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Abstract

In this study we investigate whether a better representation of precipitation in the Amazon basin arises through an explicit

representation of convection and whether it is related to the representation of organized systems. In addition to satellite data,

we use ensemble simulations of the ICON-NWP model at storm-resolving (2.5-5.0 km) scales with explicit convection (E-CON)

and coarse resolutions, with parameterized convection (P-CON). The main improvements in the representation of Amazon

precipitation by E-CON are in the spatial pattern of precipitation, the distribution of precipitation intensity and the spatial

distribution in the diurnal cycle. By isolating precipitation from organized convective systems (OCS), it is shown that many

of the well simulated precipitation features in the Amazon arise from the distribution of these systems. The simulated and

observed OCS are classified into 6 clusters which distinguish nocturnal and diurnal OCS. While the E-CON ensembles capture

the OCS, especially their diurnal cycle, their frequency is reduced compared to observations. Diurnal clusters are influenced by

surface processes such as cold pools, which aid to the propagation of OCS. Nocturnal clusters are rather associated with strong

low-level easterlies, possibly related to the Amazonian low-level jet. These particular environmental conditions provide insights

on the processes that are important for OCS in the Amazon and should be further improved.
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Key Points:6

• The explicit representation of convection and organized convective systems (OCS)7

enable improvements in the simulation of Amazon rainfall.8

• Surface processes influence the propagation of diurnal OCS and strong low-level9

easterlies are related to the occurrence of nocturnal OCS.10

• Outstanding biases show insensitivity to two fold refinement in horizontal mesh,11

indicative of the importance of much smaller scale processes.12
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Abstract13

In this study we investigate whether a better representation of precipitation in the Ama-14

zon basin arises through an explicit representation of convection and whether it is re-15

lated to the representation of organized systems. In addition to satellite data, we use en-16

semble simulations of the ICON-NWP model at storm-resolving (2.5 km to 5.0 km) scales17

with explicit convection (E-CON) and coarse resolutions, with parameterized convection18

(P-CON). The main improvements in the representation of Amazon precipitation by E-19

CON are in the spatial pattern of precipitation, the distribution of precipitation inten-20

sity and the spatial distribution in the diurnal cycle. By isolating precipitation from or-21

ganized convective systems (OCS), it is shown that many of the well simulated precip-22

itation features in the Amazon arise from the distribution of these systems. The sim-23

ulated and observed OCS are classified into 6 clusters which distinguish nocturnal and24

diurnal OCS. While the E-CON ensembles capture the OCS, especially their diurnal cy-25

cle, their frequency is reduced compared to observations. Diurnal clusters are influenced26

by surface processes such as cold pools, which aid to the propagation of OCS. Noctur-27

nal clusters are rather associated with strong low-level easterlies, possibly related to the28

Amazonian low-level jet. These particular environmental conditions provide insights on29

the processes that are important for OCS in the Amazon and should be further improved.30

Plain Language Summary31

The Amazon basin is a relevant element of the Earth system since it influences the32

global water and carbon cycle, as well as it constitutes a unique ecosystem. Over this33

important region, conventional climate models do not simulate basic features of rainfall34

given their inability to resolve this physical process due to their coarse spatial resolu-35

tion. In this study, we use high-resolution simulations that allow an explicit represen-36

tation of such physical process (moist convection) and compare them with a set of coarse-37

resolution simulations and observations. We find that improvements in the representa-38

tion of Amazon rainfall, such as the distribution of light and high intensity rain rates,39

as well as the spatial variability of the diurnal cycle, are explained by the explicit rep-40

resentation of moist convection. Moreover, these improvements arise from the represen-41

tation of big and organized systems that produce intense rainfall (OCS). We find that42

particular environmental conditions are associated with the OCS according to their time43
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of occurrence. Diurnal OCS are mainly influenced by interactions with the surface, while44

nocturnal OCS are related to strong low-level winds.45

1 Introduction46

The Amazon basin is the largest rainforest in the Earth and of great relevance for47

the global hydro-climate and biodiversity (Marengo, 2006; Phillips et al., 2008). It is also48

a region, like many in the tropics, where climate model precipitation biases are both large49

and systematic. These biases are evident in every aspect of the representation of pre-50

cipitation, from its spatial and temporal distribution, to its intensity and form. Mod-51

els systematically have too little precipitation over the northern Amazon (e.g., Yin et52

al., 2013; Fiedler et al., 2020). The diurnal cycle is characterized by a too early precip-53

itation peak (Betts & Jakob, 2002; Tang et al., 2021) and evidence of convective organ-54

ization (Mapes & Neale, 2011), which has been estimated to account for up to 50% of55

the total Amazon rain (Feng et al., 2021), is effectively absent. In this study, we use kilometer-56

scale ”storm-resolving” simulations over large domains to assess the degree to which they57

reduce these biases and the extent to which this depends on the explicit representation58

of organized convective systems. In doing so our premise is that convective features which59

are not improved, or for which remaining biases show no clear sign of improvement with60

increases in resolution, are indicative of an important role for non-convective, e.g., cloud61

microphysical, small (sub hectometer) scale mixing, or land-surface processes.62

The distinguishing characteristic of storm-resolving models is that they explicitly63

represent the transient dynamics of convective storm systems, whose length-scales are64

commensurate with the depth of the troposphere (Satoh et al., 2019). Representing these65

features become possible at grid spacings of 5 km to 10 km although there is consider-66

able evidence that convection is increasingly distorted as grid spacings increase above67

1 km to 2 km. Nonetheless, the ability to represent convective entities as geometric ob-68

jects that interact dynamically with their environment, and are governed by the correct69

physical relations (laws of motion) seems to explain why even on 5 km to 10 km gird meshes,70

an explicit representation of convection leads to more physical representations of con-71

vection than what is possible using convective parameterization (e.g., Love et al., 2011;72

Birch et al., 2015). In recent years, storm-resolving models have shown systematic im-73

provements in representing precipitation, albeit to a degree that seems to vary from place74

to place. For instance, Arnold et al. (2020) found regional differences in the mean pre-75
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cipitation of a 40-day global simulation, where precipitation is overestimated over Africa76

but underestimated over the Great Plains in North America. While the shortness of the77

simulations (40 days) and the remote influence of larger-scale biases might explain this78

discrepancy, they also found that precipitation tends to peak earlier than observations79

over regions dominated by local thermodynamic forcing; whereas the largest improve-80

ments were found in regions where the diurnal cycle is driven by non-local propagating81

convection.82

Although storm-resolving models overcome the long-standing ”drizzle” problem of83

convective parameterizations (Stephens et al., 2010), they still disagree in the represen-84

tation of high intensity precipitation rates (>80mmd−1), which is strongly overestimated85

