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Abstract

Meandering channels are ubiquitous features in intertidal mudflats and play a key role in the eco-morphosedimentary evolution

of such landscapes. However, the hydrodynamics and morphodynamic evolution of these channels are poorly known, and direct

flow measurements are virtually nonexistent to date. Here, we present new hydroacoustic data collected synchronously at

different sites along a mudflat meander located in the macrotidal Yangkou tidal flat (Jiangsu, China) over an 8-day period. The

studied bend exhibits an overall dominance of flood flows, with velocity surges of about 0.8 m/s occurring immediately below the

bankfull stage during both ebb and flood tides. Unlike salt-marsh channels, velocities attain nearly-constant, sustained values as

long as tidal flows remain confined within the channel, and reduce significantly during overbank stages. In contrast, curvature-

induced cross-sectional flows are more pronounced during overbank stages. Thus, a phase lag exists between streamwise and

cross-stream velocity maxima, which limits the transfer of secondary flows and likely hinders the formation of curvature-induced

helical flows along the entire meander length. Our results support earlier suggestions that the morphodynamics of intertidal

mudflat meanders does not strongly depend on curvature-induced helical flows, and is most likely driven by high velocities

and sustains seepage flows at late-ebb stages, as well as by other non-tidal processes such as waves and intense rainfall events.

By unraveling complex flow structures and intertwined morphodynamic processes, our results provide the first step toward a

better understanding of intertidal mudflat meanders, with relevant implications for their planform characteristics and dynamic

evolution.
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Key Points 23 

• Acoustic measurements of flow velocities in a sinuous macrotidal mudflat channel show 24 

critical differences with channels in vegetated intertidal plains  25 

• Offset between streamwise and cross-stream velocity maxima limits advection of 26 

secondary flows and hinders curvature-induced helical flows 27 

• High velocities and sustained seepage flows at late-ebb stages likely exert stronger controls 28 

than helical flows on meander morphodynamics 29 

 30 

Keywords 31 

Tidal Meanders; Mudflat; Hydroacoustic; Helical flow; Secondary circulations; Flow Separation 32 

 33 

  34 



manuscript submitted to Water Resources Research 

3 

 

Abstract 35 

Meandering channels are ubiquitous features in intertidal mudflats and play a key role in the eco-36 

morphosedimentary evolution of such landscapes. However, the hydrodynamics and 37 

morphodynamic evolution of these channels are poorly known, and direct flow measurements are 38 

virtually nonexistent to date. Here, we present new hydroacoustic data collected synchronously at 39 

different sites along a mudflat meander located in the macrotidal Yangkou tidal flat (Jiangsu, China) 40 

over an 8-day period. The studied bend exhibits an overall dominance of flood flows, with velocity 41 

surges of about 0.8 m/s occurring immediately below the bankfull stage during both ebb and flood 42 

tides. Unlike salt-marsh channels, velocities attain nearly-constant, sustained values as long as 43 

tidal flows remain confined within the channel, and reduce significantly during overbank stages. 44 

In contrast, curvature-induced cross-sectional flows are more pronounced during overbank stages. 45 

Thus, a phase lag exists between streamwise and cross-stream velocity maxima, which limits the 46 

transfer of secondary flows and likely hinders the formation of curvature-induced helical flows 47 

along the entire meander length. Our results support earlier suggestions that the morphodynamics 48 

of intertidal mudflat meanders does not strongly depend on curvature-induced helical flows, and 49 

is most likely driven by high velocities and sustains seepage flows at late-ebb stages, as well as by 50 

other non-tidal processes such as waves and intense rainfall events. By unraveling complex flow 51 

structures and intertwined morphodynamic processes, our results provide the first step toward a 52 

better understanding of intertidal mudflat meanders, with relevant implications for their planform 53 

characteristics and dynamic evolution. 54 

 55 
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1 Introduction 61 

Tidal mudflats are among the most extensive coastal ecosystems worldwide (Murray et al., 2019; 62 

Murray et al., 2022). They are low-gradient intertidal landforms typically occurring in sediment-63 

rich environments (Gao, 2019; Klein, 1985; Rogers & Woodroffe, 2015) characterized by large 64 

tidal oscillations relative to characteristic wind-wave heights (e.g., Friedrichs, 2011; Klein, 1985; 65 

Morales, 2022). Tidal mudflats are extremely important from both ecological and economic 66 

perspectives thanks to the broad range of ecosystem services they provide (Passarelli et al., 2018), 67 

including, nutrient cycling, carbon sequestration, water filtering, habitat provision for wildlife, 68 

food production, recreational activities, and cultural services (Choi, 2014; Friedrichs & Perry, 69 

2001; Kim et al., 2000; Kirwan & Megonigal, 2013; Pilkey & Cooper, 2004; Shi et al., 2018; 70 

Temmerman et al., 2013; Vousdoukas et al., 2020; Wang et al., 2012).   71 

The morphosedimentary evolution of tidal mudflats is intimately linked to the morphodynamics 72 

of the extensive networks of tidal channels that cut through them (Figure 1). These channels are 73 

typically meandering in planform to a greater or lesser degree (Choi, 2014; Friedrichs, 2011; Gao, 74 

2019; Hughes, 2012), and play a primary role in regulating the exchanges of water, sediments, 75 

nutrients, and biota with the open sea (Coco et al., 2013; D'Alpaos et al., 2005), thus exerting a 76 

prominent control on the eco-geomorphology of the tidal-flat ecosystem as a whole (Choi, 2014; 77 

Hughes, 2012; Wells et al., 1990). Besides, lateral migration of meandering channels critically 78 

affects both the sedimentology and stratigraphy of tidal-flat systems, especially in terms of 79 

preservation potential (Choi, 2011; Choi et al., 2013; Ghinassi et al., 2019; Kleinhans et al., 2009). 80 

Indeed, mudflat tidal channels are typically preserved in the fossil record either as laterally-81 

accreting, heterolithic point bars or through the infilling of abandoned channels generated either 82 

from meander cutoff or channel avulsion (Brivio et al., 2016; Choi, 2010; Cosma et al., 2020; 83 

Hughes, 2012; Sisulak & Dashtgard, 2012).  84 
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 85 

Figure1.  Examples of meandering channels in tidal mudflats along the World’s coast. (a) Baegmihang Port, South 86 

Korea (37°09′N, 126°40′E; ©Google, TerraMetrics; imagery date: March 14, 2019). (b) Boseong Bay, South Korea 87 

(34°52′N, 127°30′E; ©Google, Maxar Technologies; imagery date: August 30, 2020). (c) Cardiff Flats, England 88 

(51°28′N, 3°08′W; ©Google, Maxar Technologies; imagery date: July 11, 2013). (d) Fundy Bay, Canada (45°45′N, 89 

64°38′E; ©Google, Maxar Technologies; imagery date: May 21, 2017). (e) Mühlenberger Loch, Germany (53°32′N, 90 

9°48′E; ©Google, CNES/Airbus; imagery date: April 22, 2020). (f) The Wadden Sea, Germany (53°41′N, 8°02′E; 91 

©Google, Maxar Technologies; imagery date: September 25, 2016). (g) I’Épinay Estuary, France (47°31′N, 2°36′W; 92 

©Google, Maxar Technologies; imagery date: March 19, 2011). (h) Lanveur Bay, France (48°21′N, 4°17′W; ©Google, 93 

Landsat/Copernicus; imagery date: January 01, 2005). (i) Morlaix Bay, France (48°38′N, 3°51'W; ©Google, 94 

TerraMetrics; imagery date: January 01, 2005). 95 

 96 
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In spite of their prominence and ubiquity, however, meandering channels in tidal mudflats 97 

are still poorly studied especially from a hydrodynamic standpoint. Previous field measurements 98 

of flow fields in tidal meanders focused primarily on either tidally-influenced fluvial reaches, 99 

where flow dynamics are largely influenced by river discharges and density-stratification effects 100 

(Chant, 2002; Keevil et al., 2015; Kranenburg et al., 2019; Somsook et al., 2020), or on intertidal 101 

channels dissecting vegetated salt marshes and mangrove swamps (Finotello, Ghinassi, et al., 2020; 102 

Horstman et al., 2021). In contrast, field studies on tidal meanders wandering through unvegetated 103 

intertidal mudflats are still scarce (Choi et al., 2013; Kleinhans et al., 2009), and flow velocity 104 

measurements are virtually nonexistent to date. This is a critical knowledge gap because significant 105 

differences might exist in terms of flow fields between tidal channels wandering through vegetated 106 

and unvegetated intertidal plains, especially concerning overbank stages (i.e., water levels that 107 

exceed the channel bankfull capacity). Overbank velocities in vegetated settings dominated by 108 

turbulence and friction are typically a magnitude lower than those observed on unvegetated 109 

mudflats (Bouma et al., 2005; Christiansen et al., 2000; D’Alpaos et al., 2021; Friedrichs, 2011; 110 

Hughes, 2012; Rinaldo et al., 1999a; Sullivan et al., 2015). Besides, overbank stages are more 111 

frequent in mudflats than in salt marshes, owing to the relatively lower position occupied by 112 

mudflat channel banks within the intertidal frame. As such, stage-velocity relations in mudflat tidal 113 

channels can differ greatly from those observed in vegetated marshes and mangrove forests, and 114 

overbank stages might have stronger control on tidal channel morphodynamics (D’Alpaos et al., 115 

