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Abstract

A simple statistical test is used in cyclostratigraphy to discover candidate orbital frequencies in power spectra of climate proxy

data-series. In published studies at least, this test never fails to find multiple frequencies, at high levels of statistical significance

(e.g. p<0.01). However, the same method finds similarly high statistical significance at similar numbers of frequencies in random,

simulated datasets. The problem lies with the standardised application of the test, which is linked to MTM spectral analysis

in a one-step procedure that is readily accessible through specialist software packages. This procedure presents confidence

limits as if they were context-free, but statistical tests are necessarily tied to specific (null) hypotheses. The test as used in

cyclostratigraphy is calibrated for application at a single frequency, but it is routinely used as if applicable at all frequencies,

a practice that invokes the statistical multiple comparisons problem and which largely explains the inadvertent conversion of

noise to signal when applied to random datasets. This general problem is addressed here with reference to a specific recently

published case.
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ARISING FROM   8 

Zhao et al. Nature Communications https://doi.org/10.1038/s41467-022-29651-4 (2022) 9 

 10 

ABSTRACT   11 

A simple statistical test is used in cyclostratigraphy to discover candidate orbital frequencies in 12 

power spectra of climate proxy data-series.  In published studies at least, this test never fails to find 13 

multiple frequencies, at high levels of statistical significance (e.g. p<0.01).  However, the same 14 

method finds similarly high statistical significance at similar numbers of frequencies in random, 15 

simulated datasets.  The problem lies with the standardised application of the test, which is linked to 16 

MTM spectral analysis in a one-step procedure that is readily accessible through specialist software 17 

packages.  This procedure presents confidence limits as if they were context-free, but statistical tests 18 

are necessarily tied to specific (null) hypotheses.  The test as used in cyclostratigraphy is calibrated 19 

for application at a single frequency, but it is routinely used as if applicable at all frequencies, a 20 

practice that invokes the statistical multiple comparisons problem and which largely explains the 21 

inadvertent conversion of noise to signal when applied to random datasets.  This general problem is 22 

addressed here with reference to a specific recently published case. 23 

 24 

 25 
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The results reported by Zhao et al.1 depended on a procedure that finds statistically significant peaks 26 

in power spectra of random data – their method finds regular cycles where none exist.  Figures 1a 27 

and 1b present applications of the same procedure to, respectively, their data-series, and a random 28 

simulation of it; both plots show power exceeding the 99% confidence limit at numerous 29 

frequencies.  In Fig. 1a, “The … power spectrum … revealed numerous peaks … above the 99% 30 

confidence level” (Zhao et al.1 Supplementary Note 3, referring to Supplementary Fig. 4a).  Fig. 1b 31 

should have no significant peaks, because the data are random.  The false significance arises from 32 

statistical multiplicity (the multiple comparisons problem, or p-hacking).  Because this also applies to 33 

Fig. 1a, most or all of Zhao et al.’s frequency picks must be incorrect.  While there are implications 34 

for their study’s particular conclusions, the following comments should be taken to apply more 35 

generally, to the widespread use of invalid statistical tests in cyclostratigraphic spectral analysis.  36 

 37 

Zhao et al.’s data-series comprised XRF measurements of Al concentration at 1 mm spacing through 38 

~74 m of the Cambrian (~500 Ma) Alum Shale Formation in a cored borehole from southern Sweden.  39 

Their objective was high-resolution calibration of part of Cambrian time.  They used spectral analysis 40 

to seek patterns of cyclicity (in stratigraphic depth) that might indicate orbitally-forced 41 

