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Abstract

The habitability and ecology of Earth is fundamentally shaped by surface temperature, but the temperature history of our

planet is not easily reconstructed, especially before the evolution of early biomineralizing animals. This work presents a

billion-year-long, high-resolution, mineral-specific record of oxygen isotope measurements in shallow marine rocks. Clumped

isotope paleothermometry results from four minerals resolves previous ambiguity in seawater oxygen isotope composition and

confirms that long-term cooling punctuated by short-lived temperature extremes are dominant components of this record. We

consider post-depositional effects by comparing Phanerozoic rock and fossil records, and identify temporal and spatial controls

on alteration. Furthermore, this record is suggestive of key differences in dolomite (CaMg(CO3)2) formation processes between

the Neoproterozoic (1000–538.8 Ma) and Phanerozoic (538.8–0 Ma), consistent with previous suggestions based on petrographic

and sedimentological observations. This record, when viewed alongside the fossil record, suggests temperature change is tightly

coupled to extinction and origination in the history of life and carbon cycle perturbations over the last billion years.
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The habitability and ecology of Earth is fundamentally shaped by surface tem-
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perature, but the temperature history of our planet is not easily reconstructed,

especially before the evolution of early biomineralizing animals. This work

presents a billion-year-long, high-resolution, mineral-specific record of oxygen

isotope measurements in shallow marine rocks. Clumped isotope paleother-

mometry results from four minerals resolves previous ambiguity in seawater

oxygen isotope composition and confirms that long-term cooling punctuated

by short-lived temperature extremes are dominant components of this record.

We consider post-depositional effects by comparing Phanerozoic rock and fos-

sil records, and identify temporal and spatial controls on alteration. Further-

more, this record is suggestive of key differences in dolomite (CaMg(CO3)2)

formation processes between the Neoproterozoic (1000–538.8 Ma) and Phanero-

zoic (538.8–0 Ma), consistent with previous suggestions based on petrographic

and sedimentological observations. This record, when viewed alongside the

fossil record, suggests temperature change is tightly coupled to extinction and

origination in the history of life and carbon cycle perturbations over the last

billion years.

One sentence summary: Earth’s long-term temperature evolution, as recorded by oxygen

isotopes in shallow marine rocks, shows that temperature was a key variable in the expansion

of complex life.

Uncertainty in Earth’s surface temperature through time To understand why complex

life evolved on Earth—and to grasp how rare it may be in the Universe—we must identify and

quantify the variables that have controlled habitability and permitted the emergence of complex

life. The temperature of Earth’s surface environments is a key control on modern ecosystems,

yet it is poorly constrained in Earth’s distant past. Quantifying Earth’s surface temperature
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history in deep time (∼109 y) will inform our understanding of the interplay between climate,

carbon, and life on Earth.

For decades, consensus from climate models and data analyses have held (1–4) that average

global temperatures in the deep past were similar to those observed in the Cenozoic (5). Previ-

ous efforts document a protracted increase towards the modern in the oxygen isotopic composi-

tion (δ18O) of various minerals precipitated from seawater that are preserved in ancient marine

sedimentary rocks (e.g. calcite (1, 2, 6), apatite (6, 7), chert (8, 9), iron oxides (3)). However,

interpretations of this increase in mineral δ18O values are inherently equivocal the observed val-

ues depend on the temperature of precipitation, the oxygen isotopic composition of water, and

post-depositional alteration. The ambiguity of long-term mineral δ18O records has provoked

a half-century of debate about the relative contributions of a long-term cooling trend (7–9), a

secular increase in seawater δ18O values (1–4), or the importance of post-depositional alter-

ation (10).

Carbonate clumped isotope (∆47) thermometry has the potential to resolve this debate (11).

The thermodynamic underpinning of clumped isotope thermometry relies on the temperature-

dependence of multiple substitutions of heavy isotopes within a given carbonate molecule inde-

pendent of seawater oxygen isotope composition (11). In the absence of post-depositional alter-

ation, seawater δ18O values can be calculated from coupled measurements of ∆47-temperature

and mineral δ18O values (11). Paired with petrography and constraints on burial history, it also

yields insights into post-depositional alteration and solid-state reordering (i.e., (12–14)).

To build an improved record of Earth’s marine temperature history, we must quantify the

competing effects of temperature and seawater oxygen isotope composition using clumped iso-

tope thermometry, and also contend with significant changes in the carbonate record over its
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3.8 billion year history. These changes include a lack of open ocean and deep ocean records

before ∼145 Ma (15), coastal fossils prior to 538.8 Ma (16), and changes in the dominant pri-

mary carbonate mineralogy of skeletons and precipitates (17). Due to the fundamental limits of

the carbonate rock record, a comprehensive, continuous carbonate oxygen isotope record will

inevitably include samples that have been altered, that formed from environments with varying

primary temperatures and water oxygen isotope values, and that reflect material-specific forma-

tion processes (15, 18). This paper presents a time-resolved compilation of limestone (CaCO3)

and dolomite (CaMg(CO3)2) δ18O values spanning the last billion years. We contextualize this

compilation with measurements of fossil δ18O values (5, 16) and ∆47-temperature and water

δ18OV SMOW values derived from limestone, dolomite, and calcite, aragonite and apatite fos-

sils (12–14, 19–21). After exploring controls on δ18O and δ13C values and variability between

materials, we develop an approach to minimize the influence of alteration and present an side

by side estimate of shallow marine temperature and δ13C over the last billion years. Finally,

we consider the implications of our results for Earth’s habitability and the evolution of complex

life.

Assessing temperature versus seawater oxygen isotope evolution over the last billion years

In total, our compilation includes 40,368 mineral δ18O and 146 ∆47-temperature values of ma-

rine limestone rocks and 15,688 mineral δ18O and 230 ∆47-temperature values of dolomite

rocks (Fig. 1)(See SI for a complete reference list). This record is combined with 6,114

previously compiled mineral δ18O values and 206 ∆47-temperature measurements of calcite,

aragonite, and apatite fossils (e.g., brachiopods and belemnites) from shallow nearshore en-

vironments and 7,647 δ18O values from open ocean planktonic and 56,384 deep sea benthic

foraminifera (5, 12–14, 16, 19–21). All datasets use a consistent age model in the Phanero-

zoic (22) and Neoproterozoic (23–25).