2021; Hughes, 2012; Kearney et al., 2017; McLachlan et al., 2020; Sgarabotto et al., 2021), 116 

potentially justifying the observed morphological differences of tidal channel networks in distinct 117 

vegetational settings (Geng et al., 2021; Kearney & Fagherazzi, 2016; Schwarz et al., 2022; Wang 118 

et al., 1999a, 1999b). These differences in landforming hydrodynamic processes are also likely to 119 

affect the development of curvature-induced helical flow that is typically related to the 120 

development and growth of meander bends in both rivers and salt-marsh tidal channels (Azpiroz-121 

Zabala et al., 2017; Finotello, Ghinassi, et al., 2020; Keevil et al., 2015; Kranenburg et al., 2019; 122 

Nidzieko et al., 2009; Thorne et al., 1985). Such helical flow forms as a consequence of secondary 123 

(i.e., cross-sectional) circulations, oriented toward the inner and outer bank in the near‐bed and 124 

near‐surface zone, respectively, which result from the imbalance between the upward-increasing 125 

centrifugal forces and the lateral pressure gradients created by the curvature‐induced 126 

superelevation of the water surface at the outer bank (Engelund, 1974; Prandtl, 1926; Rozovskiĭ, 127 



manuscript submitted to Water Resources Research 

7 

 

1957; Solari et al., 2002). The downstream advection of secondary circulations operated by the 128 

main streamwise flow produces a helical flow, as extensively documented in a variety of field 129 

(Dietrich & Smith, 1983; Dinehart & Burau, 2005; Frothingham & Rhoads, 2003), laboratory 130 

(Blanckaert, 2011; Liaghat et al., 2014), and numerical studies (Blanckaert & de Vriend, 2003; 131 

Bridge & Jarvis, 1982; Ferguson et al., 2003). 132 

Although secondary currents akin to those found in river meanders have been observed and 133 

modelled in meandering salt-marsh creeks and large estuarine tidal channels (Finotello, Canestrelli, 134 

et al., 2019; Finotello et al., 2022; Finotello, Ghinassi, et al., 2020; Kranenburg et al., 2019; 135 

Nidzieko et al., 2009; Pein et al., 2018; Somsook et al., 2020; Somsook et al., 2022), their presence 136 

in sinuous mudflat channels has yet to be demonstrated. In fact, previous studies (e.g., Choi, 2011; 137 

Choi & Jo, 2015; Ghinassi et al., 2019; Kranenburg et al., 2019) suggested that the morphodynamic 138 

processes governing meander evolution in intertidal mudflat settings can differ greatly from the 139 

classic secondary-current-driven lateral channel migration mechanism acting in vegetated fluvial 140 

and intertidal plains. For instance, Kleinhans et al. (2009) argued that owing to the higher 141 

thresholds for erosion that characterize mudflat deposits, bank erosion is primarily due to bank 142 

undercutting caused by backward-migrating steps along the channel bed driven by hydraulic jumps 143 

that form during ebb tides. They also demonstrated that bank migration occurs preferentially in 144 

very sharp bends, where flow separates from the meander inner (convex) bank and impinges 145 

directly against the outer (concave) bank. Choi (2011) noted enhanced tidal channel migration in 146 

association with episodic and seasonal increase of discharge due to, for example, heavy 147 

precipitations, pointing to a strong control of these non-tidal processes on the morphodynamic and 148 

sedimentology of tidal mudflat meanders. Accordingly, Choi and Jo (2015) measured pronounced 149 

meander migration in the Yeochari macrotidal flat (South Korea) during the summer rainy season, 150 

when point bars were observed to migrate as fast as 40 m per month due to increased runoff 151 

discharge caused by heavy rainfalls in the order of tens to hundreds of millimeters per hour, 152 

possibly compounded by monsoon precipitations. Finally, Ghinassi et al. (2019) suggested that 153 

wave winnowing of mudflats during high-tides modulates meander morphosedimentary evolution, 154 

leading to widespread bank collapses within the channel. 155 

In view of the above, the structure of tidal flow fields in mudflat tidal meanders appears to be 156 

worth investigating. Here we present novel hydroacoustic data from a meandering tidal channel 157 
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dissecting a macrotidal mudflat located along the Jiangsu coast (China). The aim of the study is 158 

threefold, as we intend to: (i) highlight the characteristics of tidal flows within a meander bend 159 

developed in an unvegetated tidal mudflat; (ii) unravel possible differences in meander 160 

hydrodynamics among below-bankfull and above-bankfull (i.e., overbank) water stages; and (iii) 161 

disclose the characteristics of secondary circulations and their relations with the overbank flows. 162 

To the best of our knowledge, this study represents the very first attempt to directly measure tidal 163 

flows in meandering mudflat channels. 164 

 165 

2 Geomorphological setting and study-case 166 

Our study case is found in the Yangkou tidal flat (YTF), an extensive mudflat system located on 167 

the southern Jiangsu coast, northward of the Yangtze River Delta, which is bordered by the Yellow 168 

Sea to the East and North and by the East China Sea to the South (Figure 2a). The YTF was formed 169 

by abundant sediment supply input from both the Yangtze River and the Yellow River, which 170 

historically allowed for seaward expansion of the whole Jiangsu province coastline (Shi et al., 171 

2016; Wang & Zhu, 1990). Sediments consist mainly of silty-muddy material, with average grain 172 

sizes ranging between 10 and 45 μm (i.e., 4.5 ~ 6.6 φ) (Shi et al., 2016; Wang & Ke, 1997). In the 173 

last 2 centuries, however, the seaward extent of the YTF has decreased from 5 ~ 11 km to about 5 174 

~ 8 km as a consequence of changes in sediment transport regime driven by anthropogenic 175 

interventions, the latter including the diversion of the Yellow River to the Bohai Sea in 1855 (Ren 176 

& Shi, 1986), and the construction of the Three Gorges Dam in 2003, which significantly decreased 177 

sediment supply from the Yangtze River (Yang et al., 2014). In addition to this, land reclamation 178 

projects, the building of oceanic outfalls, aquaculture, and the construction of wind farms have 179 

further contributed to increasing anthropogenic pressures in the YTF area (Xu et al., 2019; Zhao 180 

et al., 2020; Zhao & Gao, 2015). Nowadays, the whole intertidal area in the YTF covers 181 

approximately 100 km2, extending seaward from the shoreline with gentle slopes ranging between 182 

0.5‰ and 1.2‰ on average (Wang & Ke, 1997; Zhu et al., 1986).  183 

Intertidal mudflats in the YTF are dissected by extensive networks of tidal channels. These 184 

channels serve as the main conduits for the propagation of both the East China Sea progressive 185 

tidal wave and the southern Yellow Sea rotary tidal wave, which converge nearby the town of 186 
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Yangkou giving rise to complex coastal circulations (Liu et al., 1989). The tidal regime in the 187 

study area is semidiurnal macro-tidal, with average and spring tidal ranges equal to 4.6 m and 8 m, 188 

respectively. Morphodynamic processes are also affected by the East Asian Monsoon, which 189 

blows with a mean winter wind speed of 4.2 m/s toward the southeast and a mean summer wind 190 

speed of 2.8 m/s toward the northwest, respectively (maximum measured wind speed is 34 m/s; 191 

(Li et al., 2011; Xing et al., 2012). As wave conditions in this region are mainly related to wind 192 

speeds, wave heights are smaller in the summer and larger in the winter, with annual average 193 

values ranging between 0.5 and 1.5 m (Chen, 2016). The annual precipitation is about 900 ~ 1000 194 

mm on average, with the summer season accounting for more than 40% of the whole yearly rainfall 195 

(Wang & Ke, 1997; Xing et al., 2012).  196 

Our study site is a blind tidal channel found within a natural reserve facing the Xiaoyaokou Scenic 197 

and the Xinchuan port, both located nearby the city of Yangkou (Figure 2b). The studied channel 198 

is 1.9 km long and is characterized by average width of 8 m. With an overall channel sinuosity 199 

equal to 1.5, it represents a well-developed meandering reach. The channel originates from a 200 

fringing salt marsh, which borders the Xiaoyangkou Scenic and is covered by Spartina alterniflora 201 

Loisel (Figure 2c,e), and extends seaward wandering through an unvegetated intertidal mudflat. 202 

Freshwater fluxes from the Beiling river to the North and the Bencha canal to the South do not 203 

interfere with the hydrodynamic regime of the studied channel, which is always submerged at high 204 

tide and drains out almost completely at low tide.  205 

In this study, we focused specifically on a meander bend located in the central portion of the 206 

channel and surrounded by unvegetated tidal flats (Figure 2c,d,f). The studied bend is 207 

characterized by a cartesian wavelength (i.e., the linear distance between bend inflections) 𝐿𝑥𝑦=37 208 

m, whereas the along-channel bend length (𝐿𝑠) is equal to 56 m. Hence, the bend attains a sinuosity 209 

𝜒=𝐿𝑠/𝐿𝑥𝑦=1.5. The average meander radius of curvature is 𝑅=19 m, and the amplitude, measured 210 

as the maximum distance from the line passing through both bend inflections, is equal to  𝐴=18 m. 211 

The cross-sectional width (𝑊) decreases from 8.8 m to 8.3 m in the landward direction (average 212 

width �̅�=8.5 m). Being the bankfull depth (𝑌𝐵) equal 1.20 m on average, the studied bend is 213 

characterized by an average width-to-depth ratio ( 𝛽 = �̅�/𝑌𝐵 ) of about 7.1. All these 214 

morphometric parameters are in line with typical values observed for tidal channels worldwide 215 

(D'Alpaos et al., 2005; Finotello, D'Alpaos, et al., 2020; Hughes, 2012). While many regularly-216 
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spaced small erosional gullies cut through the channel banks (Figure 2f), a 4 m wide and 0.5 m 217 

deep side tributary, meandering in planform, is found landward of the apex of the studied bend 218 