(Becker et al., 2021) in some models, and apparently underestimated in others (Arnold86

et al., 2020; Judt & Rios-Berrios, 2021). High intensity precipitation can be related to87

organized convective systems which we expect storm-resolving models to better repre-88

sent as compared to models dependent on parameterized convection (e.g., Stevens et al.,89

2020). How much improvements in the representation of precipitation relate to the rep-90

resentation organized convection is not evident and has not been investigated yet.91

A few studies have begun evaluating the representation of precipitation over the92

Amazon basin using global storm-resolving models. For example, (Inoue et al., 2021) com-93

pared the semi-diurnal cycle of precipitation with observations for a 5-day period at 3.5 km94

grid spacing. They found that the model captures the semi-diurnal variation of precip-95

itation in the Amazon basin but it tends to overestimate their amplitudes, especially the96

second peak during the early morning. Arnold et al. (2020) also analyzed a set of global97

simulations and found a larger simulated amplitude than observed at a reduced grid spac-98

ing (3.5 km). However, in contrast to Inoue et al. (2021), their model did not capture99

the phase of the precipitation diurnal cycle in the Amazon.100

For the most part, storm-resolving model simulations at the regional scale have not101

been able to look at precipitation over the Amazon in its entirety. For instance, Santos102

et al. (2019) used a small domain enclosing the city of Manaus and a grid scale of about103

780m. They found that seasonal floods can enhance the intensity of river circulations104

during daytime and hence convection. Over the eastern Amazon at a grid spacing of 1.5 km,105

Herbert et al. (2021) analyzed the impact of biomass burning on the diurnal cycle of pre-106

cipitation. They found that convection is suppressed in the afternoon but enhanced overnight107
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due to aerosol-radiation interactions. Another recent study by Tai et al. (2021), inves-108

tigated the influence of data assimilation on regional modeling of Amazon precipitation.109

They performed a 30-day simulation at 4 km grid spacing and focused the analysis on110

the central Amazon. Their study highlights the improved representation of spatial vari-111

ability in the precipitation diurnal cycle in contrast to a standard climate model. This112

feature is related to the representation of organized convective systems which are absent113

in models reliant on convective parameterization.114

In this study we perform storm-resolving simulations with the ICON model over115

a large domain to study the representation of precipitation over the Amazon. In con-116

trast to previous regional modeling studies, we focus on the Amazon basin in its entirety117

and, unlike month-long simulations with global models, we perform an ensemble of 30-118

day simulations at 2.5 km and 5 km grid-spacing. Simulations are performed during March119

as this is the month with the largest convective activity (e.g., Rehbein et al., 2018). For120

this period we document the ability of storm-resolving simulations to capture the multi-121

faceted properties of precipitation as observed over the Amazon, in comparison with a122

model that arguably uses the most efficient, and certainly well calibrated, statistical rep-123

resentation of convection, i.e., that developed by Bechtold (2017) for the Integrated Fore-124

cast System of the European Centre for Medium-range Weather Forecasts. We especially125

focus on the role of organized convection in improving the representation of precipita-126

tion and the extent to which this is coupled to particular environmental conditions. By127

using two resolutions we further infer to what extent remaining deficits in the represen-128

tation of precipitation are likely to be improved by modest (factor of 2) refinements in129

resolution. This question becomes interesting in light of proposals to develop climate in-130

formation systems based on global models with grid meshes of roughly 1 km (Slingo et131

al., 2022) as it helps identify the problems that km-scale global models are likely to solve,132

and those whose solution might require improvements in the representation of processes133

that remain unresolved, or severely distorted, even on global km-scale meshes.134

2 Data and methodology135

2.1 Observations136

We use the Climate Prediction Center Morphing Method (CMORPH; Xie et al.,137

2017) dataset for the period from 2010 to 2019. This product estimates precipitation based138
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on passive microwave instruments. The main advantages of CMORPH data are its high139

temporal (30min) and spatial (8 km) resolutions. Previous studies have also validated140

its good performance over the Amazon region (e.g., Janowiak et al., 2005). We also com-141

pared the analysis with other high-resolution datasets and similar results were obtained;142

therefore we chose the CMORPH data.143

2.2 CMIP6144

We use simulations from the Coupled Model Inter-comparison Project: Phase 6 (CMIP6;145

Eyring et al., 2016). Multi-model ensemble means are used from the historical simula-146

tions of the 21th century (2000-2014) and are the same used in Fiedler et al. (2020). We147

use daily and 3-hourly data available from 14 and 13 models, respectively. Simulations148

were spatially interpolated to the common T63 grid (about 180 km), the native grid of149

MPI-ESM low-resolution configuration. For a detailed list of the models, the reader is150

referred to the supplementary material of Fiedler et al. (2020).151

2.3 ICON-NWP152

We use the Icosaedral Nonhydrostatic (ICON) atmospheric model (Zängl et al., 2015)153

in the numerical weather prediction (NWP) configuration. Among the applied physical154

parameterizations by this model, the parameterization of moist convection is only used155

for the coarser grid spacing in our experiments. It consists of a bulk mass-flux scheme156

(Bechtold, 2017), which is one of the latest implementations in the NWP of European157

meteorological services. Parameterizations common to all simulations are given for pro-158

cesses such as radiation, microphysics and turbulence as described in Zängl et al. (2015).159

Also, the ICON-NWP model uses the multi-layer land-surface scheme TERRA (Heise160

et al., 2006).161

As initial conditions for the simulations we use the operational analysis data from162

the European Centre for Medium-Range Weather Forecasts (ECMWF) - Integrated Fore-163

cast System (IFS), and from the Hadley Centre Sea Ice and Sea Surface Temperature164

Center (HadISST; Rayner et al., 2003) for SST. Grids and external parameters (e.g. land165

properties, topography) are retrieved from the Online Grid Generator tool from the Ger-166

man Meteorological Service (DWD).167
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2.3.1 Experimental set-up168

We conduct a set of simulations using the same approach as Paccini et al. (2021).169

