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Abstract

Numerical weather prediction is pushing the envelope of grid resolution at local and global scales alike. Aiming to model topog-

raphy with higher precision, a handful of articles introduced unstructured vertical grids and tested them for dry atmospheres.

The next step towards effective high-resolution unstructured grids for atmospheric modeling requires that also microphysics is

independent of any vertical columns, in contrast to what is ubiquitous across operational and research models. In this paper,

we present a non-column based continuous and discontinuous spectral element implementation of Kessler’s microphysics with

warm rain as a first step towards fully unstructured atmospheric models.

We test the proposed algorithm against standard three-dimensional benchmarks for precipitating clouds and show that the

results are comparable with those presented in the literature across all of the tested effective resolutions. While presented for

both continuous and discontinuous spectral elements in this paper, the method that we propose can very easily be adapted to

any numerical method utilized in other research and legacy codes.
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Abstract17

Numerical weather prediction is pushing the envelope of grid resolution at local and global18

scales alike. Aiming to model topography with higher precision, a handful of articles in-19

troduced unstructured vertical grids and tested them for dry atmospheres. The next step20

towards effective high-resolution unstructured grids for atmospheric modeling requires21

that also microphysics is independent of any vertical columns, in contrast to what is ubiq-22

uitous across operational and research models. In this paper, we present a non-column23

based continuous and discontinuous spectral element implementation of Kessler’s micro-24

physics with warm rain as a first step towards fully unstructured atmospheric models.25

We test the proposed algorithm against standard three-dimensional benchmarks for pre-26

cipitating clouds and show that the results are comparable with those presented in the27

literature across all of the tested effective resolutions. While presented for both contin-28

uous and discontinuous spectral elements in this paper, the method that we propose can29

very easily be adapted to any numerical method utilized in other research and legacy codes.30

Plain Language Summary31

The earth climate is warming faster than ever. While climate models are the tool32

available to scientists to forecast its future evolution, they are biased by uncertainties33

that are, arguably, mostly embedded in the modeling of clouds. Thanks to the advent34

of exascale computing, a reduction of cloud modeling uncertainties can be expected by35

simulating clouds at higher and higher resolutions. While uniform high resolution across36

the whole domain is ideal, for computational efficiency reasons scientist are likely to in-37

crease the model resolution in some regions more than others not only in the horizon-38

tal direction —which is a standard approach— but also along the vertical direction. Grid39

refinement in the vertical direction, however, may lead to the loss of the vertical struc-40

ture of the grid columns, affecting the usability of column-based physics packages that41

are used to model clouds and precipitation. To overcome this problem, we present an42

algorithm to solve the equations that model precipitating clouds along arbitrarily shaped43

grids in any spatial direction. This approach is advantageous from a modeling perspec-44

tive as well as from a computational one because it allows full flexibility of the domain45

partitioning algorithms when hundreds of thousands of parallel processors are used.46

1 Introduction47

Exascale computing on hybrid architectures is expected to become available by the48

start of 2023. Massive parallelism will enable the use of very fine grids for computational49

simulations. This is especially attractive for climate and weather simulations as more50

physical processes will be resolved instead of parameterized. For example, the use of suf-51

ficiently refined meshes makes it possible for atmospheric models to resolve extreme pre-52

cipitation events more precisely than usually aimed for nowadays (Iorio et al., 2004; Terai53

et al., 2018; Wehner et al., 2014; Atlas et al., 2005; Caldwell et al., 2019; Bacmeister et54

al., 2014). If highly refined meshes for climate and weather simulations are also unstruc-55

tured, it is possible to heighten the resolution of topographical features, including those56

that have been classically smoothed for the purpose of stabilizing global climate mod-57

els (Lauritzen et al., 2015). Poor topography resolution makes precise weather forecast58

challenging (Giorgi & Marinucci, 1996), especially in the vicinity of steep mountain ranges59

(Yamazaki et al., 2022) such as, for example, the Himalayan region. Better resolved to-60

pography and coastal boundaries have been shown to improve the accuracy of simula-61

tions involving orographic precipitation and sea breeze effects (Caldwell et al., 2019; Del-62

worth et al., 2012; Duffy et al., 2003; Pope & Stratton, 2002; Love et al., 2011). This pa-63

per presents the first implementation of a method capable of solving the fully compress-64

ible Euler equations with moisture, cloud formation, and warm rain on three-dimensional65
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fully unstructured grids. It aims to show that it is possible to effectively implement a66

traditionally column-reliant parameterization on vertically unstructured meshes.67

Despite the fact that there has been interest in using unstructured grids since the68

1960s (Nikiforakis, 2009), most of the operational and research weather forecast mod-69

els are constrained by vertically structured and column-based grids, even in the cases70

when non-structured discretizations are used in the horizontal direction. While horizon-71

tally unstructured meshes are often utilized (e.g. Danabasoglu et al. (2020); Dennis et72

al. (2012)), vertically unstructured grids are not. This is due to the column constraints73

imposed by the microphysics packages that have been historically used.74

The first two atmospheric research models to adopt unstructured grids in the ver-75

tical direction were presented by Aubry et al. (2010) and Smolarkiewicz et al. (2013),76

with Szmelter et al. (2015) extending the latter to unstructured tetrahedral grids in 2015.77

At the time of writing this article, the latest in this series of efforts was published by Li78

et al. (2021). All of them demonstrate that the use of unstructured grids combined with79

adaptive mesh refinement reduces the numerical errors for dry mountain waves problems80

with steep orography, even at high resolutions. Large numerical errors when using struc-81

tured grids to represent steep topography are a well known problem summarized by, e.g.,82

Baldauf (2021), which shows that simulations run with the COSMO model (COSMO,83

1998) break down with slopes larger than approximately 30 degrees. The choice of struc-84

tured grids is motivated by the fact that the inclusion of microphysical processes has typ-85

ically relied on a column-based, vertically structured implementation. Ever since the 1960s86

and 1970s when some of the first simulations of clouds and precipitation were performed87

utilizing microphysical parametrizations (Klemp & Wilhelmson, 1978; Kessler, 1969; Soong88

& Ogura, 1973; Weisman & Klemp, 1982), the implementation of these parameteriza-89

tions has always relied on column-based grids. Although interpolation from the native90

grid to a physics grid is usually required, the native grid in all of the operational and re-91

search models depends on a column-based structure.92

This paper presents a fully unstructured discretization of the compressible Euler93

equations with moisture to model clouds and precipitation. To support non-column based94

precipitation, we approximated the transport equation governing precipitation by means95

of the same approximation of the underlying dynamics model (i.e., the compressible Eu-96

ler equations). To achieve this, we modified the Kessler’s microphysics implementation97

in the Nonhydrostatic Unified Model of the Atmosphere (NUMA) (Kelly & Giraldo, 2012).98

In this way, we leverage the natural unstructured nature of the element-based Galerkin99

discretization (Giraldo, 2020) on which NUMA relies. We test the new implementation100

for both continuous and discontinuous elements (e.g., see (D. B. Abdi & Giraldo, 2017)101

for how this can be achieved in the same source code). Other models that use either con-102

tinuous or discontinuous spectral elements for atmospheric flows are, e.g., CESM2 (Danabasoglu103

et al., 2020), E3SM(Caldwell et al., 2019), both via the CAM-SE dycore (Dennis et al.,104

