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Abstract

In the coming decades, the frequency of coastal flooding will increase due to sea-level rise and changes in climate extremes.

We force the Global Tide and Surge Model (GTSM) with a climate model ensemble from the CMIP6 High Resolution Model

Intercomparison Project (HighResMIP) to produce global projections of extreme sea levels (defined as tides and storm surge)

from 1950 to 2050. This is the first time that an ensemble of global ˜25km resolution climate models is used for this purpose,

which increases the credibility of projected storm surges. Here we validate the historical simulations (1985-2014) against the

ERA5 climate reanalysis. The overall performance of the HighResMIP ensemble is good with mean bias smaller than 0.1 m.

However, there is a strong large-scale spatial bias. Future projections for the high emission SSP5-8.5 scenario indicate changes

up to 0.1 m or 20% in 10-year return period surge level from 1951-1980 to 2021-2050. Increases are seen in parts of the coastline

of the Caribbean, Madagascar and Mozambique, Alaska, and northern Australia, whereas the Mediterranean region may see a

decrease. The full dataset underlying this analysis, including timeseries and statistics, is openly available on the Climate Data

Store and can be used to inform broad-scale assessment of coastal impacts under future climate change.
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Key points:
1. New global projections of extreme sea levels by forcing the Global Tide

and Surge Model with a ~25km-resolution climate models ensemble

2. Validation against ERA5 shows that the 1 in 10-year surge levels have a
good overall performance, but there is a large-scale spatial bias

3. Comparison of 2021-2050 against 1951-1980 shows that the 10-year storm
surges may increase or decrease up to 0.1 m or 20% over this period

Abstract
In the coming decades, the frequency of coastal flooding will increase due to sea-
level rise and changes in climate extremes. We force the Global Tide and Surge
Model (GTSM) with a climate model ensemble from the CMIP6 High Resolution
Model Intercomparison Project (HighResMIP) to produce global projections of
extreme sea levels (defined as tides and storm surge) from 1950 to 2050. This is
the first time that an ensemble of global ~25km resolution climate models is used
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for this purpose, which increases the credibility of projected storm surges. Here
we validate the historical simulations (1985-2014) against the ERA5 climate
reanalysis. The overall performance of the HighResMIP ensemble is good with
mean bias smaller than 0.1 m. However, there is a strong large-scale spatial bias.
Future projections for the high emission SSP5-8.5 scenario indicate changes up
to 0.1 m or 20% in 10-year return period surge level from 1951-1980 to 2021-
2050. Increases are seen in parts of the coastline of the Caribbean, Madagascar
and Mozambique, Alaska, and northern Australia, whereas the Mediterranean
region may see a decrease. The full dataset underlying this analysis, including
timeseries and statistics, is openly available on the Climate Data Store and
can be used to inform broad-scale assessment of coastal impacts under future
climate change.