Global simulations, at 40 km grid spacing (P-CON simulations), serve as initial and bound-170

ary conditions to the one-way nested domains at finer grid spacing. The three inner do-171

mains have the convective parameterization switched off (E-CON simulations) and com-172

prise the same regions as described in Paccini et al. (2021). The horizontal resolution173

is successively increased from 20 km to 10 km and to 5 km, with the finest grid spacing174

covering the tropical Atlantic sector (85°W-25°E; 25°S-25°N). In all domains the verti-175

cal resolution includes 90 levels, with the model top at 75 km.176

We start 8 simulations at the beginning of March, with different atmospheric states177

but with the same fixed sea surface temperature (SST), which does not vary over time.178

Simulations are integrated for 40 days and the analysis is performed over the last 31 days,179

representing the simulation of March.180

We conduct another set of simulations using an updated version of ICON (v2.6.01)181

with an additional inner domain, at a grid spacing of 2.5 km, that bounds the region: 81°W-182

36°W; 21°S-11°N. Given the high computational demands, only 2-member simulations183

are performed.184

In our analysis we compare the 8-member ensemble of P-CON and E-CON at 40 km185

and 5 km, respectively, with the 2-member ensemble of E-CON at 2.5 km. Although from186

different ensembles, the E-CON simulations at 2.5 km and 5 km lead to the same results187

as those E-CON at 2.5 km and 5 km from the 2-member ensemble. We present then re-188

sults of the 8-member E-CON simulations at 5 km due to more robust statistics.189

All data and simulation outputs are regrided to the resolution of the P-CON ex-190

periments (about 40 km) except for the CMIP6 ensemble which keeps the grid spacing191

of about 180 km. The CMIP6 data only serves as a reference of how state-of-the-art cli-192

mate models, representing the average convective parameterizations, simulate Amazon193

precipitation.194
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3 Representation of precipitation195

3.1 Geographic distribution196

One of the basic metrics when evaluating the representation of rainfall is the mean197

amount of precipitation, and its spatial pattern. The prevailing bias in most climate mod-198

els is the underestimation of rain in the Amazon, especially during the wet season (Fiedler199

et al., 2020). Spatially, the bias shows up as enhanced rain over the eastern region of Brazil200

and insufficient rain in the central Amazon (Fig. 1, e). This is a bias that does not ap-201

pear to be related to a poor representation of SST patterns in coupled models, as it has202

also been documented in simulations using prescribed SST (Richter & Xie, 2008).203

75°W 65°W 55°W 45°W
20°S
15°S
10°S

5°S
0°

5°N

(a) CMORPH 

75°W 65°W 55°W 45°W

(b) E-CON 2.5km

75°W 65°W 55°W 45°W

(c) E-CON 5km

75°W 65°W 55°W 45°W

(d) P-CON 40km

75°W 65°W 55°W 45°W

e) CMIP6 180km

0
4
8
12
16

m
m

 d
1

Figure 1. Mean precipitation in March from (a) CMORPH observations, simulations with

explicit (E-CON) convection at (b) 2.5 km, (c) 5 km, parameterized convection (P-CON) at (d)

40km and the (e) CMIP6 multi-model ensemble mean. Data and output simulations are regrided

to 40km except for CMIP6 models which were interpolated to a common grid of about 180km

and only serves as a reference. The Amazon basin is defined as black contours and the topogra-

phy at 1000m, in brown contours.

Both E-CON and P-CON display a better representation of the mean spatial pat-204

tern compared to the CMIP6 ensemble, meaning more rain over the central Amazon and205

less over eastern Brazil (Fig. 1, b, c, d). However, it still appears that the simulated pre-206

cipitation is underestimated compared to the observed climatology. This can be partly207

explained by the simulated broader precipitation band with enhanced rainfall north of208

the Amazon in both E-CON and P-CON, probably related to the invariable SST used209

in the simulations. As a result, less precipitation in E-CON and P-CON than CMORPH210

is observed south of 5°S. In the case of the P-CON ensemble, the spatial distribution is211

more uniform, with no regions having precipitation rates larger than 12mmd−1. The212

E-CON ensembles do show sub-regions with larger mean values, similar to CMORPH,213
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but rainfall over parts of the western Amazon is still underestimated. This character-214

istic appears insensitive to modest changes in the grid spacing, as evidenced by the sim-215

ilarity between the 2.5 km and 5 km E-CON ensembles (Fig. 1, b, c).216

A more localized feature, which appears sensitive to the treatment of convection,217

is the coastal precipitation over the northeastern coast of Brazil. Simulations with pa-218

rameterized convection (P-CON and CMIP6) show a lack of precipitation in this region,219

a bias that is not evident in the E-CON ensembles. Having an adequate representation220

of the coastal precipitation is thought to be important for the Amazon, due to organized221

convective systems that originate there and propagate inland (e.g., Greco et al., 1990).222

Improvements in the representation of coastal precipitation with explicit convection might223

be related to a better representation of breeze circulations and/or the transition from224

shallow to deep convection.225

A quantitative comparison is presented in Tab. 1. Precipitation is averaged over226

the Amazon basin and the continental region comprised by 20°S-10°N; 80°W-38°W. Even227

though the differences among simulations are relatively small (<1mmd−1), this anal-228

ysis suggests that the E-CON simulations better match the observations, increasingly229

so with finer grid spacing, and in regions of less orographic relief (regions below 1000m230

above sea-level). The E-CON ensembles differ from observed values by less than 0.35mmd−1
231

while precipitation biases of the P-CON simulations are nearly twice as large (>0.5mmd−1).232

Table 1. Averaged precipitation over the Amazon Basin (AB) and the ratio of Amazon and

tropical South America (SA, 20°S-10°N; 80°W-38°W) rain rates. Values in parentheses are the

averages over regions were topography is below 1000m. For these calculations, observations and

output simulations were spatially interpolated onto the CMIP6 grid (180 km).

