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Abstract

Beamforming (BF) and Frequency-Bessel transform (F-J) have been demonstrated to extract multimode surface wave dispersion

curves from ambient seismic noise. F-J method implicitly assumes the structure under the array is laterally isotropic. As

for the conventional BF method, although the azimuth-dependence phase velocity can be measured, the fictitious azimuth

anisotropy created by array geometry would be projected into the result. In this paper, the weighted and modified cross-

correlation beamforming (WCBF and MCBF) schemes are proposed to extract the multimode surface wave dispersion curves

with sufficient resolution using quite short noise recordings. Compared with the conventional BF, only the plane waves with

the azimuth consistent with the interstation orientations are considered in MCBF and the search over the incident plane waves

from different azimuth is omitted. The azimuth-dependence velocity can therefore be extracted by MCBF, independent of the

array geometry. As far as the measurement of azimuth-averaged velocity is concerned, we show that BF is equivalent with

F-J. The explicit relationship between BF and F-J methods is derived. For the finite sampling in practical applications, the

theoretical representations of the dispersion image generated by BF technique under different imaging conditions are given.

These representations can be used to investigate analytically the features of the dispersion images in frequency-velocity domain

and how the aliasing is eliminated by improved imaging condition. The proposed methods are validated for the synthetic data

as well as the real data from the dense array at different scales.
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Key Points: 7 

• A modified beamforming is proposed to extract multimode surface wave dispersion curves 8 
using short noise recordings  9 

• The explicit relationship between cross-correlation beamforming and Frequency-Bessel 10 
transform is given 11 

• An improved scheme is proposed to remove the aliasing artifacts, and its validity is 12 
demonstrated based on the synthetic and real data 13 
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Abstract 15 

Beamforming (BF) and Frequency-Bessel transform (F-J) have been demonstrated to extract 16 

multimode surface wave dispersion curves from ambient seismic noise. F-J method implicitly 17 

assumes the structure under the array is laterally isotropic. As for the conventional BF method, 18 

although the azimuth-dependence phase velocity can be measured, the fictitious azimuth 19 

anisotropy created by array geometry would be projected into the result. In this paper, the 20 

weighted and modified cross-correlation beamforming (WCBF and MCBF) schemes are proposed 21 

to extract the multimode surface wave dispersion curves with sufficient resolution using quite 22 

short noise recordings. Compared with the conventional BF, only the plane waves with the azimuth 23 

consistent with the interstation orientations are considered in MCBF and the search over the 24 

incident plane waves from different azimuth is omitted. The azimuth-dependence velocity can 25 

therefore be extracted by MCBF, independent of the array geometry. As far as the measurement 26 

of azimuth-averaged velocity is concerned, we show that BF is equivalent with F-J. The explicit 27 

relationship between BF and F-J methods is derived. For the finite sampling in practical applications, 28 

the theoretical representations of the dispersion image generated by BF technique under different 29 

imaging conditions are given. These representations can be used to investigate analytically the 30 

features of the dispersion images in frequency-velocity domain and how the aliasing is eliminated 31 

by improved imaging condition. The proposed methods are validated for the synthetic data as well 32 

as the real data from the dense array at different scales.   33 

Plain Language Summary  34 

Benefiting from the advance of seismic interferometry technology, traditional array-based methods 35 

developed to process the data from the event or active source can be directly or redesigned to 36 

process the virtual source records. Beamforming (BF) and Frequency-Bessel transform (F-J) have 37 

been demonstrated to extract multimode surface wave dispersion curves from ambient seismic 38 

noise. Both methods assume that the structure beneath the array is laterally uniform. The weighted 39 

and modified cross-correlation beamforming (WCBF and MCBF) schemes are proposed in this 40 

paper. It was proved that multimode dispersion curves of surface wave can be measured by WCBF 41 

and MCBF with sufficient resolution using quite short noise recordings. Moreover, the azimuth-42 
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dependence velocity can be extracted by MCBF, independent of the array geometry. The explicit 43 

relationships and equivalence between BF and F-J are proved as far as the application in extracting 44 

multimode dispersion curves is concerned. An improved imaging condition is suggested to remove 45 

the artificial aliasing based on the theoretical representations of MCBF for the finite sampling on 46 

spatial wavefield in practical applications. The proposed methods are validated for the synthetic 47 

data as well as the real data from the dense array at different scales.   48 

1. Introduction 49 

The theory of seismic interferometry (SI) suggests the Green’s function can be retrieved by cross-50 

correlating the seismic ambient noise recorded at two stations (Lobkis and Weaver, 2001; Campillo 51 

and Paul, 2003). That is, the records of a virtual source can be constructed by calculating the noise 52 

cross-correlation function (NCF) of the interstation. Benefiting from the advance in SI, as well as 53 

the deployment of large and dense arrays, array-based schemes such as spatial autocorrelation 54 

(SPAC) (Aki, 1957; Yamaya et al., 2021), Frequency-Bessel transform (F-J) (J. Wang et al., 2019)  and 55 

beamforming (BF, or called CBF, cross-correlation beamforming) (Harmon et al., 2008; Roux and 56 

Ben-Zion, 2017; K. Wang et al., 2020), are proposed or redesigned to extract the multimode surface 57 

wave dispersion curves using ambient seismic noise. Compared with traditional noise-based two-58 

station method, where the pure-path inversion is required after extracting the interstation 59 

dispersion curves, array-based method provides an opportunity to measure directly the lateral 60 

variation of the velocity using the subsets of the array (Roux and Ben-Zion, 2017; K. Wang et al., 61 

2020). Another advantage of array-based methods over two-station surface wave method is their 62 

ability for extracting the multimode dispersion curves. The join of higher modes will increase the 63 

stability of the surface wave inversion and provide constraints on the deeper structure (Xia et al., 64 

2003). Therefore, the array technology for extracting multimode surface wave dispersion with high 65 

accuracy using seismic ambient noise has attracted the attention of seismic community (Roux and 66 

Ben-Zion, 2017; J. Wang et al., 2019; K. Wang et al., 2020; Yamaya et al., 2021; Qin et al., 2022). 67 

Precise measurement of dispersion curves is the basis for high-resolution 3D S-wave velocity 68 

imaging using surface waves.  69 
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F-J method is rooted in the theoretical representation of the wavefield at the free surface of a 70 

layered model. For an isotropic layered model, the wavefield in the frequency domain at distance 71 

r  can be written as the Fourier Bessel integral over wavenumber k  (Harkrider, 1964; Ben-72 

Menahem & Singh, 1968; Chen, 1999). The integral kernel is expressed as a fractional form related 73 

to the structure and source parameters. The surface wave is given by the integral contribution of 74 

the residues determined by the roots that make the denominator of the kernel vanish. The kernel 75 

can thereby be obtained by taking the inverse Fourier-Bessel transform over the propagation 76 

distance r . As a result, in frequency-velocity (f-v) or frequency-wavenumber (f-k) domain the 77 

peaks of the kernel would be associated with the eigenvalues of surface wave. Forbriger (2003) 78 

has applied Fourier-Bessel transform to extract dispersion curves of multimode Rayleigh wave 79 

using the seismogram gather at the surface excited by a hammer source. J. Wang et al. (2019) 80 

apply similar Fourier-Bessel transform to the records of the virtual source, and call it Frequency-81 

Bessel (F-J) transform. 82 

When F-J transform is used for virtual recordings, the fact that the eigenvalues of the surface waves 83 

are associated with the peaks in f-v or f-k domain can also be explained via the orthogonality of 84 

the Bessel functions. Taking the vertical component of Rayleigh waves as an example, the NCF in 85 

the time domain corresponds to the SPAC coefficient in the frequency domain(Chávez-García and 86 

Luzón, 2005; Tsai and Moschetti, 2010; Lu, 2021), i.e., the zero-order Bessel function 0 ( )nJ k r of 87 

the first kind with argument nk r , where nk  is the eigen-wavenumber of the Rayleigh wave and r  88 

is the interstation distance. F-J transform implies to compute the integral of 0 0( ) ( )nJ k r J kr r  over 89 

the distance r from 0 to infinite. Due to the orthogonality of the Bessel function, the F-J 90 

spectrogram would achieve a maximum at nk k= . Considering this property, Hu et al. (2020) 91 

extends F-J to NCFs of cross components and to estimate dispersion curves of Love wave using the 92 

orthogonality of Bessel function with different orders. The artifacts caused by aliasing can be 93 

eliminated by considering only the waves propagating in one direction, replacing Bessel function 94 

with Hankel function, as done in Forbriger (2003), or by the modified F-J (Xi et al., 2021; Zhou and 95 

Chen, 2021). In practical application, all NCFs involved in the array at different azimuth are sorted 96 

according to their interstation distance. Treating NCFs as the virtual record propagated along a 97 
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supposed linear array, the F-J spectrogram is then obtained by implementing the F-J transform 98 

numerically. This means an azimuthally isotropic model is assumed. The velocity given by F-J 99 

transform is the azimuth-averaged result. 100 

BF is another array-based method to estimate the phase velocity under the array (Harmon et al., 101 

2008) using the ambient seismic noise. In terms of the azimuth-averaged phase velocity, BF is 102 

almost independent of the noise source and array configuration, and has already been successfully 103 

used in ChinArray with moving subarrays (K. Wang et al., 2020). Using the data from a dense array 104 

with interstation interval of about 1 km, Qin et al. (2022) proved that the multimode dispersion 105 

curves can also be extracted by BF. For the extraction of azimuth-averaged phase velocity, the 106 

assumption on lateral isotropy is made in BF, as done in F-J method. If the azimuthal anisotropy is 107 

an issue, BF can also give the phase velocity at different azimuth by picking the maximum of the 108 

beampower at that azimuth by omitting the summation over the azimuth (Löer et al., 2018). 109 

However, the azimuthal anisotropy obtained by conventional BF would be affected by noise 110 

sources and array configuration. The dominant orientation of the array distribution would be 111 

projected into the azimuthal anisotropy of the structure since the azimuth dependence of the 112 

artificial anisotropy caused by the station-pair orientation is consistent with the azimuth 113 

dependence of the surface wave velocity of the structure (Lu et al., 2018). Although the artificial 114 

anisotropy caused by the array geometry can be removed from the BF results (Lu et al., 2018), the 115 

additional process for correction may produce the uncertainty of the results. Moreover, the 116 

dispersion image given by conventional BF lacks clarity, especially at higher frequency range.  117 

In this paper, the modified BF methods are proposed to extract the multimode dispersion curves 118 

of the surface wave from seismic ambient noise. Start from the conventional BF, we first correct 119 

the wavefield by multiplying kr  to reduce the effect of geometric spread of the wave in high 120 

frequency range. We call this method as weighted cross-correlation beamforming (WCBF). 121 

Moreover, the modified cross-correlation beamforming (MCBF) is proposed to reduce the effect 122 

of the array geometry on the azimuthal anisotropy. An improved imaging condition of MCBF is 123 

suggested to remove the artificial aliasing. Another purpose of the paper is to present the 124 

relationship between BF and F-J. As the array-based technique, both methods deal with NCFs. In 125 
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BF method, the delay-and-sum of the time domain NCFs are calculated, although this is usually 126 

done in the frequency domain. In F-J method, the Fourier transform of NCFs, or the spatial 127 

wavefield represented by SPAC, is integrated over the interstation distance. Seismic interferometry 128 

theory shows that NCFs in the time domain and the SPAC expression in the frequency domain are 129 

two descriptions for the same physics (Chavez-Garcia and Luzon, 2005; Yokoi and Margaryan, 2008; 130 

Tsai and Moschetti, 2010; Lu, 2021). Therefore, we speculate there might be some connection 131 

between BF and F-J. An explicit expression of such a relationship is investigated in this paper.  132 