Introduction
Extreme sea levels (ESL), composed of mean sea level variations, tides, storm
surges and waves, can cause coastal flooding and erosion. This can lead to
severe damages to the livelihoods of people, economic assets, and coastal ecosys-
tems. According to the Sixth Assessment Report (AR6) of the Intergovernmen-
tal Panel on Climate Change (IPCC), by 2100 global mean sea level may be up
to 1m higher than 1995-2014 in the SSP5-8.5 scenario of high energy demand
and high fossil fuel dependence (Fox-Kemper et al., 2021). The rise in mean
sea level will drive steep increases in ESL frequencies (Frederikse et al., 2020;
Vousdoukas et al., 2018). Even if global warming is limited to 1.5°C above pre-
industrial levels, a target agreed upon in the Paris Agreement, about half of the
world’s coastline will experience the present-day 100-yr ESL at least once a year
by 2080 (Tebaldi et al., 2021). Besides higher mean sea levels, the warming of
the climate and change in the large-scale atmospheric circulation can modulate
the occurrence of tropical cyclones and extra-tropical storms. The change in
ESL frequencies depends on the combined effect of changes in storm intensity
and tracks. While the total number of tropical cyclones may decrease or remain
unchanged (Sobel et al., 2021), tropical cyclone intensities are projected to in-
crease in response to warmer sea surface temperatures (Knutson et al., 2010,
2019, 2020; Walsh et al., 2016). Most projections show an increase in the pro-
portion of intense tropical cyclones (category 4-5) and higher maximum wind
speeds (Knutson et al., 2020). Moreover, in a warmer climate, tropical cyclone
tracks will shift poleward (Haarsma, 2021; Haarsma et al., 2013). Future pro-
jections of changes for storms in the mid-latitude regions are generally small,
although some regions may see substantial changes due to a poleward shift in
the extra-tropical storm tracks (Seneviratne et al., 2021). Many studies have
explored how storm surge frequencies may change in a warmer climate, often at
regional to country scale (Colberg et al., 2019; Garner et al., 2017; Lin et al.,
2019; Little et al., 2015; Marsooli et al., 2019), but more recently also at the
continental to global scale (Mori et al., 2019; Muis et al., 2020; Vousdoukas et
al., 2016, 2018).
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Global ESL models have evolved rapidly in recent years, and now include more
physical processes at increasing resolution (Bouwer, 2018; Wahl, 2017). This has
led to an enhanced understanding of extreme sea levels and associated coastal
flooding (Muis et al., 2016), and how flood hazard and risks may be impacted by
climate change and adaptation (Kirezci et al., 2020; Mori et al., 2019; Tiggeloven
et al., 2020; Vitousek et al., 2017; Vousdoukas et al., 2018). Mean sea level will
be the largest driver of changes in ESL (Vousdoukas et al., 2018), and most
global studies have projected future changes in ESL resulting from mean sea
level changes (Frederikse et al., 2020; Kirezci et al., 2020; Rasmussen et al.,
2018; Tebaldi et al., 2021; Vitousek et al., 2017). This approach neglects the
high potential but not yet fully understood contribution from changes in trop-
ical cyclones and extratropical storms (Seneviratne et al., 2021). Studies that
have provided global to continental-scale projections of storm surges are based
on Global Climate Models (GCMs) from the Coupled Model Intercomparison
Project - Phase 5 (CMIP5) experiments (Colberg et al., 2019; Lin et al., 2019;
Muis et al., 2020; Vousdoukas et al., 2018). A major limitation of the CMIP5
experiments is that the GCM’s spatial resolution (~150 km) is insufficient to
resolve localized climate extremes, such as tropical cyclones (Camargo, 2013;
Hodges et al., 2017; Schenkel & Hart, 2012). With further GCM development
and increases in resolution (Bauer et al., 2015), there is a growing number of
GCMs that can generate a credible climatology of both TC numbers and inten-
sities in the current climate (Murakami et al., 2012; M. J. Roberts et al., 2020;
Walsh et al., 2016). The High Resolution Model Intercomparison Project (High-
ResMIP) which is part of the CMIP6 framework, provides climate projections
of models with a spatial resolution up to 25-50 km (Haarsma et al., 2016). This
means that for the first time it is possible to derive credible global projections
of ESL, including changes in storm surges.

Here we present global ESL projections that are derived from an ensemble of
high-resolution climate models. While the full datasets includes total water
levels, tides and storm surges, the analysis presented here focusses on the 10-
year storm surge level. First, we evaluate the performance of the ensemble for
the historical period against the ERA5 reanalysis in terms of surge levels. Next,
we assess projected future changes in surge levels. Finally, we discuss remaining
methodological challenges and directions for future research.

Methods & Data
Figure 1 summarizes the three-step methodology that was used to generate the
global storm surge projections. First, we derive timeseries of total water levels,
tides and surge levels by forcing the Global Tide & Surge Model (GTSMv3.0)
with sea level pressure and wind speed from an ensemble of HighResMIP models.
Second, we split the timeseries into three periods (1951-1980, 2014-1985 and
2021-2050) and perform extreme value analysis. Next, we quantify how the
magnitude and frequency of storm surges may be impacted by future climate
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change. Below each of the steps is explained in more detail.

Figure 1 Flowchart of the modelling approach that was used to generate the
global projections of extreme sea levels.