Dataset Mean precipitation AB (mmd−1) Ratio AB/SA

CMORPH 7.86 (8.07) 1.28

E-CON 2.5km 7.71 (7.88) 1.21

E-CON 5km 8.19 (8.42) 1.19

P-CON 40km 7.33 (7.52) 1.17

CMIP6 180km 7.82 (7.41) 1.08
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Comparing the ratio between Amazon precipitation and the tropical continent as233

a whole, both E-CON and P-CON display a ratio of about 1.2, similar to observations,234

whereas the CMIP6 ensemble shows a value closer to 1. This is related to the enhanced235

precipitation over high topography and over the eastern coast of Brazil in the CMIP6236

ensemble. Although the improvements are small, in all measures the most highly resolved237

E-CON simulations are closest to the observations.238

Some aspects of the simulations show less indication of improving with a reduc-239

tion of the grid spacing at storm-resolving scales. Whilst all simulations with explicit240

convection do a fair representation, one might expect a better performance for the 2.5 km241

mesh simulations as compared to those with a 5.0 km mesh. For instance, along the east-242

ern flank of the Andes (from 10°S - 17°S), the Amazon comprises some of the rainiest243

places in the region, exhibiting features known as ”precipitation hot spots” (e.g., Chavez244

& Takahashi, 2017). The E-CON ensembles exhibit a similar zonal gradient that max-245

imizes eastward; however not as prominently as is seen in observations. The origin of such246

precipitation hot-spots is not very clear, but it was found that they comprise convective247

and stratiform rain (Chavez & Takahashi, 2017). The results suggest that the represen-248

tation of these precipitation maxima may depend on yet smaller scale orographic fea-249

tures, as a microphysical origin of such localized features is difficult to rationalize. .250

3.2 Frequency and intensity251

The E-CON ensembles show a notable improvement in the estimated frequency and252

distribution of precipitation intensity in the Amazon basin (Fig. 2). The frequency of253

daily precipitation follows the spatial pattern of the mean precipitation (Fig. 1), featur-254

ing regions where it rains up to 80% of the days in E-CON and observations (Fig. 2, a,255

b and c). The E-CON ensembles also distinguish more rain frequency over land areas256

than rivers, such as the Amazon river mouth and the Tapajos river (Fig.2 b, c), although257

details are smoothed by the interpolation to the common analysis grid.258

A very different picture is displayed by simulations with parameterized convection,259

as P-CON shares the biases of the CMIP models, which tend to overestimate the fre-260

quency of light rain (Stephens et al., 2010) regardless of the spatial resolution (Fig. 2261

d,e). Regions where the mean precipitation is greater or equal than 5mmd−1 (Fig. 1)262
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Figure 2. Frequency (%) of daily precipitation greater than 1mmd−1 in March from (a)

CMORPH observations and simulations with explicit (E-CON) convection at (b) 2.5 km, (c)

5 km, parameterized convection (P-CON) at (d) 40 km and the (e) CMIP6 multi-model ensemble

mean. Data is regrided to 40 km except for CMIP6 models which were interpolated to a common

grid of about 180km and only serves as a reference. The Amazon basin is defined as black con-

tours and the topography at 1000m, in brown contours.

show a frequency greater than 90% to 95%, indicating that the mean precipitation amount263

is related to the persistence of rainy days.264

To have a broader view of the frequency spectra, Figure 3 displays the distribu-265

tion of precipitation intensity over the Amazon basin. The E-CON ensembles show an266

important improvement in the representation of this precipitation feature as compared267

to simulations with parameterized convection and in agreement with studies focused on268

different regions (e.g., Holloway et al., 2012; Becker et al., 2021; Judt & Rios-Berrios,269

2021). This improvement is evident across the E-CON ensembles, which suggests that270

it is determined by the treatment of convection rather than the details of the spatial res-271

olution and the experimental set-up (global versus nested, not shown). In a recent com-272

parison study, Judt and Rios-Berrios (2021) showed that simulations with full convec-273

tive parameterization run at about 4 km grid spacing displayed the same distribution of274

precipitation intensity as those at 100 km.275

Differences in the intensity spectrum are most evident in two intensity intervals.276

First, the interval between 2mmd−1 to 20mmd−1 (light-to-moderate rain) occurs more277

frequently, with a clearly preferred intensity in simulations with parameterized convec-278

tion. Observations and the E-CON ensembles show a flatter distribution, and less fre-279

quent rainfall in this intensity interval as a whole. The second intensity interval covers280

precipitation rates greater than 25mmd−1 (high intensity rain). As compared to obser-281

vations and to E-CON, these high-intensity rain events are much rarer in P-CON. The282
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40km PCON 
5km ECON 
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CMORPH

Figure 3. Distribution (%) of daily precipitation intensity greater than 0mm over the Ama-

zon basin for observations (black line) and simulations (colored lines). Values are binned in a

logarithmic scale. The gray shading represent the standard deviation of 14-models of the CMIP6

ensemble.

inter-model variability in the representation of intense precipitation is large across the283

CMIP models, showing a larger frequency of the multi-model ensemble mean than the284

P-CON ensemble but still well bellow what is observed. The persistence of this too fre-285

quent and too gentle bias (Stephens et al., 2010; Fiedler et al., 2020; Judt & Rios-Berrios,286

2021) in all simulations employing parameterized convection suggests that it is not eas-287

ily addressed in the framework of existing convective parameterizations. The consider-288

ably better agreement between observations and simulations that represent convection289

explicitly, suggests that linking precipitation development to convective motion fields places290

physical and meaningful constraints on the intensity distribution in ways that param-291

eterizations of convection are unable to mimic.292

3.3 Diurnal cycle293

The diurnal cycle of precipitation over the Amazon is not spatially homogeneous.294

To illustrate this feature, we compute the hourly mean for each grid point and then se-295

lect the time when precipitation is maximum (Fig. 5). This method allows us to con-296

sider semidiurnal variations and avoid ambiguities that arise when using the first har-297

monic approach (Yang et al., 2008).298

A large part of the Amazon basin depicts a precipitation maxima in the afternoon299

from 15 to 18 Local Time (LT) as a result from daytime heating. The afternoon peak300
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Figure 4. Local time (hour) of maximum precipitation in (a) CMORPH observations and

simulations with explicit (E-CON) convection at (b) 2.5 km, (c) 5 km, parameterized convection

(P-CON) at (d) 40km and the (e) CMIP6 multi-model ensemble mean. Observations and model

outputs are regrided to 40km except for CMIP6 models which were interpolated to a common

grid of about 180km and only serves as a reference. In all cases, the hourly mean was calculated

and smoothed using a second order Fourier transform per grid point. The Amazon basin is de-

fined as black contours as well as the rivers, and the topography at 1000m is shown in brown

contours.

is reasonably well represented by E-CON and P-CON, although in the case of the lat-301

ter elements of the parameterization were specifically designed to capture this effect (Bechtold302

et al., 2008). Nonetheless, it shows that such delays can be represented in the framework303

of convective parameterization, and thus constitutes an important improvement, but one304

that apparently has yet to find its way to the CMIP6 multi-model ensemble (Fig.4, e),305

as these models still tend to precipitate too early (Fiedler et al., 2020; Tang et al., 2021).306