4



Initially, we consider all mineral δ18O and ∆47-temperature values in the compilation, despite

clear evidence for alteration in some samples. We explore the implications of two end-member

interpretations of the long-standing paleoclimate debate using the mineral-specific dependence

of water oxygen isotopic composition and temperature on mineral δ18O values (26, 27). In

Scenario 1, we assume an invariant seawater δ18OV SMOW value of −1.2h, an estimate of

recent ice-free seawater δ18O (28, 29), which we use to calculate the Gaussian kernel density

estimate of temperature over time (26, 27)(Fig. 2, thin line, left panels). Within Scenario 1,

we increase the seawater δ18OV SMOW value to −0.8 to −0hduring known glacial intervals to

simulate ice volume (6), but this modification is distinctly different than the common hypothesis

that seawater δ18OV SMOW was as light as −6hduring the earliest Phanerozoic and Precambrian

(1–3) (30). In Scenario 2, we hold seawater temperature at a constant 25◦C over the last billion

years, and use mineral δ18O values to calculate the Gaussian kernel density estimate of seawater

δ18O values (26,27)(Fig. 2, thin line, right panels). This scenario predicts seawater δ18OV SMOW

values with a mode of −6h in the Neoproterozoic in line with previous suggested values (1,

2)(Fig. 2). Post-depositional alteration generally lowers mineral δ18O—leading to a right-

skewed distribution in Scenario 1 and a left-skewed distribution in Scenario 2 (Fig. 2, thin

lines).

To resolve Scenarios 1 and 2, we overlay ∆47-temperature and ∆47-derived seawater δ18O

values from five different materials (limestone (n = 216) and dolomite rocks (n = 134); a col-

lection of all calcite, apatite and aragonite fossils (n = 191)) (12–14, 19–21)(Fig. 2, bold lines).

We opt to use a -temperature cutoff of ≤75◦C to minimize the contributions from solid state re-

ordering and deep burial diagenesis and maximize the contributions from primary and shallow

marine diagentic environments. The portion of overlap (η) between Gaussian kernel density

estimates between each scenario (light lines) and ∆47 results (bold lines), is shaded (Fig. 2).
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There is significant overlap between Scenario 1 and the ∆47-temperature population over the

entire record. While there is overlap between Scenario 2 and ∆47-derived water δ18O values in

the Phanerozoic fossil and limestone rock populations, there is little overlap with Scenario 2 in

the Precambrian limestone and dolomite rock populations. Instead, the median of ∆47-derived

water δ18O values indicate that shallowly buried carbonate rocks and fossils have lithified in

the presence of fluids with δ18OV SMOW values similar to or greater than -1.2h for the last bil-

lion years (Fig. 2). Our Neoproterozoic results are compatible with an independent estimate

of seawater δ18OV SMOW of −1.33 ± 0.98h from a Neoproterozoic ophiolite (31) and even

older ophiolite δ18O datasets (i.e., (32,33)). Our results are inconsistent with interpretations for

a more negative seawater δ18O value based on iron oxide measurements from the Neoprotero-

zoic, although iron oxide data is sparse through this interval (3).

Studies often document a range in ∆47-temperatures from a given location and time inter-

val, reflecting a combination of differential alteration and solid state reordering (12–14, 19–

21)(right-skewed bold distributions in Fig. 2, Scenario 1). Outside of regions affected by solid

state reordering, petrographic and crystallographic observations show that the preservation of

primary carbonate fabric coincides with minimum ∆47-temperatures and that visibly altered car-

bonates record elevated ∆47-temperatures, suggesting that the lowest ∆47-temperatures record

marine or shallow burial conditions (12–14, 19, 20, 34, 35)(Fig. 2). Samples with elevated ∆47-

temperatures have apparent ∆47-derived elevated seawater δ18OV SMOW values either reflecting

sediment-buffered alteration or solid state reordering processes that do not reset mineral δ18O

values; this trend creates a right-skewed distribution (bold lines in Fig. 2, Scenario 2).

Time-dependent variability across materials We explore controls on variability in the δ18O-

derived temperature data in Scenario 1a constant seawater δ18OV SMOW value except during

known glacial intervalsby considering limestone, dolomite, coastal shallow marine fossils, open
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ocean planktonic foraminifera, and benthic foraminifera records individually and relative to

each other both temporally and spatially (Fig. 3, Fig. S2, S3). There is agreement in both

distribution and variance between limestone and coastal fossils for many time periods in the

Phanerozoic Era, particularly in the early Phanerozoic (Fig. 3A,B, Fig. S3). The Late Paleozoic

Ice Age (345–290 Ma) is one point of difference, likely because of the compounding effects of

meteoric alteration on limestone from high amplitude sea level oscillation and a switch from

calcite to aragonite as the dominant primary carbonate mineralogy (36)(Fig. 1,3). This is

similar to what is observed from meteoric alteration associated with glacial-interglacial sea level

oscillation in the Bahamas (37). In the Cenozoic as a whole, the bulk shallow marine limestone

dataset is currently sparse as it is less common to report δ18O values in publications—a sparse

record can be more easily biased by alteration at one site(Fig. 3A,B).

Compiling all available mineralogies in our database reveals the ’dolomite problem’, the sig-

nificant contribution dolomite makes to the carbonate record in the Neoproterozoic and early

Phanerozoic compared to its rarity in the recent (Fig. 1). Intriguingly, the Neoproterozoic lime-

stone and dolomite records maintain a δ18O fractionation offset consistent with equilibrium pre-

cipitation from the same temperature and fluid δ18OV SMOW except when dolomite data is sparse

in the earliest Neoproterozoic (≥805 Ma)(Fig. 3B). This aligns well with petrographic, crys-

tallographic and spatial evidence that Neoproterozoic dolomite formed on or near the seafloor

as proto-dolomite or dolomite in shallow marine environments, and stabilized as dolomite in

the shallow sediments without significant fluid-alteration (38–40). This temperature similarity

does not hold for locations in the Neoproterozoic with lower limestone δ18O values indicative of

more deeply buried strata (Fig. S6). In contrast, early Phanerozoic dolomite is clearly ’hotter’

under Scenario 1, the constant seawater δ18O assumption (Fig. 3B,Fig. S7). This distinction

aligns well with petrographic evidence that early Phanerozoic dolomite is often fabric destruc-
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tive and forms from fluid-buffered alteration at some point during burial (20, 41). Together

these results indicate shallow marine Neoproterozoic environments were conducive to dolomite

or proto-dolomite formation (i.e. high temperatures or high dissolved silica, etc.) (38, 42).