2012), and ClimateMachine (Sridhar et al., 2022).105

We show that with a simple modification of the Kessler precipitation routine, the106

spectral element method is capable of simulating rain precipitation through sedimenta-107

tion on fully unstructured grids that do not rely on the vertical columns of a Cartesian108

grid. This is done in the typical spectral/finite element fashion of solving the local equa-109

tions of motion on a reference element before projecting the local solution back to the110

physical space. This makes it possible to solve the equations of motion without any re-111

gard for the type of grid (structured or unstructured). The only constraint is that the112

solution quality will depend on the accuracy of the metric terms used to map the phys-113

ical elements to the reference element (Giraldo, 2020; Nelson et al., 2016). We test this114

method in 3D by performing several squall lines (Rotunno et al., 1988; Weisman et al.,115

1988) and supercell (Skamarock et al., 2012) simulations. We show that this method is116

able to produce results comparable to those available in the literature. This work will117
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help lead the way towards moist-air simulations of flow over steep orography using un-118

structured grids, and possibly both horizontal and vertical adaptive mesh refinement.119

Finally, this approach has important consequences on the parallel efficiency for very120

high resolution atmospheric simulations because Message Passing Interface (MPI) is no121

longer limited to a column based subdivision of the domain, but will allow for a paral-122

lel load balancing decomposition in any direction.123

The remainder of the paper is organized as follows. The governing equations are124

presented in § 2. The numerical approximation of the governing equations, including the125

details of the discretization of the rain equation and the algorithm for non-column-based126

rain sedimentation are presented in § 3. The numerical results are described in § 4. The127

conclusions are drawn in § 5.128

2 Problem definition129

Moist air is a mixture of dry air with density ρ, water vapor with density ρv, and
suspended cloud condensate with density ρc. The mass fractions of water vapor and cloud
water are defined as qv = ρv/ρ and qc = ρc/ρ, respectively. In addition, let ρr be the
rain density and qr = ρr/ρ the rain mass fraction. Warm rain is assumed (No ice for-
mation or precipitation takes place). We denote by cp and cv the specific heat capaci-
ties at constant pressure and volume for dry air. The specific gas constants of dry air
and vapor are denoted by Rd and Rv and set ϵ = Rd

Rv
. Let:

θ = (1 + ϵqv)
T

π
, with π =

(
p

ps

)Rd
cp

, (1)

be the virtual potential temperature, where T is the absolute temperature and ps = 105130

Pa is the ground surface pressure. Finally, let u be the wind velocity.131

We consider a fixed spatial domain Ω and a time interval of interest (0, tf ]. Bal-
ance of mass, momentum, and potential temperature for moist air in terms of prognos-
tic variables ρ, u, and θ in conservative form are given by:

∂ρ

∂t
+∇ · (ρu) = 0 in Ω× (0, tf ], (2)

∂(ρu)

∂t
+∇ · (ρu⊙ u) = −∇p+ ρb in Ω× (0, tf ], (3)

∂(ρθ)

∂t
+∇ · (ρθu) = ρSθ in Ω× (0, tf ]. (4)

where b is the total buoyancy. We have b = −(1+ϵqv−qc−qr)gk̂, where g = 9.81 m/s2

is the magnitude of the acceleration of gravity, and k̂ is the unit vector aligned with the
vertical axis z. Finally, the source/sink term Sθ in (4) describes latent heat release–uptake
during phase changes of moisture variables and is detailed in Sec. 2.1. Eq. (3) and (4)
can be rewritten in non-conservative form as follows:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ b in Ω× (0, tf ], (5)

∂θ

∂t
+ u · ∇θ = Sθ in Ω× (0, tf ]. (6)

A thermodynamics equation of state for the pressure of moist air p is needed for
closure. We assume that p is the sum of the partial pressures of dry air and vapor (pd
and pv, respectively), both taken to be ideal gases. Thus, neglecting the volume of the
condensed phase, the equation of state relating p to ρ and T is given by:

p = pd + pv = ρRdT + ρqvRvT = ρRdT (1 + ϵqv). (7)
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To facilitate the numerical solution of system (2)-(4) or (2), (5)-(6), we write den-
sity, pressure, and potential temperature as the sum of their mean hydrostatic values and
fluctuations:

ρ(x, y, z, t) = ρ0(z) + ρ′(x, y, z, t), (8)

θ(x, y, z, t) = θ0(z) + θ′(x, y, z, t), (9)

p(x, y, z, t) = p0(z) + p′(x, y, z, t). (10)

Note that the hydrostatic reference states are functions of the vertical coordinate z only.
Hydrostatic balance relates p0 to ρ0 as follows:

dp0
dz

= −ρ0g. (11)

Plugging (8)-(10) into (2)-(4) and accounting for (11) leads to:

∂ρ′

∂t
+∇ · ((ρ0 + ρ′)u) = 0, (12)

∂((ρ0 + ρ′)u)

∂t
+∇ · ((ρ0 + ρ′)u⊗ u) + ρ′gk̂ = −∇p′ + (ρ0 + ρ′)b̃, (13)

∂((ρ0 + ρ′)(θ0 + θ′))

∂t
+∇ · ((ρ0 + ρ′)θ′u) +∇ · ((ρ0 + ρ′)θ0u) = (ρ0 + ρ′)Sθ, (14)

where b̃ = −
(

ρ′

ρ0+ρ′
+ ϵqv − qc − qr

)
gk̂ is a modified total buoyancy. Following a sim-

ilar procedure for Eq. (5)-(6), we obtain

∂ρ′

∂t
+∇ · ((ρ0 + ρ′)u) = 0, (15)

∂u

∂t
+ u · ∇u = − 1

ρ0 + ρ′
∇p′ + b̃, (16)

∂θ′

∂t
+ u · ∇θ0 + u · ∇θ′ = Sθ. (17)

Remark 2.1 To preserve numerical stability of the solution, we add an artificial dif-132

fusion term with a constant diffusivity coefficient β to equation sets (12)-(14) and (15)-133

(17); the units of β are given consistently with the equations at hand. The term β∇2u134

is added to the right-hand side of the momentum equation, while the term β∇2θ′ is added135

to the right-hand side of the equation of the potential temperature.136

Remark 2.2 While we usually stabilize NUMA simulations by leveraging the eddy vis-137

cosity from an LES model (see (Marras et al., 2015; Reddy et al., 2021)), in this paper138

we consider artificial viscosity with constant β as it is done in (Gaberšek et al., 2012;139

Skamarock et al., 2012) whose results we are testing against.140

Next, we write the balance equations for qv and qc in conservative form:

∂(ρqv)

∂t
+∇ · (ρqvu) = ρSv in Ω× (0, tf ], (18)

∂(ρqc)

∂t
+∇ · (ρqcu) = ρSc in Ω× (0, tf ], (19)

and non-conservative form:

∂qv
∂t

+ u · ∇qv = Sv in Ω× (0, tf ], (20)

∂qc
∂t

+ u · ∇qc = Sc in Ω× (0, tf ]. (21)

–5–
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The source/sink terms on the right-hand side in the equations above are related
to conversion rates. In particular, we have:

Sv = C(qc → qv) + C(qr → qv), Sc = C(qv → qc) + C(qr → qc), St = Sv + Sc, (22)

where the terms C(qϕ → qψ) = −C(qψ → qϕ) represent the conversion of species ϕ to141

species ψ. All of these terms, which account for processes such as evaporation of cloud142

condensate, are provided by the microphysics equations reported in Sec. 2.1.143

Precipitating water (rain) is treated in the same manner. Letting wr be the fall speed
of rain (provided by the microphysics equations), we can write the conservation law for
rain in conservative form:

∂(ρqr)

∂t
+∇ · (ρqr(u− wrk̂)) = ρSr in Ω× (0, tf ], (23)

and non-conservative form:

∂qr
∂t

+ u · ∇qr = Sr +
1

ρ

∂

∂z
(ρqrwr) in Ω× (0, tf ], (24)

with

Sr = C(qv → qr) + C(qc → qr). (25)

In summary, the conservative form of the atmospheric model considered in this pa-144

per is given by (12)-(14), (18)-(19), (23) and (7), while its non-conservative form is given145

by (15)-(17), (20)-(21), (24) and (7). In both cases, the problem has to be supplemented146

with proper initial and boundary conditions that will be specified in Sec. 4.147

2.1 Microphysical parameterization148

The terms on the right-hand sides of Eq. (14), (18), (19), and (23), and their re-
spective non-conservative counterparts are defined according to (Klemp & Wilhelmson,
1978). Let qvs be the saturation water vapor fraction. To determine qvs we use Teten’s
formula following (Klemp & Wilhelmson, 1978). The evaporation of cloud water is given
by:

C(qc → qv) = −C(qv → qc) =
∂qvs
∂t

. (26)

This is computed with the saturation adjustment approach of Soong and Ogura (Soong
& Ogura, 1973). The evaporation of rain, i.e. conversion rate C(qr → qv) = −C(qv →
qr), is taken directly from Klemp and Wilhelmson (1978), which uses an approach sim-
ilar to Ogura and Takahashi (1971). We have

C(qc → qr) = −C(qr → qc) = Ar + Cr, (27)

where Ar and Cr represent rain auto-conversion and rain accretion (Kessler, 1969), re-
spectively. Finally, the source/sink term in Eq. (17) is given by:

Sθ = −γ
(
∂qvs
∂t

+ C(qr → qv)

)
, γ =

L

cpπ
, (28)

where L is the latent heat of vaporization and π is the Exner pressure defined in (1).149

Finally, we define the terminal velocity of rain following (Soong & Ogura, 1973; Kessler,
1969; Klemp & Wilhelmson, 1978):

wr = 3634(ρq0.1346r )

(
ρ

ρg

)− 1
2

, (29)

where ρg is the reference density at the surface.150

–6–
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3 Numerical method151

3.1 The Galerkin spectral element method152

In time, the equations are advanced using an implicit-explicit order 3 additive Runge-153

Kutta (ARK3) scheme (Kennedy & Carpenter, 2003) whereby the non-linear terms of154

the governing equations are treated explicitly and the linear terms are treated implic-155

itly (see (Giraldo et al., 2013)). As for the space discretization, we use spectral elements156

and show results for both continuous and discontinuous approximations. This section157

focuses on the space discretization alone.158

To make the description of the numerical method easy to follow, we consider a generic
equation of the form:

∂f

∂t
+G(f) = 0, (30)

where f is the unknown variable and G is a linear functional that may contain first and159

second derivatives of f . If the equations to be solved are written in conservation form,160

then G is the divergence of a flux. Notice that all the equations in Sec. 2 can be rewrit-161

ten as (30).162

We subdivide the domain Ω into a set of conforming 1 Ne hexahedral elements Ωe
of arbitrary orientation to create the discrete domain Ωh as

Ω ≈ Ωh =

Ne⋃
e=1

Ωe. (31)

Fig. 1 shows examples of a structured and unstructured grid in 2D. Using a fully unstruc-163

tured grid means that structures such as the rows or columns that are seen on the left164

side of Fig. 1 are no longer present. Let Ωref be reference element: (ξ, η) ∈ [−1, 1]2 in165

2D and (ξ, η, ζ) ∈ [−1, 1]3 in 3D. Regardless of whether the mesh is structured or un-166

structured, we introduce a mapping from a generic element in the global system of co-167

ordinates, i.e. (x, y) in 2D and (x, y, z) in 3D, to the reference element. Let J be the Ja-168

cobian matrix of this mapping.169

Figure 1: Examples of a structured (left) and an unstructured grid (right) made of
quadrilateral elements.

Let hi, i = 1, . . . , N + 1, be the Lagrange polynomials of degree N :

hi(ξ) =
1

N(N + 1)

(1− ξ2)P
′

N (ξ)

(ξ − ξi)PN (ξ)
,

1 The condition of conformity is not strictly necessary, although it simplifies the discussion of the

method. For results with non-conforming grids, the reader is referred to, e.g., (Kopera & Giraldo, 2014).
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where PN is the Legendre polynomial of order N , and P
′

N its derivative evaluated at the170

point ξ. The polynomials in multiple dimensions are built via a tensor product of the171

1D bases, as shown below. The remainder of this section is written for a 3D case.172

For every element, we seek an approximation fh of variable f of the form:

fh(ξ, t) =

(N+1)3∑
l=1

ψl(ξ)f̂l(t), (32)

where ξ = (ξ, η, ζ), f̂l are the expansion coefficients, and ψl are nodal basis functions
defined as tensor products of the Lagrange polynomials

ψl = hi[ξ(x)]⊙ hj [η(x)]⊙ hk[ζ(x)], l = i+ 1 + j(N + 1) + k(N + 1)(N + 1), (33)

where x = (x, y, z). The Legendre-Gauss-Lobatto (LGL) points are not equidistant and
represent the solutions of the following equation:

(1− ξ2)P
′

N (ξ) = 0.

The LGL points are associated with the following quadrature weights:

ω(ξi) =
2

N(N + 1)

[
1

PN (ξi)

]2
used to approximate the integrals with a Gauss quadrature rule of accuracy O(2N−1).
Over a generic element Ωe, this is done as follows:∫

Ωe

f(x)dx =

∫
Ωref

f(ξ)|J(ξ)|dξ ≈
N+1∑
i,j,k=1

ω(ξi)ω(ηj)ω(ζk)f(ξi, ηj , ζk)|J(ξi, ηj , ζk)|, (34)

where |J| is the determinant of the Jacobian matrix.173

To approximate the solution of Eq. (30), let (·, ·) be the Legendre inner product
on a given element Ωe:

(f, g)e =

∫
Ωe

f(x)g(x)dx.

If in (30) we replace f with fh as defined in (32), we will obtain the following residual:

R =
∂fh

∂t
+G(fh), (35)

which is orthogonal to the expansion functions in Galerkin methods, i.e.:

(R,ψk)e = 0, k = 1, . . . , (N + 1)3. (36)

Taking (36) into account, we can now write an approximation of Eq. (30) on each ele-
ment Ωe as follows :∫

Ωe

ψi(x)
∂fh(x, t)

∂t
dx = −

∫
Ωe

ψi(x)G(f
h(x, t))dx, i = 1, . . . , (N + 1)3. (37)

Let us first consider the case where G(f) = ∇ · f , where ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
and174

f = (f, f, f).175

We can use the polynomial expansion to write (37) as follows:∫
Ωe

ψi(x)

(N+1)3∑
j=1

ψj(x)
∂f̂ej (t)

∂t
dx = −

∫
Ωe

ψi(x)

(N+1)3∑
j=1

∇ψj(x)·f̂ej (t)dx, , i = 1, . . . , (N+1)3,

(38)