(Figure 2d). 219 

 220 

Figure 2. Study site. (a) Overview of the study area. (b) The Yangkou tidal flat, Rudong County, Jiangsu Province, 221 

China (Map data: Landsat8, OLI, April 9, 2021); areas affected by land reclamation activities are highlighted with 222 

colored lines. (c, d) Overview of the meandering tidal channel investigated in this study, with a close-up view of the 223 

analyzed meander bend (Map data: Google, TerraMetrics). (e) A photo showing vegetation features in the landward 224 

portion of the channel, characterized by the widespread presence of Spartina alterniflora Loisel. (f) A photo of the 225 

studied bend at low tide. 226 
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 227 

 228 

Figure 3. Sediment grain size distribution at the study site. Results of grain size analysis carried out on sediment cores 229 

collected at the study-bend inner bank (a), outer bank (b), and channel thalweg (c). Different symbols of gray-shaded 230 

data points denote different coring depths, as shown by the inset in the lower-right corner. Detailed coring locations 231 

are shown in panel (d), together with a seaward-looking photo of the coring operation at the outer bank. Sediment 232 

coring was carried out on the last day of fieldwork to avoid damaging the channel morphology before flow 233 

measurements. 234 

 235 

In order to investigate sediment properties at the study site, we collected sediment cores at the 236 

meander inner bank, outer bank, and channel thalweg using a custom hand corer (coring depth 237 

ranging between 60 and 80 cm). Grain-size analysis was carried out at 10 cm intervals from the 238 

core top using a Mastersizer 2000 laser granulometer with a measuring range of 0.02 ~ 2000 μm 239 
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and a reproducibility error of < 3%. Grain-size parameters - including median size (𝑑50), standard 240 

deviation (𝜎𝑑), skewness (𝑆𝑑), and kurtosis (𝐾𝑑) - were calculated using the Moment Methods 241 

(Friedman, 1962). Consistently with sedimentary characteristics of the whole YTF system, 242 

sediments were found to be mostly cohesive, with clay volume content accounting for nearly 20% 243 

(Figure 3). The median grain size is always smaller than 62.5 μm (i.e., 4φ). No significant grain-244 

size trends are observed from the core collected at the channel thalweg (Figure 3c), whereas fining 245 

upward trends are found both at the inner and outer bank (Figure 3a,b).  246 

 247 

3 Methods 248 

3.1 Acoustic measurements of flow velocities 249 

We continuously monitored water levels and flow velocities in the study meander bend from 250 

October 14, 2020 to October 21, 2020. Three Nortek’s new Acoustic Doppler Current Profiler 251 

(AD2CP, Signature 1000kHz) were placed at three different sites along the studied bend, namely 252 

the bend apex and both the landward and seaward inflections, whereas one Teledyne RDI 253 

ADCP1200kHz was deployed at the confluence with the small side tributary (Figure 4a). All 254 

instruments were placed at the channel thalweg with an up-looking orientation to record velocities 255 

and pressures (Figure 4c,d,e,f). The fifth probe of Nortek AD2CPs can observe the vertical velocity 256 

separately from the other four probes, thus effectively avoiding acoustic cross-interference so that 257 

the noise in the vertical velocity signal is significantly lower than that of traditional ADCP 258 

instruments. The three AD2CPs were programmed to operate at 1.0 Hz, recording velocities in 20 259 

cm vertical bins over timespans at 5-minute intervals. The blanking distance of the AD2CP was 260 

set to 10 cm, so that the center of the first sampling bin is 20 cm above the instrument. In contrast, 261 

the Teledyne ADCP was programmed to operate at 1.0 Hz to record velocities in 5 cm bins at 5 262 

minutes. The blank distance of the ADCP was set to 20 cm, so that the center of the first bin is 263 

22.5 cm above the instrument. Details regarding the instruments’ parameters are shown in Table 264 

1. 265 
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 266 

Figure 4. Field measurements of flow fields and channel geometry. (a) Deployment locations of the AD2CPs (in black) 267 

and ADCP (in blue) instruments used in this study are shown together with the channel cross-sections where 268 

topographic surveys were carried out by means of an RTK-GPS. (b) Cross-sectional profiles of the surveyed channel 269 

cross-sections as obtained from the RTK data. Elevations are reported in meters above the mean sea level (MSL). 270 

Different symbols and colors denote different cross-sections according to the legend shown in panel “a”. (c,d,e,f) 271 

Photograph of the deployed instrument prior to data acquisition. Names of individual instruments recall those reported 272 

in panel “a”. (g) Photo of the topographic survey campaign carried out by means of an RTK-GPS during low tide. All 273 

the photos reported in panels (c,d,e,f, and g) were taken during the late stages of ebb tides.  274 

 275 

 276 

 277 

 278 

 279 
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Table 1. Parameters of the AD2CP and ADCP instruments used in this study 280 

 AD2CP-1 AD2CP-2 AD2CP-3 ADCP 

Manufacture Nortek Nortek Nortek Teledyne RDI 

Version Signature1000 Signature1000 Signature1000 Workhorse 

Serial Number 100295 101044 100615  

Sampling rate 1 Hz 1 Hz 1 Hz 1 Hz 

Blanking Distance 10 cm 10 cm 10 cm 20 cm 

Bin Size 20 cm 20 cm 20 cm 5 cm 

Sampling Mode Burst Burst Burst Burst 

Sampling Interval 5 min 5 min 5 min 5 min 

Sample Duration 256 s 256 s 256 s 256 s 

Burst Profile 5 Beams 5 Beams 5 Beams 4 Beams 

 281 

3.2 Data processing  282 

Velocity data retrieved from the AD2CPs were converted into ENU system (i.e., 𝑣𝐸 , 𝑣𝑁,𝑣𝑈 for 283 

East-, North-, and Up-ward velocity, respectively), whereas ADCP data were already recorded in 284 

ENU format. Raw ENU data were then imported to Matlab (version 2019b) for initial quality 285 

control to remove noise generated by the interference of water bubbles, large suspended particles, 286 

echo intensity, and other disturbance factors (Lan et al., 2019). The procedure used for quality 287 

control is a modified version of Guerra and Thomson (2017)’s algorithm. For the data acquired 288 

using AD2CPs, values of echo intensity ≥ 25 dB and correlation magnitude ≥ 30% are used as 289 

threshold limits for high-quality data; for the data acquired by ADCP, values of echo intensity ≥ 290 

30 dB and correlation magnitude ≥ 50% are instead used as thresholds. Velocity data were then 291 

despiked using the Phase-Space Thresholding Method (Goring & Nikora, 2002) and eventually 292 

averaged over the time length of individual bursts (i.e., 5 minutes). Moreover, ADCP data were 293 

also averaged vertically over 4 successive bins to allow for a more direct comparison with the 294 

AD2CP data. Overall, a total of 21 bins of velocity data were obtained for each instrument. For 295 

each bin, the horizontal velocity �⃗� was calculated as the vector sum of the eastward (𝑣𝐸⃗⃗⃗⃗⃗) and 296 

northward (𝑣𝑁⃗⃗ ⃗⃗ ⃗) velocity components (see Figure 5a) whereas depth-averaged velocities (DAVs) 297 

were computed for each measuring station as the average value of the whole �⃗� profile. Measured 298 
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values of upward velocities (𝑣𝑈⃗⃗ ⃗⃗ ⃗) were instead maintained unaltered. Water depth (𝑌) data were 299 

also obtained from pressure sensors integrated within the instruments. Based on the surveyed 300 

topographic profile of each cross-section (Figure 4b), we were able to identify the water depth 𝑌𝐵 301 

corresponding to bankfull conditions. This allowed us to differentiate velocity data recorded for 302 

water levels higher and lower than the bankfull threshold (i.e., above- and below-bankfull water 303 

stages). Stage-velocity diagrams were also obtained based on binary plots of water levels (𝑌) and 304 

depth-averaged values of flow velocity (𝐷𝐴𝑉𝑠) at each monitoring station (Figure 6 a-d). Both 305 

𝐷𝐴𝑉𝑠 and 𝑌 were also put in relation to the rates water-level change �̇� = dY/dt (Figure 6 e-p).  306 

 Tidal asymmetries were investigated based on two distinct metrics, concerning the asymmetry in 307 

flood vs. ebb peak tidal velocities and flood vs. ebb durations, respectively (Figure 5 e-g). Since 308 

the flow velocity is a function of the water depth, the peak tidal velocity index (𝜌𝑣), which is the 309 

ratio between the flood and ebb peak of |�⃗�| (Friedrichs & Aubrey, 1988; Guo et al., 2019), was 310 

calculated at different water depths (i.e., at different positions along the water column) at 20 cm 311 

intervals. To further differentiate between flow dynamics within the channel and outside of it, 312 

distinct calculations of 𝜌𝑣 were performed averaging results by considering only velocity values 313 

measured at water depths (𝑌) smaller and larger than the bankfull depth (𝑌𝐵), respectively (Figure 314 

5e,f). In contrast, asymmetries in tidal duration (𝜌𝑑 ) were computed as the ratio between the 315 

duration of the falling and rising limb of the tidal wave (Friedrichs & Aubrey, 1988; Guo et al., 316 

2019). Both 𝜌𝑑 and 𝜌𝑣 provide a straightforward tool to differentiating flood-dominated (𝜌>1) and 317 

ebb-dominated (𝜌<1) tidal flows.  318 

To simplify the interpretation of velocity-data time series and filter out outliers, data were phase 319 

averaged and subdivided into two distinct groups based on the values of the high-tide water depth 320 