Temperature can be strongly coupled to the carbon cycle, through feedbacks with enhanced

volcanic outgassing, organic matter remineralization, organic matter burial, terrestrial organic

matter addition to marine environments, ocean CO2 outgassing, or methane clathrate destabi-

lization (i.e., (43, 44)). Both carbon cycle trends and alteration can impact the carbon isotopic

composition of marine carbonates (i.e., (43–46)). We assess the δ13C variability across materials

and mineralogies through time keeping both alteration and carbon cycle processes in mind. In

general, the limestone record is even more similar to the fossil record in δ13C values than δ18O

values, in both distribution and variance, because carbon isotopes are more robust to alteration

(Fig. 3D,E). While the δ13C values of Neoproterozoic dolomite and limestone often diverge, we

note the significant variability in the record itself during this time interval. Some large carbon

isotope excursions have a temporal mineralogical signal across them (47, 48). Dolomite and

limestone are often forming in shallow and deeper water environments in the Neoproterozoic,

respectively (40). Their divergence may also reflect a water column depth gradient in δ13C (49).

Constructing a long-term temperature record We filter the dataset by only including the 1st

to 50th quantiles of Scenario 1 temperature to minimize outliers from meteoric or burial alter-

ation. We use the 25th to 75th quantiles of δ13C because alteration affects both extremes in this

proxy. We opt to use limestone and shallow marine coastal fossil and planktonic foraminifera

data from the entire available record (Fig. 3C,F, Fig. 4). We only use dolomite data from the

Neoproterozoic younger than 805 Ma, because of dolomite sampling limitations in the earliest

Neoproterozoic and exclude Phanerozoic dolomite data completely because of the mismatch in

the Phanerzoic dolomite and limestone records (Fig. 3C,F). We explore the effects of excluding
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dolomite, open ocean planktonic foraminfera, coastal fossils and planktonic foraminifera from

the subtropics, all fossils, and all rocks. Despite the potential for a cool bias in the Cretaceous

and Cenozoic from including open ocean planktonic foraminifera and Northern hemisphere sub-

tropic fossils (15,18), we find excluding these datasets only subtly alters the temperature record

on the timescales we are considering and significantly reduces data density (Fig. S2). Excluding

all dolomite from the record leads to cooler temperatures in the Ediacaran (Fig. S2,S3,S4). We

opt for data density despite subtle temperature effects (Fig. S2). As a whole, this estimate is a

warm-biased temperature record particularly in the early Phanerozoic and Precambrian because

samples are dominated by tropical, coastal environments including higher temperature peritidal

environments (15, 18).

The Scenario 1 temperature record from δ18O suggests the Neoproterozoic experienced short-

term fluctuations with hot coastal temperatures followed by long-term cooling including into

Snowball Earth glaciations. This trend may be evidence for the ’Fire and Ice’ model for Snow-

ball Earth initiation (50)(Fig. 4). Carbonate rocks capturing the Sturtian Snowball Earth glacia-

tion (660-717 Ma) (51) record some of the most enriched mineral δ18O values in tropical envi-

ronments over the last billion years, and thus the coldest extrapolated temperatures in Scenario

1 (Fig. 4) (14). The Ediacaran was cooler than the Tonian except for a few high temperature

fluctuations. The first third of the Phanerozoic is characterized by high temperature fluctuations

followed by significant cooling in both the middle Ordovician and early Carboniferous from

coastal equatorial temperatures near 40◦C to ∼20◦C. Climate events co-occur with δ13C pertur-

bations across the entire record (43). In periods with known glacial deposits (blue bars in Fig.

1,3,4), we observe cooler temperatures than surrounding rocks in agreement with published ∆47

studies (13, 14, 21)(Fig. 4).
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We identify four potential sources of error for earliest Phanerozoic and Neoproterozoic tem-

perature in the current approach: [1] shallow, coastal Precambrian dolomite might form in more

evaporatively 18O-enriched water, which would make the record appear colder than it is (but see

Fig. S2,S3,S4); [2] Neoproterozoic oceans may have been dominated by aragonite precipitation

similar to the Late Paleozoic (52), and thus are perhaps more susceptible to δ18O alteration as

a population due to the metastability of aragonite, which could make the record appear hot-

ter than it is; [3] limestone and dolomite δ18O mineral values may have been more prone to

alteration before shells were a part of the carbonate depositional environment, which would

make the record appear hotter than it is; [4] sparse sampling could be biased by a few more

altered locations negating a global sampling approach (i.e., the earliest Neoproterozoic, 1000–

805 Ma). To account for these potential temperature offsets, more high-resolution paired δ18O

and ∆47-temperature studies are necessary from well-preserved rocks in the Neoproterozoic.

Out of the twilight zone and into the tropics Life remained microscopic for at least three

billion years of Earth’s history. This persistent size restriction suggests that formidable evolu-

tionary pressures kept life small. The consensus view that low dissolved oxygen concentrations

was the dominant environmental parameter keeping Precambrian life microscopic and single-

celled (53), has limitations (54). For example, marine oxygen concentrations were likely spa-

tially variable following the Great Oxidation Event as evidenced by proxy variability (i.e., (55)).

Furthermore, modern observations and experiments indicate that some macroscopic animals

can grow in exceedingly low oxygen conditions (56). These details highlight that an over-

looked alternative environmental control, such as temperature, may be critical to the tempo of

evolutionary diversification.