Global modelling of storm surges
We use the third-generation Global Tide and Surge Model (GTSMv3.0) to sim-
ulate total water levels resulting from tidal and meteorological forcing (Muis et
al., 2020; Wang et al., 2021). GTSM is a depth-averaged hydrodynamic model
based on the Delft3D Flexible Mesh modelling suite (Kernkamp et al., 2011).
The grid resolution ranges from 2.5 km along the coast (1.25 km in Europe) to
25 km in the ocean. Non-linear interactions between tides, storm surges and
mean sea levels are dynamically included. We obtain time series of storm surges
by computing the difference between a tide-only run and a total water level sim-
ulation. There are no open boundaries and tides are modelled by including tide
generating forces (i.e. the gravitational attraction and centrifugal forces of the
Earth, Moon, and Sun) using a set of 60 tidal frequencies. For the total water
level simulation, GTSM is forced with 10 m wind speed and sea level pressure
from the climate models and tidal forcing. The tide-only simulation excludes
meteorological forcing. For both simulations, we include a spatially-varying sea-
level rise field based on CMIP5 models for the entire simulation period (Text S1
and Figure S1). Time series at 10-minute resolution are produced for a set of
43,119 output points (Muis et al., 2020). GTSM has been extensively validated
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in previous studies (Bloemendaal et al., 2017; Dullaart et al., 2020; Irazoqui
Apecechea et al., 2019; Muis et al., 2016, 2019, 2020), which have shown good
agreement between modelled and observed water levels.

HighResMIP climate projections
To analyse the changes in storm surges under climate change, we force GTSM
with meteorological fields of the multi-model HighResMIP ensemble (Haarsma
et al., 2016), which consists of five ~25 km resolution Global Climate Models
(GCMs). The HighResMIP experiments span the period 1950–2050. For the
historic simulations (1950-2014), the forcing fields are similar to those used in
CMIP6 historic simulations (Eyring et al., 2016), although at higher resolution.
The future simulations (2015-2050) in our study are based on the SSP5-8.5
greenhouse gas concentration scenario (O’Neill et al., 2016). We use a mix of
coupled atmosphere-ocean and atmosphere-only simulations; specifically, three
coupled simulations [HadGEM3-GC31-HM (Roberts, 2017), Earth3P-HR (EC-
Earth Consortium, 2018), CMCC-CM2-VHR4 (Scoccimarro et al., 2017)] and
two atmosphere-only simulations [HadGEM3-GC31-HM-SST (Roberts, 2017),
GFDL-CM4C192-SST (Zhao et al., 2018)]. The atmosphere-only simulations
have prescribed daily sea-surface temperature (SST) fields. Ideally, we would
have used a larger model ensemble based on coupled simulations only. However,
at the time of carrying out the GTSM simulations these were the only simula-
tions available with a minimum temporal resolution of at least 6 hours. For
validation of the HighResMIP ensemble, we also force GTSM with the ERA5
climate reanalysis from 1979 to 2018 (Copernicus Climate Change Service (C3S),
2017; Hersbach et al., 2020). ERA5 is the successor of ERA-Interim and has
hourly fields with a spatial resolution of 0.25° x 0.25° (~31 km at the equator).

Data processing and statistical analyses
We split the storm surge time series into three periods: 1951-1980, 1986-2014
and 2021-2050. Subsequently, we compute descriptive statistics at each output
location for each of these three time slices. The descriptive statistics computed
are: mean, standard deviation, skewness, kurtosis, and percentiles (1, 5, 10,
25, 50, 75, 90, 95, 99, 99.5, 99.9). In addition, we apply extreme value anal-
ysis (EVA) to estimate the exceedance probabilities of surge levels. Following
Wahl et al. (2017), we follow the Peak Over Threshold method (POT) and we
fit the Generalized Pareto Distribution (GPD) on the peaks that exceed the
99th percentile surge level, then we derive estimates for various return periods.
We ensure independence between storm events by using a 72h period for the
de-clustering of the peaks (Vousdoukas et al., 2018). We apply bootstrapping
with 599 repetitions for the parameter estimates to assess the 5% and 95% con-
fidence intervals (Wilcox, 2010). Because our data have a 10-minute temporal
resolution, we define a minimum storm duration (defined as the time above the
threshold) of 60 minutes to skip erroneous individual data points. We use the
Maximum Likelihood Estimation (MLE) to fit the GPD parameters, and we set
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a starting estimate of zero for the shape parameter. Extreme value distributions
other than GPD were also fitted. This includes the Exponential distribution fol-
lowing POT method, and Gumbel and Generalized Extreme Value distribution
following annual maxima method. This shows that the return period estimates
provided by GPD are robust for the 10-year return levels that we analyse here.