The structure of the paper is as follows: the theory of the conventional BF is introduced and 133 

revisited in section 2. The proposed WCBF and MCBF are investigated in section 3 and section 4, 134 

respectively. Their relationships with F-J are also examined in these two sections. In section 5, the 135 

theoretical representations of MCBF are derived for a finite sampling in practical applications and 136 

an improved imaging condition is suggested to remove the artificial aliasing. The proposed 137 

methods are validated in section 6 based on the synthetic data as well as the field data from the 138 

dense array at different scales. The discussion and conclusions are given in section 7. 139 

2. Revisiting the Theory on Beamforming 140 

The beamforming was originally designed to estimate the predominant seismic wave, which would 141 

be body or surface wave. Initial application mainly focused on the detection of nuclear explosions 142 

(Lacoss et al., 1969; Picozzi et al., 2010), and were later applied to the waveform from earthquake 143 

and ambient seismic noise, usually used to investigate the back azimuth and slowness of the 144 

dominant signal or to obtain the velocity structure under the array. A brief review of BF is provided 145 

in this section, mainly focusing on the beamforming of seismic noise. Conventions used in this 146 

paper for Fourier transform, Hilbert transform and cross-correlation are given in Appendix A.  147 

2.1. Conventional (Cross-correlation) Beamforming 148 

The basic idea of beamforming is delay-and-sum. For the seismic surface wave or ambient noise, 149 

it is usually assumed a horizontal plane wave travelling over the array. The signal received at each 150 

station in the array is thought as the summation of the time-shifted plane wave. The beam trace 151 

can be expressed in the time domain as 152 
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( ) ( )
1

1, , ,
N

i i i
i

b t W d t
N

θ τ
=

= +∑s x                                                              (1) 153 

where ( ),id tx   is the time series recorded at station ix  . iW   is the weight. N is the number of 154 

stations involved in the array. s  is the slowness vector of the incident plane wave with azimuth θ .155 

( )0i iτ = − ⋅x x s  is the time delay between station ix  and the reference position 0x . Equation 1 can 156 

be written in frequency domain as,  157 

 ( ) ( ) ( )0

1

1, , , i
N

i
i i

i
b W d e

N
ω θ ω − ⋅ −

=

= ∑ k x xk x                                                        (2) 158 

where ( ),id ωx is the Fourier transform of ( ),id tx .  159 

The beampower ( ), ,B ω θk is usually taken as the beamforming output, which can be written as 160 

   ( ) ( ) ( ) ( )0

2
2

2
1

1, , , , , i
N

i
i i

i
B b W D e

N
ω θ ω θ ω − ⋅ −

=

= = ∑ k x xk k x                                      (3) 161 

with  162 

1( , ) ( , )i iD d
L

ω ω=x x                                                           (4) 163 

where L is the signal length. Equation 3 can be recast into  164 
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                  (5) 165 

where 166 

( ) ( ) ( ) ( ) ( )* *
2

1, , , , ,ij i j iij jC r D D d d
L

ω ω ω ω ω= =x x x x                                   (6) 167 

is the cross spectral density matrix (CSDM) (e.g. Gerstoft and Tanimoto, 2007; Riahi et al., 2014) or 168 

cross-covariance matrix (e.g. Capon, 1969; Seydoux et al., 2017), in which the phase shift between 169 
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stations ix   and jx   is contained. ijr   and ijθ  denote the interstation distance and azimuth of the 170 

station pair, respectively. It can be found that Equation 3, which is derived based on the standard 171 

delay-and-sum beamforming, is identical to Equation 5, which can be obtained directly from the 172 

cross-spectral density matrix (Löer et al., 2018).  173 

Löer et al. (2018) refers to Equations 3 or 5 as standard beamforming. Gal et al. (2019) call them 174 

conventional beamforming (or Bartlett beamforming). Ruigrok et al. (2017) call the beamforming 175 

shown in Equation 2 as conventional beamforming and the beamforming shown in Equation 5 as 176 

correlated beamforming (CBF). Meanwhile, they call the beamforming only considering the CSDM 177 

with i j≠  as the cross-correlation beamforming (CCBF) since the autocorrelation is discarded. The 178 

definitions of CCBF and CBF are not distinguished in this paper. We refer to the beamforming shown 179 

in Equation 5 as the correlation beamforming (CBF) regardless of the autocorrelation is contained. 180 

Which correlation components are considered in calculation is determined by choosing the 181 

elements presented in the matrix CSDM, such as an upper triangular matrix, a lower triangular 182 

matrix or a matrix without diagonal elements.  183 

2.2. Multimode Dispersion Image Obtained by CBF 184 

To estimate the vector wavenumber k  across the array, a search over all possible wavenumber and 185 

azimuth are performed in conventional BF. The beampower is calculated by fitting the CSDM 186 

between station ix  and jx  with a synthetic plane wave described by the vector wavenumber k . 187 

Once the phase delay denoted by CSDM match the one required by the incident plane wave model, 188 

the constructive interference would occur and hence the summation shown in Equation 5 would 189 

reach a maximum. The slowness associated with the maximum gives the velocity of the structure 190 

under the array, and the corresponding azimuth associated with the maximum gives the direction 191 

of arrival (DOA) of the wave.  192 

For surface waves, if more than one mode is incident as a plane wave at velocities with much 193 

difference, the multimode phase velocity can in principle be estimated by beamforming. This is 194 

more common at local scales, especially in sedimentary basins where the energy of higher modes 195 

is usually pronounced. 196 
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To generate the dispersion image in f-v domain, the beampower shown in Equation 5 for each 197 

frequency is calculated by 198 

( )2
1 1

1( , , ) , ij
N N

ij
i

ij
i j

C e
N

CBF ω θ ω ⋅

= =

−= ∑∑ k rk r .                                          (7) 199 

Equation 7 and Equation 5 are theoretically equivalent except that the weight ijW  is ignored in 200 

Equation 7. In practical application, NCFs are usually asymmetric due to the complex source 201 

distribution. ( , )ij ijC ωr , the Fourier transform of NCFs, is not real. The modulus is therefore to be 202 

taken in Equation 7 as the beamforming output. The beampower is then averaged over θ . The 203 

dispersion image can thereby be obtained by combining the azimuth-averaged beampower of each 204 

frequency. We call Equation 7 as the conventional CBF for extraction of dispersion curves. K. Wang 205 

et al. (2020) have used CBF to estimate the azimuth-averaged phase velocity of the fundamental 206 

mode Rayleigh wave.   207 

As an example, Figure 1 gives an illustration for extraction of multimode Rayleigh waves using CBF. 208 

Figure 1a shows the configuration of the array consisting of seventy-nine stations, which are 209 

sampled from the dense array located in Tongzhou with intervals of 1-2 km (Qin et al., 2022). Figure 210 

1c shows the distribution of interstation distances as a function of azimuth. Figure 1b and 1d show 211 

the dispersion images. In Figure 1b, the beampower of each frequency is normalized by the 212 

maximum at that frequency. To highlight the energy along the dispersion branches at high 213 

frequencies, we normalize the difference between the beampower and the minimum at that 214 

frequency in Figure 1d. The fundamental mode (mode 0) and the first higher mode (mode 1) are 215 

observed in Figure 1d. Based on this CBF scheme, Qin et al. (2022) has successfully obtained the 216 

lateral variation of the phase velocity of these two modes. Note that Figure 1d is slightly different 217 

from Figure 5a in Qin et al. (2022) since different matrix elements of CSDM is used here to reduce 218 

the artifacts.    219 
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 220 
 221 

Figure 1. An illustration for the measurement of multimode surface wave by CBF. (a) The configuration of the 222 

array consisting of seventy-nine stations. (b) The azimuth-averaged dispersion image obtained by conventional 223 

CBF. For each frequency, the beampower is normalized by the maximum at that frequency. (c) The distribution 224 

of the number of station pairs as a function of the azimuth and interstation distance. (d) The same as (b) but with 225 

different normalized strategy. The dashed and solid black lines in (d) give the resolved wavenumber ranges 226 

estimated by min max[ , ]k k  and min max[2 , 2 ]k k  using Equation 15, respectively. 227 

2.3. Resolution and Aliasing of CBF 228 

The resolution of BF depends on the array configuration and the characteristics of the wavefield 229 

across the array. The wavefield, for example the energy of the surface wave modes carried by the 230 

ambient noise, depends on the structure under the array and source characteristics which are 231 

often what we are trying to figure out. Therefore, the resolution we are concerned with and can 232 

be improved usually refers to the resolution determined by the array configuration. 233 

The quantities appearing in Equation 7 are only related to the array configuration, except for the 234 
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CSDM which describes the wavefield. After removing CSDM, Equation 7 can be expressed as 235 

(Wathelet et al, 2008; Ruigork et al, 2017) 236 

( ) 2
1 1

1 ij
N N

i

i j
A eRF

N
− ⋅

= =

= ∑∑ k rk                                                                (8) 237 

Since 238 

 ( ) ( )=i jj ii ie e
∗

− ⋅ − − ⋅ − 
  

k x x k x x                                                                   (9) 239 

Equation 8 can also be written as (Horike 1985, Picozzi et al,2010) 240 

( ) ( )
2

1 1

1 j i
N N

i

i j
ARF e

N
− ⋅ −

= =

= ∑∑ k x xk                                                        (10) 241 

( )ARF k  is termed spatial window function (Lacoss et al, 1969; Horike 1985) or array response 242 

function (ARF) (Capon,1969; Rost and Thomas,2002; Ruigork et al, 2017). 243 

For an incident monochromatic plane wave with given angular frequency 0ω  and wavenumber 0k , 244 

by ignoring the attenuation, the  CSDM between station ix  and jx  can be expressed as 245 

 ( ) ( ) ( )0

0= - j ii
ijC eω δ ω ω ⋅ −k x x                                                (11) 246 

where 0( )δ ω ω−   is the Dirac delta function. Substitute Equation 11 into Equation 5, the 247 

beamforming output for a monochromatic plane wave can be written as (Asten and Henstridge, 248 

1984) 249 

 ( ) ( ) ( )2

0 0, fB W ARFω ω ω= − −k k k                                         (12) 250 

where 0( )fW ω ω−  is the Fourier spectra of the time series with given limited length. For more 251 

general case, the estimated wavenumber spectrum is the 2D convolution of the true spectrum 252 

with ARF (Lacoss et al., 1969; Asten and Henstridge, 1984). The beamforming resolution is thereby 253 

controlled by ARF which depends on the array configuration.  254 

At present, there is no global agreement about the capabilities of an array (Wathelet et al, 2008). 255 

For the array with simple and regular geometries, for instance, a linear array with equal spacing, 256 

the aliasing and resolution limit can be estimated by the maximum and minimum interstation 257 

spacing in the array using the Nyquist sampling theorem. For the array with irregular geometry, 258 
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some empirical rules are proposed to estimate the reasonable results achieved by the array. 259 

Tokimatsu (1997) use the minimum minr  and maximum maxr of the interstation distances inside the 260 

array to determine the range of the resolved wavelength. As a rule of thumb, the resolved 261 

minimum wavelength minλ  and maximum one maxλ  are respectively min min2rλ =  and max max3rλ = . 262 

A more rigorous definition for resolved wavenumber is based on ARF. For two plane waves 263 

travelling the array with wavenumbers 1k  and 2k , the CSDM can be expressed as  264 

1 2
1 2( , ) ( ) ( )ij iji i

ij ijC er eA Aω ω ω⋅ ⋅= +k r k r                                                    (13) 265 

The f-k spectrum estimated from Equation 7 can be written as  266 

( )

( ) ( ) ( ) ( )

1 2

1 2

1 22
1 1

1 22
1 1 1 1

2 2
1 1 1 2 22

1( , , ) ( ) ( )

1 ( ) ( )

ij ij ij

ij ij ij ij

i i

i

N N

i

i

i

j

N N N N

j i j

i i i

CBF A e A e e
N

A e e A e e
N

W ARF W ARF

ω θ ω ω

ω ω

ω ω ω ω

⋅ ⋅ ⋅

= =

⋅ ⋅ ⋅ ⋅

= =

−

=

−

=

−

=

 
≤ +  

 