Our temperature record in the Neoproterozoic and early Phanerozoic—the interval of time

when complex, multicellular, macroscopic life evolved and thrived—is punctuated by higher-
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frequency temperature fluctuations. We calculate per capita extinction and origination rates

for the Cambrian and Ordovician using occurrence data from (57) and the rest of the Phanero-

zoic from (58, 59) and for the Neoproterozoic using occurrences of microscopic fossil popula-

tions (60–62) and macroscopic Ediacaran fauna (63)(Fig. 4). In the Phanerozoic, temperature

increases are often associated with increased rates of extinction following by increased inten-

sity of origination (64); this pattern is particularly evident in the early Cambrian (Fig. 4). In the

Neoproterozoic, high temperature fluctuations co-occur with negative carbon isotope excursions

like the mid-Ediacaran Shuram excursion and Bitter Springs excursions and extinction events

for nascent complex life (47)(Fig. 4). Origination rates increase after these high temperature

fluctuations (i.e. the late Ediacaran diversification of macroscopic soft bodied fauna).

Support for the controlling effect of temperature—both the long-term cooling trend and short-

term fluctuations—on Earth’s habitability through time comes from the fossil record in four

forms: [1] a long-term cooling trend is supported by the microscopic body size of almost all

taxa for much of the Neoproterozoic (see (65)). In the modern, high temperature environments

limit the size of both larvae and adult ectotherms and endotherms; [2] both long-term cooling

and short-term fluctuations in temperature are supported by the fact that macroscopic fauna

appear first in deep water refugia, which likely experienced less temperature fluctuation and

cooler overall temperatures (54, 65, 66). The first shallow water Ediacaran fossils appear after

a 20-million year lag (Fig. 4); [3] both microscopic and macroscopic eukaryotic lagerstätte

appear in the strata between high-temperature fluctuations in our record, which coincide with

large negative carbon isotope excursions like the Bitter Springs and Shuram excursions (23,24,

47, 54, 60–62)(Fig. 4); [4] extinction intensity (%) is elevated associated with high temperature

fluctuations (i.e., the Shuram excursion, much of the Cambrian, the end-Devonian, and the end

Permian) and origination intensity (%) is high in the cooler aftermaths (Fig. 4).
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Long-term cooling trends may reflect coupling between tectonic drivers of climate change

(i.e., (67)) and long-term changing reservoir sizes from enhanced carbon sequestration into

carbonate sediments and organic matter deposition on flooded continental crust in the early

Paleozoic (68, 69), into terrestrial biomass following land plant evolution (70), and into deep

marine carbonates following the diversification of planktonic biomineralizing organisms in the

Cretaceous and Cenozoic (71, 72)(Fig. 4). Our record suggests that by the second half of

the Phanerozoic, equatorial sea surface temperatures remained below extinction thresholds for

many macroscopic, complex animals even during climate perturbations, providing a mechanism

for the observed decrease in extinction and origination intensities over the Phanerozoic (73).

The Cambrian and early Ordovician peak in extinction and origination intensities was previ-

ously poorly linked to environmental oxygen change (55). We find evidence that short-term

temperature fluctuations were an important environmental driver of evolutionary patterns dur-

ing this time.

Conclusions Our record suggests the dogma about the fallibility of the oxygen isotopic com-

position of carbonate rocks can be overcome with statistical treatment of large, global, high-

resolution compilations. Pairing clumped isotope thermometry and a data-rich oxygen isotope

compilation reveals that shallow marine temperature change, not seawater oxygen isotope evo-

lution, is the primary cause of the long term increase in the oxygen isotope composition of

carbonate rocks over the last billion years. We find that well-documented Cenozoic cooling (5)

pales in comparison to the long-term cooling in tropical, shallow marine environments in Earth’s

more distant past. On shorter timescales, the record captures cooling and warming associated

with known glacial-greenhouse transitions in both the Proterozoic and Phanerozoic. These

short-term temperature fluctuations decrease in magnitude through time which is mirrored in

reduced extinction and origination intensities and smaller δ13C excursions. We find evidence
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that high temperature episodes were bottlenecks for complex life and cooling following higher

temperature fluctuations allowed for origination and diversification.
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Kačák-otomari Event (Middle Devonian) from Hungry Hollow, Ontario, Canada. Can. J.

Earth Sci. 45, 353–366 (2008).

157. J. J. Zambito, C. E. Brett, G. C. Baird, The late middle Devonian (Givetian) Global

Taghanic biocrisis in its type area (Northern Appalachian Basin): Geologically rapid fau-

nal transitions driven by global and local environmental changes. Earth Life Glob. Biodi-

versity, Extinction Intervals Biogeogr. Perturbations Through Time (Springer Netherlands,

2012), pp. 677–703.

158. D. Zhang, Z. Tang, H. Huang, G. Zhou, C. Cui, Y. Weng, W. Liu, S. Kim, S. Lee, M. Perez-

Neut, J. Ding, D. Czyz, R. Hu, Z. Ye, M. He, Y. G. Zheng, H. A. Shuman, L. Dai, B. Ren,

R. G. Roeder, L. Becker, Y. Zhao, Metabolic regulation of gene expression by histone

lactylation. Nature 574, 575–580 (2019).

34



159. S. R. Cole, J. T. Haynes, P. C. Lucas, R. A. Lambert, Faunal and sedimentological analysis

of a latest Silurian stromatoporoid biostrome from the central Appalachian Basin. Facies

61 (2015).

160. J. Liu, T. J. Algeo, W. Qie, M. R. Saltzman, Intensified oceanic circulation during Early

Carboniferous cooling events: Evidence from carbon and nitrogen isotopes. Palaeogeogr.

Palaeoclimatol. Palaeoecol. 531, 108962 (2019).