(𝑌𝐻) observed during each individual tidal cycle. Specifically, tidal cycles for which 𝑌𝐻>3.7 m (i.e., 321 

the sixth to thirteenth tidal cycle in Figure 5) were classified as “high-amplitude tides” (HAT), 322 

whereas all the other tidal cycles were considered “low amplitude tides” (LAT) (Tu et al., 2019; 323 

Voulgaris & Meyers, 2004; Wang et al., 2013). For each tidal cycle, the instant corresponding to 324 

𝑌𝐻 was assigned the time value of 𝑡=0. Then, data collected six hours before and after 𝑌𝐻 were 325 

ensemble-averaged at five-minute intervals (Figure 7a,b) 326 

Finally, in order to better investigate flow structures and unravel possible secondary (i.e., cross-327 

sectional) circulations, velocity data were reprojected into two different components, namely, the 328 
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primary (i.e., streamwise) velocity 𝑉𝑃 , corresponding to the main direction of in-channel tidal 329 

flows, and the secondary (i.e., cross-sectional) velocity 𝑉𝑆, oriented orthogonally to 𝑉𝑃 (Bever & 330 

MacWilliams, 2016; Finotello, Ghinassi, et al., 2020; Lane et al., 2000). In order to define the 331 

directions of 𝑉𝑃 and 𝑉𝑆, previous studies have typically taken advantage of reprojection techniques 332 

based on flow data recorded along the entire channel cross-section by ADCP instruments mounted 333 

on moving vessels (Finotello, Ghinassi, et al., 2020; Lane et al., 2000; Parsons et al., 2013). These 334 

techniques cannot however be applied to our data, since our instruments were operated in 335 

stationary mode, and significant differences appear when observing flow velocities at above- and 336 

below-bankfull stages. Thus, we assumed that the direction of 𝑉𝑃 corresponds to the direction of 337 

the maximum horizontal velocity (𝑣𝑚𝑎𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) observed at the bottom vertical layer (i.e., 𝑌 = 0.2 m in 338 

Figure 7c~f). Such a definition is based on the observation that the orientation of 𝑣𝑚𝑎𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  at the 339 

channel bottom is unequivocally defined and remains consistent during both the ebb and flood 340 

phases (see Figure 4 and Figure 7c~f). Once 𝑉𝑃  is defined, the orientation of secondary velocity 341 

( 𝑉𝑆 ) is immediately derived as the direction perpendicular to 𝑉𝑃 . Details regarding the 342 

determination of 𝑉𝑃 and 𝑉𝑆 at different measuring stations can be seen in Figure 8,9,10 and 11. 343 

Close-up views of 𝑉𝑆 vectors for below-bankfull stages only are also shown in Supplementary 344 

Figure S1. 345 

 346 

4 Results 347 

4.1 Flow magnitudes, tidal asymmetries, and stage-velocity relationships 348 

Overbank flows invariably occurred for all the tide cycles on record. The high-tide water depth 349 

(𝑌𝐻) reached a maximum value of 4.2 m on Oct. 18, whereas a minimum value of 𝑌𝐻=2.2 m was 350 

observed on Oct. 14. The latter was still higher than bankfull water depth (𝑌𝐵), which is about 351 

𝑌𝐵=1.20 m (Figure 5a). There are no significant differences in horizontal velocity magnitudes (|�⃗�|) 352 

between the four monitoring stations, with peak velocities in the order of |�⃗�|=0.96-0.99 m/s 353 

consistently observed during the rising limb of the tide (Figure 5a,b,c,d). Pronounced differences 354 

in flow velocity are observed for water stages above and below the bankfull depth. Specifically, 355 

higher |�⃗�| values are typically observed for below-bankfull water stages, when tidal flows are 356 

conveyed entirely within the channel, both during flood and ebb tides. In contrast, comparably 357 
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lower |�⃗�| values are found for water levels exceeding the bankfull depth 𝑌𝐵, although relatively 358 

large |�⃗�| values occur when the high-tide water depth (𝑌𝐻) exceeds a critical value of about 3.2 m, 359 

that is, for tidal oscillations akin to spring-tide conditions (Figure 5a). When this happens, the 360 

vertical velocity profiles display significant variations, with reduced (enhanced) velocities found 361 

at water depths lower (higher) than 𝑌𝐵. 362 

The computed values of tidal flow asymmetries (𝜌𝑣 and 𝜌𝑑) can be plotted as a function of the 363 

high-tide water depth (𝑌𝐻 ) observed during each monitored tidal cycle (Figure 5e,f,g). Made 364 

exception for the first monitored tidal cycle, flow velocities are found to be consistently flood-365 

dominated for below-bankfull depths (𝑌<𝑌𝐵, Figure 5e). In contrast, ebb dominance becomes more 366 

common considering water depths above the bankfull (𝑌>𝑌𝐵), even though most of the data still 367 

falls within the flood-dominated domain (Figure 5f). Changes in high-tide water depth (𝑌𝐻) seem 368 

to not significantly affect peak flow asymmetry, although both data scattering and flood dominance 369 

appear to decrease slightly as 𝑌𝐻  increases, both for above- and below-bankfull water depths 370 

(Figure 5e,f). Conversely, variations in 𝑌𝐻 significantly affect tide duration asymmetry (𝜌𝑑). The 371 

collected data suggest the persistence of flood-dominated conditions in our study channel during 372 

the entire monitoring period, with 𝜌𝑑 increasing proportionally to 𝑌𝐻 in a statistically significant 373 

fashion (Figure 5g). 374 

Stage-velocity diagrams for all the measuring stations display pronounced variations in the 375 

observed depth-averaged velocity (DAV), with DAV maxima typically occurring immediately 376 

below the bankfull water depth both for flood and ebb tides (Figure 6a,b,c,d). Flood DAVs are 377 

observed to decrease significantly once water depths exceed the bankfull stage. On the contrary, 378 

ebb DAVs rapidly increase once water depths become lower than the bankfull water depth. 379 

Although the peak DAVs are typically higher during the flood phase, which is in agreement with 380 

our previous observations regarding flow asymmetries, ebb DAVs attain near-maximum values for 381 

comparably longer times at water stages lower than bankfull (Figure 6a,b,c,d).  382 

Similar to the DAV patterns, the rate of water-level change (�̇� = dY/dt) peaks around the bankfull 383 

stage during the flood, whereas ebb peaks of �̇�  are observed for water stages well above the 384 

bankfull (Figure 6e,f,g,h). Notably though, �̇� attains a nearly-constant value during most of the 385 

ebb phase, whereas much more pronounced changes are observed during the flood. A statistically 386 

significant, positive linear correlation is found between �̇�  and DAV for below-bankfull stages 387 
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during both the ebb and the flood (Figure 6i,j,k,l), although such correlation is more robust for ebb 388 

flows (Figure 6i,j,k,l). For overbank stages, significant correlations between �̇� and DAV can only 389 

be obtained for the flood phase, whereas ebb DAVs are not significantly correlated to �̇� (Figure 390 

6m,n,o,p). 391 

 392 

 393 
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Figure 5. Time series of measured flow velocities and water depths. a,b,c,d) Time-continuous plots of horizontal 394 

velocity magnitudes (|�⃗�|) as a function of instantaneous water depth (𝑌) for AD2CP-1 (seaward inflection point, 395 

panel a), AD2CP-2 (bend apex, panel b), ADCP (confluence with side tributary, panel c), and AD2CP-3 (landward 396 

inflection point, panel d). The horizontal velocity magnitude is computed as |�⃗�| = √|𝑣𝐸⃗⃗⃗⃗⃗|2 + |𝑣𝑁⃗⃗ ⃗⃗ ⃗|22
, where 𝑣𝐸⃗⃗⃗⃗⃗ and 𝑣𝑁⃗⃗ ⃗⃗ ⃗ 397 

are the Eastward and Northward velocity components measured by the acoustic instruments, respectively. The 398 

horizontal, black-dashed line in each panel denotes water depth corresponding to the bankfull stage (𝑌=𝑌𝐵) for each 399 

measuring station. (e,f) Values of peak tidal velocity asymmetry (𝜌𝑣) at different measuring stations are plotted against 400 

the high-tide water depth (𝑌𝐻) observed during each monitored tidal cycle. Panel e) shows 𝜌𝑣 for below-bankfull tidal 401 

flows, whereas 𝜌𝑣 values for above-bankfull flows are displayed in panel f). Data points represent the average value 402 

of 𝜌𝑣 computed at different depths, with error bars denoting standard deviation. (g) Values of tidal duration asymmetry 403 

(𝜌𝑑) at different measuring stations are plotted against the high-tide water depth (𝑌𝐻) observed during each monitored 404 

tidal cycle. Different symbols and colors in panels e,f, and g denote different monitoring stations according to the 405 

legend in the lower-right inset. Calculations of tidal asymmetries were carried out only when instruments were 406 

submerged and both velocity and depth data could effectively be recorded.   407 
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 408 

Figure 6. Relationships between depth-averaged velocity (DAV), water depth (Y), and water-depth change rate (�̇� =409 

 𝑑𝑌/𝑑𝑡) at the four measuring stations. Columns from the left- to the right-hand side of the figure show, respectively, 410 

results for AD2CP-1 (seaward inflection point), AD2CP-2 (bend apex), ADCP (side tributary confluence), and 411 