We first evaluate the performance of the HighResMIP ensemble by comparing
the return periods and the percentiles derived from the HighResMIP simula-
tions against those derived from the ERA5 simulation for the period 1985-2014
(section 3.1). The computed performance metrics include Pearson’s correlation
coefficient, mean bias (m), and the mean relative bias (%). To assess the in-
fluence of climate change over, we analyse the changes in 1 in 10-year storm
surges by comparing the return periods of 1985-2014 and 2021-2050 against the
reference period 1951-1980 (section 3.2). Changes are computed for each indi-
vidual HighResMIP model, as well as the median change across the multi-model
ensemble. With such a small ensemble, the mean is easily distorted by outliers;
for this reason, we focus on the median values. Moreover, to minimize the un-
certainty of the extreme value fit, we focus on the 10-year return period rather
than the 100-year return period. We assess the inter-model spread by comput-
ing the standard deviation of the projected changes across the different climate
models. We also assess the inter-model agreement on the sign of change by
computing the number of ensemble members indicating a increase or decrease
in the return period values. For both the validation and analysis of changes,
we use the reference regions of the IPCC AR6 report (Iturbide et al., 2020) to
evaluate regional differences.

Results and discussion
Validation of storm surges based on the historical simula-
tions
Figure 2a displays a global map of the 10-year return period for storm surges
for the period 1985-2014, showing the median of the 5-member model ensemble.
There are high values in coastal areas with a shallow continental shelf and a
stormy climate, whereas low values are seen in equatorial areas with a steep
ocean topography. Low values also occur on the southern Gulf Coast (U.S. and
Mexico), near Mozambique and Madagascar, and some other regions where low-
probability tropical cyclones are the main driver of extremes (see Dullaart, 2020).
Regions with return levels exceeding 2.0 m include the North Sea (Northwest
Europe), Hudson Bay (Canada), Gulf of Carpentaria (North Australia), Patag-
onia (Argentina), and the Yellow Sea (China). These are also the regions where
the spread of the ensemble is largest, as indicated by the standard deviation
in Figure 2b. This in contrast with regions with small storm surges were the
spread is low.
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Figure 2 Global map of storm surge levels with a 10-year return period. Panel
a shows the median of the HighResMIP ensemble for period 1985-2014, while
panel b shows the standard deviations. Panel c and d show, respectively, the
bias (m) and the relative bias (%) of multi-model median in comparison with
the ERA5 reanalysis for the same period.

To evaluate how well the HighResMIP ensemble performs, we compare the 1,
10 and 100-year return period against return periods derived from the ERA5
reanalysis using the same methods. Table 1 summarizes the performance for the
ensemble median and the individual models. The multi-model median shows a
better overall agreement with ERA5 than the individual ensemble members. In
general, the large-scale spatial pattern is well-captured as indicated by high
correlation coefficients (r > 0.9). The height of storms surges and its large-scale
spatial pattern is influenced by the (accuracy of the) meteorological forcing,
but also by the bathymetry. The HighResMIP and ERA5 simulations both
use the same model configuration (such model grid and bathymetry), and the
high correlation coefficient reflect this. Averaged across all output locations,
the model bias is small (<0.1m). This indicates that compared to ERA5 the
HighResMIP ensembles performs well. However, Figures 2b and c show that
the ensemble median has a clear spatial bias, with mostly negative values at the
tropics and positive values at mid- to high-latitude areas. The overestimation
compared to ERA5 is most profound in areas with a wide coastal shelf, such as
the Yellow Sea (China), Gulf of Carpentaria (North Australia), and the North
Sea (North-western Europe). Figure 3 shows the relative bias for the 1 in 10-
year surge level, aggregated into the IPCC reference regions. This clearly shows
the spatial coherency of the bias. This pattern is consistent for the 1, 10 and
100-year return periods, which suggests that there is a systematic bias in the
HighResMIP ensemble that propagates into the extreme value analysis. This is
confirmed by mapping the bias for the 75th, 90th, and 95th percentiles of the
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surge level timeseries (Figure S2), which show a similar spatial bias. We argue
the part of the bias that is already present for normal climate conditions is
caused by systematic errors in the large-scale atmospheric circulation. The bias
for more extreme climate conditions is depending on the accurate representation
of storm frequency, intensity and track.