Perhaps due to the way in which it was implemented, the P-CON simulations displays307

a rather homogeneous spatial distribution of the time of maximum precipitation. The308

E-CON simulations, on the contrary, are able to reproduce observed spatial heterogeneities309

in the diurnal cycle naturally. The time of diurnal precipitation maxima varies between310

15 to 18 LT, albeit the 5 km E-CON ensemble displays predominantly a peak time closer311

to 18LT in contrast to the 2.5 km ensemble.312

The spatial heterogeneity of the diurnal cycle in the E-CON ensemble shows a struc-313

ture that is also evident in the observations. Notable in this respect is the consecutive314

peaking times from the northeast coast moving inland towards the Amazon. Near the315

coast, precipitation maximizes close to midday (12-14LT), a feature that may be related316

to relatively shallow and unorganized convection (e.g., Houze Jr et al., 2015). Precip-317

itation maximizing later in the day, increasingly so as one moves inland, is in agreement318
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with what would be expected from transition to deep convection that propagates towards319

the Amazon (Greco et al., 1990; Burleyson et al., 2016). The representation of such pro-320

gressive peaking times and corresponding increasing cloud depth (not shown) suggest321

that the E-CON ensembles are able to reproduce a realistic transition of convection.322

Notwithstanding the general tendency of precipitation to maximize during the day,323

there are places where precipitation peaks overnight (Garreaud & Wallace, 1997; Rick-324

enbach, 2004; Janowiak et al., 2005; Tanaka et al., 2014). Two regions stand out in CMORPH325

data displaying a horse-shoe pattern (Fig. 4, a). This structure is captured by the E-326

CON ensembles (Fig.4, b and c) but is not observed in P-CON or CMIP6. For instance,327

the northeast extreme of the Amazon basin exhibits a coast-parallel band of consecu-328

tive peaking times from 21LT to 6LT (Fig.4, a, b and c). This nocturnal precipitation329

band has been associated with squall lines, which can originate at the coast and move330

inland (e.g., Garstang et al., 1994). Other places displaying nocturnal precipitation peaks331

are not as pronounced in the E-CON ensembles as in observations, but still can be dis-332

tinguished inland between 6°W-75°W, 5°S-0°W and over the southeast Amazon (50°W-333

55°W, 15°S-10°S). Many of the nocturnal precipitation peaks also co-locates with the Ama-334

zon river and its tributaries, suggesting a sensitivity to the representation of thermally-335

driven local circulations (e.g., Fitzjarrald et al., 2008; Tanaka et al., 2014; Wu et al., 2021).336

Over the eastern flank of the Andes, particularly south of 10°S, a nocturnal peak in pre-337

cipitation is apparently captured by the P-CON ensemble. Closer inspection shows an338

eastward misplacement of these systems in P-CON, whereas they are better captured339

by the E-CON ensembles, increasingly so as the grid is refined.340

In terms of the amplitude of the precipitation diurnal cycle, Figure 5 shows that341

both E-CON ensembles particularly overestimate precipitation associated with deep con-342

vection (at about 15-17LT). However, in contrast to the results of Inoue et al. (2021),343

the secondary peak in the early morning is slightly underestimated and rather delayed344

by 3 hours in both E-CON ensembles. There is not considerable differences between the345

2.5 km and 5 km ensembles regarding the amplitude, but only in the phase as shown in346

Fig. 4.347

The representation of the diurnal cycle in the Amazon basin thus proves to be an-348

other major area susceptible to the more physical constraints associated with an explicit349

representation of convection, a finding that is in agreement with a recent study by Tai350
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Figure 5. Diurnal precipitation averaged over the Amazon basin.

et al. (2021). Moreover, differences between the 2.5 km and 5 km are more prominent in351

the time of maximum precipitation, which suggests an improvement with a reduced grid352

spacing for a daytime precipitation maxima and nocturnal precipitation maxima along353

the Andes.354

4 Role of organized convective systems355

In section 3 we compared some precipitation characteristics between observations356

and small ensembles of simulations, differing in their treatment of convection and in their357

spatial resolution. An explicit representation of convective precipitation is shown to im-358

prove the representation of Amazon precipitation, most notably in terms of the distri-359

bution of precipitation intensity and the spatial heterogeneity of the diurnal cycle. These360

precipitation characteristics can be related to organized convective systems, which de-361

velop during the day and can last overnight generating very intense rainfall episodes (e.g.,362

Garreaud & Wallace, 1997; Rickenbach, 2004; Pereira Filho et al., 2015; Rehbein et al.,363

2018).364

In this section we analyze whether improvements in the representation of the pre-365

cipitation intensity and diurnal cycle by the E-CON ensembles are related to the rep-366

resentation of organized convective systems in the Amazon. Since simulations with pa-367

rameterized convection fail in reproducing such precipitation features (i.e. high inten-368

sity rain rates and nocturnal precipitation peaks), we exclude them from further anal-369

ysis.370
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In the following subsections we examine precipitation characteristics of precipita-371

tion objects and compare them with the non-organized precipitation. To define a pre-372

cipitation object, or what we call an organized convective systems (OCS) we use an object-373

based approach. First, precipitation is associated with grid cells whose hourly rain rate374

is equal to or greater than 2mmh−1. Precipitation objects are then identified as con-375

tiguous grid cells (8-way connection) with a minimum size of 10 000 km2 (equivalent to376

six grid cells on the coarsened analysis grid) at each hour. Given that we do not track377

the OCS, this method preferentially samples mature systems. This is why we chose a378

size threshold similar to the mean size found in past studies (Rehbein et al., 2018; Anselmo379

et al., 2021), which are about 14 000 km2 (based on brightness temperature). Even so,380

we test our findings by redoing the analysis using different thresholds and this did not381

change our findings.382

4.1 Frequency of intensity and size383

Figure 6 (a) shows the distribution of precipitation intensity of OCS only (solid lines)384

and non-organized precipitation (dashed lines). By comparing Fig. 6 (a) with Fig. 3 one385

can notice a better agreement between the E-CON ensembles and CMORPH data when386

only considering the OCS. In particular, the 5 km ensemble fits well the observations be-387

tween 10mmd−1 to 200mmd−1.388

Precipitation associated with OCS explains the high-intensity rates (>100mmd−1)389

in observations. The distribution of non-organized precipitation in CMORPH resembles390

the P-CON distribution in Fig. 3. In contrast, non-organized precipitation in the E-CON391

ensembles still shows larger frequencies of intense rain (around 200mmd−1). This shows392

a tendency of the E-CON simulations to produce more intense isolated events, which is393

an expected deficiency at kilometer-scale resolutions given that convection is not fully394

resolved (Prein et al., 2015; Arnold et al., 2020).395

The relative contribution of OCS to the total rainfall can be associated with the396

distributions of precipitation intensity. In observations, most of the intense precipita-397

tion (>50mmd−1) is associated with OCS (e.g., Feng et al., 2021). The contribution of398