161. D. Maharjan, G. Jiang, Y. Peng, R. A. Henry, Paired carbonate-organic carbon and nitro-

gen isotope variations in Lower Mississippian strata of the southern Great Basin, western

United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 462–472 (2018).
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Fig. 1. Carbonate mineral δ13C and δ18O values through the last 1 Ga (A) δ13C of

limestone rocks (blue squares), dolomite rocks (green diamonds), shallow marine coastal fossils

(purple circles), planktonic foraminifera (orange circles), benthic foraminifera (yellow circles),

and ∆47 samples (lighter colors with black outlines, same symbols). (B) δ18O values with same

symbology as above. Vertical bars indicate events: two Snowball Earth glaciations (dark blue),

high latitude glaciations (light blue), and the Neoproterozoic–Phanerozoic boundary (dashed

black line). See (30) for included data and age constraints on glaciations..
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Fig. 2. A comparison of Scenario 1 vs. ∆47-temperature and Scenario 2 vs. ∆47-derived

water δ18OV SMOW (A) Scenario 1 assumes mineral δ18O depends on temperature using a water

δ18OV SMOW value of −1.2h and higher values during glacial intervals to calculate tempera-

ture (30). Shallow marine fossil (purple), and Phanerozoic and Neoproterozoic limestone rock

(blue), and dolomite (green) Gaussian kernel density estimates of δ18O translated under the as-

sumptions of Scenario 1 (thin line) compared to Phanerozoic fossil ∆47-temperature (thick line).

The overlap η is the fraction of the distributions that overlay each other. It is estimated as the

area under the minimum of the distributions along the curves. The number of samples used in

each KDE is to the right of the plot. (B) Scenario 2 assumes the mineral δ18O increase depends

only on changing seawater δ18O. Seawater temperature is held at a constant 25◦C to calcu-

late seawater δ18O (30). Phanerozoic and Neoproterozoic Gaussian kernel density estimates of

δ18O translated under the assumptions of Scenario 2 (thin line) compared to ∆47-derived water

δ18OV SMOW (thick line). Clumped data used in Fig.2 is ≤75◦C.
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Fig. 3. Temperature and δ13C temporal variability by material. (A,D) Distribution of

temperature estimates from Scenario 1 and δ13C for limestone rocks (blue), dolomite rocks

(green), shallow marine coastal fossils (purple), planktonic foraminifera (orange), and ben-

thic foraminifera (yellow). (B,E) dolomite and coastal fossil lines are the difference of their

respective medians from the limestone median (zero) for temperature (B) and δ13C (E). The

shaded envelopes are the difference of the 25th and 75th quantiles from the limestone median.
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(C) The 1st to 50th quantiles of Scenario 1 temperature for shallow marine fossils, planktonic

foraminifera, limestone and Neoproterozoic dolomite (538.8≤ DL ≤805 Ma). No dolomite in

the Phanerozoic and early Neoproterozoic is included. The 1st quartile is approximated using

the 1st to 25th quantiles and is darker than the 2nd. (F) The median of δ13Cvalues, with a shaded

envelope from the 25 to 75th quantiles. Dolomite is excluded as in (C). The distributions in Fig.

3A,D and the moving distributions in Fig. 3B,E are generated using Gaussian kernel density

estimates as above with window of 40 Myr. Windows with fewer than 14 points are excluded.

The moving distributions are sampled each 2 Myr. The moving quartiles in Fig. 3C,F are esti-

mated using quantile regression on points within 4 Myr windows sampled each 2 Myr. Vertical

bars indicate events: two Snowball Earth glaciations (dark blue), high latitude glaciations (light

blue), and the Neoproterozoic–Phanerozoic boundary (dashed black line) (30).
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Fig. 4. Critical extinction and origination events in the history of life, δ13C, and a

tropical marine temperature record (A) Scaled per capita origination and extinction rates

are calculated in 10 Myr bins from occurrences of Neoproterozoic microfossils (thin line) (60–

62), macroscopic Ediacaran fauna (medium line) (63), Cambrian and Ordovician fossil marine

genera (57), and Ordovician through modern fossil marine genera (59) using (58,74)(see (30)).

Ordovician through modern occurrences are subsampled using classical rarefaction and the R

DivDyne package. (B) The composite δ13C record is plotted as in Fig. 3F with the 2nd and

3rd quartiles (grey) and median (black). (C) The composite temperature record is plotted as in

Fig. 3C using the 1st (black) and 2nd quartiles (grey) and a color bar. The horizontal grey band
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represents the upper thermal limit for modern tropical subtidal ectotherms (75). Vertical bars

indicate two Snowball Earth glaciations (dark blue), high latitude glaciations (light blue), and

the Neoproterozoic–Phanerozoic boundary (dashed black line). Before 440 Ma, intervals ≥1

Myr with a 25th quantile temperature ≥ 38◦C are extended to the top of the plot (orange vertical

bars). After 440 Ma, the threshold is ≥ 28◦C (green and yellow vertical bars).
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1 Materials and Methods

Mineral δ18O compilation A literature search was conducted to locate published mineral

δ18O data from shallow platform carbonates spanning 1.5 Ga to the modern. Most of this data

was associated with high-resolution δ13C studies, usually sampled at meter-resolution. The

δ18O data from these individual studies of bulk rock δ13C had not been previously compiled

in a systematic way with a high-resolution age model. Study level isotopic datasets from the

literature were digitized into .csv files, and metadata were added (location, mineralogy, type of

material, Formation name, etc.).

Data included in mineral δ18O compilation :

Mesoproterozoic: (25, 76–81)

Neoproterozoic: (14, 24, 25, 82–103)

Cambrian: (85, 104–112)

Ordovician: (104, 107, 109, 113–131)

Silurian: (132–144)

Devonian: (138, 140, 145–159)

Carboniferous: (160–167)
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Permo-Triassic: (164, 167–177)

Triassic-Jurassic: (178–190)

Cretaceous: (191–195)

Cenozoic: (196–199)

Fossils: (5, 6, 16) with only tropical/subtropical used

∆47 compilation Carbonate ∆47 data was compiled from (12–14,19,20,34,35) and references

therein. Results in (19) were screened to remove all Arctic and Antarctic carbonates and all Cre-

taceous Interior Seaway carbonates to provide the best constraints on marine, tropical carbonate

platforms through time. Results from (12–14,35) are recalculated using the original raw voltage

data into the I-CDES reference frame and a universal temperature calibration equation (200),

whereas measurements from (19, 20) were not recalculated into the I-CDES or updated to the

universal temperature calibration equation. We estimate this may affect temperatures by ∼5◦C

or less and will not alter the results in Fig. 2.

Age Model We created a consistent age model for all individual studies and opted not to use

previously published age models individual authors may have created. In the Phanerozoic, we

used the Geologic Time Scale 2020 to set period, epoch, stage, and sub-stage boundaries (22).