Figure 3 Bias of in the 1 in 10-year surge level (m) between the HighResMIP
ensemble median and ERA5, aggregated into the IPCC reference regions. Panel
a shows the regions with the colours corresponding to the colours of the boxplots
in panel b. The extent of each box shows the interquartile range across locations
within the region (25th-75th percentile), the vertical black line indicates the
median value (50th percentile) and the extent of the whiskers indicates the
range of the 5-95th percentiles. The separate dots indicate outliers. Note that
not all outliers are displayed because of the axis’s limits and visibility.

There are notable differences in the performance of the different HighResMIP
models for the different return periods. The EC-Earth3P-HR and HadGEM3-
GC31-HM have a comparable and relatively good performance, which is stable
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across the different return periods (Table 1). The performance of HadGEM3-
GC31-HM-SST with fixed sea surface temperatures is worse than for the respec-
tive coupled simulation, with the doubling of mean bias from 5% to 10% for
the 10-year return period surge level. While the atmosphere-only simulation
may be less affected by a bias in SST, this may be counteracted by the fact
that atmosphere-ocean coupling may results in a more realistic representation
of extreme winds. The mean bias of CMCC-CM2-VHR4 is higher than for
the other models, especially for the 100-year return period with a 0.14 m bias.
GFDL-CM4C192-SST has a negative mean bias, which is most profound for
the low return periods. Although the magnitude differs, most of the individual
HighResMIP models also show a clear spatial bias (Figure S3). Similarly, as for
the ensemble median, this bias is not just caused by deficiencies in the extremes.
For example, in GFDL-CM4C192-SST the normal climate conditions already
introduce a negative bias, while extremes seem to be overestimated.

Return period (yrs) EC-Earth3P-HR HadGEM3-GC31-HM HadGEM3-GC31-HM-SST CMCC-CM2-VHR4 GFDL-CM4C192-SST Multi-model median
Pearson correlation coefficient 1 0.989 0.987 0.987 0.977 0.920 0.992

10 0.981 0.980 0.978 0.973 0.966 0.986
100 0.888 0.905 0.850 0.768 0.892 0.911

Relative Bias (m) 1 0.01 (0.07) 0.04 (0.08) 0.06 (0.09) 0.11 (0.19) -0.45 (0.29) 0.03 (0.08)
10 0.02 (0.14) 0.06 (0.13) 0.10 (0.16) 0.17 (0.27) -0.17 (0.17) 0.06 (0.13)
100 0.03 (0.39) 0.07 (0.35) 0.14 (0.48) 0.23 (0.77) -0.05 (0.35) 0.09 (0.35)

Mean Relative Bias (%) 1 -2.39 (12.5) 5.04 (12.8) 10.2 (11.3) 9.58 (27.6) -81.2 (6.31) 1.81 (12.8)
10 -1.38 (15.3) 5.39 (14.6) 12.1 (15.2) 11.7 (27.4) -21.0 (12.4) 4.13 (13.9)
100 -0.58 (24.5) 5.85 (19.4) 14.7 (47.4) 14.8 (62.2) -4.28 (19.3) 6.41 (18.1)

Table 1 Model performance of the HighResMIP ensemble for surge levels with
a return period of 1, 10 and 100 years. The HighResMIP ensemble is compared
against surge levels derived with the ERA5 reanalysis. Values are averaged
across all output locations with the standard deviation in brackets.

Changes in storm surges for the HighResMIP ensemble
Next, we analyse the changes in surge levels for the periods 1985-2014 and 2021-
2050 (SSP5-8.5), relative to 1951-1980 (the reference period). Figure 2a-b shows
that for most of the world’s coastline, the changes for 1985-2014 in surge level
are small. For 90% of the output locations, the relative changes are generally
lower than 5% and absolute changes are smaller than 0.1 m from 1985-2014 to
2021-2050. The largest increases in the 10-year return period for this time slice
occur in the southern part of the North Sea, the Gulf of Carpentaria (Australia),
the Bering Sea (Russia and Alaska), and the South China Sea (Vietnam and
China), while the largest decreases occur near the Gulf of St. Lawrence (Quebec,
Canada) and the Yellow Sea (Northeast China and North- and South Korea).
For the future period 2021-2050, the projected changes in surge levels under
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SSP5-8.5 are often larger. For about 25% of the coastal output locations the
median change in 1 in 10-year return is larger than 5% from 2021-2050 to 1951-
1980. Compared to 1985-2014 the change signal for the Bering Sea and Gulf of
Carpentaria becomes more coherent, while for the North Sea and South China
Sea the signal becomes more scattered. The largest decreases occur in the
Mediterranean Sea and the Australian Bight. For some of the other regions the
sign of change flips when comparing the projected changes between 1985-2014
and 2021-250 against 1951-1980s. This indicates that surge-level trends from
1950 to 2050 are not always linear. A potential reason can be that the natural
climate variability affects the 1 in 10-year return period surge events in our
analysis that is based on time periods of 30 years only.