OCS in the E-CON ensembles is not as large as observed (30% in the simulations as com-399

pared to about 50% in the observations, not shown), a bias that may arise because high400
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Figure 6. (a) Distribution (%) of daily precipitation intensity of organized convective systems

(OCS, solid lines) and non-organized precipitation (dashed lines) in the Amazon basin. (b) Size

distribution of organized convective systems (solid lines) and mean precipitation per area bin

(scatter points, right axis). Observations are displayed in black and the E-CON ensembles, in

green (5 km) and red (2.5 km) colors. Values of intensity and size are binned in a logarithmic

scale.

intensity rates are present in the non-organized precipitation events to a greater degree401

than in the observations.402

Another feature related to the precipitation intensity in OCS is their size (Fig. 6,403

b). As found in some previous studies (e.g., Crook et al., 2019; Arnold et al., 2020), the404

storm-resolving simulations generally produce smaller precipitation clusters than those405

identified in observations. The median size for 5 km and 2.5 km E-CON ensembles are406

14 411 km2 and 14 371 km2, respectively; whereas for CMORPH it is 19 224 km2. Like-407

wise, the median intensity per bin size is about twice in E-CON than CMORPH (col-408

ored dots in Fig. 6, b). The size distribution of OCS shows that E-CON overestimates409

the frequency of systems smaller than <20 000 km2 and misses those larger than 150 000 km2.410

The large discrepancies of OCS intensity and size between E-CON and observa-411

tions do not change considerably between 2.5 km and 5 km ensembles, meaning that these412

biases might be associated with unresolved processes (i.e sub-hectometer scales) such as413

cloud microphysics. For instance, Feng et al. (2018) found that a better representation414

of stratiform rain results in a better representation of precipitation area in mesoscale con-415

–17–



manuscript submitted to JGR: Atmospheres

vective systems at storm-resolving resolutions. This suggests that microphysical processes416

might be important for properly representing some macrophysical properties of OCS in417

the Amazon (e.g. size).418

4.2 Diurnal cycle419

Considering precipitation only from OCS improves the similarity of the spatial struc-420

ture in the phase of the diurnal cycle between E-CON and observations (Fig. 7, a, b and421

c). Especially in the western Amazon, precipitation peaks occurring during night and422

early morning are as apparent in the 5 km E-CON ensemble as in CMORPH. This fea-423

ture is noisier in the 2.5 km ensemble probably due to the smaller sample size than the424

5 km ensemble.425

20°S

10°S

0°

(a) CMORPHOCS (b) E-CONOCS 2.5km (c) E-CONOCS 5km

75°W 65°W 55°W
20°S

10°S

0°

(d) CMORPHnon OCS

75°W 65°W 55°W

(e) E-CONnon OCS 2.5km

75°W 65°W 55°W

(f) E-CONnon OCS 5km

0
3
6
9
12
15
18
21
24

Lo
ca

l T
im

e

Figure 7. Local time (hour) of maximum precipitation (a, b, c) considering only organized

convective systems (OCS) and (d, e, f) only non-organized precipitation (”non-OCS”) for (a,

d) CMORPH, (b, e) 5 km E-CON and (c, f) 2.5 km E-CON simulations. For the purpose of this

figure, the identification of OCS considered regions outside the Amazon. The Amazon basin is

defined as black contours as well as the rivers, and the topography at 1000m is shown in brown

contours.

The OCS explain most of the spatial heterogeneity in the diurnal cycle of precip-426

itation in observations (compare Fig. 7, a, d and Fig. 4, a). This feature is less in ev-427

idence in E-CON over the central Amazon, although the reduced frequency of OCS in428
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the E-CON ensembles (about one third of CMORPH, not shown) may explain the dif-429

ference with observations. While there is a clear nocturnal maximum in the simulated430

OCS precipitation, it is delayed by a few hours as compared to observations. CMORPH431

displays a nocturnal peak preferably between midnight and 3LT, whereas peaks between432

3LT to 6LT are more apparent in the 5 km E-CON ensemble. In contrast, diurnal peaks433

(12LT to 18LT) are more similar between CMORPH and E-CON, especially at 2.5 km.434

Other features associated with the diurnal cycle of OCS by E-CON are also consistent435

with the observations. For instance, the largest and less intense OCS are shown in the436

early morning, consistent with a decay stage of these systems (Houze Jr, 2004); whereas437

the most intense and smaller OCS take place in the late afternoon in agreement with their438

mature phase (not shown).439

Non-organized precipitation features daytime precipitation maximum ranging mostly440

from 12 h to 18 h (Fig. 7 d, e, f), with predominantly peaking times at about 15LT in441

observations, at 16LT in the 2.5 km ensemble and at 18LT in the 5 km E-CON. Despite442

the overall diurnal peaks some regions display maximum precipitation overnight in both443

observations and E-CON ensembles. For instance, scattered nocturnal peaks in the cen-444

tral Amazon, probably associated with very intense rain rates from isolated convective445

cells (Fig.6, a), are placed near the Amazon river and its tributaries .446

While diurnal precipitation peaks seem to improve with increased resolution (Sato447

et al., 2009), especially for non-organized precipitation, nocturnal precipitation peaks448

associated with OCS remain similar between 2.5 km and 5 km ensembles. This insensi-449

tivity to spatial resolution might indicate once more that other unresolved processes are450

important for representing the correct lifecyle of OCS in the Amazon.451

5 Environmental conditions related to OCS452

5.1 Classification of OCS453

To better understand the structure of the simulated OCS and environmental fac-454

tors that influence them, we first apply the k-means clustering technique to objectively455

identify the main types of OCS in terms of their time of occurrence, size, intensity and456

location (defined as the center of gravity of each OCS) within the whole Amazon. We457

also use the Silouhette score (Rousseeuw, 1987), which finds the optimum number of clus-458

ters based on a measure of cluster cohesion and separation. The analysis is focused on459
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the 5 km E-CON ensemble, whereas CMORPH observations serve only for comparison460

of the OCS classification.461

Six OCS clusters are identified in both E-CON and CMORPH (Table 2, Fig. S1).462

Among these, a clear distinction is associated with their time of occurrence rather than463

their size or intensity. Given that OCS represent mature systems, we refer to those that464

occur in the afternoon (12-18 hrs) as diurnal (D1, D2, D3), and to those that occur in465

early morning (5-10 hrs) as nocturnal (N1, N2, N3) OCS. Each of them accounts for about466