Regional stage boundaries were used where applicable. We also used the GTS2020 to add

additional tie points based on biostratigraphy (i.e., trilobite, conodont, and graptolite zones)

and δ13C excursions. Age models were built using information provided within the datasets,

stratigraphic columns, and text of compiled articles. At the upper and lower boundaries of

datasets when no other tie point could be found, the midpoint between the nearest tie point

within the section and the next closest geologic stage was used as an estimated age tie point.

For all points in the dataset, ages were interpolated using a linear model assuming a constant

52



sedimentation rate between tie points. Sedimentation rates were error checked for consistency.

The age model for compiled δ18O Proterozoic datasets utilized U/Pb and Re/Os ages from the

published literature (23–25, 51) and δ13C excursions were used to build a new age model for

each study.

Scenario 1 and 2 calculations We have gathered mineralogical information for all samples

in the δ18O compilation so that we can explore the implications of Scenario 1 and Scenario

2. This mineralogical information was collected from stratigraphic columns and data tables.

For Scenario 1 we calculated temperature using a water δ18OV SMOW value of −1.2h(Scenario

1) except during known glacial intervals. For Scenario 2 we calculated water δ18O using T

= 25◦CẆe used mineral-specific fractionation factors for calcite samples (26) and dolomite

samples (27). Ice volume estimates for Scenario 1 are as follows: [717–660 Ma],[640–630

Ma],[450–439 Ma]: δ18OV SMOW value of 0h. [317.5–280 Ma],[33.9–0 Ma]: δ18OV SMOW

value of −0.5h. [580–579 Ma],[364–359 Ma],[354–348.5 Ma],[339–331.5 Ma],[327–320

Ma],[272–263.5 Ma],[259.5–254 Ma]: δ18OV SMOW value of −0.8h. Ages of glacial inter-

vals are from (5, 35, 51, 201, 202). The distributions in Fig. 2 are generated on the unweighted

points using Gaussian kernel density estimates as implemented in the scipy package in python

with bandwidth selected using Scott’s Rule. The overlap η is the fraction of the distributions

that overlay each other. It is estimated as the area under the minimum of the distributions along

the curves. Material specific distributions for Scenario 1 are shown in Fig. 3A,D and the moving

distributions in Fig. 3B,E are generated using Gaussian kernel density estimates with a window

of 40 Myr. Windows with fewer than 14 points are excluded. The moving distributions are

sampled each 2 Myr. The moving quartiles in Fig. 3C,F are estimated using quantile regression

on points within 4 Myr windows sampled each 2 Myr. The first quartile is approximated using

the 1st to 25th quantiles, and the fourth quartile is approximated using the 75th to 99th. Only
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the 1st and 2nd quartiles (1st to 50th quantiles) are shown in Fig. 3C and Fig. 4C. All of the

quartiles are shown as Scenario 1 and 2 in Fig. S1.

Per Capita Extinction and Origination Rates To calculate post-Ordovician Phanerozoic

extinction and origination rates we used the R package DivDyn and used the data and code

from (58, 59). This uses a Paleobiology Database download of marine animals. It resamples

using stage level or 10 Myr bins and compares a variety of approached to calculate extinc-

tion and origination rates. We opt to plot the resampled dataset that uses classical rarefaction

(CR) and per capita extinction and origination rates(PC) (74) in 10 Myr bins to best match the

treatment of the sparser datasets described below. For older time intervals, We first calculated

FAD and LAD from occurrences we tabulated for Neoproterozoic microfossils from (60–62),

Neoproterozoic Ediacaran fauna from (63), and Cambrian and Ordovician marine fossil raw oc-

currence data from (57). We calculate per capita extinction and origination rates (74) on these

three compilations using 10 Myr bins without subsampling. The age constraints we used for

fossil occurrences in the Neoproterozoic are included in a Supplemental Table and in the OSF

repository. Results are normalized to the largest per capita extinction or origination rate in each

of the four records.

Materials for new ∆47 analyses All new samples presented are dolomite and were pro-

vided by Andrew Knoll. Three samples are from the Kotuikan Formation in the Anbar Up-

lift, Siberia (KG 92 21, KG 92 24, KG 92 27B, plotted at 1450 Ma), Five samples are from

the Dismal Lakes Group in N.W.T. (DL 2 B, DL 1 B, DL 1 A, DL 1 D, DL 2 A, plotted

at 1300 Ma). Five samples are from the Svanbergfjellet Formation, Svalbard (G3 129f A,

G3129f B,G3 135.6, G3 157.2 B, G3 157.2 A, plotted at 780 Ma). Four samples are from the

Thule Group, NW Greenland (KS 78 12A, KS 78 12 B, KS 78 22, KS 78 7, plotted at 1150

Ma). Three samples are from the Wynniatt Formation and Reynolds Point Formation, Shaler
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Group (88 KL 119, 88 KL 68 A, 88 KL 100, 88 KL 68 B, 88 KL 108 B, 88 KL 108 A, plot-

ted at 802 Ma and 830 Ma respectively). Three samples are from the Pendjari Supergroup, Volta

Basin, Burkina Faso (PK99 KT 4c A, PK99 KT 3A, PK99 KT4C B, plotted at 635 Ma).

Methods for new ∆47 analyses Precambrian samples described above were analyzed at the

MIT Carbonate Research Lab on a Nu Perspective dual-inlet isotope ratio mass spectrometer

coupled to a NuCarb automated sample preparation unit held at 70◦CȦpproximately 450 µg

of sample powder was weighed for each replicate from drilled polished sample slabs and di-

gested in sample vials with 150 µL 104% phosphoric acid (H3PO4). Four or more replicates

were analyzed per sample. Evolved CO2 was purified cryogenically and by passage through a

PorapakQ trap (1/4” inner diameter tube filled with 0.4 g 50-80 mesh PorapakQ bracketed by

silver wool) held at −30◦C. After purification, evolved CO2 was transferred to a cold finger

in a microvolume and warmed to room temperature. Reference gas pressure was balanced to

match the sample beam size. Beam intensities were collected in three blocks of 20 integration

cycles of 20 seconds each. Voltage on the m/z 44 beam at the start of each analysis is 8–20

V; this depleted by approximately 50% over a replicates analysis. Laboratory protocols for the

distribution of standards throughout the 50-vial carousel changed over the course of this study.