= − − + −

+

−

∑∑

∑∑ ∑∑

k r k r k r

k r k r k r k r

k

k k k k

                          (14) 267 

This means the beampower for two plane waves is always lower than the summation of individual 268 

plane waves (Wathelet et al., 2008). The aliasing and resolution of the array can be defined based 269 

on the ARF by considering the summation of two shifted ARFs. If two wavenumbers are close to 270 

each other, the summation of two shifted ARF would generate a wider main lobe rather than two 271 

narrow main lobes. The width of the main lobe of ARF which makes two wavenumbers cannot be 272 

distinguished is used to define the resolved wavenumber. The side lobes of two shifted ARFs may 273 

overlap and resulted the beampower with the same magnitude as the main lobe. The wavenumber 274 

associated with such overlapping sidelobes is defined as the aliasing wavenumber. 275 

Figure 2a shows the ARF for the array shown in Figure 1a. The maximum occurred in the center at 276 

0=k . The aliasing is likely to occur at the wavenumbers where, for example, the four secondary 277 

peaks are observed, which appear in four typical directions around 0, 90, 180, 270 degrees. Figure 278 

2b shows the cross sections of ARF every two degrees. Concerning on the resolution, the thinner 279 

is the central peak of ARF, the more capable is the array to distinguish two waves travelling at close 280 

wavenumbers (Wathelet et al., 2008). How to evaluate quantitatively the beamforming resolution 281 
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and the confidence interval that aliasing does not appear, different definitions are proposed by 282 

researchers. The wavenumber Resk  associated with the half-width of the main lobe, at the edge of 283 

which the beampower is reduced to a given threshold relative to the maximum, is usually used to 284 

define the resolving power of the wavenumber. As shown in Figure 2b, two wavenumbers cannot 285 

be resolved if their difference is less than Res2k  since two main lobes would overlap. If the 286 

maximum of the main lobe is 1, the threshold is generally selected as 0.5, i.e., the beampower 287 

reduces to the half of the maximum or -3dB in the logarithmic coordinates (Woods and Lintz,1973; 288 

Asten and Henstridge, 1984; Wathelet et al., 2008). For this definition, Resk  is equal to 0.34 Rad/km 289 

for the array shown in Figure 1a.  290 

 291 

Figure 2. The array response function (ARF) for the array shown in Figure 1a. The gray lines in (b) denotes 292 

the cross sections of the ARF every two degrees. The black dashed line denotes the azimuth-averaged result. 293 

The blue dashed line denotes the location of 0.5 beampower.  294 

On the other hand, based on the sampling theorem, the maximum ( maxk ) and minimum ( mink ) 295 

wavenumbers that can be resolved by the array are  296 

 max min

min max

k r
k r

π
π

=
=

                                                                  (15) 297 

where  maxr  and minr  are the largest and smallest interstation distances, respectively. maxk  is also 298 

called Nyquist wavenumber, the wavenumber exceeds which repetition would occur (e.g., see 299 

Figure 10). Ruigrok et al. (2017) also approximate the resolution using mink . For the array shown in 300 

Figure 1a, max 15.98 Rad/km, 0.26 Rad/kmmink k= = . By removing the aliasing in negative 301 



14 

 

frequency, the resolved wavenumber range would reach to min max[2 , 2 ]k k . The dashed and solid 302 

black lines in Figure 1d gives the resolved wavenumber ranges estimated by min max[ , ]k k  and 303 

min max[2 , 2 ]k k , respectively. 304 

3. Weighted Cross-correlation Beamforming (WCBF) 305 

It can be found from Figure 1b that for the conventional CBF, the energy difference around the 306 

eigenvalues from the ambient noise is not manifest at high frequencies. As a result, at the first 307 

glance in Figure 1b, the color scheme is different above and below 0.5 Hz, resulting the energy 308 

along the dispersion branches are not prominent for the frequencies above 0.5 Hz. This is mainly 309 

due to the attenuation and geometric spread of the wavefield at high frequencies. Of course, we 310 

can highlight the energy along the dispersive branches by changing the normalization strategy, as 311 

shown in Figure 1d. However, to correct the wavefield by multiplying kr  in CBF is a natural 312 

alternative.  313 

3.1. Correction of Wavenumber k  and Propagation Distance r  314 

Although representations are different literally, the conventional BF shown in Equation 3 and 315 

Equation 5 are actually equivalent. However, seismic interferometry endows Equation 5 with more 316 

physical explanations, which is not so obvious in Equation 3. The theory of seismic interferometry 317 

states that the Green's function can be retrieved by cross-correlating the seismic ambient noise. 318 

In the frequency domain, that is, the CSDM ( ), ,i jC ωx x  is equivalent to the Green's function and 319 

can be represented as 320 

 ( ) ( ), , ( ) ( ) Im , ,i j ij i jC C S Gω ω ω ω = ∝  x x x x                                           (16) 321 

where ( ), ,i jG ωx x  is the Green’s function between ix  and jx . Due to the source distribution, the 322 

surface wave usually dominates the seismic noise. The Green's function in Equation 16 is therefore 323 

considered to be the surface wave Green's function. For the vertical component of a homogeneous 324 

layered medium, Equation 16 can be written as  325 
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( ) ( )
( ) ( )2

2 1 0
1

( ) Im , ,

1( ) Re ( , ) ( , )
8

ij zz i j

n ij
n

C S G

S r n r n H k r
cUI

ω ω ω

ω ω ω

 ∝  
 

=  
 
∑

x x
                                 (17)  326 

where c  is the phase velocity, U  the group velocity. 1( )r z  and 2 ( )r z are the radial and vertical 327 

eigen-function of the Rayleigh wave, respectively. ( )2 2
1 1 20

1
2

I r r dzρ
∞

= +∫ . n  denotes the mode 328 

number. nk  is the horizontal wavenumber in the direction of ijr .  By expressing the Hankel function 329 

as the sum of the first and second kind of Bessel functions, Equation 17 can be recast as  330 

 ( ) ( )2 1 0
1

1( ) ( , ) ( , )
8ij n ij

n
C S r n r n J k r

cUI
ω ω ω ω∝ ∑                                          (18)  331 

This means, under the assumption of laterally homogeneous model and uniform distribution of 332 

noise source, the monochromatic wavefield across the array can be represented as 0 ( )nJ k r . This 333 

is consistent with the result on SPAC of the microtremor in the frequency domain, originally given 334 

by Aki (1957). Therefore, as a function of the interstation distance r , the Fourier transform of NCFs 335 

can be thought as the spatial sampling on a cylindrical wavefield described by the Bessel function 336 

( )0 nJ k r .   337 

In the far field, ( )0 nJ k r  can be expressed as 338 

( )0
2 cos , 0

4n n n
n

J k r k r k r
k r

π
π

 − 
 

                                                (19)  339 

Figure 3a shows the variation of ( )0 nJ k r   and its far field approximation as a function of the 340 

distance. If the weight W  in Equation 5 is the same for all NCFs, the contribution of the NCFs with 341 

larger interstation distance or the wave with high frequency would be much smaller due to the 342 

spread factor 1 kr . This makes the mode recognition along dispersion branches lack clarity in 343 

high frequency range in Figure 1b. To improve the CBF results for larger nk r , we correct the 344 

wavefield by considering the following weighted cross-correlation beamforming.   345 

( )2
1 1

1( , , ) , ij
ij

N N
i

ij
i j

ijWCBF e
N

Cω θ ω ⋅

= =

= ∑∑ k rk rk r                                      (20)  346 
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 347 

Figure 3.  (a) The Bessel function ( )0 nJ k r  and its far field approximation. (b) The amplitude modulated 348 

( )0 nJ k r  and cosine functions. 349 

The variation of the corrected wavefield with the distance is shown in Figure 3b. The azimuth-350 

averaged velocity is considered currently. The average over the azimuth implies to conduct the 351 

summation of Equation 20 over the angleθ , the azimuth of the wavenumber k . This azimuth-352 

averaged operation would again introduce a decay with a factor of 1 kr . Therefore, kr  is again 353 

multiplied for the azimuth-averaged of Equation 20. It reads  354 

 ( )
2

2
0 1 1

1( , ) , ij
N N

ikr
ijj

i
i

j
ijWCBF k e

N
kr C

π
θ

θ

ω ω
= = =

= ∑∑∑ r                                     (21)  355 

The overbar is used to denote the average over the azimuth. We call Equations 20 and 21 as the 356 

weighted cross-correlation beamforming (WCBF) since varying weight is adopted. Different from 357 

Equation 7, we take the real part of Equation 21 or its’ absolute value as the imaging conditions for 358 

plotting, which are expressed as    359 

( )
( )

1( , ) Re ( , )

2( , ) ABS Re ( , )

WCBF k WCBF k

WCBF k WCBF k

ω ω

ω ω

=

 =  

                                              (22)  360 
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 361 

Figure 4. The dispersion images obtained by WCBF (a-d) and F-J (e). The comparison of the picked values from 362 

different methods are shown in (f). The gray lines in (f) show the F-J results picked from (e). The result of WCBF 363 

in (f) is picked from (a), which is the same as that from (b-d). The result of CBF in (f) is picked from Figure 1d.  364 

Figures 4a and 4b show dispersion images in f-v domain calculated from Equation 22. The 365 

normalization strategy is the same as that used in Figure 1b. Figures 4a show the energy along two 366 

dispersion branches is more prominent than that in Figure 1b. The efficiency of the normalization 367 

strategy used in Figure 1d is achieved and exceeded by WCBF. Moreover, the dispersion images 368 

are much clearer in Figure 4a and 4b, and the artificial images occurred in the upper region with 369 

high velocities and frequencies in Figure 1d disappear. As a trade-off, at the lower of the panel, 370 
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some disturbing pixels appear around the area close to zero velocity. This would be caused by the 371 

overcorrection on the large wavenumber around zero velocity. These interfering pixels have little 372 

effect on mode recognition.  373 

3.2. Relation Between WCBF and F-J 374 

F-J is also an array-based method to extract the dispersion curves using ambient noise. In this 375 

section, the relation between WCBF and F-J is investigated. We start from the 2D Fourier transform 376 

of an arbitrary function. In polar coordinates, it can be expressed as (Baddour, 2011)  377 

 
2

cos

0 0

12DFFT( , ) ( , , )
2

ikr
ijk C r e rdrd

π
θω ω θ θ

π

+∞

= ∫ ∫                                                       (23)  378 

where ( , , )ijC r ω θ  can be an arbitrary function which depends on the azimuth θ  and the radial 379 

distance r . It is assumed ( , , )ijC r ω θ  is independent of the azimuth. For instance, assuming it be 380 

the spectrum of the surface wave vertical component recorded at the surface of the laterally 381 

isotropic layered model, ( , , )ijC r ω θ  can be written as ( , )ijC r ω . Since the Bessel function 0 ( )J kr  382 

can be expressed as 383 

2
cos

0
0

1( )
2

ikrJ kr e d
π

θ θ
π

= ∫                                                           (24)  384 

Equation 23 can then be rewritten as  385 

2
cos

0
0 0 0

12DFFT( , ) ( , ) ( , ) ( , ) ( )
2

ikr
ij ijk FJ k C r e rdrd C r J kr rdr

π
θω ω ω θ ω

π

+∞ +∞

= = =∫ ∫ ∫            (25)  386 

Equation 25 is the F-J transform proposed by J. Wang et al (2019), which can be thought as the 2D 387 

Fourier transform of the radially symmetric function ( , )ijC r ω . This implies the lateral isotropy is 388 

assumed for F-J method. Under this assumption, the 2D Fourier transform of the radially symmetric 389 

function is degenerated into the Fourier Bessel transform or Hankel transform.  390 