50% of the total OCS in E-CON (49.4% for diurnal and 50.6% for nocturnal); whereas467

in the observations, diurnal OCSs are more clearly favored (58.4% versus 41.6%).468

Table 2. Summary of clusters features in the 5 km E-CON ensemble and CMORPH (in paren-

theses). The median values are presented for the local hour, intensity, area and location (latitude

and longitude). The last column indicates the fraction that a given cluster represents from the

total OCS.

Cluster Local hour Intensity (mmh−1) Area (km2) Latitude Longitude Fraction (%)

D1 17 (18) 9.8 ( 4.9 ) 15 513.2 (21 742.6 ) -2.8 (-9.0) -64.1 (-60.6) 20.8 (22.9)

D2 12 (13 ) 9.0 (4.7) 15 561.69 (22 901.6) -12.3 (-2.9) -65.5 (-72.0) 16.3 (25.5)

D3 13 (13) 17.3 (8.8) 15 048.7 (25 949.4) -5.7 (-5.2) -65.9 (-67.1) 12.3 (10.0)

N1 6 (7) 9.0 (4.8) 16 671.1 (24 898.3) -3.7 (-3.2) -58.1 (-58.4) 22.6 (17.8 )

N2 8 (5) 8.6 (4.8) 16 793.1 (23 447.9) -3.4 (-11.5) -72.6 (-65.5) 22.6 (17.5)

N3 9 (10) 9.4 (5.7 ) 47 832.2 (102 669.8) -5.8 (-5.6) -67.4 (-66.3) 5.4 (6.4)

Other common features between E-CON and CMORPH OCS are found in clus-469

ters N1, N3 and D3. The N1-OCS distinguish from other nocturnal OCS because of their470

center of gravity is placed in the northwest Amazon, which would correspond to the well-471

known squall lines propagating from the coast (e.g., Garstang et al., 1994). N3 and D3472

OCS do not show a preferred location of occurrence but they are characterized by their473

large size and high intensity, respectively.474

Contrasting the remaining OCS (N2, D1 and D2) between E-CON and CMORPH,475

these mainly differ in their center of gravity and are more symmetrically distributed in476

the simulations than observations (Fig. S1). For instance, D1-OCS and D2-OCS com-477

prise the northern and southern Amazon in the E-CON ensemble, respectively; whereas478
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D2-OCS only cover the northwestern Amazon and D1-OCS, the rest of the basin in CMORPH.479

As opposed to N1-OCS, N2-OCS comprise the northwestern Amazon in E-CON; but they480

cover a large region in the southern Amazon in CMORPH. Notwithstanding these dif-481

ferences and the overall discrepancies regarding size and intensity of OCS as described482

in Section 4.1, we conclude that the E-CON ensemble makes a fair representation of the483

observed classification of OCS.484

5.2 Influence of the environment on OCS evolution485

We further explore the mean environmental conditions associated with OCS dur-486

ing their evolution by analyzing composites at different lead and lag times. To isolate487

diurnal and nocturnal events we consider OCS identified from 12LT (for diurnal OCS)488

and before 10LT (for nocturnal OCS).489

Diurnal and nocturnal OCS show clear distinctions in their vertical structure (Fig.490

8), with some variations among clusters. For instance, diurnal OCS persist less than the491

nocturnal OCS at the place of detection. Both the cloud content and vertical velocity492

are considerably reduced at 3-hour lead in the diurnal clusters (Fig. 8, dotted lines), whereas493

nocturnal OCS show larger cloud content and vertical velocity from the freezing level494

(500 hPa) compared to the lower troposphere. This vertical structure suggests persistent495

and less intense precipitation in the nocturnal OCS consistent with stratiform features,496

an essential component of mature OCS (Houze Jr, 2004). In contrast, diurnal OCS dis-497

play enhanced convective activity (i.e vertical ascent) only at the time of OCS detection,498

which can be related to a shorter life span or faster propagation than the nocturnal OCS.499

The diurnal OCS are associated with a strong (2K) depression of the surface po-500

tential temperature relative to the environment (Fig. 9). This local signal is thought to501

be related to cold pools as shown in Figure 10. The time of detection of cold pools dis-502

plays successive times of occurrence from 12LT to 17LT in agreement with the OCS prop-503

agation, especially in the northeastern Amazon. Figure 9 shows westward-propagating504

anomalies of potential temperature which are stronger 3 hours before than after the de-505

tection of OCS, in agreement with the occurrence of cold pools mainly during the early506

afternoon. The westward propagation is consistent with the background zonal flow (Fig.507

8), which displays easterlies through a deep layer (from 950 hPa to 400 hPa). This prop-508

agation is more evident in D1-OCS (northern Amazon) and D3-OCS (most intense OCS),509
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Figure 8. Vertical profile of composite OCS. The variables shown are from left to right: cloud

content (water and ice), zonal velocity and vertical velocity. Solid contours represent the vertical

profiles at the moment of object detection (time 0), dashed lines represent 3 hours before the

detection and dotted lines, 3 hours after time 0. Diurnal (D-OCS) and nocturnal (N-OCS) OCS

are located in the upper and lower row, respectively. Grey contours represent the original clusters

(D1, D2, D3, N1, N2, N3). The vertical profiles are smoothed using a second order polinomial

interpolation.

whereas D2-OCS (southern Amazon) show rather a stationary pattern, probably due to510

their far distance from the trade winds (not shown).511

The nocturnal OCS are associated with different large scale conditions as compared512

to the diurnal OCS. The zonal wind velocity is considerably larger near 800 hPa (Fig.513

