribution −180.2196 364.4392 368.0525
Gumbel distribution −180.3499 364.6997 368.313
Weibull distribution −185.0891 374.1782 377.7916
Inverse Gaussian distribution −180.2347 364.4694 368.0827

Table S2. Statistics of the shape parameter k and rate parameter λ of gamma distribution

obtained by bootstrapping. kobs and λobs are k and λ obtained from the observed data, k2.5 and

k97.5 are the 2.5th and 97.5th percentiles of k, λ2.5 and λ97.5 are the 2.5th and 97.5th percentiles

of λ, and NURk and NURλ are the normalized uncertainty range for k and λ, respectively.

Site Date Points kobs k2.5 k97.5 λobs λ2.5 λ97.5 NURk NURλ

Spasskaya Pad Jul 2016 17 77.68 45.18 188.88 0.890 0.524 2.180 1.850 1.860
Spasskaya Pad Sep 2016 25 160.64 103.95 313.25 1.068 0.696 2.079 1.303 1.296
Spasskaya Pad Jun 2017 45 20.78 14.43 35.87 0.334 0.229 0.582 1.032 1.055
Spasskaya Pad Sep 2017 25 165.08 107.90 330.82 1.107 0.719 2.243 1.350 1.376
Spasskaya Pad May 2019 25 11.27 7.33 22.83 0.408 0.265 0.811 1.375 1.337
Spasskaya Pad Aug 2019 25 206.85 128.30 377.29 1.446 0.888 2.640 1.204 1.212
Spasskaya Pad Sep 2019 18 218.26 128.95 512.61 1.462 0.862 3.422 1.758 1.751
Elgeeii Jul 2016 17 20.22 12.16 49.71 0.261 0.151 0.651 1.857 1.912
Elgeeii Sep 2016 25 46.63 29.84 91.05 0.331 0.211 0.658 1.313 1.350
Elgeeii Jun 2017 25 11.91 7.52 23.85 0.213 0.138 0.435 1.371 1.396
Elgeeii Sep 2017 25 44.96 29.65 89.74 0.306 0.202 0.608 1.336 1.328
Elgeeii Sep 2018 25 53.02 34.06 106.96 0.388 0.245 0.780 1.375 1.380
Elgeeii Sep 2019 25 36.75 23.51 71.97 0.253 0.162 0.499 1.318 1.335
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Figure S2. Contour plots of thaw depths within a 50 m × 50 m plot at Spasskaya Pad. Closed

circles represent the measurement nodes on the grid.
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Figure S3. Contour plots of thaw depths within a 50 m × 50 m plot at Elgeeii. Closed circles

represent the measurement nodes on the grid.
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(b) Spasskaya Pad, June 2017, merged
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Figure S4. Contour plots of thaw depths of regular measurements (a, 25 points) and merged

data (b, 45 points) in June 2017 at Spasskaya Pad. Closed circles represent the measurement

nodes on the grid.
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Figure S5. Contour plots of the interannual node variability (INV) of active layer thickness at

Spasskaya Pad (a) and Elgeeii (b). Closed circles represent the measurement nodes on the grid.
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