The surface wave usually dominates the NCFs. As shown in Equation 18, for the vertical component,391 

( , )ijC r ω  is related to the spatial autocorrelation coefficient 0 ( )J kr , i.e.,  392 

0( , ) ( ) ( )ij nC r S J k rω ω                                                                    (26)  393 

Substituting Equation 26 into Equation 25 and considering the orthogonality of the Bessel function 394 

(Morse and Feshbach, 1953, P943), we have 395 
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0 0
0

( )( , ) ( ) ( ) ( ) ( ) n
n

n

k kFJ k S J k r J kr rdr S
k

δω ω ω
+∞ −

= =∫                                           (27)  396 

Consequently, the maxima in kω − domain are associated with the eigenvalues nk  of the Rayleigh 397 

waves. The dispersion curves can then be measured by picking the velocities associated with the 398 

maxima in f-v domain. 399 

Comparing Equations 25 and 21, it can be found that azimuth-averaged WCBF is the discrete form 400 

of F-J except for an extra wavenumber factor occurred in Equation 21. We define the new imaging 401 

conditions WCBF3 and WCBF4 by dividing Equation 22 by the wavenumber k .  We have 402 

13( , ) Re ( , ) ( , )

14( , ) ABS Re ( , )

WCBF k WCBF k FJ k
k

WCBF k WCBF k
k

ω ω ω

ω ω

 = = 
 
  =     

                                             (28)  403 

The WCBF3 shown in Equation 28 is now equivalent to the F-J method. Compared with WCBF1 in 404 

Equation 22, only the propagation distance r  is corrected in F-J method.  Choosing k  or kr  to 405 

correct the wavefield is a trade-off that determines whether artifacts appear in the upper region 406 

with high velocities and frequencies, or in the lower region close to zero velocity. Figure 4c and 4d 407 

show the results calculated from Equation 28. As opposite to Figure 4a and 4b, the artifacts in 408 

Figure 4c and 4d appear in the upper region with higher velocities and frequencies. The disturbing 409 

pixels around the area close to zero velocity are significantly reduced. In addition, for the results 410 

of WCBF2 and WCBF4, where the absolute value of the real part is taken as the imaging condition, 411 

the apparent side lobes around the dispersion branches are observed in Figure 4b and 4d. Because 412 

the sampling of the array on the wavefield is always finite, Dirac delta function shown in Equation 413 

27 would behave as a sinc function. The side lobes in Figure 4b and 4d originate from the negative 414 

values adjacent to the main lobe of the sinc function. They disappear in Figure 4a and 4c since only 415 

positive values are color-coded. 416 

Figure 4e shows the result of F-J method. As expected, the dispersion image obtained by F-J 417 

method has the same characteristics as that of WCBF3 (Figure 4c). The slight difference possibly 418 

comes from the approximation of the numerical integration. An integral scheme based on the 419 

trapezoidal integration is used in F-J (J. Wang et al, 2019), while the discrete summation shown in 420 
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Equation 21, similar as the discrete Fourier summation, is used to directly compute the result of 421 

WCBF.   422 

4. Modified Cross-correlation Beamforming (MCBF)  423 

Different from the estimation on the azimuth-averaged velocity, the phase velocity as well as the 424 

azimuth associated with the maximum beampower are measured by CBF in Roux and Ben-Zion 425 

(2017). Admittedly, the azimuth-dependent velocity can be estimated by picking the values 426 

associated with the maximum beampower at that azimuth. The azimuthal anisotropy can then be 427 

estimated by fitting the model proposed by Smith and Dahlen (1973), as done in Löer et al. (2018). 428 

However, the artificial anisotropy introduced by the array geometry will be projected into the 429 

estimated results since the maximum beampower also depends on the orientation of station pairs 430 

determined by the array geometry. In this section, a modified CBF scheme is proposed to overcome 431 

the effect of the array geometry on the estimation of the azimuth-dependence phase velocity.       432 

4.1. Algorithm for MCBF 433 

As mentioned in section 3.1, due to the equivalence between SPAC in the frequency domain and 434 

NCFs in the time domain, NCFs can be thought as the sampling on the cylindrical wavefield 435 

described by 0 ( )J kr . We can do the following thought experiment. Assuming the array is dense 436 

enough and infinite, the Fourier transformed NCFs of each azimuth are arranged from 0r =  to 437 

r = ∞ according to their interstation intervals. The spatial wavefield would be a cylindrical wave 438 

with 0r =  as the center, as shown in Figure 5a. Note that the central point 0r =  is a reference 439 

point and does not actually correspond to any physical position of the array. 440 

The beamforming shown in Equation 7 is designed to track the phase by fitting the cylindrical wave 441 

shown in Figure 5a with the plane wave incident from different azimuth. As a function of θ , the 442 

beampower is thus obtained by summing over ijθ  which is implemented by projecting the plane 443 

wave into all the station-pairs. The averaged beampower over the azimuth θ  is then used to 444 

estimate the azimuth-averaged velocity. The algorithm of WCBF shown in Equation 20 is the same 445 

as this process for Equation 7, but the geometric spread is corrected. The corrected cylindrical 446 

wavefield is shown in Figure 5b.   447 
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 448 

Figure 5. The schematic diagram of cylindrical wave field processed by different strategies of BF technique. (a) 449 

The conventional CBF handle the cylindrical wavefield represented by 0 ( )J kr . The plane wave with a given 450 

azimuth θ  is projected into all the interstation pairs and the beamforming is output as a function of θ . (b) WCBF 451 

handle the cylindrical wavefield with the correction factor kr . The beamforming is also output as a function 452 

of θ . (c) Only the plane waves with the same azimuth as the orientation ijθ  of the interstation pairs is 453 

considered in MCBF. The beamforming is output as a function of ijθ . The wavefield can therefore be azimuthally 454 

anisotropic for MCBF.  455 

The above algorithm for CBF and WCBF suffers from two deficiencies. First, more computations 456 

are spent on projecting a plane wave at a given azimuth into the orientation of all station-pairs, 457 

but the improvement of the dispersion image is trivial. Second and more importantly, the 458 

implement of projection implies the structure beneath the array is azimuthally isotropic. As shown 459 

in Figure 5c, for the wavefield with an azimuth-dependence velocity, the azimuthal anisotropy will 460 

be an issue. The isotropic assumptions required by the projection algorithm in Equations 7 and 20 461 

would fail. Although the azimuth-dependence velocity can be estimated by omitting the average 462 

over the azimuth θ , the effect of the array geometry will be merged in the result due to the 463 

projection algorithm. To this end, we modify Equation 20 by omitting the projection operation. For 464 

the interstation with a given orientation, beamforming is conducted only for the plane wave 465 
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incident from the azimuth consistent with the interstation orientation. The modified beamforming 466 

can be expressed as 467 

( ) ( )
( ) ( )

4
2

1, , ,
ij ij

ij
N N kr

ij ij ij ij
i j

MCBF k kr C r e
N

πθ θ ι
ω θ π ω

 − 
 = ∑ ∑                                       (29)  468 

We call Equation 29 the modified cross-correlation beamforming (MCBF). The ( )ijN θ over the 469 

summation symbol means only the station pair with orientation ijθ is taken, i.e., only the incident 470 

plane wave along the direction of the station-pair orientation is considered. Correspondingly, the 471 

vectors representing the wavenumber k  and distance ijr  in Equation 20 degenerate into scalars 472 

in Equation 29. The vector dot product ij⋅k r  is replaced by the scalar product ijkr . It must be 473 

pointed out that 4π−   phase shift is introduced in Equation 29 to balance the 4π−  phase shift 474 

appeared in CSDM caused by the stacking over noise sources in seismic interferometry. This 4π−  475 

phase shift is absent in Equation 20 because the projection and summation over ijθ  would 476 

automatically introduce 4π−  phase shift, while the operation on the projection and summation 477 

is neglected in Equation 29. 478 

Using the same procedure as that for CBF and WCBF, the azimuth-averaged phase velocity can be 479 

estimated by MCBF. Note that, the azimuth average of WCBF in Equation 21 is conducted over θ , 480 

the azimuth of the incident plane wave. For MCBF, the azimuth average is performed over ijθ , the 481 

orientation of the station-pairs. This average is nothing but the summation of all station-pairs and 482 

thereby can be written as 483 

( )2
41( , ) ,

ij
N N kr

ij ij ij
i j

M kr C r eCBF k
N

πι
ω π ω

 − 
 = ∑∑                                              (30)  484 

The imaging conditions can be written as  485 

  ( )
1 Re ( , )

2 ABS Re ( , )

3 ABS ( , )

MCBF MCBF k

MCBF MCBF k

MCBF MCBF k

ω

ω

ω

 =  
 =  
 =  

                                                         (31)  486 
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 487 
Figure 6. The dispersion images obtained by MCBF using the data from the array shown in Figure 1a. (a), (c) and 488 

(e) are the results for the imaging conditions shown in Equation 31. (b) is the same as (a) but only the positive 489 

value is color-coded.   490 

Figure 6 shows the results obtained by MCBF using the data from the array shown in Figure 1a. 491 

Figure 6a shows the normalized result of MCBF1, the real part of the azimuth-averaged 492 

( , )MCBF k ω  . The positive maxima are observed along two dispersion branches. The negative 493 

values, which are denoted by blue, appear adjacent to the maxima or spread in the image. These 494 

negative values originate from the product of the sinc and trigonometric functions (See Equation 495 

B13 in Appendix B for the theoretical representation of MCBF). If the absolute value of the real 496 

part of ( , )MCBF k ω  is taken, i.e., the MCBF2 in Equation 31, side lobes would be observed on 497 

both side of the maxima, as shown in Figure 6c. These side lobes would disappear if the modulus 498 

of the of ( , )MCBF k ω  is taken as the imaging condition, but the width of the main lobe would 499 

broaden as expected, as shown in Figure 6d. Therefore, a suitable display for the dispersion image 500 

is to color-code only the positive values of the real part of ( , )MCBF k ω , as shown in Figure 6b. 501 

This display makes the dispersion image look clearer and easier to identify especially for the case 502 
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that the velocity of the modes is approaching.  503 

Moreover, the assumption on the laterally isotropy is not required in MCBF. For the case of 504 

azimuthal anisotropy, the azimuth-dependence velocity can be extracted using MCBF by 505 

processing the beamforming output at each azimuth ijθ , which is exactly the azimuth of the 506 

incident plane wave. Different from the estimation of azimuth-dependence velocity using CBF or 507 

WCBF, the spurious azimuthal anisotropy introduced by the array geometry would not be merged 508 

into the results of MCBF since the projection to the orientation of the station pair in CBF or WCBF 509 

is omitted in MCBF. The correction on the azimuth anisotropy introduced by array geometry, as 510 

done in Lu et al. (2018), is not required.  511 

4.2. The Other Imaging Conditions 512 

Theoretically, the cross spectra ( , )ij ijC r ω  of the vertical component in Equation 30 is real and 513 

equivalent to the Bessel function 0 ( )J kr  if the noise field is perfectly isotropic. However, it is 514 

usually complex in practice due to the complicated source feature. Different from Equation 30, we 515 

can use the real part of ( , )ij ijC r ω  to approximate 0 ( )J kr . At the same time, instead of the complex 516 

exponential function, the sine or cosine functions are used to present the plane wave. The 517 

corresponding imaging conditions can be expressed as 518 

( ) ( )

( ) ( )

2

2

14 , Re , cos
4

15 , Re , sin
4

N N

ij ij ij ij
i j

N N

ij ij ij ij
i j

MCBF k kr C r kr
N

MCBF k kr C r kr
N

πω ω

πω ω

  = −    

  = −    

∑∑

∑∑
                                  (32)         519 

It is assumed that the cylindrical wavefield described by 0 ( )J kr  contains two surface wave 520 

eigenvalues 1 1k =  and 2 10k =  . We investigate the effect of different imaging conditions on the 521 

result by comparing the beamforming output of such an ideal cylindrical wavefield. The results are 522 

given in Figure 7. In simulation, the spatial wavefield is uniformly sampled with 0.2r∆ =  and the 523 

maximum distance max 6.0r = . The wavenumber and distance are dimensionless. 524 
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 525 