Figure 4 Ensemble-median abslute (panels a and b) and relative (panels c and
d) changes in the 10-year surge levels for the periods 1985-2014 and 2021-2050,
using 1951-1980 as reference period.

Next, we analyse the projected change in the 1 in 10-year surge levels across the
ensemble, aggregated to the IPCC-AR6 reference regions (Figure 5). Generally,
across larger spatial scales the surge-level changes tend to cancel each other out
as most regions see both increases and decreases. At local scale the projected
changes may be larger, but when aggregated to regional scale the median change
is around zero and the interquartile (25th to 75th percentile) range of the changes
is within 0.05 m for almost all regions. An expectation is for North and Central
Australia where the interquartile range reaches up to an increase in surge level
of 0.1 m. Generally, the distribution of the changes is asymmetrical with 26 of
the 32 regions having a distribution that is highly skewed towards increases in
surge. The changes for the future period are larger than for the current period
in all regions.
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Figure 5 Statistics of projected changes in the 1 in 10-year surge level between
2021-2050 with 1951-1980 as reference, aggregated into the IPCC-AR6 regions.
The coloured boxes show the interquartile range (25th-75th percentile) across
locations within the region, the vertical black line indicates the median value
(50th percentile) and the extent of the whiskers indicates the range of the 5-95th

percentiles. The colour of the bars is corresponding with the map in Figure
3a. The grey boxes show the interquartile range of changes between the 1985-
2014 and 1951-1980. The projected changes computed based on the individual
HighResMIP models (and not the ensemble median).

The HighResMIP ensemble has considerable intermodel variability with the sev-
eral models projecting different changes. Whilst the ensemble only contains 5
models, we quantify the consistency of the ensemble by showing the intermodel
agreement on the sign of change. Figure 6a and b display the number of models
that project an increase or decrease in the 1 in 10-year surge levels for the peri-
ods 1985-2014 and 2021-2050, relative to 1951-1980. We find that there are only

11



a few places where there is a clear majority of the models (more than 3) agrees
on the sign of change. This in part may be due to natural variability. How-
ever, the changes relative to 1951-1980 are more consistent across the ensemble
for the future period 2021-2050 under SSP5-8.5 than for the period 1985-2014.
The changes also have a larger spatial coherency. Regions where the ensem-
ble consistently shows an increase in the 1 in 10-year surge level include parts
of the North Sea (Northwest Europe), Yellow Sea (Eastern China), Patagonia,
and northern Australia. For the southern part of the Mediterranean the models
agree on a decrease. For many other regions, such as the Persian Gulf (Saudi
Arabi, Iran) and the Gulf Coast (southern United States and Mexico) there is
no clear majority. Figure 6c and d shows the intermodel spread expressed as
the standard deviation of the changes across the ensemble. As expected from
the larger magnitude of changes, the spread is generally large in areas with high
storm surges, like the North Sea and Gulf of Thailand. While having higher
consistency, for the period 2021-2050 the intermodel spread is larger than for
the period 1985-2014. Figure S4 shows the projected changes of the individual
members of the HighResMIP ensemble.