8) than the surface even 3 hours after the OCS detection, especially for N1-OCS (north-514

eastern Amazon) and N3-OCS (largest OCS). The strong easterlies in the lower tropo-515

sphere can be indicative of the nocturnal low-level jet (Anselmo et al., 2020), which would516

act against the stable nocturnal boundary layer to sustain convection overnight (e.g., Houze Jr,517

2004). Anselmo et al. (2020) found enhanced occurrence of cloud clusters associated with518

such nocturnal low-level jet, especially during the early morning (2LT to 8LT) which is519

in agreement with our results. Moreover, the potential temperature perturbations show520

larger anomalies above the surface (850 hPa) during the OCS occurrence (Fig. 9). A spe-521
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Figure 9. Time-longitude composites of potential temperature perturbations at the surface

(1000hPa) related to diurnal (left) and nocturnal (right) OCS. Negative anomalies at 850hPa

are shown as dashed-blue contours (−0.3K). The anomalies are computed with respect to the

zonal mean. Precipitation is displayed as black solid contours (0.2 and 0.5mmh−1). Time zero

indicates the hour when the objects are detected and longitude zero is the location of the center

of mass of the precipitating objects.

cial case is noted in N3-OCS (not shown), which display broader anomalies of potential522

temperature that last 3 hours after their detection. These elevated anomalies might be523

related to cooling by evaporation of precipitation particles and indicative of their decay524

stage.525

The environmental controls of diurnal and nocturnal OCS as represented by ex-526

plicitly resolved convection, provide insights of which processes might be important and527

could be improved. For instance, it was mentioned that the frequency of OCS is consid-528

erably less in the E-CON ensembles than observations. More precisely, it appears that529

the diurnal OCS are those rather underestimated. The results show that surface processes530

matter mainly for the diurnal OCS, which suggest that these processes in relation to deep531

precipitating convection might need to be better represented at storm-resolving scales.532
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Figure 10. Local hour of cold pool detection during the time of occurrence of OCS. Cold

pools are identified considering a potential temperature perturbation larger than −2K and pre-

cipitation greater than 1mmh−1.

6 Summary and conclusion533

This study investigates the ability of storm-resolving simulations to represent pre-534

cipitating systems over the Amazon river basin. We perform ensemble simulations with535

the ICON-NWP atmospheric model at a coarse grid spacing (40 km) wherein convection536

is parameterized (P-CON) and storm-resolving simulations that enable the explicit rep-537

resentation of convection (E-CON) at 2.5 km and 5 km grid spacing. The simulations are538

compared to each other, conventional coarse resolution model output taken from CMIP,539

and to observations as represented by the CMPORPH dataset.540

The mean precipitation in the Amazon basin and its spatial distribution is fairly541

represented by both E-CON and P-CON ensembles. However, the large frequency of light542

rain can explain a close daily mean to observations in the P-CON ensemble. Moreover,543

P-CON misses precipitation in the northeast coast which is known to be important for544

the generation of propagating systems towards the Amazon (e.g., Greco et al., 1990; Bur-545

leyson et al., 2016; Rehbein et al., 2018).546

Ensembles with grid spacings that allow for explicit convection better represent the547

distribution of precipitation intensity and the spatial variability of the diurnal cycle, as548

compared to simulations with parameterized convection. Light-to-moderate precipita-549
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tion 2mmd−1 to 20mmd−1 and higher intensity rain rates are correctly captured by E-550

CON; whereas P-CON persists on long-standing biases (e.g., Stephens et al., 2010) as551

the CMIP models. The spatial heterogeneity (pattern) of the diurnal cycle can also be552

detected in the E-CON ensemble, similar to what is found in observations. The P-CON553

ensemble, which is based on one of the best tested and most advanced parameterization554

schemes, while able to reproduce the afternoon peak of maximum precipitation over most555

of the Amazon in contrast to the CMIP models, its spatial distribution is rather homo-556

geneous and misses the nocturnal precipitation over the central and northeast Amazon.557

The E-CON ensemble shows evidence of organized convective systems that are ab-558

sent in the P-CON ensemble. These OCS are shown to be closely associated with the559

better representation of Amazon precipitation, as they explain the frequency of high in-560

tense rain rates and the heterogeneity of the precipitation diurnal cycle in observations.561

The similarity between E-CON and observations improves in both the distribution of pre-562

cipitation intensity and diurnal cycle when only considering precipitation from OCS. How-563

ever, the simulated OCS simulated by the E-CON ensemble are still less frequent, smaller564

and more intense than observed.565

The simulated and observed OCS cluster into nocturnal and diurnal systems. The566

environment of the nocturnal versus diurnal systems differs systematically. Nocturnal567

clusters are associated with stronger easterlies in the lower troposphere, peaking at about568

850 hPa and forming part of the Amazonian low-level jet (Anselmo et al., 2020). In ad-569

dition, an elevated cooler atmosphere propagates with the OCS during the early morn-570

ing. Not surprisingly, the diurnal OCS show a stronger signature at the surface than the571

nocturnal OCS. The E-CON simulations suggest that cold pools contribute to the prop-572

agation of OCS in the northern Amazon and those that are very intense (D3-OCS). A573

composite analysis over diurnal clusters shows a strong temperature perturbation at the574

surface that propagates during the early afternoon. Given that the simulations produced575

about 20% less of diurnal OCS than observations, such systems may be sensitive to the576

representation of surface processes in ways that the E-CON simulations insufficiently cap-577

ture.578

Our simulations show a clear improvement in many aspects of precipitation over579

the Amazon river basin when the precipitating systems are simulated explicitly. By sim-580

ulating the geometry and transient dynamics of precipitating convection systems, a bet-581

–25–



manuscript submitted to JGR: Atmospheres

ter representation of organized convective systems emerge, and these prove essential for582

capturing many features of the observed precipitation over the Amazon. Nonetheless,583

our simulations also show room for improvement. For instance in representing the rel-584

ative prominence of organized systems during the day, which may be sensitive to land-585

surface processes, and in the timing of the nocturnal peak of precipitation, which has586

previously been shown to be sensitive to cloud microphysical processes (e.g., Feng et al.,587

2018). Simulations with a twofold finer grid do not lead to dramatic improvements, in-588

dicating that to the extent deficiencies are related to a poor representation of small scale589

circulations, capturing these effects explicitly would require much (hecto to deca meter)590

finer resolution.591
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teorology and can be obtained via the institutional repository https://pure.mpg.de601
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