Figure 7.  The beamforming output by applying MCBF with different basis functions to a cylindrical wavefield 526 

containing two eigen-wavenumbers (k=1 and k=10). (b) The result of MCBF3, where the complex exponential 527 

function is taken as the basis function. (d) and (f) are the results of MCBF4 and MCBF5, where the cosine and 528 

sine functions are taken as the basis function, respectively. (a), (c) and (e) show the corresponding results by 529 

removing the term kr  in Equations 30 and 32.      530 

In Figure 7, right panels show the results of MCBF3, MCBF4 and MCBF5. The left panels show the 531 

corresponding results without the correction for geometric spread, i.e., the results of MCBF3, 532 

MCBF4 and MCBF5 but removing the correction term kr .  The vertical red dashed line denotes 533 

the location of the eigen-wavenumbers. The vertical gray dashed line denotes the location of 534 

resolving maximum wavenumber max 15.7k rπ= =  estimated by Equation 15. Aliasing occurs at 535 

the wavenumbers greater than maxk   ( maxk k>  ). The aliasing wavenumbers are 536 

'
1 max 12 30.4k k k= − =  and '

2 max 22 21.4k k k= − = , which are denoted by vertical green dashed lines. 537 

It can be found from Figure 7: 1) The result of MCBF5 is the antisymmetry of that of MCBF4, as 538 

shown in Figures 7d and 7f. The target wavenumbers 1k  and 2k  are associated with the maxima 539 

of the beamforming output if cosine function is selected as the basis, while they are associated 540 

with the zero-crossing points for sine basis function. On the contrary, the aliasing wavenumbers 541 

'
1k  and '

2k  are associated with the (negative) maxima for sine basis function, while they are 542 
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associated with the zero-crossing points for cosine basis function. If the modulus is taken as the 543 

imaging conditions, the zero-crossing points associated with the target (or aliasing) wavenumbers 544 

would behave as a trough between two extremes (See Figure S1 in the supporting information 545 

where the modulus of MCBF4  and MCBF5 is plotted).  2) Compared with the results of MCBF4 546 

based on the cosine function, the results of MCBF3 based on the exponential function have a wider 547 

main lobe but fewer side lobes. This is more evident if the modulus of MCBF4 is taken (See Figure 548 

S1 in the suporting information). 3) Both the traget wavenumbers 1 2,k k  and the aliasing 549 

wavenumbers ' '
1 2,k k  are associated with the maximum for the result of MCBF3. 4) The actual 550 

amplitudes, which are supposed to be 1 for two eigen-wavenumbers, can not be recovered without 551 

the correction term kr . This results in a dispersion image that lacks clarity at high frequencies, 552 

as shown in Figure 1b.  553 

 554 

Figure 8. The dispersion images obtained by MCBF (Equation 32) using the data from the array shown in Figure 555 

1a. (b) is the same as (a) but only the positive value is color-coded.     556 

Figure 8 shows the results obtained by MCBF4 and MCBF5 using the data from the array shown in 557 

Figure 1a. As discussed above, the eigenvalues along the dispersion branches corresponds to the 558 
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maxima for the results of MCBF4. For the results of MCBF5 based on sine function, the eigenvalues 559 

along the dispersion branches corresponds to the zero-crossing points. Since there are many zero 560 

points spread in the image, it brings the handicap for the picking of the eigenvalues along dispersion 561 

branches. Color-coding only the positive value of MCBF4 is proved to be a better imaging condition, 562 

as shown in Figure 8b, where the dispersion image has a high resolution without side lobes such as 563 

occurred in Figure 8a, 8c and 8d. Furthermore, the result of MCBF4 is almost the same as those of 564 

MCBF1 shown in Figure 6. This means the distribution of the noise source is fairly uniform and 565 

hence the SPAC coefficient is supposed to be close to 0 ( )J kr  with a negligible imaginary part.    566 

4.3. Relation Between MCBF and F-J Method  567 

In practice, the sampling on the wavefield in space is always finite and usually non-uniform due to 568 

the finite NCFs and irregular array. The integral over the distance r  in Equation 25 from 0 to infinite 569 

is often replaced by a finite interval. Since the relative rather than the absolute magnitude of the 570 

spectrum in f-v domain is of interested, the integral is therefore normalized by the integral length. 571 

We have  572 
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ω ω= ∫                                                               (33)  573 

For an array with N stations, the number of the station-pairs is ( 1) / 2M N N= − . The interstation 574 

distances are arranged in order from smallest to largest as 1 2, , , , ,j Mr r r r   . The integral of 575 

Equation 33 can be approximated numerically by  576 
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Using the trapezoidal integral formula 578 

( ) ( )( ) ( )
2

b

a

f a f bf x dx b a +
= −∫                                                       (35)  579 

Equation 34 can then be expressed as 580 
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                      (36)  581 

The far approximation of 0 ( )J kr  shown in Equation 19 are applied in Equation 36.  582 

On the other hand, the azimuth-averaged MCBF shown in Equation 30 can be recast into 583 

( ) ( ) 4 4
2 2
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ij j
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∑∑ ∑          (37)  584 

 585 
In practical applications, the real part of ( )ijC r   is usually taken in F-J method. Ignoring the 586 

difference caused by tiny imaginary part and comparing Equations 36 and 37, it can be found that 587 

the relationship between MCBF and F-J is 588 

2

2Re ( , ) 4 ( , )kMCBF k MCBF FJ k
N
πω ω  ≈ =                                                 (38)  589 

That is to say, as far as the measurement of the azimuth-averaged phase velocity, MCBF is also 590 

equivalent to F-J, differing by a factor of 1 k . If we dividing MCBF4 by k  to remove the correction 591 

on the wavenumber in Figure 8b, the disturbing pixels around the area near the zero velocity would 592 

be reduced and the resulted dispersion image would comparable to those shown in Figure 4c and 593 

4e, the results of WCBF3 and F-J. Although it is the cosine rather than Bessel function appears in 594 

MCBF, the correction on the wavenumber in MCBF reduces the near field effect. The extracted 595 

velocity values are quite consistent with that given by WCBF and F-J, even at low frequencies, as 596 

shown in Figure 4f.  597 

As discussed before, similar as the extraction of azimuth-averaged velocity by CBF and WCBF, the 598 

velocity obtained by F-J is also the azimuth-averaged. Although F-J and MCBF are also equivalent 599 

for the estimation on azimuth-averaged velocity, the azimuth-dependence velocity can be 600 

estimated using MCBF by picking the velocities associated with the maxima of the beampower at 601 

a given azimuth. This cannot be achieved in principle via F-J by considering only the NCFs at a given 602 

azimuth. This is because the Bessel function appears in the F-J integration is the result of integrating 603 
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the exponential function over the omnidirectional azimuth. If only the NCFs at a given azimuth are 604 

considered in F-J, the Bessel function should be replaced by the exponential function, i.e., the MCBF 605 

scheme.     606 

 5. Aliasing and Its Reduction 607 

The aliasing is inevitable in practical applications due to the finite sampling. In this section, we 608 

demonstrate the aliasing features in terms of a simple cylindrical wavefield containing three eigen-609 

wavenumbers. Based on the theoretical representation of MCBF for the array with finite stations, 610 

a scheme is then proposed to eliminate the aliasing introduced by negative wavenumber.  611 

5.1. Aliasing and Its Features 612 

The CSDM of a cylindrical wavefield containing three dimensionless eigen-wavenumbers 1 1k =  , 613 

2 10k =   and 3 25k =   can be expressed as  0 1 0 2 0 3( , ) ( ) ( ) ( )C r J k r J k r J k rω = + +  . For the same 614 

sampling as that used in Figure 7, i.e., 0.2r∆ =   and max 6.0r =  , the resolved maximum and 615 

minimum wavenumber are respectively max min/ 15.7k rπ= = and min max/ 0.52k rπ= = . 616 

 617 

Figure 9. An illustration for aliasing wavenumbers and its reduction. The results are calculated by different imaging 618 

conditions for a cylindrical wavefield containing three eigenvalues of horizontal wavenumbers 1 1k = , 2 10k =  619 

and 3 25k = , which are denoted by vertical red dashed lines. The corresponding aliasing wavenumbers '
1k , '

2k  620 

and '
3k   are denoted by vertical green dashed lines. The resolved maximum wavenumber is denoted by gray 621 

dashed line. (a) The result of MCBF4. (b) The result of MCBF6. (d) The result of MCBF4-MCBF6. (d) The result of 622 

MCBF4+MCBF6.  623 
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Figure 9a shows the beamforming output of MCBF4. Three target eigen-wavenumbers are denoted 624 

by vertical red dashed lines.  maxk  estimated by Equation 15 is denoted by gray dashed line. Two 625 

aliasing wavenumbers '
1 max 12 30.4k k k= − =  and '

2 max 22 21.4k k k= − =  caused by the symmetry of 626 

1k   and 2k   are observed at maxk k>  , as shown by the vertical green lines. Similarly, due to the 627 

symmetry of 3k  , aliasing wavenumber '
3 max 32 6.4k k k= − =   is observed at maxk k<  .  The target 628 

wavenumbers correspond to the positive peaks of the beamforming output, while the aliasing 629 

wavenumbers are related to the zero-crossing points between two positive and negative peaks. If 630 

the modulus is taken as the imaging condition, the aliasing wavenumbers would behave as a trough 631 

between two extremes (See Figure S2 in the supporting information where the modulus is taken 632 

as the value for plotting). The presence of '
3k   could affect the identification of the eigen-633 

wavenumbers 1k   and 2k  , even if only the resolved target wavenumbers range min max[ , ]k k  634 

determined by the sampling theorem is considered.      635 

5.2. Theoretical Representation for Aliasing and Its Reduction 636 

Aliasing arises from the sampling on the traveling waves at two directions (Forbriger, 2003). The 637 

spatial wavefield described by 0 ( )J kr  can be thought as a cylindrical standing wave, which is the 638 

superposition of two cylindrical traveling waves propagating inward and outward. The 0 ( )nJ k r  can 639 

be expressed as    640 

( ) ( ) ( ) ( ) ( )1 2
0 0 01/ 2n n nJ k r H k r H k r = +                                                     (39)  641 

where (1)
0H  and (2)

0H  are respectively the first and second kind of Hankel function with zero-order. 642 

According to the convention of Fourier transform given in Appendix A, (1)
0H  represents the 643 

cylindrical wave propagating inwards while (2)
0H   represents the cylindrical wave propagating 644 

outwards. For the imaging condition MCBF4 in Equation 32, a plane wave represented by cosine 645 

function is used to fit the cylindrical standing wave via the operation of delay-and-sum. This means 646 

that two cylindrical waves propagating in opposite directions are fitted simultaneously. The eigen-647 

wavenumbers could be also estimated for the propagating wave inwards, i.e., propagating along 648 

direction −k  . In the range max[0, 2 ]k  , the aliasing wavenumber '
nk   can be observed at 649 
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'
max2n nk k k= −  due to the symmetry with the target wavenumber for +k  direction.  650 

Similar to the discussion in Xi et al. (2021) and Zhou and Chen (2021), we define MCBF6 as  651 

( ) ( )( )2

16 , Re , sin
4

N N

ij ij ij ij
i j

MCBF k r k C r kr
N

πω π ω   = −      
∑∑                         (40)  652 

The symbol  represents the Hilbert transform, the convention of which is given in appendix A. 653 

For the ideal cylindrical wavefield, 0( , ) ( )nC r J k rω = , and its Hilbert transform is 0 ( )nY k r , the zero 654 

order Bessel function of the second kind. Figure 9b shows the output of MCBF6, where both the 655 

actual and aliasing wavenumbers are observed. For the beampower around the positive peaks 656 

associated with the target wavenumbers, the result of MCBF6 is the same as that of MCBF4. 657 