Prior to February 2018, queues were planned for >18 ETH standards alongside in-house stan-

dards and <23 unknown samples; after this point, 22 ETH standards were included in each run,

along with three additional standards (IAEA-C1, IAEA-C2, and MERCK) and 25 unknowns.

Uncommon shorter runs (i.e. <50 vials) exceeded the 1:1 sample:standard ratio.

All of the new Precambrian samples were also analyzed 1-2 times at Caltech in 2015. Meth-

ods follow those outlined in (13). Samples of 9–12 mg of powder were weighed into silver

capsules before being reacted in a phosphoric common acid bath (∼ 103%; 1.90 ≤ ρ ≤ 1.92)

for 20 minutes at 90◦C. Evolved CO2 was collected and purified with an automated acid diges-
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tion and gas purification device as described by (203). This device includes passing the CO2

through multiple cryogenic traps using either a dry ice and ethanol mix or liquid nitrogen as

well as through a Porapak-Q 120/80 mesh gas chromatography column held at −20◦C using a

helium carrier gas. Sulfur was scrubbed from the CO2 using an in-line silver wool trap. The

CO2 was measured on the ThermoFinnigan MAT 253 IRMS, nicknamed ’Admiral’ housed at

Caltech. Each measurement consisted of eight acquisitions (16V on m/z = 44) of seven cycles

of unknown sample CO2 versus Oztech working gas as outlined by (204). Best practices in

the clumped isotope community have evolved to better address pressure baseline issues, non-

linearity in the source, scale compression, and necessary sample replication (e.g., (205–208).

We input raw measurement files of 1000◦C heated and 25◦C equilibrated gases and carbonate

standard data along with raw measurement files of sample unknowns into Easotope, an open-

source software tool specifically developed for clumped isotope data processing (209). The

carbonate δ18O values were calculated using a 90◦C acid-digestion fractionation factor for cal-

cite from (210) and for dolomite (211).

I-CDES transfer, temperature and water δ18O calculations for all ∆47 analyses Both

newly generated data (above) and previously published datasets generated by this studies’ au-

thors (12–14, 21, 35) were treated in an identical way and all datasets are standardized to I-

CDES. All clumped isotope transformations used the raw d44, d45, d46, d47, d48, d49 mea-

surements and sessions as output from Easotope to create an input file for ClumpyCrunch

which propagates full error including uncertainty associated with the reference frame (212).

For datasets generated at MIT, carbonate standards (ETH-1, ETH-2, ETH-3, ETH-4, IAEA-

C2, and Merck) were used to transfer ∆47 values to the Intercarb Carbon Dioxide Equilibrium

Scale (I-CDES) (205, 213) using anchor values from the InterCarb interlaboratory comparison

project (205). For previously published datasets from Caltech, ∆47 values and temperatures
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were recalculated into the I-CDES reference frame using a combination of anchors related to

the above carbonate standards and the I-CDES reference frame: heated and equilibrated gases

and HCM, CIT, TV01, TV03, TV04, 102-GZ-AZ-01 standards. These later anchors were re-

measured at MIT and run through ClumpyCrunch using the I-CDES anchors ETH-1, ETH-2,

ETH-3, ETH-4, IAEA-C2, and Merck. Total new analyses for each are standard are HCM

[13], CIT [11], TV01 [recalculated from 272 Caltech analyses], TV03 [recalculated from 32

Caltech analyses], TV04 [11], and 102-GZ-AZ-01 [17] and nominal values in the I-CDES ref-

erence frame are in the legacy standard data file on OSF(link). The standards IAEA-C1, Fast

Haga, 2-8-E, Carmel Chalk, and NCM were used to assess the data processing procedures. All

code, nominal values, data evaluation plots, raw values and output for the ClumpyCrunch and

BLIMP processing is available on OSF(link) and uses code outlined in (200). Final ∆47 tem-

peratures were calculated using the calibration equation of (200). ∆47-derived water δ18O were

calculated using the calcite-water fractionation equation from (200) which is similar to (214),

but with more data, and (215) for dolomite in Fig. 2 and Fig. S1. Results from different

water δ18OV SMOW fractionation equations are compared for calcite (26, 200) and for dolomite

from (215–217) in the summary data file on OSF(link). Marine samples from other Phanerozoic

compilations of calcite fossils and limestone (19, 34) and dolomite ∆47-temperatures (20) are

included but are not updated to I-CDES.

2 Supplemental Materials

Solid-state reordering and elevated ∆47-temperatures We are undoubtedly presenting ∆47-

temperatures that have experienced solid state reordering in the compilation, particularly from

Precambrian strata. Solid-state reordering would result in ”apparent” enriched water δ18O com-

positions. Thus, one could argue if all of our Precambrian samples have experienced significant

solid state reordering, we have no basis for assessing seawater δ18O through time. We think
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the lower clumped isotope temperatures (¡75◦C) from our data set merit consideration for the

following reasons: [1] ∆47-temperature results are from six different Precambrian carbonate

platforms selected for their minimal to moderate burial histories, some of which yield intact

biomarkers (218, 219). It is unlikely that all of these locations experienced similar degrees of

solid state reordering. [2] Multiple samples throughout the record approach or sit at water δ18O

composition of -1.2h including bulk rock samples from both the Phanerozoic and Precam-

brian indicating bulk rocks can lithify early, record seawater δ18OV SMOW values, and preserve

them for hundreds of millions of years, [3] Almost all of the Precambrian samples are dolomite

which has been shown to be more resistant to solid state reordering than calcite (220, 221), [4]

Our ∆47 results in multiple locations (both in the Phanerozoic and Precambrian (12–14, 35))

suggest that populations of carbonates in carbonate platforms often lithify in the presence of

minimal fluids (i.e. sediment-buffered diagenesis where the pore fluids become buffered by the

carbonate rocks and new fluids are not introduced) which lends more plausibility to interpreting

the bottom of the distribution of both the δ18O and ∆47-derived water δ18OV SMOW results as

a near primary record, [5] cold ∆47-temperatures and heavy δ18O values are preserved during

glacial intervals (13, 14, 21). In summary, we have found ∆47 is more easily altered by lithi-

fication, subsequent post-depositional alteration, and solid state reordering than mineral δ18O

but not so much that the lowest preserved temperature populations loose all significance for

interpreting primary environmental conditions in many shallowly buried locations. Both the

∆47 and δ18O records preserve stratigraphic trends that suggest long-term (and shorter term)

temperature fluctuations.
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Fig. S1. Scenario 1 and Scenario 2 compared to ∆47-temperature and ∆47-derived water

δ18OV SMOW values (A) Scenario 1 assumes mineral δ18O depends primarily on temperature.