Figure 6 Robustness of the projected changes across the model ensemble for 1 in
10-year surge levels with the intermodel agreement (panel a and b) as expressed
by the number of models agreeing upon the sign of change, and the model spread
(panel c and d) as expressed by the standard deviation. We show the changes
for the periods 1985-2014 and 2021-2050, using 1951-1980 as reference period.
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Methodological challenges and ways forward
Limitations of modelling approach
The key component of our approach is GTSMv3.0, which is a depth-averaged
barotropic model. GTSM is designed specifically for the global modelling of
tides and storm surges with high accuracy in coastal areas. In regions with a
steep topography, such as oceanic islands, ESLs are not primarily caused by
storm surges but driven by wind-driven waves sometimes in combination with
mean sea level variations (Woodworth et al., 2019). Wind-driven waves can co-
occur with storm surges (Marcos et al., 2019), and for future research it would
be valuable to develop wind-wave projections based on the same climate model
ensemble, and analyse the combined effects of waves and storm surges on the
frequency of coastal flooding (Kirezci et al., 2020; Vousdoukas et al., 2018). Our
methodology is based on annually updated mean sea levels. As such, we exclude
seasonal and intra-annual variation in mean sea level that are not captured by
GTSM, for example those driven by density changes or river inflows. Moreover,
we have used the same mean sea level fields for all simulations. This fields
are derived by averaging over the CMIP5 models and based on our best guess
for Antarctica. However, both sea-level rise and changes in tropical cyclones
are steered by thermodynamic and dynamic climate changes, and are therefore
positively correlated. Lockwood et al. (2022) have shown that considering
SLR and TC changes independently may not accurately represent future ESL
changes. One aspect of our approach that could be improved is the coupling of
the hydrodynamic model with the climate models. We use a constant value for
the wind drag based on Charnock (1955), although the efficiency of the air-sea
momentum transfer will depend on the sea state and the wind speed (Powell
et al., 2003; Ridder et al., 2018). The implementation of a of spatially and
temporally varying wind drag parameterization in GTSM should be the focus
of future work. For ERA5 it is well-documented to what exact formulations are
used for the sea-air momentum transfer, which makes implementation relatively
straightforward. However, this is not the case for the HighResMIP models, and
climate model simulations in general.

Biases of the HighResMIP ensemble
From other climate impact studies, such as wave and hydrological modelling
(Lemos et al., 2020; Navarro-Racines et al., 2020), it is well-known that GCMs
can have severe biases in representing extremes. Previous global studies have
given little attention to assessing and resolving systematic biases for storm surge
modelling. Our results highlight that, moving forward, we need to investigate in
greater depth what causes the deviations between ERA5 and the HighResMIP
models. It can be expected that previous global projections derived with coarser
resolution CMIP5 models, such as Muis et al., (2020) and Vousdoukas et al.,
(2018), have similar if not larger spatial biases. While it may be challenging,
the attribution of the systematic bias to underlying causes is important. For
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instance, the bias can stem from too low or too high numbers of extreme events
as well as an over- or underestimation of the magnitude of the extremes. For the
HighResMIP ensemble it has been shown that TC frequencies are comparable
to observations, and that increased horizontal resolution improves the repre-
sentation of TC intensity and tracks, although the strongest TCs may still be
underestimated (Roberts et al., 2020). In terms of extra-tropical storms, Priest-
ley et al. (2022) have shown that for the CMIP6 models, biases in the sea surface
temperature play an important role in the introduction of biases in storm tracks
in the Northern Hemisphere, and suggest that the atmosphere-only simulations
perform better in these areas. The 25-km resolution of the HighResMIP models
the should be beneficial for representation of extremes. At the same time, the
increases resolution of the HighResMIP ensemble may result in higher climate
sensitivity and enhanced variability, and this may be one of the reasons for
deviations from ERA5. The large-scale bias is visible for lower percentiles indi-
cating that the bias cannot be fully attributed to the representation of extremes,
and suggesting that biases in the large-scale atmospheric circulation also play
a role. We minimize the effect of the bias by only reporting changes between
the different periods simulated by that same GCM. Although bias correction
cannot address fundamental problems of GCMs, methods such as the so-called
delta-change method are is commonly applied (Eisner et al., 2012; Hemer et al.,
2013; Morim et al., 2019). In future research, more advanced bias correction
methods such as quantile mapping (Lemos et al., 2020; Tebaldi & Knutti, 2007),
could be applied to further reduce the bias. The impact of the bias could be
further reduced by putting less weight on models that have a large bias in a
specific region (Marsooli et al., 2019).