However, for the beampower around the zero-crossing points associated with aliasing 658 

wavenumbers, the result of MCBF6 is the Centro symmetry of MCBF4. This means that the aliasing 659 

wavenumbers can be removed by summing the results of MCBF4 and MCBF6. In fact, the 660 

elimination of aliasing wavenumbers can be demonstrated analytically by investigating the 661 

theoretical representations of MCBF4 and MCBF6 for the finite sampling.       662 

Substituting 0( , ) ( )nC r J k rω = into Equations 32 and 40, for the sampling with small equal interval 663 

r∆ , we have (See appendix B for details) 664 
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                (41)  665 

where sinc( ) sinx x x=  is the sinc function, and ( 1) 2M N N= − . It can be found from Equation 666 

41 that the terms containing nk k−  and nk k+  are linearly separated. The linear combinations of 667 

MCBF4 and MCBF6 can be used to separate the terms containing only the argument nk k−  from 668 

the terms containing only argument nk k+  .  The corresponding imaging conditions can be 669 

expressed as   670 
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Figure 9c shows the result of 4 6MCBF MCBF− . Only the aliasing wavenumbers are observed at 672 

the zero-crossing points which are associated with '
max2  ( 1, 2,3)n nk k k n= − = . Figure 9d shows the 673 

result of 4 6MCBF MCBF+  where only the actual wavenumbers propagating in k direction are 674 

kept, which are associated with the positive peaks at nk k=  . Therefore, the linear combination 675 

4 6MCBF MCBF+  can be used to remove the aliasing caused by the propagating wave in −k  676 

direction. 677 

5.3. Numerical Simulation and the Example of the Field Data 678 

Table 1. The layered model (Zhou and Chen, 2021)  679 

Layer thickness 

 (km) 

P wave velocity 

(km/s) 

S wave velocity 

 (km/s) 

Density 

( 3/g cm ) 

0.025 1.35 0.2 1.9 

∞  2.0 1 2.5  

 680 

In this section, the aliasing and its reduction are investigated by numerical simulation. The two-681 

layered model shown in Table 1 is considered. This model has been discussed in Wathelet et al. 682 

(2008), Xi et al. (2021) and Zhou and Chen (2021). The quality factor Q is neglected here since it 683 

does not affect current discussion. The vertical component of Rayleigh wave is considered in the 684 

numerical simulation. Substituting the CSDM represented by Equation 18 into Equations 32 and 40, 685 

the dispersion images in f-v and f-k domain can be obtained by the imaging conditions MCBF4 and 686 

MCBF6 and their linear combinations. 687 

In the simulation, we take the maximum radial distance max 200r m=  and the interval 10r m∆ = . 688 

Figure 10 shows the final results for different imaging conditions. Figure 10a and 10e show the 689 

results of MCBF4 in f-k and f-v domain, respectively. The corresponding results of MCBF6 are 690 
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presented in Figure 10b and 10f. The aliasing wavenumbers caused by the waves propagating in 691 

−k  direction can be observed in Figure 10a and 10b, which appears as the maxima energy belt 692 

with negative slope. In f-v domain, as shown by Figure 10e and 10f, this aliasing appears as a 693 

hyperbolic shape with vertex close to the origin. As expected, the sign of the result on either side 694 

of the zero-crossing points associated with the aliasing wavenumber is reversed for MCBF4 and 695 

MCBF6. The target wavenumbers are associated with the maxima both for MCBF4 and MCBF6. As 696 

a result, this aliasing can be separated and removed using the linear combinations of MCBF4 and 697 

MCBF6. The separated aliasing in f-k and f-v domain are respectively shown in Figure 10d and 10h, 698 

which are the results of 4 6MCBF MCBF− . Figure 10c and 10g show the corresponding results of 699 

4 6MCBF MCBF+ , where the aliasing caused by waves propagating in −k  direction is removed.   700 

 701 

Figure 10. An illustration of the aliasing and its reduction. The panels at top row are the results in f-k domain 702 

while the panels at lower row are the corresponding results in f-v domain. (a) The dispersion image in f-k domain 703 

obtained MCBF4. (b) The result of MCBF6. (c)The result of MCBF4+MCBF6. The aliasing caused by the waves 704 

propagating in −k  direction is removed. (d)The separated aliasing obtained by MCBF4-MCBF6. (e)-(h) are the 705 

corresponding results in f-v domain of (a)-(d). The wavenumber of maxk  and max2k are denoted by black dashed 706 

lines.        707 

In Figure 10a, there also exist another periodic aliasing caused by limited sampling. Opposite to the 708 

aliasing shown in Figure 10d, the energy belts presented this periodic aliasing has a positive slope 709 

in f-k domain, as shown in the area above the dashed line of max2k k=  in Figure 10c. This periodic 710 

aliasing repeats with a period of max2k  and cannot be removed using 4 6MCBF MCBF+ . As an 711 
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artifact, this periodic aliasing appears more pronounced in f-k domain. In f-v domain, as shown in 712 

Figure 10g, it appears in the area under the black dashed line of max2k k=  , a region with high 713 

frequency but low velocity. Therefore, in the resolved frequency range determined by sampling, 714 

this aliasing generally has little impact on the identification of dispersion curves in f-v domain. 715 

 716 

Figure 11. An illustration for the separation and elimination of the aliasing wavenumbers for the array shown in 717 

Figure 1a. (a) The result of MCBF6. (b) The result of MCBF4+MCBF6. (c) The result of MCBF4-MCBF6. (d) The 718 

same as (b) but only the positive values are color-coded.    719 

Figure 11 presents the results of MCBF6 and the linear combination of MCBF4 and MCBF6 for the 720 

data from the array shown in Figure 1a. It shows the improvement of the dispersion image after 721 

removing aliasing by the imaging conditions MCBF4+MCBF6 is not significant. In other words, the 722 

aliasing of the dispersion image given by MCBF4 itself is not obvious, as shown in Figure 8b. We 723 

speculate that this is related to the irregular station distribution of the real array. The summation 724 

over the NCFs inside the array reduces the aliasing. This is different from the numerical simulation 725 

shown in Figure 10e, where the regular sampling with equal intervals is adopted. The fact that the 726 
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aliasing can be reduced by random station distribution can also be observed for the synthetic data 727 

in section 6.1.  728 

6.  Synthetic Data and More Examples of the Real World  729 

6.1. Example of the Synthetic Data 730 

6.1.1. Model and the Synthesis of Ambient Seismic Noise 731 

In this section, we investigate the extraction of multimode dispersion curves of Rayleigh wave using 732 

WCBF and MCBF based on the synthetic data. The same layered model shown in Table 1 is 733 

considered.  734 

 735 

Figure 12. (a) The source (red dots) distribution and the receiver (blue triangles) array. (b) The random distributed 736 

stations of the receiver array. (c) Examples on the segments of synthetic ambient noise recording. (d) The 737 

distribution of the number of station pairs as a function of the interstation distance and azimuth. (e) The ARF of 738 

the receiver array.  739 

To synthesize the data, 10,000 sources randomly distributed over 1.0-1.5 km annular region are 740 

used to excite the vertical component of the Rayleigh wave, as shown by the red dots in Figure 12a. 741 

Each source is assumed to be the vertical point force with random intensity between 0-1. The 742 

source function is a Ricker wavelet with center frequencies distributed randomly between 0-25 Hz. 743 
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The onset time of the sources is distributed randomly between 0-3,600 s. The waveform at the 744 

receiver excited by each source is calculated by the dot product of the vertical point force and the 745 

Green’s function shown in Equation 18. The noise data with 1-hour duration is then synthesized by 746 

summing the waveform for all sources. As shown in Figure 12a and 12b, 200 stations distributed 747 

randomly within a square array of 0.2 km × 0.2 km are designed to record the noise data. Figure 748 

12c shows some segments of the synthetic ambient noise recording at 40 stations. Figure 12d 749 

shows the distribution of the number of station pairs as a function of the interstation distance and 750 

azimuth. Figure 12e shows the ARF of the array.   751 

6.1.2. Wavefield and Multimode Dispersion Curves Extracted by WCBF and MCBF 752 

 753 

Figure 13. The wavefield (real part of the Fourier transformed NCFs) at six selected frequencies across the array 754 

shown in Figure 12b, plotted as a function of the orientation (azimuth) and interstation distance (radial direction). 755 

The amplitude in each panel is normalized by the maximum. 756 

Plotted as a function of the orientation and interstation distance, the wavefield at six selected 757 

frequencies across the array shown in Figure 12b are presented in Figure 13. They are the real part 758 

of the Fourier transformed NCFs of the interstation inside the array. The amplitude in each panel is 759 

normalized by the maximum.  760 
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As we discussed in sections 3.2 and 4.3, under the assumption of lateral isotropy, if the distribution 761 

of the sources and the interstation orientation is uniform enough, the wavefield would be radially 762 

symmetric. The wavefield at different azimuth can be projected into the radial direction, as shown 763 

in Figure 14. The spectrum of NCFs is then just a radial sampling on the cylindrical wavefield across 764 

the array by arranging the NCFs according to their interstation distance. For F-J method, the integral 765 

over the distance r  is conducted using the sampling values shown in Figure 14. This operation is 766 

similar as the azimuth-average in BF.   767 

 768 

Figure 14. The wavefield variation as a function of radial distance by projecting results at six frequencies in Figure 769 

13 into one direction. The blue and red dashed lines represent the Bessel functions 0 ( )J kr with argument kr .   770 

In Figure 14, the blue and red dashed lines represent the Bessel functions 0 ( )J kr with argument 771 

kr . The wavenumber k associated with the eigenvalues are labeled with corresponding color. It 772 

can be found the variation of the wavefield can be approximated by 0 ( )J kr   if only one eigen-773 

wavenumber is expected, as illustrated by Figures 14a and 14b where only one mode is observed 774 

at frequencies 3 and 5 Hz. If more than one eigen-wavenumbers are expected, the wavefield will 775 
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be the weighted superposition such as   0 ( )n n
n

W J k r∑   as shown in Figure 14c-14f where more 776 

than one mode is observed at frequencies 7.5, 11, 15 and 20 Hz. It seems that the Bessel function 777 

0 0( )J k r  with characteristic wavenumber 0k  of the fundamental mode fit well with the synthetic 778 

wavefield in Figure 14c-14f.  This is because the fundamental mode makes a major contribution to 779 

the synthetic record (See Figure S3 in the supporting information for the fit of the theoretical and 780 

synthetic wavefield at frequencies 7.5, 11, 15 and 20 Hz).  781 

  782 

 Figure 15. The dispersion image obtained by different beamforming schemes. (a) The result of WCBF1. (b) The 783 

result of WCBF3. (c) The result of MCBF4. (d) The result of MCBF4+MCBF6.   784 

Figure 15 shows the dispersion images obtained by different beamforming schemes. The dispersion 785 

curves of the first four modes (modes 0-3) can be observed clearly from the results of WCBF and 786 

MCBF. The difference between WCBF and MCBF is slight since the model is lateral isotropic. As we 787 

observed in Figure 8b for the data from the field data, significant aliasing is not observed in the 788 

result of MCBF4 in Figure 15c. Even the tiny interferences can be observed at frequencies higher 789 

than 15 Hz for the result by antialiasing strategy MCBF4+MCBF6, as shown in Figure 15d. As 790 
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discussed before, we attribute this to the random distribution of stations in the array. Unlike the 791 

regular sampling, aliasing is not coherent for random sampling. As a result, the aliasing is reduced 792 

even for the result of MCBF4 for the array with station distributed randomly. As a verification, in 793 