AD2CP-3 (landward inflection point). Red and blue quadrants represent data obtained during the flood and the ebb 412 

phase, respectively. (a, b, c, d) Water depth (𝑌) vs. depth-averaged velocity (DAV) curves for all the monitored tidal 413 

cycles. Red and blue points denote the maximum flood and ebb DAVs of each tidal cycle. (e, f, g, h) Water depth (𝑌) 414 
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vs. water-depth change rate (�̇�) curves for all the monitored tidal cycles. Red and blue points denote the maximum 415 

flood and ebb �̇� of each tidal cycle. (i, j, k, l) Depth-averaged velocity (DAV) as a function of water-depth change rate 416 

(�̇�) for below-bankfull stages during all the monitored tidal cycles. (m, n, o, p) Depth-averaged velocity (DAV) as a 417 

function of water-depth change rate (�̇�) for above-bankfull stages during all the monitored tidal cycles.  418 

 419 

4.2 Phase averaged velocities and secondary circulations 420 

4.2.1 Horizontal flow velocities 421 

Horizontal flow vectors �⃗�  at different depths are plotted for high-amplitude (HAT) and low-422 

amplitude (LAT) cycles separately (Figure 7c~f). At each measuring station, ebb and flood �⃗� for 423 

below-bankfull stages are generally characterized by similar orientations, yet with opposite 424 

directions, whereas more scattering is observed when flow depth exceeds the overbank stage. 425 

Directions of overbank flows appear to be consistent across different measuring stations, with 426 

flood and ebb flows directed to the southwest and southeast, respectively. In contrast, inter-site 427 

variability of below-bankfull flows is more marked, as �⃗� appears to follow the orientation of the 428 

channel axis, with �⃗�  being more variable and generally less correlated to the channel axis 429 

orientation for near-bankfull conditions (i.e., water depths 0.8<𝑌<1.2m). It is also worthwhile 430 

noting that flow directions at any given measuring station display little differences between HAT 431 

and LAT cycles, both for water stages above and below the bankfull.  432 
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 433 

Figure 7. Ensemble phase-averaged horizontal velocity (�⃗�) data at the four measuring stations. (a) Locations of 434 

measuring stations. (b) Time series of �⃗� magnitudes computed separately for high-amplitude tides (HAT) and low-435 

amplitude tides (LAT) at each measuring station. (c,d,e,f). Vectors of horizontal velocities in HAT and LAT cycles 436 

plotted for different water depths (𝑌) at each measuring station during the ebb (blue) and flood (red). 437 
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4.2.2 Streamwise velocities and secondary circulations 438 

In all the measuring sites, the primary (i.e., streamwise) velocity (𝑉𝑃) reduces significantly once 439 

the water stage reaches bankfull, both for HAT and LAT cycle. On the contrary, 𝑉𝑆  increases 440 

significantly once water depth exceeds the bankfull (see panel b in Figures 8,9,10, and 11). To 441 

better describe flow dynamics near the bankfull stage, we also plot 𝑉𝑆 vectors overimposed to 𝑉𝑃 442 

magnitude values computed 15 minutes before and after the bankfull stage for both HAT and LAT 443 

cycle (see panel c~f in Figures 8,9,10, and 11).  444 

Velocity patterns observed at the seaward inflection site (AD2CP-1) are reported in Figure 8c~f. 445 

During the flood, once the water depth exceeds the bankfull, 𝑉𝑃  decreases suddenly and even 446 

reverses its direction in the upper layers, where 𝑉𝑆  increases significantly and takes direction 447 

pointing toward the meander inner bank. In contrast, during the ebb, 𝑉𝑆 is very weak both for the 448 

above- and below-bankfull stages (Figure 8c~f). 449 

Similar results are observed at the landward inflection site (Figure 9). Particularly, peaks in 𝑉𝑃  are 450 

observed for 𝑌<𝑌𝐵, whereas the largest values of 𝑉𝑆 are attained when water depths exceed the 451 

bankfull (𝑌>𝑌𝐵). During the flood, secondary velocities (𝑉𝑆) are generally higher than at the 452 

seaward inflection and consistently point to the outer bank in the upper vertical layers. Possible 453 

secondary circulations emerge during the flood for both HAT and LAT cycles, with 𝑉𝑆 directed 454 

toward the outer bank at the water surface and near the inner bank at the channel bottom. Overall, 455 

data from both the landward and seaward inflection sites suggest the presence of secondary 456 

circulations for overbank stages both for HAT and LAT cycles, with less obvious patterns being 457 

observed during below-bankfull stages (Figure 8,9; see also Supplementary Figure S1a,b). 458 

Secondary circulations can be observed at the bend apex (Figure 10), though they appear to be 459 

generally weaker than those found at the bend inflections. During the flood, both 𝑉𝑆 magnitude 460 

and secondary circulations are very weak when 𝑌<𝑌𝐵  (Figure 10b~f and Figure S1c). Once 461 

𝑌 reaches 𝑌𝐵 , 𝑉𝑆  increases and secondary circulations develop, especially during HAT cycles. 462 

However, contrary to classic (i.e., fluvial) secondary circulation patterns where flows are directed 463 

toward the outer bank in the uppermost portions of the water column, we observe secondary 464 

circulations characterized by 𝑉𝑆 directed toward the inner bank near the water surface. During ebb 465 

tides, 𝑉𝑆  are generally lower than during the flood, and secondary circulations are less clearly 466 

noticeable both for HAT and LAT cycles.  467 
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Finally, at the confluence site, no significant secondary circulation is detected during either the 468 

flood or the ebb, both for HAT and LAT cycles. During the flood, 𝑉𝑆 are consistently directed 469 

toward the outer bank where the tributary is located and increase significantly when the water rises 470 

above the bankfull stage (Figure 11b~f; see also Supplementary Figure S1d). In contrast, during 471 

the ebb, a chaotic distribution of 𝑉𝑆  is found, with no clear indication of relevant secondary 472 

circulations (Figure 11d,f, Figure S1d). 473 

 474 

 475 
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Figure 8. Flow decomposition at the seaward inflection site. (a) Location of AD2CP-1 and the direction of primary 476 

(𝑉𝑃) and secondary velocity (𝑉𝑆). (b) Time series of 𝑉𝑃 and 𝑉𝑆 during high-amplitude tide (HAT) and Low-amplitude 477 

tide (LAT). (c,d,e,f) Vertical distribution of 𝑉𝑃  magnitude with overimposed 𝑉𝑆  vectors computed, at 5-minute 478 

intervals, 15 minutes before and after the bankfull stage in the HAT and LAT cycle. 𝑉𝑠 are directed toward the inner 479 

and outer bank when pointing to the left- and right-hand sides of the figure, respectively.  480 

 481 

 482 
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Figure 9. Flow decomposition at the landward inflection site. (a) Location of AD2CP-3 and the direction of primary 483 

(𝑉𝑃) and secondary velocity (𝑉𝑆). (b) Time series of 𝑉𝑃 and 𝑉𝑆 during high-amplitude tide (HAT) and Low-amplitude 484 

tide (LAT). (c,d,e,f) Vertical distribution of 𝑉𝑃  magnitude with overimposed 𝑉𝑆  vectors computed, at 5-minute 485 

intervals, 15 minutes before and after the bankfull stage in the HAT and LAT cycle. 𝑉𝑠 are directed toward the inner 486 

and outer bank when pointing to the left- and right-hand sides of the figure, respectively. 487 

 488 
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Figure 10. Flow decomposition at the apex site. (a) Location of AD2CP-2 and the direction of primary (𝑉𝑃) and 489 

secondary velocity (𝑉𝑆). (b) Time series of 𝑉𝑃 and 𝑉𝑆 during high-amplitude tide (HAT) and Low-amplitude tide (LAT). 490 

(c,d,e,f) Vertical distribution of 𝑉𝑃  magnitude with overimposed 𝑉𝑆  vectors computed, at 5-minute intervals, 15 491 

minutes before and after the bankfull stage in the HAT and LAT cycle. 𝑉𝑠 are directed toward the inner and outer bank 492 

when pointing to the left- and right-hand sides of the figure, respectively. 493 

 494 

 495 
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Figure 11. Flow decomposition at the confluence site. (a) Location of ADCP and the direction of primary (𝑉𝑃) and 496 

secondary velocity (𝑉𝑆). (b) Time series of 𝑉𝑃 and 𝑉𝑆 during high-amplitude tide (HAT) and Low-amplitude tide (LAT). 497 

(c,d,e,f) Vertical distribution of 𝑉𝑃  magnitude with overimposed 𝑉𝑆  vectors computed, at 5-minute intervals, 15 498 

minutes before and after the bankfull stage in the HAT and LAT cycle. 𝑉𝑠 are directed toward the inner and outer bank 499 

when pointing to the left- and right-hand sides of the figure, respectively. 500 

 501 

5 Discussions 502 

5.1 Overbank flows and stage-velocity relationships 503 

Horizontal velocity distributions and stage-velocity diagrams of our studied channel display 504 

critical differences compared to those observed in channels wandering through vegetated salt 505 

marshes and mangrove forests (D’Alpaos et al., 2021; Fagherazzi et al., 2008; Hughes, 2012; 506 

Kearney et al., 2017; McLachlan et al., 2020; van Maanen et al., 2015; see Figures 5 and 6). Owing 507 

to the characteristic geomorphic structure of vegetated intertidal plains, peaks of ebb and flood 508 

velocities in tidal channels typically occur just below or above the bankfull stage (i.e., for 𝑌>𝑌𝐵), 509 

with velocities being significantly reduced at 𝑌 < 𝑌𝐵  and approaching null values when 𝑌  is 510 

minimum (see Bayliss-Smith et al., 1979; Boon, 1975; Fagherazzi et al., 2008; Hughes, 2012; 511 