–8–
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where the superscript e is used to denote that the expansion is defined on an element
basis and f̂ej (t) = (f̂ej (t), f̂

e
j (t), f̂

e
j (t)). We can now write the mass matrix Me

ij and the
differentiation matrix De

ij on each element:

Me
ij =

∫
Ωe

ψi(x)ψj(x)dx =

∫
Ωref

ψi(ξ)ψj(ξ)|J(ξ)|dξ, (39)

De
ij =

∫
Ωe

ψi(x)∇ψj(x)dx =

∫
Ωref

ψi(ξ)
(
∇ξψj(ξ)J

−1(ξ)
)
|J(ξ)|dξ, (40)

with i, j = 1, . . . , (N + 1)3 and ∇ξ =
(
∂
∂ξ ,

∂
∂η ,

∂
∂ζ

)
. By approximating the integrals

with a quadrature rule, we obtain:

Me
ij =

N+1∑
k=1

N+1∑
m=1

N+1∑
n=1

ω(ξk, ηm, ζn)ψi(ξk, ηm, ζn)ψj(ξk, ηm, ζn)|J(ξk, ηm, ζn)|, (41)

De
ij =

N+1∑
k=1

N+1∑
m=1

N+1∑
n=1

ω(ξk, ηm, ζn)ψi(ξk, ηm, ζn)∇ψj(ξk, ηm, ζn)|J(ξk, ηm, ζn)|. (42)

Note that ∇ψj(ξk, ηm, ζn) = ∇ξψj(ξk, ηm, ζn)J
−1(ξk, ηm, ζn). Then, the matrix

form of Eq. (38) is:

Me
ij

∂f̂ej (t)

∂t
= −Dij f̂

e
j (t), i, j = 1, . . . , (N + 1)3. (43)

Let us now consider G(f) = ∇ · f −∇2f in Eq. (30), where ∇2 = ∇ ·∇. In this
case, Eq. (37) becomes:∫

Ωe

ψi(x)

(N+1)3∑
j=1

ψj(x)
∂f̂ej (t)

∂t
dx =−

∫
Ωe

ψi(x)

(N+1)3∑
j=1

∇ψj(x) · f̂ej (t)dx

+

∫
Ωe

ψi∇ ·

(N+1)3∑
j=1

∇ψj(x)f̂
e
j (t)

 dx, (44)

where i, j = 1, . . . , (N + 1)3. After integrating by parts the second term on the right-
hand side, we can rewrite (44) as:

Me
ij

∂f̂ej (t)

∂t
=−De

ij f̂
e
j (t) +

ψi(x)N+1∑
j=1

∇ · ψj(x)f̂ej (t)


Γe

−
∫
Ωe

∇ψi(x) ·
N+1∑
j=1

∇ψj(x)f̂
e
j (t)dΩe i, j = 1, . . . , (N + 1)3, (45)

where Γe represents the element boundary. For the sake of brevity, we assume that the
boundary term, i.e., the second term on the right-hand side in (45), vanishes at all el-
ement boundaries. We refer the reader to, e.g., (Giraldo, 2020; Kelly & Giraldo, 2012)
for a detailed explanation of how this term is handled when it is not zero, as is the case
for DG. Under the assumption of vanishing boundary terms, Eq. (45) becomes:

Me
ij

∂f̂ej (t)

∂t
= −De

ij f̂
e
j (t)−

∫
Ωe

∇ψi(x) ·∇ψj(x)dxf̂
e
j , i, j = 1, . . . , (N + 1)3. (46)

We define the Laplacian matrix as follows:

Leij =

∫
Ωe

∇ψi(x) ·∇ψj(x)dx =

∫
Ωref

(∇ξψi(ξ)J
−1(ξ)) · (∇ξψj(ξ)J

−1(ξ))|J(ξ)|dξ, (47)
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where i, j = 1, . . . , N+1. By approximating the integral in (47) with a quadrature rule,
we obtain:

Leij =

N+1∑
k=1

N+1∑
m=1

N+1∑
n=1

ω(ξk, ηm, ζn)∇ψi(ξk, ηm, ζn) ·∇ψj(ξk, ηm, ζn)|J(ξk, ηm, ζn)|, (48)

where i, j = 1, . . . , (N + 1)3. Then, we write (46) as:176

Me
ij

∂f̂ej (t)

∂t
= −De

ij f̂
e
j (t)− Leij f̂

e
j (t) , i, j = 1, . . . , (N + 1)3. (49)

Next, we present briefly how the global solution is calculated depending on the choice177

of continuous Galerkin (CG) or discontinuous Galerkin (DG) spectral elements. The reader178

interested in more details on Galerkin spectral element methods is referred to, e.g., (Giraldo,179

2020; Hesthaven & Warburton, 2008; Kopriva, 2008; Sherwin & Karniadakis, 2005).180

3.1.0.1 CG approximation: Let M, D, and L be the global mass matrix, global181

differentiation matrix, and global Laplacian matrix. These matrices are, in principle, as-182

sembled using Direct Stiffness Summation (DSS):183

M =

Ne∑
e=1

Me, D =

Ne∑
e=1

De, L =

Ne∑
e=1

Le

where Me is the element mass matrix (41), De is the element differentiation matrix (42),184

and Le is the element weak Laplacian matrix (48). Since the same set of LGL points are185

used for both interpolation and integration, the global mass matrix M is diagonal and186

thus easy to invert. This is only the case if we integrate using N+1 LGL points as shown187

in (34). This type is known as inexact numerical integration, since the number of LGL188

quadrature points necessary to integrate a polynomial of order 2N (such as is the case189

for the mass matrix) up to machine precision is N+2. We choose to sacrifice accuracy190

in favor of obtaining an easily invertible mass matrix, which allows us to save consid-191

erable computational time. Additionally, it has been shown that when using polynomi-192

als of order N ≥ 4 this type of integration has a minimal impact on accuracy, with the193

impact decreasing as the polynomial order is increased (Giraldo, 2020). For the results194

in Sec. 4, we use N = 4. It should be noted, however, that no global matrix is actu-195

ally constructed (except for the diagonal mass matrix); the differentiation and Lapla-196

cian global matrices are never stored, only the action of these matrices on the solution197

vector is computed (see, e.g., (Giraldo, 2020)).198

The global form associated with Eq. (30) for G(f) = ∇f +∇2f can be written
as:

∂fh

∂t
+M−1(Dfh + Lfh) = 0, (50)

where fh is the vector containing the nodal values of fh.199

3.1.0.2 DG approximation: For this kind of approximation, the global matrices200

are not constructed since an element communicates only with the neighboring elements201

through inter-element numerical fluxes. Thus, we write a local approximation of Eq. (30),202

instead of a global one as in (50).203

Let us apply integration by parts to the entries of the differentiation matrix:

De
ij =

∫
Ωe

ψi(x)∇ψj(x)dx =

∫
Γe

ψi(x)ψj(x)n
(F,e)dΩe −

∫
Ωe

∇ · ψi(x)ψj(x)dx, (51)

where i, j = 1, . . . , (N+1)3, n(F,e) is the outwards facing normal of inter-element face
F of the element e. The first term of the right-hand side in (51) represents an inter-element
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flux or a boundary flux if the element is a boundary element and it enforces the conti-
nuity of the global solution. Notice that in a CG discretization this term vanishes as con-
tinuity is enforced via DSS. We define the corresponding matrix as follows:

Feij =

∫
Γe

ψi(x)ψj(x)n
(F,e)dx ≈

NF∑
F=1

N+1∑
k=1

N+1∑
m=1

ω(ξF,km)ψi(ξF,km)ψj(ξF,km)|J(ξF,km)|n(F,e),

(52)
where i, j = 1, . . . , (N + 1)3, NF is the number of faces for element e and ξF,km de-
notes an integration point on the face F of the element. The second term on the right-
hand side in (51) is called the weak differentiation matrix and is approximated as fol-
lows:

D̂e
ij =

∫
Ωe

∇ψi(x)ψj(x)dx ≈
N+1∑
k=1

N+1∑
m=1

N+1∑
n=1

ω(ξk, ηm, ζn)|J(ξk, ηm, ζn)|∇ψi(ξk, ηm, ζn)ψj(ξk, ηm, ζn),

(53)

where i, j = 1, . . . , (N + 1)3.204

We can now rewrite (49) for a DG discretization taking G(f) = ∇ · f + ∇2f ,
which holds on each element as follows:

Me
ij

∂f̂ej (t)

∂t
= −D̂e

ij f̂
e
j (t) + Feijf

∗
j (t)− Leij f̂

e
j (t) = 0, i, j = 1, . . . , (N + 1)3,

where f∗ represents the inter-element interface values of f̂ej . We define f∗ as follows:

f∗j = C(f̂ej )−P(f̂ej )

where P is a penalty term and the central term C is defined as follows:

C(f̂ej ) = (g(f̂e,Rj ) + g(f̂e,Lj ))/2,

where L and R refer to the left and right sides of a given inter-element interface. The
function g is dependent on the first derivative component of G in (30) where, in this case,
G(f) = ∇ · f + ∇2f and g(f) = f . The definition of P depends on the choice of nu-
merical flux. The simplest and most commonly used flux for DG is the Rusanov flux (Giraldo,
2020), which gives:

P(f̂ej ) = n(F,e)ws(f̂
e,R
j − f̂e,Lj )/2,

where ws is the wave speed across the interface, which depends on the specific equation
to be solved. This gives the following equation for f∗:

f∗j =
1

2

(
f̂e,Rj + f̂e,Lj − nF,ews(f̂

e,R
j − f̂e,Lj )

)
, j = 1, . . . , (N + 1)3, (54)

where f̂ej = (f̂ej , f̂
e
j , f̂

e
j ). We note that in the DG formulation for G(f) = ∇ · f +∇2f205

the boundary term in (45) does not vanish and needs to be evaluated. Such term is treated206

in a similar fashion as the boundary term in (51). For the details, we refer the interested207

reader to (Giraldo, 2020; Hesthaven & Warburton, 2008).208

3.2 Non-column based rain sedimentation209

The main novelty of this work lies in the computation of the sedimentation term210

for the rain equation (i.e., the last term on the right-hand side in Eq. (24)) which dif-211

fers from the methods in, e.g., (Kessler, 1969; Klemp & Wilhelmson, 1978; Soong & Ogura,212

1973; Ogura & Takahashi, 1971; Houze, 1993). The typical column-based approach to213

handle the sedimentation term is by computing the spatial derivative along each indi-214

vidual column starting from the top of the domain and descending. See, e.g., (Gaberšek215

et al., 2012; Marras et al., 2013a) for a spectral element implementation of this approach.216
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Although widely used, the traditional column-based implementation has a main217

drawback: it requires the availability of column-aware data structures that may not serve218

other purposes in the numerical method, thereby forcing the use of structured grids. Un-219

structured grids are highly advantageous around topography. By forgoing the use of columns,220

our approach to compute sedimentation could help yield more accurate predictions for221

storm behavior in mountainous regions.222

Computing the sedimentation term is done separately from the other microphysics
calculations, and is done after solving the compressible Euler and moisture advection equa-
tions. This term is included by solving the following equation:

∂qr
∂t

=
1

ρ

∂

∂z
(ρqrwr) (55)

in non-conservative form and
∂(ρqr)

∂t
= ∇ · (ρqrwrk̂) (56)

in conservation form. Given that k̂ = (0, 0,−1)T for the domains we consider, (56) can
be written as follows:

∂(ρqr)

∂t
=

∂

∂z
(ρqrwr).

This makes it so that for either the conservative or non-conservative form, solving the223

sedimentation equation essentially amounts to calculating the term ∂
∂z (ρqrwr).224

We can rewrite the sedimentation equation in the form of (30) by taking G(f) =
−c∂Fsed

∂z , where Fsed = (ρqrwr), c = 1 and f = ρqr in conservation form, while c = 1
ρ

and f = qr in non-conservative form. By multiplying by the expansion functions and
integrating, we get:∫

Ωe

ψi(x)
∂fh(x, t)

∂t
dx =

∫
Ωe

ψi(x)

(N+1)3∑
j=1

∂ψj(x)

∂z
cF̂ ej,sed(t)(x)dx, i = 1, . . . , (N + 1)3,

where F̂j,sed are the expansion coefficients of Fj,sed. Moving to the reference element and
identifying the mass matrix yields

Me
ij

∂f̂ej (t)

∂t
=

∫
Ωref

ψ(ξ)

[
∇ξψj(ξ) ·

(
∂ξ

∂z
,
∂η

∂z
,
∂ζ

∂z

)
(ξ)

]
cF̂ ej,sed(t)|J(ξ)|dξ, (57)

where i, j = 1, . . . , (N + 1)3. Let us call De
sed the element-wise differentiation matrix

for (55) and write Eq. (57) in matrix form:

Me
ij

∂f̂ej (t)

∂t
= De

ij,sedcF̂
e
j,sed(t), i, j = 1, . . . , (N + 1)3. (58)

We can write De
sed discretely as follows:

De
ij,sed =

N+1∑
k=1

N+1∑
m=1

N+1∑
n=1

ω(ξk, ηm, ζn)ψi(ξk, ηm, ζn)∇ξψj(ξk, ηm, ζn) ·
(
∂ξ

∂z
,
∂η

∂z
,
∂ζ

∂z

)
(ξk, ηm, ζn)|J(ξk, ηm, ζn)|,

(59)

where i, j = 1, . . . , (N + 1)3. From this point, if CG is used the global equation can
be solved using DSS as follows:

∂fh

∂t
−M−1Dsed(c⊙ Fhsed) = 0, (60)

where Dsed =
∑Ne

e=1 D
e
sed, c is the vector containing the nodal values of c, Fsed is the

vector containing the nodal values of Fsed, and ⊙ denotes a component-wise multipli-
cation. The local DG problem is given by:

∂fh

∂t
−M−1(e)(D̂e

sed(c⊙ Fhsed)− Fe(c∗ ⊙ F∗
sed)), (61)
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where D̂e
sed is the weak form of De

sed, F
e is the flux matrix at each element, F∗

sed is the225

interface value of Fsed, and c∗ is the interface value of c.226

In what follows, we present the procedure we use to solve the fully compressible
Euler equations with moisture, including rain. Algorithm 1 summarizes the entire pro-
cedure. The algorithm makes use of the following quantities: NLGL = N+1 is the num-
ber LGL points in each element, ∆t is the time step, fh,n is the approximation of fh at
the time tn = n∆t, Npoints the total number of points the domain has been discretized
into including repeating nodes at element edges and faces, tn the current discrete time,
and tn+1 = tn+∆t . We also define the sedimentation Courant number, which we use
to determine the time sub-step for the sedimentation problem:

Cr = wr
∆t

∆z
. (62)

This number is used to determine the appropriate sedimentation time step as follows:

∆tsed =
∆t

max(1, 0.5 + Crmax/Crlimit)
, (63)

where:

Crmax = max([Cri]
Npoints

i=1 ), (64)

is the maximum sedimentation Courant number among all points in the domain and Crlimit227

is the maximum allowable Courant number for the sedimentation problem. The rest of228

the notation is defined in Sec. 3.229

Next, we report on the results obtained with this algorithm and fully unstructured230

grids.231

4 Results232

We assess the method presented in Sec. 3.2 with an idealized squall line test from233

(Gaberšek et al., 2012) and a fully 3D supercell problem from (Skamarock et al., 2012).234

All the simulations are run with the Nonhydrostatic Unified Model of the Atmosphere235

(NUMA) (Kelly & Giraldo, 2012), which is designed to solve the dry Euler equations,236

with the addition of artificial viscosity as described in Sec. 3, on unstructured grids of237

hexahedra with arbitrary orientation. NUMA enables the use of both CG and DG spec-238

tral elements and has been shown to scale exceptionally well on CPUs and GPUs in (D. Abdi239

et al., 2017; Müller et al., 2018).240

4.1 2.5D Squall line241

The first benchmark we consider is an idealized test presented in (Gaberšek et al.,242

2012). While the computational domain in (Gaberšek et al., 2012) is two-dimensional,243

we run the same test in a 2.5 D domain Ω = [150× 12× 24] km3. The domain is dis-244

cretized with a single element in the y direction and a resolution dependent number of245

elements in the x and z directions. Periodic boundary conditions are applied to the lat-246

eral boundaries, a free-slip type boundary condition is applied at the domain bottom and247

the domain top utilizes a Rayleigh sponge for gravity wave damping. In this domain, a248

squall line forms in a weakly stable atmosphere with Brunt-Väisälä frequency N = 0.01 s−1
249

below the tropopause and a more stable atmosphere with N = 0.02 s−1 above 12 km.250

The cloud begins to form around t ≈ 500 s, while rain starts to form and fall at approx-251

imately t ≈ 900 s. The initial condition consists of a saturated boundary layer typi-252

cal of mid-latitude storms that has been used in several numerical studies (see, e.g, (Rotunno253

et al., 1988; Weisman et al., 1988)). A low altitude wind shear in the x direction is im-254

posed to break the cloud symmetry and allow for a continuous storm evolution. The ini-255

tial background sounding is tabulated in the Appendix.256
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Algorithm 1 Simulation of moist-air and rain sedimentation with unstructured grids.

1: for time = 0,∆t, . . . , tf do
2: for e = 1, 2, . . . , Ne do
3: for node = 1, 2, . . . , NLGL do
4: Calculate contributions to element-wise derivatives from each LGL point

along
5: the reference element.
6: end for
7: Compute these local derivatives in physical space.
8: end for
9: Perform DSS for CG or calculate numerical fluxes for DG.

10: Solve the discrete version of the Euler equations: (2), (3) and (4) if using conserva-
tion

11: form, and (2), (5) and (6) if using non-conservative form.
12: Solve the advection equations for qv, qc and qr by the flow velocity u: (18), (19)

and
13: (23) if using conservation form, and (20), (21) and (24) if using non-conservative

form.
14: for i = 1, 2, . . . , Npoints do
15: Determine wr using Eq. (29)
16: Determine Crmax using (64)
17: Determine ∆tsed using (63)
18: end for
19: for ts do = tn,tn +∆tsed,. . . ,tn+1

20: for e = 1, 2, . . . , Ne do
21: if space method == CG
22: Compute De

sed

23: else if space method == DG
24: Compute D̂e

sed

25: end if
26: end for
27: if space method == CG
28: Perform DSS.
29: else if space method == DG
30: Apply inter-element fluxes for the sedimentation equation using wr as the

wave
31: speed.
32: end if
33: Solve (55)
34: end for
35: for e = 1, 2, . . . , Ne do
36: Update moisture variables and potential temperature to account for phase

changes
37: following equations (28)-(27)
38: end for
39: end for
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The storm is triggered by a thermal perturbation of the background state (Rotunno
et al., 1988) centered at (xc, zc) = (75000, 2000) m and defined by:

∆θ =

{
θc cos

(
πr
2

)
if r ≤ rc,

0 if r ≥ rc,
(65)

where

r =

√
(x− xc)2

r2x
+

(z − zc)2

r2z
, θc = 3 K, rc = 1, rx = 10000 m, rz = 1500 m.

We generated seven grids using GMSH (Geuzaine & Remacle, 2009). Table 1 lists257

the total number of hexahedral elements and the effective resolution ∆x for each mesh.258

We choose to report the effective resolution because the LGL points for an element are259

not equidistant (Giraldo, 2020; Hesthaven & Warburton, 2008; Kopriva, 2008). NUMA260

relies on P4est (Burstedde et al., 2011) to read unstructured meshes and perform the graph261

partitioning for the parallel application.262

Fig. 2 shows an example of clouds and precipitation calculated on a fully unstruc-263

tured grid of hexahedra for an effective resolution of 150 m in both spatial directions.264

# elements 473 1078 3181 4134 6485 11447 25863

∆x 750 m 500 m 290 m 250 m 200 m 150 m 100 m

Table 1: Total number of hexahedral elements and effective resolution for all the meshes
used for the squall line simulations.

Figure 2: Top: qc and qr over unstructured grid ∆x = 150 m. Cloud water is shaded in
grey for values of qc > 1 × 10−5 kg/kg whereas rain is shaded in blue for values of qr >
1 × 10−4 kg/kg. Bottom: close-up view corresponding to the dashed rectangle in the top
figure.
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For all the simulations, we use an Additive Runge Kutta third order (ARK3) semi-265

implicit time integrator and elements of polynomial order 4. We maintain the acoustic266

Courant number C ≤ 1 for all the simulations. While the ARK3 time integrator allows267

for larger acoustic Courant numbers, we limit the time step for the purposes of obtain-268

ing a greater deal of accuracy for the higher-resolution simulations. We run this test us-269

ing both the CG approach with the governing equations in non-conservation form and270

the DG approach with the governing equations in conservation form. Consistently with271

(Gaberšek et al., 2012), a constant artificial viscosity of β = 200 (for the units see Re-272

mark 2.1) is used to stabilize the simulations.273

Let us examine the results obtained with the finest mesh, i.e. the one with ∆x =274

100 m. Figs. 3 and 4 show the stages of the storm evolution given by the CG and DG275

simulations, respectively. Both simulations yield very similar plots at t = 1500 s. Ad-276

ditionally, in both cases we observe a downwind tilt of the convective tower, which is caused277

by the horizontal wind-shear, and the eventual development of the anvil cloud near the278

tropopause where the atmosphere presents higher stability. For the sake of brevity, we279

do not report the plots associated with other meshes, but a similar early storm evolu-280

tion is observed in all the simulations at all resolutions with both CG and DG approaches.281

The differences between the CG and DG simulations remain minimal even up to about282

t = 6000 s. This is a rather long period of time since by then the storm has fully de-283

veloped. Starting from t = 6000 s till the end of the time interval of interest, some dif-284

ferences in the CG and DG simulations arise, as can been seen by comparing Figs. 3 and285