Figure S4 of the supporting information, we present an example of the synthetic data for the array 794 

with stations regularly distributed. We find that for the array with stations regularly distributed, the 795 

manifest aliasing appears for the results of MCBF4, while antialiasing strategy MCBF4+MCBF6 can 796 

effectively eliminate the aliasing (See Figure S4 in the supporting information). 797 

6.2. More Examples at Different Scales  798 

6.2.1. Example for a Nearly Linear Array in Haiyuan  799 

 800 

Figure 16. (a) The station distribution of the subset (twenty-nine stations) from Haiyuan array. (b) The distribution 801 

of the number of station pairs as a function of interstation spacing and azimuth. (c) The ARF of the array in (a).   802 

The extraction of multimode Rayleigh waves using WCBF and MCBF are illustrated above based on 803 

the data from Tongzhou array which is located in the east of Beijing, and mainly on the north China 804 

plain (Qin et al, 2022). An example using the data from the other array located on the northwest 805 

China is investigated in this section. The array consists of more than 600 stations with a spacing of 806 

300m–2km, and observations were conducted around the Haiyuan fault from October 2020 to 807 

December 2020. The Haiyuan fault is a main active fault in northwest China, and the 1920 M8.0 808 

earthquake occurred on this fault. The array is designed to investigate the fine structure around 809 

the fault. The subset stations in the array as shown in Figure 16a were chosen to illustrate the 810 

extraction of multimode surface waves by WCBF and MCBF. The stations of this subarray are 811 

roughly linearly distributed. The minimum and maximum interstation distance are  min 0.27kmr =  812 

and max 11.22kmr = , respectively. Figure 16b shows the distribution of the number of station pairs 813 
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as a function of the interstation spacing and azimuth.  Figure 16c shows the ARF of the subarray in 814 

Figure 16a. 815 

 816 

Figure 17. The dispersion image obtained by different imaging conditions for the array shown in Figure 16a. (a) 817 

and (b) are the results of CBF with the same normalization strategies as those used in Figures 1b and 1d, 818 

respectively. (c) and (d) are the results of WCBF1 and WCBF2, respectively. (e) and (f) are the results of MCBF4 819 

and MCBF4+MCBF6. Only the positive values are color-coded in (c)-(f).  820 

Figure 17 shows the dispersion image obtained by different imaging conditions of beamforming 821 

for the array consisting of twenty-nine stations shown in Figure 16a. Figure 17a and 17b show the 822 

results of CBF with the same normalization strategies as those used in Figure 1b and 1d, 823 

respectively. Figure 17c and 17d are the results of WCBF, where the result of WCBF3 are equivalent 824 

to that obtained by F-J method. The results of MCBF are given in Figures 17e and 17f. It can be 825 

found that in order to obtain the dispersion image with the same clarity, larger number of stations 826 

may be required for conventional CBF. Correction for wavenumber and propagation distance can 827 

significantly improve the clarity of the dispersion image. Again, consistent with the previous 828 

discussion, due to the irregular station distribution, the result of MCBF4 is similar to that of the 829 

designed anti-aliasing scheme MCBF4+MCBF6, and no obvious aliasing is observed. 830 

6.2.2. Examples for the USArray and ChinArray at Regional Scale  831 

The average station spacing of the above two example arrays shown in Figure 1a and Figure 16a is 832 
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about 1 km. They are subsets sampled from two dense arrays at local scale. The effective frequency 833 

range of the extracted multimode dispersion curves is about 0.3-3 Hz. Two examples for the 834 

subarray at regional scale are presented in this section.  835 

One array is the subset sampled from USArray. Figure 18a shows the station map of this array 836 

which contains 108 stations with an average station spacing of 70 Km. A total ninety days 837 

continuous waveform recorded from 1 June 2011 to 31 August 2011 are used. Figure18b shows 838 

the dispersion image obtained by MCBF. The fundamental (mode 0) and five higher modes (modes 839 

1-5) are clearly observed. The effective frequency range is about 0.03-0.6 Hz, depends on the mode 840 

branches. In such a relatively wide frequency band, different modes correspond to varying 841 

wavelengths and propagation velocities, as a result, the modes usually cannot be separated 842 

apparently in the time domain for the interstation NCFs (See Figure S5 in the supporting 843 

information for the interstation NCFs whithin the array). This means the mode separation in the 844 

time domain is not a requirement for extracting multimode dispersion curves using MCBF. As a 845 

comparison, the theoretical dispersion curves predicted by the reference model are presented by 846 

dashed lines. The reference model is obtained by averaging the model under the array given by 847 

Shen and Ritzwoller (2016).  848 

Another array is the subset sampled from ChinArray (Phase II). As shown in Figure 18c, this array 849 

contains 104 stations with an average station interval of 30km. K. Wang et al. (2020) have extracted 850 

the fundamental mode Rayleigh wave between 7 and 35 s using the conventional CBF. We applied 851 

the NCFs, which are the stacking results of three months continuous records (from 1 January 2014 852 

to 31 March 2014), to investigate the extraction of higher modes by MCBF. The resulted dispersion 853 

image is shown in Figure 18d. The white dashed lines denote the dispersion curves predicted by 854 

the averaged model under the array given by K. Wang et al. (2020). For the fundamental mode 855 

Rayleigh wave, the predicted dispersion curve agrees well with the observed one in the frequency 856 

range of 7 -35 s. This is not surprised since the model given by K. Wang et al. (2020) is derived from 857 

the inversion of the fundamental mode Rayleigh dispersion curve at this frequency rang. However, 858 

for the fundamental mode Rayleigh wave at frequencies higher than 0.14 Hz (7 s) and the higher 859 

modes, the predicted dispersion curve deviated from the observed one. This phenomenon can also 860 

be observed for the USArray shown in Figure 18b, where the predicted dispersion curves for the 861 
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higher modes and the fundamental mode with frequencies above 0.3 Hz also deviate from those 862 

observed. We inverted for a new model using extracted multimode dispersion curves. The 863 

predicted dispersion curves using the new inverted model agree well with the observed one (See 864 

Figure S6 in the supporting information for the inverted model using multimode surface wave and 865 

the corresponding predicted dispersion curves). This gives an illustration on the importance of high 866 

modes in surface wave inversion.   867 

 868 

   869 
Figure 18.  Two examples on the extraction of multimode dispersion curves using MCBF for the array at regional 870 

scale, whicn are the subsets of the USArray (a) and ChinArray (c), respectively. The stations inside the array used 871 

in this paper are presented by blue triangles in left panels. The corresponding dispersion images obtained by 872 

MCBF are shown in right panels. The white dashed lines in (b) are the predicted dispersion curves for the 873 

averaged model from Shen and Ritzwoller (2016). In (d), the white dashed lines are the predicted dispersion 874 

curves for the averaged model from K.Wang et al. (2020).    875 
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6.3. The Influence of the Parameters on the Results of MCBF  876 

6.3.1. The Time Length of the Recordings  877 

 878 

Figure 19. Bandpass (0.2-5 Hz) filtered NCFs for the interstation within the array shown in Figure 16a, which are 879 

retrieved from recording length of 1 hour (a), 1 day (c) and 1 week (e), respectively. The corresponding dispersion 880 

images obtained by MCBF are presented in right panels.  881 

Besides the ability to extract multimode surface wave dispersion curves, another advantage of BF 882 

over traditional NCF-based methods is that phase velocities can be estimated accurately using 883 

quite shorter recordings. For the array data shown in Figure 1a, Qin et al. (2022) found that 884 
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recordings as short as a few hours to days are sufficient to extract reliable dispersion curves of the 885 

fundamental and the first higher mode between 0.3 and 1.5 Hz by CBF. This is consistent with the 886 

conclusion of Roux and Ben-Zion (2017), who estimated reliable phase velocities for the 887 

fundamental mode Rayleigh waves using the recording with similar length from California network. 888 

The same conclusion can also be obtained for MCBF for the array shown in Figure 1a (See Figures 889 

S7 and S8 in the supporting information for the corresponding results of MCBF for the array shown 890 

in Figure 1a). Furthermore, for the same recording length, the energy of the dispersion image given 891 

by MCBF is more concentrated on the dispersion branches than that given by CBF, resulting in a 892 

clean dispersion image with few artifacts (e.g., seen by comparing Figure S7 in the supporting 893 

information with Figure 7 in Qin et al. (2021)). 894 

For the array shown in Figure 16a, we calculated the NCFs by stacking the different recording 895 

length of 1 hour, 1 day and 1 week, respectively. The bandpass (0.2-5 Hz) filtered NCFs retrieved 896 

from different recording lengths and corresponding dispersion image obtained by MCBF are 897 

presented in Figure 19. As expected, the longer the recording length, the higher the signal-to-noise 898 

ratio (SNR) of the NCFs and, correspondingly, the wider the frequency band of the dispersion 899 

curves resolved by MCBF. Also, the dispersion image looks cleaner for long time recordings due to 900 

fewer artifacts. However, the width of the energy band along two dispersion branches, which is 901 

often an indicator on the precision of the velocity measurement, does not narrow significantly as 902 

the recording length increases. This implies the recording length is not the main factor affecting 903 

the precision of velocity estimation, and it mainly control the resolved frequency band and the 904 

artifacts occurred in the image.  905 

6.3.2. The Number of Stations 906 

As discussed in section 2.3, for the time series with the same length, the resolved frequency band 907 

and the resolution of the dispersion measurement by BF depend on the wavefield beneath the 908 

array and ARF. The wavefield mainly depends on the complexity of the velocity structure under the 909 

array, which affects the emergence of interstation NCFs and thus the quality of the dispersion 910 

image. For real arrays with known station distribution, our main concern is the effect of ARF, which 911 

is determined by the array configuration, and thus by the array size, shape, interstation distance 912 
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and the number of stations inside the array. For the measurements of the azimuth-averaged phase 913 

velocity, or in other words, assuming the structure beneath the array does not vary with azimuth, 914 

the number of stations is a major factor affecting the measurement accuracy. This is because the 915 

algorithm in MCBF can be thought as a discrete summation of an integral with Fourier transformed 916 

NCFs as the kernel. The accuracy of the integral is determined by the number of NCFs and the 917 

intervals between them, which are mainly related to the number of stations (rather than array 918 

shape) for a given array configuration.   919 

 920 

Figure 20. The dispersion images obtained by MCBF using the subsets of the stations inside the array shown in 921 

Figure 1a. The size of the subarrays represented by blue triangles in left panels are 7×7 km2, 5×5 km2 and 3×3 922 

km2. The number of stations are 44, 26 and 12, respectively. The corresponding dispersion image for these three 923 

subarrays are presented in right panels. Only the positive value is color-coded in the dispersion images (See 924 

Figure S9 in the supporting information where both the positive and negative values are color-coded). 925 
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The number of stations mainly depends on the size of the array if the station distribution is given. 926 

Therefore, in order to ensure the accuracy of reliable dispersion measurements and sufficient 927 

lateral resolution, a trade-off between the array size and the number of stations within the array 928 

needs to be made when applying BF technique with moving subarrays. For the array data shown 929 

in Figure 1a, Qin et al. (2022) investigated the influence of the number of stations on the estimation 930 

of dispersion curves using CBF through tentative experiments and to determine the appropriate 931 

size of the array. Using the same dataset, we analyze the effect of the station number on the results 932 

of MCBF.   933 

The array aperture in Figure 1a is about 10×10 km2. To reduce the array size, we take the subset 934 

of the stations from the upper left corner of the array to get three square subarrays with sizes of 935 

7×7 km2, 5×5 km2 and 3×3 km2. The station distributions of these subarrays are presented by blue 936 

triangles in left panels of Figure 20. The corresponding dispersion images obtained by MCBF are 937 

given in right panels of Figure 20. The number of stations of these three subarrays are 44, 26 and 938 

12, respectively.  939 

It can be seen from top to bottom panels in the right column of Figure 20, as the station number 940 

decreases, the reliable frequency band reduces and the energy bands along the two dispersion 941 

branches widen. This implies the reduction in the array size and thus the number of stations 942 

resulted in a narrowing of the resolved frequency range and reduced measurement accuracy, 943 

similar to the observation in Qin et al. (2022) for the results of CBF. However, compared with Figure 944 