Kearney et al., 2017). In contrast, our monitored mudflat channel is characterized by sustained 512 

velocities at 𝑌<𝑌𝐵, with both horizontal (�⃗�) and depth-averaged velocities (𝐷𝐴𝑉𝑠) peaks occurring 513 

when tidal flows are confined within the channel banks (Figures 5 and 6). Notably, in all the 514 

monitored sites velocities are relevant (𝐷𝐴𝑉≈0.8 m/s) even for reduced water depth (𝑌<0.5 m), 515 

especially during the ebb (see Figure 6a,b,c,d). Overbank stages are instead characterized by 516 

reduced velocities, both in terms of �⃗� and 𝐷𝐴𝑉 values (Figures 5 and 6).  517 

These discrepancies in velocities fields between channels found in vegetated and unvegetated 518 

intertidal settings are likely due to the relative speed at which tides can propagate within and 519 

outside tidal channel networks. Specifically, frictionally-dominated tidal flows across vegetated 520 

intertidal plains make channels preferential pathways for tide propagation even when water levels 521 

exceed the bankfull (i.e., for 𝑌>𝑌𝐵; D'Alpaos et al., 2007; Rinaldo et al., 1999a, 1999b). In contrast, 522 

flow resistance in unvegetated mudflats is comparable between tidal channels and intertidal plains, 523 

such that tide propagation through unvegetated intertidal mudflats is dominated by sheet flow. 524 

This hypothesis is supported by field data from the meso-macrotidal Scheldt Estuary 525 
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(Vandenbruwaene et al., 2015) highlighting similar velocities within tidal channels (0.3~1 m/s) 526 

and across bare intertidal mudflats (0.1~0.4 m/s), in contrast to salt marshes wherein tidal flow 527 

velocities are typically lower than 0.1 m/s. In our studied channel, flow velocities for above- and 528 

below-bankfull stages are found to be in the range 0.2~0.4 m/s and 0.2~1 m/s, respectively (Figure 529 

5,6), which roughly correspond with the results of Vandenbruwaene et al. (2015). The latter data 530 

also suggest that instantaneous water levels are not significantly different within channels and 531 

across mudflats, in contrast to frictionally-dominated vegetated intertidal plains where significant 532 

differences in instantaneous water levels occur moving away from tidal channels (D’Alpaos et al., 533 

2021; Rinaldo et al., 1999a, 1999b; Sullivan et al., 2015).  534 

Besides differences in bottom friction at overbank stages, one should also appreciate that 535 

hydrodynamic dissimilarities are to be expected in mudflat vs. salt-marsh channels as a 536 

consequence of distinct characteristic elevations of both their banks and the adjoining intertidal 537 

platforms. Mudflat channels typically occupy the lower portions of the intertidal frame, their bank 538 

elevation typically ranging between the mean sea level (MSL) and the mean low water springs 539 

(MLWS). This allows for significant water depths at above-bankfull stages, which reduce flow 540 

confinement within the channel and limit channel flow velocities (Brooks et al., 2021). In contrast, 541 

channel banks in salt marshes are typically located in the highest portions of the intertidal frame, 542 

which ensures in-channel flow confinement and sustained flow velocities even for large tidal 543 

oscillations, effectively limiting above-bankfull water depths. In our study case, high �⃗� during 544 

overbank stages are only observed when peak tidal levels exceed 𝑌𝑚𝑎𝑥>3.2 m, that is, for spring 545 

tidal cycles (Figure 4a,b,c,d) or, more generally, for high-amplitude (HAT) tidal cycles (Figure 7b). 546 

Such high �⃗� values are however likely related to overbank circulations occurring at the scale of 547 

the entire mudflat systems, which are not necessarily related to flow dynamics within the channel. 548 

This is confirmed by the analysis of �⃗�  directions along the water column (Figure 7c), which 549 

testifies clear deviations of tidal flows at 𝑌>𝑌𝐵 relative to the orientation of the channel axis both 550 

for HAT and LAT tidal cycles. Such a deviation produces consistent flow directions in all the 551 

monitored sites, with tidal flows being directed to the South-East and South-West during ebb and 552 

flood tides, respectively (Figure 7c).  553 

These observations altogether support the idea that differences in the character of overbank flows 554 

result in marked hydrodynamic dissimilarities between tidal channels dissecting vegetated and 555 
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unvegetated intertidal plains. Such differences are also likely to affect curvature-induced 556 

secondary circulations and the related meander morphodynamic evolution, as we discuss in detail 557 

in the next sections. 558 

 559 

5.2 Secondary circulations and curvature-induced helical flows 560 

According to classic flow fields observed in sinuous channels, secondary (i.e., cross-sectional) 561 

circulations are observed in our study bend, both during high-amplitude (HAT) and low-amplitude 562 

(LAT) tidal cycles (Figures 8,9,10,11). These secondary circulations are more pronounced during 563 

overbank stages, their intensity increasing as the water depth increases within the studied channel. 564 

Indeed, secondary circulations tend to be stronger for HAT than LAT cycles (Figures 8,9,10,11). 565 

They also appear to be mostly related to flood flows, which is in agreement with the generally 566 

flood-dominated character of tidal flows observed in the studied bend (Figure 5e,f,g). In some 567 

cases, the orientation of secondary circulations is reversed compared to classic flow models such 568 

as, for example, at the seaward bend inflection as well as at the meander apex (Figure 8 and Figure 569 

10), where secondary circulations are directed toward the inner and outer bank at the top and 570 

bottom of the water column, respectively. Secondary currents can trigger cross-sectional sediment 571 

transport processes such that fine-grained deposits are transported up to the point bar from the 572 

channel bed, giving rise to fining upward trends due to the progressive upbar weakening of 573 

secondary currents (Bathurst et al., 1977; Blanckaert, 2011; Dietrich, 1987; Termini & Piraino, 574 

2011). This is supported by the fining upward trends that are consistently observed from sediment 575 

cores collected at different sites along the studied bend (Figure 3).  576 

Interestingly, secondary circulations are more pronounced at the meander inflections than at the 577 

apex, where they should be stronger owing to higher channel curvature. This could however 578 

depend on the surveying strategy we used, since we only monitored the velocity profile in 579 

correspondence to the channel axis rather than across the entire cross-section. Previous studies 580 

have demonstrated that secondary circulation cells do not necessarily occupy the whole channel 581 

cross-section (e.g., Blanckaert, 2009, 2011; Finotello, Ghinassi, et al., 2020). Particularly, 582 

hydrodynamic nonlinearities can arise in sharp bends characterized by radius-to-width ratios 583 

𝑅/�̅� lower than 2-3, and flow separation may occur either at the inner or outer bank, respectively, 584 
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immediately upstream or downstream of the bend apex (Blanckaert et al., 2013; Finotello, Ghinassi, 585 

et al., 2020; Hickin, 1978; Hickin & Nanson, 1975; Hooke, 2013; Parsons et al., 2004; Rozovskiĭ, 586 

1957). Flow separation, which is common in tidal meanders owing to the high curvature values 587 

that they typically display (Ferguson et al., 2003; Finotello, D’Alpaos, et al., 2019), can effectively 588 

reduce the portion of the channel that is hydrodynamically active and confine curvature-induced 589 

secondary circulations to the nonrecirculating portion of the primary flow (Finotello, Ghinassi, et 590 

al., 2020; Leeder & Bridges, 1975; Parsons et al., 2004). Our studied meander bend is characterized 591 

by a 𝑅/�̅�=2.2, and the formation of flow sepeartion is therefore highly likely. Direct measurement 592 

of tidal flows across the entire channel cross section would be necessary to settle the dispute, but 593 

such data are hard to collect because channel banks at our studied site are flooded by more than 3 594 

m of water at high tides, thus making field measuring campaigns complicated. Nevertheless, we 595 

can still estimate the chance for flow separation at the apex of our studied channel by comparing 596 

our data with the results obtained by Leeder and Bridges (1975) for intertidal meanders in the 597 

vegetated Solway Firth (Scotland). According to Leeder and Bridges (1975), the chances for flow 598 

separation in tidal meander bends can be expressed as a function of bend tightness (𝑅 𝑊⁄ ) and 599 

Froude number (𝐹𝑟). Although extending the results of Leeder and Bridges (1975) to unvegetated 600 

mudflats might not be entirely appropriate, results would still offer useful insights on the possible 601 

occurrence of flow separation, especially for below-bankfull stages when tidal flows are confined 602 

within the channel. Since our measurements include several consecutive tidal cycles, we were able 603 

to calculate how the 𝑅 𝑊⁄  changes according to varying water depths. Specifically, we assumed 604 

that 𝑅 does not vary significantly with changing water elevation, and we computed the channel 605 

width 𝑊𝑌 corresponding to different water depths (𝑌) based on topographic data of the meander-606 

apex cross-section (Figure 4b). Plotting of 𝑅 𝑊𝑌⁄  against 𝐹𝑟 shows that flow separations at the 607 

bend apex site are likely to occur at near-bankfull stages (Figure 12). This is clearly related to the 608 

morphology of the studied bend, which is characterized by a relatively low width-to-depth ratio 609 

(𝛽), whereby 𝑊𝑌 increases rapidly as 𝑌 increases, thus producing progressively lower 𝑅 𝑊𝑌⁄  in 610 

the range from 8 to 2. In addition, flow velocities at the below-bankfull stage generate a modest 611 