Seawater δ18OV SMOW is held at a constant value of −1.2hexcept during known glacial in-

tervals (30) to calculate temperature (27, 200). ∆47-temperature values (larger symbols) are

compared to Scenario 2. Results are plotted as quartiles using the 1st to 99th quantiles of a

moving distribution sampling each 1 Ma with a window of 5 Ma. The horizontal grey band

represents the upper thermal limit for modern tropical subtidal ectotherms (75). (B) Scenario

2 assumes the mineral δ18O increase depends primarily on changing seawater δ18O. Seawater

temperature is held at a constant 25◦C to calculate seawater δ18O (27,200). Horizontal line indi-

cates −1.2h seawater expected from Cenozoic ice-free conditions (28,29). Results are plotted

as quantiles of a moving distribution sampling each 1 Ma with a window of 5 Ma. ∆47-derived

water δ18OV SMOWvalues (27, 200) are compared to Scenario 2 (larger symbols). Vertical light

blue boxes indicate periods of glaciation. Dolomite rocks (green diamonds), limestone rocks

(blue squares), and calcite, aragonite and apatite fossils (purple circles).
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Fig. S2. Individual components of the composite temperature record presented in Fig.

4C. (A) Temperature comparison of records in Fig. S2B,C,D,E,F. (B) The 1st to 25th quan-

tiles (black) and 25th to 50th quantiles (grey) of shallow marine temperatures from Scenario

1 estimated using quantile regression on points within 4 Myr windows sampled each 2 Myr.

(B) Scenario 1 temperatures derived from limestone samples. (C) Temperatures derived from

coastal fossils and planktonic foraminifera. (D) Temperatures derived from tropical coastal

fossils and tropical planktonic foraminifera, excluding all subtropical data. (E) Temperatures

derived from tropical coastal fossils, excluding all planktonic foraminifera and subtropical fos-

sil data. (F) Temperatures derived from Neoproterozoic dolomite (≥805 Ma and ≤538.8 Ma).

Grey bands represent the upper temperature limit of modern tropical subtidal ectotherms (75).

Vertical bars indicate two Snowball Earth glaciations (dark blue), high latitude glaciations (light

blue), and the Neoproterozoic–Phanerozoic boundary (dashed black line).
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Fig. S3. Neoproterozoic country-level contributions to the composite temperature record

presented in Fig. 4C. (A) Temperature comparison of the different countries. (B-K) The 1st

to 25th quantiles (black) and 25th to 50th quantiles (grey) of shallow marine temperatures from

Scenario 1 estimated using quantile regression on points within 4 Myr windows sampled each

2 Myr. In panel order, data are plotted from China, Oman, Mongolia, Namibia, Brazil, Rus-

sia, Laurentia (USA and Canada), Svalbard, Ethiopia, and Australia. Grey bands represent the

upper temperature limit of modern tropical subtidal ectotherms (75). Vertical bars indicate two

Snowball Earth glaciations (dark blue) and one high latitude glaciation (light blue).
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Fig. S4. Neoproterozoic country-level contributions from only limestone included in Fig.

4C. (A) Temperature comparison of the different countries. (B-K) The 1st to 25th quantiles

(black) and 25th to 50th quantiles (grey) of shallow marine temperatures from Scenario 1 esti-

mated using quantile regression on points within 4 Myr windows sampled each 2 Myr. In panel

order, data are plotted from China, Oman, Mongolia, Namibia, Brazil, Russia, Laurentia (USA

and Canada), Svalbard, Ethiopia, and Australia. Grey bands represent the upper temperature

limit of modern tropical subtidal ectotherms (75). Vertical bars indicate two Snowball Earth

glaciations (dark blue) and one high latitude glaciation (light blue).
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Fig. S5. Cambrian and Ordovician country-level contributions from limestone and fossils
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included in Fig. 4C. (A) Temperature comparison of the different countries. (B-I) The 1st to

25th quantiles (black) and 25th to 50th quantiles (grey) of shallow marine temperatures from

Scenario 1 estimated using quantile regression on points within 4 Myr windows sampled each

2 Myr. In panel order, data are plotted from Estonia, Sweden, Argentina, Laurentia, China,

Oman, Russia, Svalbard, and Morocco. Grey bands represent the upper temperature limit of

modern tropical subtidal ectotherms (75). Vertical bars indicate two Snowball Earth glaciations

(dark blue) and one high latitude glaciation (light blue).
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Fig. S6. Neoproterozoic Scenario 1 temperature distributions by location for limestone

(blue) and dolomite (green) rocks compared to the post-Ordovician Phanerozoic distribu-

tions of limestone(blue), dolomite (green), coastal fossils (purple), planktonic foraminifera

(orange), benthic foraminifera (yellow). Temperature distributions are generated on the un-

weighted points using Gaussian kernel density estimates as implemented in the scipy package

in python with bandwidth selected using Scott’s Rule. The number of points from each location

are included to the right.
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Fig. S7. Cambrian and Ordovician Scenario 1 temperature distributions by location for

limestone (blue) and dolomite (green) rocks compared to the post-Ordovician Phanero-

zoic distributions of limestone(blue), dolomite (green), coastal fossils (purple), planktonic

foraminifera (orange), benthic foraminifera (yellow). Temperature distributions are gener-

ated on the unweighted points using Gaussian kernel density estimates as implemented in the

scipy package in python with bandwidth selected using Scott’s Rule. The number of points

from each location are included on the right.
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