6 in Qin et al. (2022), the dispersion image given by MCBF in Figure 20 is much clearer and less 945 

interference from aliasing. 946 

6.3.3. The Geometry of the Array 947 

As a function of the azimuth, the beamforming output depends on the shape of the array, 948 

especially the azimuth distribution of the dominant station-pair orientation would seriously affect 949 

the azimuth distribution of the beampower. However, for the azimuth-averaged velocity, the effect 950 

of the array shape on the dispersion image is slight. Figure 21 shows the results of MCBF for three 951 

subsets with different shape sampled from the array shown Figure 1a. The blue triangles in the left 952 

panels of Figure 21 denote the station map of three subsets, which are approximately circular (a), 953 
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L-shaped (c) and linear (e), respectively. The corresponding result of MCBF for each subset is given 954 

in the panels of the right column. The energy belts along two dispersion branches can be resolved 955 

for these three subarrays. Although the reliable frequency range and resolution are slightly 956 

different. Figures 21b and 21f show that the phase velocities along two mode branches are quite 957 

similar to those obtained from square arrays in Figures 20b and 20f.  958 

 959 

Figure 21. Dispersion images obtained by MCBF using the subsets with different shapes of the array in Figure 1a. 960 

The blue triangles in the left panels denote stations of within three subsets, which are approximately circular (a), 961 

L-shaped (c) and linear (e), respectively. The station numbers N are labeled in each panel. The corresponding 962 

result of MCBF for each subset is given in the panels of the right column. Only the positive value is color-coded 963 

in the dispersion images (See Figure S10 in the supporting information where both the positive and negative 964 

values are color-coded). 965 
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Figure 21d shows that the dispersion curve of the fundamental mode intersects that of the first 966 

higher mode at 0.6 Hz for the result of the L-shaped array, slightly different from the results of the 967 

square array shown in Figure 20. This may be due to the fact that the stations involved in the L-968 

shaped array covers different tectonic units (Qin et al., 2022). The assumption that the model 969 

under the array is laterally isotropic does not hold any more. Generally speaking, for the extraction 970 

of azimuth-averaged velocity, the effect of the array shape on the dispersion curve is much smaller 971 

than that of the station numbers. This conclusion holds for WCBF and CBF, as well as MCBF. As for 972 

the extraction of the azimuth-dependence velocity, the shape of the array would affect the 973 

beamforming output and thus the velocity estimation for WCBF and CBF. However, the array shape 974 

does not significantly affect the results of MCBF, even for the estimation on the azimuth-975 

dependence velocity.       976 

7. Discussion and Conclusions 977 

The deployment of dense array at different scale is becoming a routine operation in observational 978 

seismology. It is therefore becoming possible to directly obtain the lateral variation of the velocity 979 

under the array by applying the array-based surface wave method to the subset of the dense array 980 

through the moving window technology. As two array-based techniques for extracting multimode 981 

surface wave from noise recording, BF and F-J methods have been developed independently, 982 

based on the physical interpretations from different point of view. In this paper, the equivalence 983 

of BF and F-J methods are proved as far as their application in extracting multimode dispersion 984 

curves is concerned. The weighted (WCBF) and modified (MCBF) BF methods are proposed and 985 

their explicit relationship to the F-J method is given. For the finite sampling on spatial wavefield in 986 

practical applications, explicit theoretical representations of the BF technique are given for 987 

different imaging conditions. These representations can be used to investigate analytically the 988 

features of the dispersion image and how the aliasing is eliminated. The proposed methods are 989 

validated both for the synthetic data and the real data from the dense array at different scales. In 990 

summary, the main conclusions of this paper are as follows: 991 

(1) For the conventional CBF, the plane wave at a given azimuth is projected into the station pairs 992 

distributed at different orientation. This operation on azimuthal average physically means that 993 



49 

 

the structure beneath the array are laterally uniform. Mathematically, azimuth-average would 994 

express the plane waves represented by the complex exponential function cosikre θ  as the Bessel 995 

function 0 ( )J kr , which results in an additional geometric spread factor of 1 kr  and 4π−  996 

phase shift (i.e., the difference of the far field approximation of 0 ( )J kr  and cosine function 997 

cos( )kr ).   998 

(2) Considering the fact mentioned in (1), WCBF is proposed to correct the geometric spread factor 999 

(Since the NCF also has 4π−  phase shift relative to the plane wave, the phase correction is 1000 

not needed in WCBF). By comparing the operation on the projection of plane waves in WCBF 1001 

and the integration with kernel of 0 ( )J kr in F-J, it is found the WCBF is equivalent to F-J, 1002 

differing by a factor 1 k . This means the assumption that the structure under the array is 1003 

laterally homogeneous is also made in F-J method. The F-J transform is theoretically 2D Fourier 1004 

transform of the radially symmetric function. The velocity obtained by WCBF and F-J is the 1005 

azimuth-averaged result. The subtle differences in the azimuth-averaged velocities obtained 1006 

by BF and F-J may originate from the strategy for numerical calculation. If WCBF and F-J are 1007 

used to extract the azimuth-dependence velocity, for instance, by picking the azimuth-1008 

dependence maximum of the beampower in WCBF or by considering only the NCFs at expected 1009 

azimuth in F-J, the errors caused by the array geometry is inevitable.  1010 

(3) Since both WCBF and F-J assume that there is no lateral variation in the velocity structure under 1011 

the array, we proposed a MCBF scheme in which the projection of the plane waves into the 1012 

station pairs is omitted. For a given station pair, only the incident plane wave that is consistent 1013 

with its orientation is considered in MCBF. For the azimuth-averaged velocity, the dispersion 1014 

image with the same even high resolution as that given by WCBF and F-J can be obtained by 1015 

MCBF. Furthermore, in contrast to WCBF and F-J, azimuth-dependence velocity can also be 1016 

measured by MCBF independent of the array geometry theoretically. The explicit relationship 1017 

between the azimuth-averaged MCBF and F-J is given. 1018 

(4) For an ideal cylindrical wavefield, the theoretical representations of MCBF for different imaging 1019 

conditions are derived for the finite spatial sampling. The beamforming output of the MCBF for 1020 
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the imaging conditions with sine and cosine functions as the basis function can be expressed 1021 

as the summation of the products between trigonometric and sinc functions with the 1022 

arguments nk k−  and nk k+ . The characteristic wavenumbers nk  and aliasing wavenumbers 1023 

nk−  are associated with the maximum, or the zero-crossing points between two peaks of the 1024 

beampower, depending on the choice of the basis function. The beamforming output contains 1025 

the items only with the argument nk k−  or nk k+  can be achieved by the linear combination 1026 

of different imaging condition. The aliasing wavenumbers can thus be separated and removed.   1027 

(5) The validity of the proposed methods is illustrated by synthetic data and the data of the dense 1028 

array at different scales. For the azimuth-averaged velocity, the results are less affected by the 1029 

array geometry, both for WCBF and MCBF. The resolution and reliable frequency range of the 1030 

dispersion image are controlled mainly by the number of stations, which depends on the array 1031 

size and interstation spacing. In addition, the dispersion curves can be estimated with adequate 1032 

accuracy using quite short recordings, for instance over a few hours to days. This offers the 1033 

possibility on the rapid assessment of the medium properties. 1034 
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Appendix A: Convention for the Fourier transform, Hilbert transform and cross-correlation 1045 

The following convention for Fourier transform from the time ( t ) domain to the frequency (ω ) 1046 

domain is adopted in this paper. 1047 

https://ds.iris.edu/ds/nodes/dmc%20/data/types/waveform-data
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Accordingly, for the Fourier transform from the space ( r ) domain to the wavenumber domain ( k ) 1049 

we use the convention 1050 
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( )f t  and ( )F ω  , as well as ( )f r   and ( )F k   are two Fourier transform pairs. These conventions 1052 

imply the plane wave expression ikx i te e ω−  describes the wave propagating in the positive x , while 1053 

ikx i te e ω+  describes the wave propagating in the negative x . For the cylindrical wave in the Cartesian 1054 

coordinate system with z  downwards, the zero-order Hankel function (1)
0 ( )H kr  of the first kind 1055 

represents the converging wave and the zero-order Hankel function (2)
0 ( )H kr  of the second kind 1056 

represents the wave propagating outwards. 1057 

The Hilbert transform of the function ( )s x  is defined as 1058 

  
1 ( )( )  [ ( )] P.V. s xs t s x d

t x
τ

π

+∞

−∞

= =
−∫                                                       (A3) 1059 

where P.V. represents the principal value of the Cauchy integral. Under this definition, the 1060 

analytical signal ( )S t of the real-value signal ( )s t  can be expressed as 1061 

( ) ( ) [ ( )]S t s t i s t= +                                                           (A4) 1062 
The symbol  represents the Hilbert transform.  1063 

The cross-correlation of two (complex) signals is defined as  1064 

*( ) ( ) ( )fgC f t g t dtτ τ
+∞

−∞

= +∫                                                      (A5) 1065 

where superscript * represents complex conjugate. If the Fourier transform of ( )g t  is ( )G ω . 1066 

According to this definition and the above convention for Fourier transform, we have 1067 
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i
fgC F G e dωττ ω ω ω
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i.e. ( )fgC τ  and *( ) ( )F Gω ω  are Fourier transform pair. Cross-correlation in the time domain 1069 

corresponds to the product in the frequency domain by taking complex conjugate of one of them.  1070 

Appendix B: Theoretical Representation of MCBF 1071 

For an ideal cylindrical wavefield, substituting 0( , ) ( )nC r J k rω =  into Equation 30. The azimuth-1072 

averaged MCBF can be written as   1073 
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In Equation B1, the far field approximation of 0 ( )nJ k r  shown in Equation 20 is applied. The double 1075 

summation over the number of stations means the summation over the interstation distance ijr . 1076 

Since the geometric spread is corrected by multiplying ijr  in Equation B1, the autocorrelation for 1077 

i j=   is excluded. The cross-correlations for i j≠   are counted twice for the same interstation 1078 

distance ij jir r= . Equation B1 can then be written as   1079 
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where  ( 1) 2M N N= − . Let 1081 

1cos( )cos( ) cos( ) sin( )
4 4 2

M M

n j j n j j n j j
j j

CC k r kr k r kr k r krπ π  = − − = − + + ∑ ∑                      (B3) 1082 

It is assumed the cylindrical wavefield is sampled spatially in radial distance with equal interval r∆ . 1083 

We have jr j r= ∆ . Equation B3 can be rewritten as  1084 

[ ]1 cos( ) sin( )
2

M

n n
j

CC k k j r k k j r= − ∆ + + ∆∑                                                   (B4) 1085 

Applying the Equations 1.342.1 and 1.342.2 in Gradshteyn and Ryzhik (2007,P37) 1086 
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Equation B4 can be recast into 1088 
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where 1090 
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is the Dirichlet sinc function. For a small r∆   and large M  , we have sin r r∆ = ∆  , 1092 

( 1)R M r M r= ∆ ≈ + ∆ . Equation B6 can be approximately expressed as  1093 
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where sinc( ) sinx x x=  is the sinc function. Similarly, it can be deduced 1095 
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The modulus of CC iCS+  can be approximated as  1098 
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We therefore have 1100 
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The theoretical representations of the azimuth-averaged MCBF with different imaging conditions 1102 

can then be written as 1103 
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Theoretically, MCBF1 is equivalent to MCBF4. However, in practice, the cross spectrum ( ),C r ω ,  1105 

i.e., the Fourier transform of NCFs is usually complex rather than the perfect Bessel function 0 ( )J kr . 1106 

We therefore define MCBF1 and MCBF4 with ( ),C r ω  and ( )Re ,C r ω   , respectively.  1107 
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