Enhancing the confidence in projected changes
The IPCC’s Sixth Assessment Report notes that “Quantifying the effect of cli-
mate change on extreme storms is challenging, partly because extreme storms
are rare, short-lived, and local, and individual events are largely influenced by
stochastic variability” (Seneviratne et al., 2021). We have presented new global
ESL projections that are derived with a multi-model ensemble of ~25 km reso-
lution GCMs from HighResMIP, as part of CMIP6. There are, however, quite
a few remaining methodological challenges. We believe that there are several
ways forward, which we outline below. First, an essential first step in improving
the reliability of the projections is addressing the spatial bias. As explained
above, we need to invest in efforts to better understand the causes of these bi-
ases and subsequently design methods to reduce them. Second, ERA5 will be
extended back to 1950. This would make it possible to validate the projected
changes from 1951-1980 to 1985-2014, and see if the results for the HighResMIP
simulations are consistent with the climate reanalysis. Third, while computa-
tionally expensive, extending our ensemble with more models would be valuable,
and would add robustness to subsequent statistical analyses. Currently our en-
semble consists of a mix of 5 coupled and atmosphere-only simulations. The
heterogeneity and the small number of ensemble members make it difficult to
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say much with statistical uncertainty. Very recently, a few more HighResMIP
models have become available, and a larger ensemble would allow better quan-
tification of intermodel agreement (percentage of models that agrees on sign of
change, etc). Moreover, some of the HighResMIP models have multiple mem-
bers, which could be useful to quantify internal climate variability. This would
help in disentangling the signal of anthropogenic-forced climate change from
the internal climate variability. The quantification of internal variability is not
possible in the 5-member ensemble of this study, and could be one of causes for
the intermodel disagreement. Fourth and last, extreme value analysis is gener-
ally associated with large uncertainties (Wahl et al., 2017). The small sample
size is especially problematic for regions prone to tropical cyclones, which have
low probabilities that cannot be adequately assessed with time slices of 30 years.
A robust assessment of changes for those regions would require stochastic mod-
elling of events representing thousands of years of tropical cyclone activity (Dul-
laart et al., 2021; Haigh et al., 2013; Lin & Emanuel, 2015; Marsooli et al., 2019;
Orton et al., 2016). Also for extra-tropical regions internal climate variability
may be a significant influence. Calafat et al. (2022) have provided observa-
tional evidence that, in Europe, climate variability can considerably affect the
probabilities of surge extremes over periods as long as 60 years suggesting that
30-year time slices may not be long enough for a robust estimation of even the
10 year return period surge level. An alternative approach would be to consider
the HighResMIP models as independent realizations of climate extremes and
apply the “pooled” ensemble approach described by Meucci et al. (2020).

Conclusions
Using the CMIP6 HighResMIP climate model simulations, we have developed
global multi-model projections of extreme sea levels (ESLs) from 1950 to 2050.
The ~25 km resolution of the CMIP6 HighResMIP ensemble represents a step-
change compared to the previous coarse resolution CMIP5-based simulations
that fail to fully capture climate extremes such as tropical cyclones. Compari-
son of the ESLs derived from HighResMIP ensemble against those derived from
ERA5 shows a good overall performance but also a clear large-scale spatial bias.
Future research is needed to investigate the specific causes of the systemic er-
rors and attempt to correct them. The projected changes for 2021-2050 using
a strong warming scenario (SSP5-8.5) compared to 1951-1980 show that the
10-year surge level may see changes of up to -0.1 m or 20%. These changes are
not uniform across the globe with, for example, a decrease in the Mediterranean
Sea and an increase in Gulf of Carpentaria (Australia). Overall, the projected
changes in storm surges are small compared to model bias, internal climate vari-
ability, and statistical uncertainties. We have outlined several future research
directions that could be explored to further enhance the understanding of how
extreme sea level will change in response to anthropogenic forcing.
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Open research
The dataset underlying this analysis us openly available on the C3S Climate
Data Store. It consists of timeseries of mean sea level, tides, storm surges
and total water levels, as well as various water level statistics (i.e. percentiles,
return periods, tidal levels). The timeseries can be found here: , https://cds-
dev.copernicus-climate.eu/cdsapp#!/dataset/sis-water-level-change-timese
ries-cmip6?tab=overview, while the statistical indicators can be found here:
https://cds-dev.copernicus-climate.eu/cdsapp#!/dataset/sis-water-level-
change-indicators-cmip6?tab=overview. The ERA5 dataset was obtained from
the Climate Data Store. The HighResMIP data archive can be accessed via
ESGF server.
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