(Milankovitch) cycles of paleo-environmental change, expected as peaks in spectral power against a 42 

background of aperiodic red noise.  Their procedure followed convention: MTM spectral analysis 43 

accompanied by estimation of spectral background, from which confidence limits (CLs) were 44 

calculated and plotted with the power spectrum, as in Fig. 1a, b.  A CL expresses a probabilistic test 45 

of local power against a null hypothesis of randomness, and is computed from the noise model using 46 

chi-square sampling theory.  Confidence limits assess the probability that some observed value is a 47 

chance result.  For the one-sided probability distribution relevant to a power spectrum, a 99% CL (for 48 

example) indicates the minimum observed value for which the probability of chance occurrence is 49 

less than 1% (p<0.01).  (Note that 99% is not the probability of the underlying hypothesis being 50 
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true2,3.)   Fig. 1b demonstrates that the CLs, as calculated through the standard procedure, do not do 51 

this correctly. 52 

 53 

As in nearly all cyclostratigraphic investigations, it was not possible to erect a statistically testable 54 

(null) hypothesis.  This is because the target frequencies are so uncertain, and because of the 55 

computationally difficult nature of stratigraphic data, in which stratigraphic depth is a poorly 56 

constrained proxy for time.  Accordingly, and consistent with the absence of visible stratification 57 

cycles in their succession, Zhao et al. made no specific predictions of cyclic frequencies; their analysis 58 

was, rather, a spectrum-wide search for frequencies of possible interest.  Their analysis was 59 

therefore not a null hypothesis significance test (NHST), yet their identifications of periodic 60 

frequencies explicitly depended on the 99% CL, which can only represent a NHST.  Their analysis was 61 

thus a self-contradictory combination of hypothesis-dependent significance criteria with a 62 

hypothesis-free search4: this is the central paradox of conventional cyclostratigraphic practice. 63 

 64 

This standardised approach misuses a method (ML965) that was developed to discriminate 65 

(anthropogenic) trends from both cyclical patterns and random information in recent climate data6; 66 

it calculates confidence limits by default.  The method’s authors acknowledged that these CLs lead to 67 

false positive cycle detections, but this was unimportant in their quest for the trend.  Fig. 1b 68 

demonstrates, however, that false positives are a major problem when the method is instead used 69 

to search for evidence of cyclicity.  As conventionally calculated, the ML96 CLs are correct for 70 

application at one frequency only; false positive detections are a simple arithmetical consequence of 71 

application at multiple frequencies, and >3,000 frequencies are represented in Figs 1a and b.  72 

Corrections for multiple application are available7,8 but are practised only exceptionally in 73 

cyclostratigraphy9,10.  Fig. 1b shows (dashed line) a 99% CL properly calculated for simultaneous use 74 

at all frequencies; it correctly identifies no cyclic frequencies in this random dataset. 75 

 76 
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Statistical multiplicity is more deceptive, and less easily quantified11, when it arises from procedural 77 

flexibility (‘Researcher Degrees of Freedom’12) and from post-analytical target-setting, both of which 78 

apply here.  Standard protocols remain non-existent in cyclostratigraphy; conventional practice 79 

assumes that all procedures may be adjusted without compromising significance.  Zhao et al. 80 

accordingly adapted their pre-processing (smoothing and detrending) parameters to their data, and 81 

made their own (undeclared) choices of spectral analysis settings.  Target-setting was based on 82 

clusters of ‘significant’ peaks, which were used to define broad frequency intervals (with the only 83 

constraint that their mutual ratios resemble those of the four main orbital periods – the coloured 84 

bands in Zhao et al. Sup. Fig. 4a); ‘significant’ frequency peaks falling outside these bands were 85 

rejected from further consideration.  Such post-analytical target-setting has been called HARKing, or 86 

Hypothesising After Results Known13.  The effect of such flexibility in both the conduct and 87 

interpretation of the statistical tests is to increase the range of potential scenarios (the ‘Garden of 88 

Forking Paths’14), and hence the level of multiplicity.  Together, procedural flexibility, p-hacking and 89 

HARKing eliminate any validity from the conventional CLs, inviting confirmation bias.  90 

 91 

Statistical tests are valid and reliable only under proper procedures.  Zhao et al.’s study exemplifies 92 

the widespread appearance in cyclostratigraphy of statistical thresholds generated without regard to 93 

any null hypothesis4.  The illusion that significance can be quantified without reference to a specific 94 

hypothesis is reinforced by the automated calculation of confidence limits through implementations 95 

of ML96 in specialist software packages.  Further, published precedents include no cases in which 96 

the conventionally calculated CLs prove absence of cyclicity.  Instead, a majority of cases (including 97 