4. At t = 9000 s, when additional convective towers are observed, the DG simulation286

generates multiple convective towers, some of which are significantly downwind. This is287

not as pronounced in the CG simulation. Compare the bottom right panels in Figs. 3288

and 4.289

Figs. 3 and 4 reports also the rain accumulated on the ground. At t = 1500 s,290

no rain has accumulated yet in either the DG or CG simulations. This is confirmed by291

the rain contours plots, where we see that the contour lines have yet to reach the ground.292

See top left panel in Figs. 3 and 4. At t = 3000 s, the accumulated rain is primarily293

near the center of the domain for both methods. Indeed, from the top right panel in Figs. 3294

and 4 we see that rain accumulates at the location of the convective tower, with a slight295

asymmetry that follows the asymmetry of the convective tower seen at t = 1500 s. As296

time progresses, the convective tower tilts. An early stage of this is visible at t = 3000 s,297

but the tilting becomes more pronounced at t = 6000 s when the effect of the wind shear298

is more noticeable. The rain accumulation reflects the tilting and location of the con-299

vective tower in both the CG and DG simulations, as shown in the bottom left panel of300

Figs. 3 and 4. By t = 9000 s, we observe once again some differences in the results given301

by the two methods. For the CG simulation, in the bottom right panel of Fig. 3 we see302

a much wider distribution of accumulated rain with a secondary peak below the new lo-303

cation of the convective tower and a third peak appearing below the location of the sec-304

ondary convective tower. As for the DG simulation, in the bottom right panel of Fig. 4305

we notice that the rain accumulation matches the downwind shifting of the main column306

and small peaks appear where secondary convective towers are present.307

Regardless of the space discretization method, we see that once rain appears within308

the convective tower it is correctly transported downward without the need for a ver-309

tically structured grid. This hold true also when multiple, possibly disconnected, sources310

of rain are present in the domain. In both sets of simulations, the rain falls to the ground311

following the location of the convective towers and the effects of the wind-shear. This312

gives us confidence that our algorithm is able to correctly transport rain despite the lack313

of a vertically structured grid and regardless of the space discretization method.314

The results obtained with the ∆x = 250, 200, 150, 100 m meshes at t = 9000 s315

are compared in Fig. 5 for the CG approximation and in Fig. 6 for the DG approxima-316

tion. In Fig. 5, we observe the same cloud structure (anvil extent, downwind tilt of the317
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Figure 3: Storm evolution obtained with a CG approximation and mesh with resolu-
tion ∆x = 100 m at t =1500 s (top-left), 3000 s (top-right), 6000 s (bottom-left) and
9000 s (bottom-right). In the top portion of each panel, the thick orange contour line
(qc = 10−5 kgkg−1) represents the outline of the cloud. The white and gray contours rep-
resent the perturbation potential temperature, and the blue and green contours represent
qr. The bottom portion of each panel shows the rain accumulated at the surface for each
time as a function of horizontal distance from the point x = 0 m.

convective tower) and similar profiles of perturbation potential temperature for all the318

meshes under consideration. However, the spatial distributions of the rainfall accumu-319

lated at the ground show some differences: the simulations with resolutions ∆x = 250 m320

and ∆x = 200 m have smaller peaks of rain accumulation near the domain center than321

the simulations with ∆x = 150 m and ∆x = 100 m. The simulations with the ∆x =322

290, 500, 750 m meshes (not shown for brevity) give even more intense rainfall than the323
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Figure 4: Storm evolution obtained with a DG approximation and mesh with resolu-
tion ∆x = 100 m at t =1500 s (top-left), 3000 s (top-right), 6000 s (bottom-left) and
9000 s (bottom-right). In the top portion of each panel, the thick orange contour line
(qc = 10−5 kgkg−1) represents the outline of the cloud. The white and gray contours rep-
resent the perturbation potential temperature and the blue and green contours represent
qr. The bottom portion of each panel shows the rain accumulated at the surface for each
time as a function of horizontal distance from the point x = 0 m.

∆x = 250 m and ∆x = 200 m simulations. A similar observation on rain accumula-324

tion and mesh resolution for this benchmark can be found in (Weisman et al., 1997; Gaberšek325

et al., 2012), where it is shown that higher resolutions are correlated with faster storm326

development, weaker storm circulation and less overall precipitation over the length of327

the simulation. The DG simulations also show similar tilt in the convective tower, sim-328

ilar anvil extents and similar profiles of perturbation potential temperature at t = 9000329
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s for all the meshes; see Fig. 6. Concerning the rain accumulation, the DG simulation330

with the ∆x = 250 m mesh gives a very large primary and secondary peak near the cen-331

ter of the domain. The amount of rain falling at the domain center decreases with in-332

creasing resolution. Indeed, the ∆x = 200, 150 m simulations give a smaller amount333

of accumulated rain in the domain center and slightly larger peaks downwind and away334

from the center, reflecting the availability of more moisture for the secondary convec-335

tive tower. Once again, we observe a decrease in precipitation with increasing resolution336

as expected (Gaberšek et al., 2012; Weisman et al., 1997; Marras et al., 2013b; Marras337

& Giraldo, 2015).338

We conclude by reporting the maximum vertical velocity obtained over the course339

of the CG and DG simulation as a function of the resolution in Fig. 7. We see that for340

∆x ≥ 290 m the maximum vertical velocity for both DG and CG simulations lies be-341

tween 20 ms−1 and 30 ms−1, as in (Bryan et al., 2006; Weisman & Rotunno, 2004; Gaberšek342

et al., 2012). Increasing the resolution yields an increase in the maximum velocity, as343

shown in (Gaberšek et al., 2012). We note that the CG and DG simulations give sim-344

ilar values of the maximum vertical velocity for a given mesh, with the values getting345

closer as the resolution increases.346

The results in this section demonstrate that our algorithm successfully transports347

the rain downwards along the convective towers without the need for a vertically struc-348

tured grid.349

4.2 3D supercell350

In this section we test our algorithm for a fully three-dimensional supercell. The
convective cell develops within a domain Ω = [150×100×24] km3. The storm is initi-
ated by a thermal perturbation of the background state defined by (65), with center (xc, yc, zc) =
(75000, 50000, 2000) m and

r =

√
(x− xc)2

r2x
+

(y − yc)

r2y
+

(z − zc)2

r2z
, θc = 3 K, rc = 1,

where:
rx = ry = 10000 m, rz = 2000 m.

The domain is discretized using a grid of unstructured hexahedra of order 4 in all351

directions for an approximate effective resolution ∆x ≈ 250 m. The grid is partially352

shown in Fig. 8.353

We use periodic boundary conditions for the lateral boundaries, a free-slip bound-354

ary at the domain bottom and a Rayleigh sponge at the domain top. Like for the squall355

line test described above, we use the ARK3 3D semi-implicit time integrator to advance356

the simulation in time and keep the acoustic Courant number C ≤ 1. An artificial vis-357

cosity β = 200 (see Remark 2.2 for the units) is used to provide stabilization. The wind358

shear in the x direction is the same as the one used for the squall-line. The cloud be-359

gins to form at t ≈ 500 s while rain forms and starts to precipitate at t ≈ 900 s.360