𝐹𝑟 value of 0.2~0.3, which can possibly induce flow separations (Leeder & Bridges, 1975). In 612 

contrast to our observations, Figure 12 suggests that flow separation will be suppressed at overbank 613 

stages, likely because of the observed flow velocity reduction at 𝑌>𝑌𝐵. Care should be however 614 

given when extending the results proposed by Leeder and Bridges (1975) to situations where tidal 615 
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flows do not remain confined within channel banks. Regardless, our analyses support the idea that 616 

reduce secondary circulations observed at the meander apex could be ascribed to flow separation, 617 

which makes secondary circulations hard to identify through localized flow measurements.  618 

Regardless of flow separation, it is worthwhile noting that secondary circulations are stronger 619 

during overbank stages, when flow confinement within channel banks is significantly reduced and, 620 

as a result, primary velocities (𝑉𝑃) are small. Thus, there seems to be a phase shift between peaks 621 

of primary (𝑉𝑃) and secondary velocity (𝑉𝑆), such that 𝑉𝑃 is maximum when 𝑉𝑆 is low, and vice 622 

versa. Such a shift would effectively limit the advection of cross‐stream circulations operated by 623 

the primary flow, thus hampering the formation of characteristic curvature‐induced helical flows 624 

(e.g., Blanckaert, 2011; Blanckaert & de Vriend, 2003; Dinehart & Burau, 2005; Ferguson et al., 625 

2003; Frothingham & Rhoads, 2003). Moreover, we notice that primary velocities at overbank 626 

stages are sometimes characterized by reverse direction relative to below-bankfull stages, that is, 627 

𝑉𝑃 are directed seaward (landward) during flood (ebb) tides (see for example Figure 8c). This 628 

would further limit the transfer of secondary circulation by primary velocity along the meander 629 

bend, thus hampering the formation of helical flows even further. Such behavior has not been 630 

observed in tidal channels flanked by vegetated intertidal plain, wherein 𝑉𝑃 and 𝑉𝑆 maxima are 631 

approximately in phase and correspond roughly to near-bankfull water stages (e.g., Fagherazzi et 632 

al., 2008; Finotello, Ghinassi, et al., 2020; Kearney et al., 2017). Additionally, secondary 633 

circulations also appear poorly developed at the confluence site. It is well known that complex 634 

circulation patterns can arise at channel confluences (e.g., Lane et al., 2000; Leite Ribeiro et al., 635 

2012; Rhoads & Kenworthy, 1995; Schindfessel et al., 2015), which are likely to suppress 636 

curvature-induced secondary flows. Nonetheless, one should appreciate that channel confluences 637 

in intertidal mudflat channel networks are somehow less frequent than in networks carving 638 

vegetated intertidal plains, owing to the lower drainage density that characterizes bare intertidal 639 

areas (e.g., Kearney & Fagherazzi, 2016). Therefore, flow disturbances and helical flow disruption 640 

due to channel confluences and bifurcations are not likely to have a significant limiting effect on 641 

meander morphodynamics in intertidal mudflats.  642 

Overall, the results we illustrated so far suggest poor development of curvature-induced secondary 643 

flows in intertidal mudflat meander bends. The implications of this hydrodynamic peculiarity, as 644 

well as those highlighted in Section 5.1, for the morphodynamics of intertidal mudflat meanders, 645 

will be discussed in the next section.  646 
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 647 

 648 

Figure 12. Flow separation in tidal meander bends according to Leeder & Bridges (1975). The normalized radius of 649 

curvature (𝑅 𝑊𝑌⁄ ) is plotted as a function of Froude number (𝐹𝑟) for distinct tidal flow depth (𝑌) and velocity (𝑈) at 650 

the apex of the studied meander bend. The parameter 𝑊𝑌 represents the effective bend width corresponding to different 651 

water depths (𝑌), whereas 𝐹𝑟 is calculated for different water depths 𝑌 and the corresponding uniform flow velocities 652 

𝑈, the latter being approximated by the depth-averaged velocity (𝐷𝐴𝑉). Colors denote varying normalized water 653 

depths, computed as the ratio between instantaneous water depths and the maximum water depth (𝑌𝑚𝑎𝑥) observed 654 

during the entire monitoring timespan. Filled dots denote below-bankfull water stages (𝑌<𝑌𝐵, where 𝑌𝐵 is the bankfull 655 

depth), whereas empty squares highlight above-bankfull stages (𝑌>𝑌𝐵). Original data points from Leeder and Bridges 656 

(1975) are also reported using gray markers, along with their empirical line separating bends with and without flow 657 

separation.  658 

 659 

5.3 Implications for meander morphodynamics 660 

Since the generation and propagation of helical flow are hampered, questions arise regarding what 661 

are the chief morphodynamic processes driving meander evolution in unvegetated intertidal 662 

mudflats. Previous studies suggested that mudflat meanders can form and develop without 663 

significant secondary circulations. For example, the evolution of small mudflat meandering 664 

channels (about 1 m wide) in the Westerschelde estuary (Netherlands) was found to be primarily 665 
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driven by late-ebb flows, which determined the erosion of channel bed due to backward-migrating 666 

steps generated by hydraulic jumps, which in turn promoted channel bank erosion due to bank 667 

undercutting and pronounced flow separation in sharp bends (Kleinhans et al., 2009). In our 668 

studied channel, sustained velocities at low water stages (Figures 5,6,8,9,10,11), together with 669 

direct visual inspections of sustained flow velocities near the end of ebb tides (see Figure 4), 670 

support the idea proposed by Kleinhans et al. (2009) that the morphodynamics of intertidal mudflat 671 

meanders is strongly controlled by late-ebb flows rather than by classic bar‐hugging helical flow 672 

produced by curvature-induced secondary flows at high-water stages. Reduced control of helical 673 

flows on channel morphodynamics is also testified by the symmetric, V-shaped form of the studied 674 

channel cross-sections (Figure 4b), which attests to the scarce development of secondary (i.e., 675 

cross-sectional) flows and contrasts with the asymmetrical U-shaped cross-sections displayed by 676 

meandering channels in vegetated tidal marshes (Finotello, Ghinassi, et al., 2020; Zhao et al., 677 

2022).  678 

In contrast to late-ebb flows, we speculate that tidal flows at early-flood stages are not likely to 679 

have significant effects in terms of bank undercutting and sediment transport because velocities 680 

increase more slowly than during late ebb, and rates of water depth change through time (�̇�), 681 

though sustained, do not produce significant variations in 𝐷𝐴𝑉𝑠 (Figure 6). Our analyses indeed 682 

confirm that tidal flows tend to be ebb-dominated at low water depths (Figure 5e,f), and also 683 

highlight that at 𝑌<𝑌𝐵 ebb velocities attain values close to the maximum for much longer periods 684 

than during the flood (Figure 6), thus likely enhancing the morphodynamic control of late-ebb 685 

flows on channel evolution. Moreover, late-ebb flows are likely to occur even for tidal oscillations 686 

lower than those we monitored here, whereas pronounced overbank flows and related secondary 687 

circulations require significant tidal oscillations to be formed. Because intense late-ebb flows act 688 

at every tidal cycle and operate for extended periods, the total morphodynamic work they produce 689 

is in all likelihood much more significant than that produced during other tidal phases, further 690 

supporting the hypothesis that late-ebb tidal stages are the most morphodynamically relevant for 691 

mudflat meander evolution.   692 

The above-described morphodynamic control of late-ebb stages is likely to be even more relevant 693 

compared to vegetated tidal landscapes due to the absence of vegetation not only on intertidal 694 

plains but also within tidal channels. In fact, previous studies focusing on salt-marsh channels 695 
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demonstrated how in-channel aquatic vegetation can enhance bottom roughness and flow 696 

turbulence (e.g., Finotello, Ghinassi, et al., 2020; Folkard, 2005), further limiting tidal flow 697 

velocities at low stages, especially in relatively small channels with widths comparable to the 698 

characteristic size of vegetation patches. The presence of aquatic vegetation would clearly prevent 699 

significant morphodynamic work to be performed by late-ebb tidal stages, which is likely not the 700 

case in the unvegetated mudflat channel we investigated here. 701 

In addition to the above, meander morphodynamics in unvegetated intertidal flats can also be 702 

driven by episodic and seasonal increases in discharges due to heavy rainfalls and melting snows 703 

(Choi et al., 2013; Choi & Jo, 2015). Choi (2011, 2014) observed that these episodic events are 704 

likely to cause abrupt morphologic changes, pronounced point bar migration, frequent meander-705 

bend cutoff, as well as channel abandonments. Particularly, significant rainfall-induced runoff 706 

during low tides would mimick late-ebb flows, thus further increasing the morphodynamic 707 

relevance of seaward-directed, shallow, in-channel flows. New field measurements will however 708 

be required to support this hypothesis in the Yangkou tidal flat, since the data presented in this 709 

study were collected in October, which is outside the monsoon season.  710 

Storm waves could also induce bank collapses in unvegetated tidal channels (Choi, 2011; Choi & 711 

Jo, 2015; Ghinassi et al., 2019), thus critically affecting meander morpho-sedimentary evolution. 712 

In spite of the absence of vegetation that can help stabilize banks and prevent erosion, no collapsed 713 

slump blocks were observed within our study channel (Gabet, 1998; Hackney et al., 2015), 714 

although such blocks could be easily disgregated and removed, once formed, by sustained in-715 

channel velocities combined with the absence of additional cohesion given by vegetation roots.  716 

Bank collapses can also form due to significant tidal oscillations and pore-excess pressure between 717 

channel and banks driven by rapid changes in water levels (Zhao et al., 2022; Zhao et al., 2019), 718 

which generate significant seepage flows (e.g., Gardner & Wilson, 2006; Wilson & Morris, 2012). 719 