Zhao et al.) have reported recovery of the full suite of long and short eccentricity, obliquity and 98 

precession cycle periods, regardless of the inherent improbability of such a result.  Prior probability 99 

is essential for statistical validity, even in stratigraphy where it is impossible to estimate 100 

quantitatively.  Qualitative considerations confirm the minimal likelihood of achieving such a faithful 101 

orbital recording: after translation and corruption of the orbital signal through multiple climatic, 102 
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sedimentary, and post-depositional processes, reliable recording of numerically coherent 103 

information in the resulting strata can only be exceptional.  Bad statistics is a much less implausible 104 

explanation for the numerous cycle detections implied by Fig. 1 (and in hundreds more published 105 

cases). 106 

 107 

Zhao et al.’s Supplementary Fig. 4a was the origin of their cyclic frequencies.  Before the adoption of 108 

ML96, spectral analysis was optional in cyclostratigraphy (and statistics more so).  Classical 109 

observation and measurement, with sedimentological and geochemical analyses, were the primary 110 

means of investigating observed stratification cycles15.  Dependence on the ML96 plot is now the 111 

default; its reliably positive results seem to obviate any concerns about hypotheses, prior 112 

probabilities, or p-hacking.  Zhao et al.’s analysis rewarded their expectations of multi-frequency 113 

periodicity, in turn justifying cherry-picking from these to populate a retro-fitted multi-frequency 114 

target.  In fact, the CLs are deprived of any possible meaning because: cyclicity (though not 115 

impossible) is unlikely a priori; the null hypothesis built into the conventional analysis applies at only 116 

one frequency; and flexible procedures invoke unquantifiable multiplicity from additional sources.  117 

The conventional view, implicit in Zhao et al. (and explicit elsewhere16), is that the uncertainties 118 

inherent in the data justify a casual approach to the interpretation of confidence limits.  I argue 119 

instead that the uncertainties in both the data and the objective require more statistical rigour, not 120 

less. 121 

 122 

Data availability 123 

All data used to construct Figures 1a and 1b are included in the Supplementary Information (see 124 

below).  125 
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FIGURE 1 171 

 172 

Fig. 1  Power spectral analyses of original and simulated (random) data-series of Zhao et al.1, using 173 

the method of Mann & Lees (ML96)5.  Compare Zhao et al.’s Supplementary Fig. 4a.  The 99% 174 

confidence limit (CL) was used by Zhao et al. as their primary means of detecting candidate orbital 175 

frequencies in the power spectrum; here, it indicates comparable numbers of ‘significant’ 176 

frequencies in both the real and random data.  Calculations were performed in Excel, and in R using 177 

the Astrochron software toolkit; for details see the Supplementary Information.  Note that the linear 178 

frequency scale prevents illustration of the complete spectrum (which extends to the Nyquist 179 

frequency of 41.67 cycles/m).   180 

a.  Spectrum replicating Zhao et al. Supplementary Fig. 4a.  Following their methods, the 73,721-181 

point Al data-series (sampled at 1 mm spacing) was resampled to 6,141 points at 12 mm spacing, 182 

then detrended by subtracting an 8% LOESS weighted average.  The method calculates the CL from 183 
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the ML96 ‘robust’ noise model5, which fits a first-order autoregressive (AR1) curve to the running 184 

median of the MTM power spectrum. 185 

b.  Spectrum of 6,141-point (random) data-series simulated from the original running-median power 186 

spectrum.  MTM spectral analysis, robust noise estimation, and 99% CL were carried out as for Fig. 187 

1a.  A 99% ‘global’ significance threshold (i.e. applicable at all 3,000+ frequencies in the spectrum) is 188 

the 99.9997% CL: it indicates no significant frequencies in this data-series which is, by definition, 189 

aperiodic.  This correction of the CL follows the Bonferroni method; other approaches are 190 

available8,9,10.  See Supplementary Information for computational details. 191 

 192 