A 3D view of the fully developed storm at t = 7200 s is shown in Fig. 8, along361

with a partial view of the three-dimensional grid. The semi-transparent blue shading is362

the iso-surface qr = 1e−4 kg/kg. The blue shading is the perturbation potential tem-363

perature (blue is negative) showing the cold pools due to rain evaporation. All of the364

convective towers exhibit tilting due to wind-shear, with the parts closer to the ground365

experiencing a greater wind-shear and thus trailing the rest of the convective tower. An366

anvil cloud is also observed near the top of the troposphere.367

Fig. 9 shows the state of the storm at t = 7200 s. The right side of the figure shows368

the existence of 3 distinct convective towers in the supercell. One in the center of the369
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Figure 5: Storm at t = 9000 s computed with the CG method and meshes ∆x = 250 m
(top-left), ∆x = 200 m (top-right), ∆x = 150 m (bottom-left), and ∆x = 100 m (bottom-
right). The thick orange contour line (qc = 10−5 kgkg−1) represents the outline of the
cloud. The white and gray contours represent the perturbation potential temperature
and the blue and green contours represent qr. The bottom portions of each panel show
the rain accumulated at the surface as a function of horizontal distance from the point
x = 0 m.
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Figure 6: Storm at t = 9000 s computed with the DG method and meshes ∆x = 250 m
(top-left), ∆x = 200 m (top-right), ∆x = 150 m (bottom-left), and ∆x = 100 m (bottom-
right). The thick orange contour line (qc = 10−5 kgkg−1) represents the outline of the
cloud. The white and gray contours represent the perturbation potential temperature
and the blue and green contours represent qr. The bottom portions of each panel show
the rain accumulated at the surface as a function of horizontal distance from the point
x = 0 m.
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Figure 7: Maximum vertical velocity obtained over the course of the CG and DG simula-
tions as a function of the resolution.

Y axis at y = 50000 m and two columns symmetric about y = 50000 m plane. The370

three towers merge into the anvil cloud near the tropopause. Fig. 9 (left) shows the rain371

distribution at the ground at t = 7200 s. The position of the rain concentration follows372

the location of the convective towers, falling below them. The largest amount of rain is373

present below the larger central tower as indicated by the maximum over y = 50000 m.374

Additionally we can see the presence of some rain slightly separated from the main rain375

distribution which corresponds to the small low clouds that are shown symmetric to the376

y = 50000 m plane in the right side of the figure.377

Figure 8: 3D mature supercell at t = 7200 s. The grey shading is the iso-surface
qc = 1e− 5 kg/kg. The semi-transparent blue shading is the iso-surface qr = 1e− 4 kg/kg.
The blue shading is the perturbation potential temperature (blue is negative) showing the
cold pools due to rain evaporation. A small sample of the three-dimensional unstructured
grid is shown in the background.

The results presented in this section show that the storm develops in a symmet-378

rical manner and the rain falls correctly following the location of the convective towers,379

as is expected. This is accomplished without a column based grid. This demonstrates380

that our algorithm successfully transports the rain downward along the convective tow-381

ers without the need for a vertically structured grid also in three dimensions.382
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Figure 9: State of the storm at t = 7200 s. Left: Horizontal cross-section of the instanta-
neous distribution of rain along the surface (z = 0 m) at t = 7200 s. Right: Vertical cross
section taken at x = 75000 m of the cloud fraction t = 7200 s

5 Conclusions383

We presented an algorithm to solve the transport equation of precipitating clouds384

and Kessler’s microphysical processes on fully unstructured grids. The Euler equations385

of moist atmospheric flows (embedded with artificial diffusion for stabilization purposes)386

were discretized by 4th-order continuous and discontinuous spectral elements in space387

and advanced in time by a 3rd-order additive Runge-Kutta semi-implicit time integra-388

tor. The results of these simulations are in very good agreement with results in the lit-389

erature obtained using vertically structured meshes and column-based microphysics. This390

shows that the algorithm, while simple, does succeed in handling moisture with unstruc-391

tured grids.392

Coupled with the flexibility of the spectral element method, we believe that our393

algorithm could successfully resolve storms over steep terrain (Marisco & Stechmann,394

2020) using unstructured meshes with and without adaptive mesh refinement, without395

the need for a special physics grid on which to handle moisture. Work in this direction396

is recommended. While we presented results only for warm rain, extension to other moist397

precipitation processes is natural. Probably the greatest advantage of fully unstructured398

atmospheric simulations is the fact that parallel load balancing decomposition can be399

done in any direction, which is of fundamental importance for efficient exascale simu-400

lations of high-resolution weather and climate modeling.401
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Appendix597

Table 2: Squall line sounding

z (m) θ (K) qv (g/kg) u (m/s) v (m/s) p (Pa)

0.0 303.025079 14.000 12.0 0.0 100000.0
480.0 303.337272 14.000 9.696000 0.0 94697.28
960.0 304.402985 14.000 7.392000 0.0 89609.81
1440.0 305.397187 12.796 5.088000 0.0 84736.79
1920.0 306.306214 10.556 2.784000 0.0 80070.30
2400.0 307.365269 8.678 0.540000 0.0 75604.36
2880.0 308.550318 7.104 0.0 0.0 71334.51
3360.0 309.845257 5.788 0.0 0.0 67255.79
3840.0 311.235047 4.691 0.0 0.0 63362.95
4320.0 312.708238 3.777 0.0 0.0 59650.49
4800.0 314.255743 3.020 0.0 0.0 56112.80
5280.0 315.869985 2.396 0.0 0.0 52744.15
5760.0 317.544512 1.885 0.0 0.0 49538.82
6240.0 319.273784 1.469 0.0 0.0 46491.09
6720.0 321.052868 1.134 0.0 0.0 43595.27
7200.0 322.877588 0.866 0.0 0.0 40845.73
7680.0 324.744235 0.653 0.0 0.0 38236.93
8160.0 326.649534 0.487 0.0 0.0 35763.41
8640.0 328.590559 0.357 0.0 0.0 33419.84
9120.0 330.565013 0.259 0.0 0.0 31200.99
9600.0 332.571020 0.184 0.0 0.0 29101.75
10080.0 334.606102 0.129 0.0 0.0 27117.17
10560.0 336.668475 0.088 0.0 0.0 25242.39
11520.0 340.869535 0.038 0.0 0.0 21803.59
12000.0 343.712008 0.026 0.0 0.0 20232.15
12480.0 350.647306 0.026 0.0 0.0 18763.71
12960.0 358.453724 0.029 0.0 0.0 17401.15
13440.0 366.433620 0.031 0.0 0.0 16138.11
13920.0 374.591035 0.034 0.0 0.0 14967.29
14400.0 382.929618 0.037 0.0 0.0 13881.93
15360.0 400.170355 0.044 0.0 0.0 11942.99
15840.0 409.081924 0.049 0.0 0.0 11078.24
16320.0 418.191751 0.053 0.0 0.0 10276.53
16800.0 427.504224 0.058 0.0 0.0 9533.23
17280.0 437.023716 0.063 0.0 0.0 8844.07
17760.0 446.755038 0.069 0.0 0.0 8205.09
18720.0 466.871821 0.083 0.0 0.0 7063.24
19200.0 477.267160 0.091 0.0 0.0 6553.82
19680.0 487.891998 0.094 0.0 0.0 6081.42
20160.0 498.742611 0.094 0.0 0.0 5643.35
20640.0 509.643457 0.094 0.0 0.0 5237.00
21120.0 520.544304 0.094 0.0 0.0 4859.92
21600.0 531.445151 0.094 0.0 0.0 4509.85
22560.0 553.246845 0.094 0.0 0.0 3882.66
23040.0 564.147692 0.094 0.0 0.0 3601.93
23520.0 575.048539 0.094 0.0 0.0 3340.96
24000.0 585.949386 0.094 0.0 0.0 3098.30
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