Seepage flows during late-ebb tides, also favored by extensive bioturbation due to fiddler-crab and 720 

mudskipper burrowing (Harvey et al., 2019; Ishimatsu et al., 1998; Perillo et al., 2005; Xin et al., 721 

2022), are likely responsible for the widespread bank slumps that we observed at the middle and 722 

lower portions of channel cross-sections in the studied channel (Figure 13). Notably, strong 723 

seepage flows can also help explain why sustained velocities are observed over nearly the entire 724 
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duration of the ebb phase (Figure 6 a,b,c,d), and further support the idea that the ebb-late phases 725 

exert a strong control on the morphodynamics of intertidal mudflat meanders.  726 

 727 

Figure 13. Bank erosion along the studied channel. (a) Locations of the photographs. (b,c,d,e,f) Close-up views of 728 

bank slumps (white dotted lines) and gullies (white dashed lines) along the studied channel. All photos were taken 729 

during ebb tides.  730 

 731 

If, on the one hand, bank collapses driven by seepage flow are also commonly documented in 732 

vegetated macrotidal settings (Cosma et al., 2022; Zhao et al., 2022) and are therefore more closely 733 

linked to sustained tidal oscillations, on the other hand, the abundant erosional gullies (Figure 13) 734 

observed at channel banks are most likely specific of unvegetated settings. The formation of such 735 
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gullies, which can significantly contribute to bank erosion processes, is promoted by strong erosion 736 

at the ebb-bankfull transition and favored by the absence of vegetation cover (Guimond & 737 

Tamborski, 2021). Bank collapses and gullies can also be counterintuitively related to the presence 738 

of cohesive extracellular polymeric substances (EPS) generated by microorganisms abundant on 739 

intertidal flats. However, although EPS are widely regarded as bed “stabilizers” (Flemming & 740 

Wuertz, 2019), recent flume experiments show that they may enhance sediment mobility under 741 

wave actions, inducing liquefaction of otherwise stable bank sediment (Chen et al., 2021), with 742 

clear implications for the dynamics of meandering tidal channels. 743 

Overall, our results support the idea that meander evolution in intertidal mudflats might not be 744 

necessarily correlated with classic curvature-induced helical flows at near-bankfull stages, and that 745 

other ecomorphodynamic factors, most likely related to tidal hydrodynamics at late-ebb stages, 746 

can be more relevant for meander morphodynamics. A synthesis of the main hydrodynamic 747 

characteristics of meandering channels developed in vegetated and unvegetated intertidal plains, 748 

and the differences thereof, is reported in Table 2. In addition, a conceptual summary sketch 749 

illustrating the major hydrodynamic and morphodynamic differences between tidal meandering 750 

channels in vegetated and unvegetated contexts is shown in Figure 14. Further analyses will be 751 

needed to corroborate the inferences presented in this study, as well as to investigate the role played 752 

by different tidal amplitudes on the processes we described here, especially in terms of distinct 753 

hydrodynamic behavior between above and below-bankfull stages. Nonetheless, large tidal ranges 754 

(relative to characteristic wind-wave heights) are needed for the development of intertidal mudflats 755 

(e.g., Friedrichs, 2011; Klein, 1985; Morales, 2022), so we argue that the processes observed in 756 

the present study are likely to be common also in intertidal mudflat channels different from the 757 

study case we analyzed here. 758 

 759 

 760 

 761 

 762 

 763 
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Table 2. Comparison of the major hydrodynamic characteristics of meandering tidal channels 764 

wandering through vegetated (e.g., salt marshes) and unvegetated (e.g., mudflat) intertidal plains 765 

 Vegetated intertidal plains Unvegetated intertidal plains 

Overbank flow 

Low frequency of occurrence 

(only for the highest tides) 

Relatively shallow water depth  

(𝑌𝑀𝐴𝑋<1 m) 

Weak and frictionally-dominated flow 

(𝑣𝑀𝐴𝑋 =0.1-0.2 m/s) 

Flow direction nearly perpendicular to 

the channel-axis orientation 

High frequency of occurrence  

(almost every tidal cycle) 

Relatively large water depths 

(𝑌𝑀𝐴𝑋>3-4 m) 

Strong and sheet-flow-dominated flow 

(𝑣𝑀𝐴𝑋 >0.4-0.5m/s) 

Flow direction virtually unrelated to 

the channel-axis orientation 

Stage-velocity 

relation 

Higher velocities for above-bankfull 

stages (𝑌>𝑌𝐵) 

Higher velocities for below-bankfull 

stages (𝑌<𝑌𝐵) 

Secondary 

circulations 

Relatively strong 

More pronounced when primary 

streamwise flows are stronger (i.e., in 

phase with streamwise flows) 

Relatively weak 

More pronounced when primary flows 

are weaker (i.e., out of phase with 

streamwise flows) 

Helical flow Well developed Poorly developed 

Flow separation 

Possible as a function of bend 

geometry and tidal flow characteristics 

(i.e, Froude number) 

Possible as a function of bend 

geometry and tidal flow characteristics 

(i.e, Froude number) 

Rainfall runoff 
Limited importance due to the 

presence of vegetation 

Potentially significant due to the 

absence of vegetation 

Wave action on 

intertidal plains 

Weak due to wave attenuation by 

vegetation 

Strong due to high overbank water 

depths and reduced friction 

 766 

 767 
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 768 

Figure 14. Conceptual sketch depicting the major differences of hydrodynamic processes observed in tidal channels 769 

dissecting vegetated (i.e., salt marshes, left columns) and unvegetated (i.e., mudflats, right columns) intertidal plains. 770 

(a, b) Channel hydrodynamics during below-bankfull water stages, with particular reference to early-flood and late-771 

ebb stages; (c, d) Channel hydrodynamics at the bankfull stage; (e, f) Channel hydrodynamics during overbank 772 

stages.  773 
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6 Conclusions 774 

This study contributes to the understanding of hydrodynamic flow structures, and related 775 

morphodynamic evolution, in meandering channels wandering through unvegetated tidal flats. 776 

Hydroacoustic measurements were carried out, for several tidal cycles, at distinct locations along 777 

a mudflat meander bend found within the macrotidal Yangkou tidal flat (Jiangsu province, China).  778 

The main conclusions of this research can be summarized as follows: 779 

(1) Stage-velocity relationships in mudflat channels are different from those observed in channels 780 

wandering through vegetated intertidal plains (i.e., salt marsh and mangrove forests). 781 

Specifically, while in the latter case both ebb and flood velocities tend to be higher for above-782 

bankfull water stages, in our study case we observed significantly larger velocities when tidal 783 

flows remained confined within the channel banks. This is likely because, in vegetated 784 

intertidal plains, both frictionally-dominated flow propagation and higher elevation of channel 785 

banks (relative to tidal excursions) ensure flow confinement and high in-channel velocities 786 

even for above-bankfull stages. In contrast, in unvegetated intertidal mudflats, similar flow 787 

resistance within and outside channels and lower elevation of channel banks produce 788 

widespread sheet flow at above-bankfull stages and limit in-channel velocities due to reduced 789 

flow confinement; 790 

(2) Secondary currents appear to be mostly related to flood flows, and are generally stronger 791 

during overbank stages. In some cases, however, the orientation of secondary circulations is 792 

reversed compared to classic flow models in meander bends. Poorly-developed secondary 793 

circulations are observed at the bend apex. However, primary flow separation, coupled with 794 

localized flow measurements that did not include the entire channel cross-section, have likely 795 

limited our ability to detect secondary circulation cells during our field measurements.  796 

(3) Field data collectively suggest limited control of curvature-induced helical flows on meander 797 

morphodynamics. This is most likely due to a consistent phase lag between maxima of primary 798 

(i.e., streamwise) and secondary (i.e., cross-sectional) velocities. Such a lag effectively limits 799 

the landward (seaward) transfer of secondary flows during the flood (ebb) phase, thus 800 

hampering the formation of coherent helical flow structures along the entire meander bends. 801 

These findings support the results of earlier studies that suggested that, in stark contrast with 802 

both river and salt-marsh meandering channels, meander morphodynamics in intertidal 803 
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mudflats are poorly related to bankfull hydrodynamics, in general, and curvature-induced 804 

helical flows in particular.  805 

(4) We suggest that other morphodynamic processes drive the evolution of intertidal mudflat 806 

meander bends. Late-ebb tidal flows likely exert strong control on meander morphodynamics 807 

due to sustained velocities and pronounced seepage flows, which determine significant 808 

sediment transport as well as both bank undercutting and collapses. These effects are also 809 

possibly amplified by the absence of vegetation both within and outside the channel, as well 810 

as by significant bioturbation of the channel banks, which reduces bank resistance to erosion 811 

and enhances seepage flow. In addition, storm waves and both episodic and seasonal increases 812 

in discharges due to heavy rainfalls (e.g., related to the monsoon season) and melting snows 813 

can compound the morphological effects of late-ebb flows, producing abrupt morphologic 814 

changes and pronounced channel migration.  815 

Additional field and modeling efforts would be required to corroborate the inferences presented in 816 

this study and to investigate how different tidal ranges and channel-bank elevations (relative to 817 

characteristic tidal oscillations) affect mudflat meander hydrodynamics and the related 818 

morphodynamic evolution. Particularly, cross-sectional measurements of tidal flow fields are 819 

needed to directly assess the scarce development of curvature-induced helical flows, whereas 820 

repeated measurement of flow fields during normal conditions and heavy rainfall events, coupled 821 

with morphological monitoring of channel bank evolution, would help clarify the relative 822 

importance of astronomic and meteorological forcings on the morphodynamics of intertidal 823 

mudflat meanders.  824 
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