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Abstract

Recent progress in the direct measurement of turbulent dissipation in the Arctic Ocean has highlighted the need for an im-

proved parametrization of the turbulent diapycnal diffusivities of heat and salt that is suitable for application in the turbulent

environment characteristic of this polar region. In support of this goal we describe herein a series of direct numerical simulations

of the turbulence generated in the process of growth and breaking of Kelvin-Helmholtz billows. These simulations provide the

data sets needed to serve as basis for a study of the stratified turbulent mixing processes that are expected to obtain in the

Arctic Ocean environment. The mixing properties of the turbulence are studied using a previously formulated procedure in

which the temperature and salinity fields are sorted separately in order to enable the separation of irreversible Arctic mixing

from reversible stirring processes and thus the definition of turbulent diffusivities for both heat and salt that depend solely

upon irreversible mixing. These analyses allow us to demonstrate that the irreversible diapycnal diffusivities for heat and salt

are both solely dependent on the buoyancy Reynolds number in the Arctic Ocean environment. These are found to be in close

agreement with the functional forms inferred for these turbulent diffusivities in the previous work of Bouffard & Boegman

(2013). Based on a detailed comparison of our simulation data with this previous empirical work, we propose an algorithm that

can be used for inferring the diapycnal diffusivities from turbulent dissipation measurements in the Arctic Ocean.
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Recent progress in the direct measurement of turbulent dissipation in the Arctic Ocean has7
highlighted the need for an improved parametrization of the turbulent diapycnal diffusivities8
of heat and salt that is suitable for application in the turbulent environment characteristic9
of this polar region. In support of this goal we describe herein a series of direct numerical10
simulations of the turbulence generated in the process of growth and breaking of Kelvin-11
Helmholtz billows. These simulations provide the data sets needed to serve as basis for a12
study of the stratified turbulent mixing processes that are expected to obtain in the Arctic13
Ocean environment. The mixing properties of the turbulence are studied using a previously14
formulated procedure in which the temperature and salinity fields are sorted separately in15
order to enable the separation of irreversible Arctic mixing from reversible stirring processes16
and thus the definition of turbulent diffusivities for both heat and salt that depend solely upon17
irreversible mixing. These analyses allow us to demonstrate that the irreversible diapycnal18
diffusivities for heat and salt are both solely dependent on the buoyancy Reynolds number in19
the Arctic Ocean environment. These are found to be in close agreement with the functional20
forms inferred for these turbulent diffusivities in the previous work of Bouffard & Boegman21
(2013). Based on a detailed comparison of our simulation data with this previous empirical22
work, we propose an algorithm that can be used for inferring the diapycnal diffusivities from23
turbulent dissipation measurements in the Arctic Ocean.24

1. Introduction25

In the weakly-turbulent, strongly stratified Arctic region, direct measurements of turbulent26
dissipation have been extremely scarce (e.g. Padman&Dillon (1987), Bourgault et al. (2011),27
Shroyer (2012), Shaw & Stanton (2014)), until very recently. The increasing importance of28
the Arctic region from the perspective of global climate and the role of the oceans in climate29
change processes in general has led to an increasingly sharp focus on Arctic Ocean mixing30
processes. This includes an increasing number of direct measurements of viscous dissipation31
rate ε (see Scheifele et al. (2018) and Scheifele et al. (2021) for example) performed in32
the Arctic with high-resolution conductivity-temperature-depth (CTD) profilers. These new33
measurements are expected to significantly enhance our knowledge of vertical mixing and34
thereby improve the accuracy of the estimation of melt-rates of Arctic sea-ice.35

† Email address for correspondence: yc.ma@mail.utoronto.ca
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2 Y. Ma and W. R. Peltier

However, in the process of inferring the operative diapycnal diffusivities from the available36
turbulence measurements, the historically important model of Osborn (1980) has continued37
to be applied together with the assumption of a constant flux coefficient Γ = 0.2 for mixing38
efficiency. This somewhat crude yet still fashionable methodology for the parametrization39
of diapycnal diffusivities may potentially lead to large systematic errors in the estimation40
of Kρ, for example, given that the canonical Osborn formula relies upon several especially41
questionable assumptions when it is directly applied to the Arctic Ocean environment.42
First, the Arctic Ocean is a strongly stratified ocean with much lower turbulence intensities43
compared with the low and mid-latitude oceans. Previous studies (e.g. Shih et al. (2005))44
suggested that at low-turbulence intensities as usually associated with Reb ∼ O(1) (where45
Reb = ε/(νN2) is the buoyancyReynolds number, ν is the kinematic viscosity, ε is the viscous46

dissipation rate and N =
√
−g/ρ0〈dρ/dz〉 is the Brunt–Väisälä (or buoyancy) frequency),47

the flux coefficient Γ may reach values that are much lower than the canonical value of48
0.2. Second, most of the numerical data and field measurements that support Γ = 0.2 are49
based upon the assumption that the density is strongly determined by temperature which50
is characterized by a relatively low Prandtl number (Pr = ν/κθ ∼ O(1), here κθ is the51
thermal diffusivity) whereas the Arctic Ocean is a primarily salinity stratified ocean in52
which the Schmitt number for salinity (Sc = ν/κs, here κs is the haline diffusivity) is53
characterized by a much higher value of approximately 700 (see Gregg et al. (2018)). This54
may lead to significantly different characteristics of the diapycnal diffusivity such as that55
demonstrated in Rahmani et al. (2016) or Bouffard & Boegman (2013). Third, aside from56
the stably stratified salinity field, the main pycnocline in the Arctic also includes an unstably57
stratified thermocline with cold water in the surface ocean lying above the relatively warm58
water in the interior ocean. We will describe such circumstances as an environment in59
the "diffusive-convection regime" in what follows, even though strictly speaking the linear60
"diffusive-convection instability" described in the double-diffusive convection literature (see61
Radko (2013)) will not develop in the system as long as the density ratio Rρ = βSz/αΘz62
(sometimes referred to as inverse density ratio in the literature, hereα is the thermal expansion63
coefficient and β is the coefficient of haline contraction) is larger than (Pr+1)/(Pr+τ) ≈ 1.0864
(evaluated based on the typical value of Pr = 13 and diffusivity ratio τ = κs/κθ = 0.00565
in the Arctic Ocean, see Sharqawy et al. (2010)). In this circumstance it is important to66
take both diffusing species explicitly into account given the fact that the co-existence of67
the two oppositely stratified species with different diffusivities in the diffusive-convection68
regime are known to be able to generate fine scale structures such as those characteristic of69
thermohaline staircases (e.g.Timmermans et al. (2008)) in the Arctic region. Considering70
the (perhaps unfounded) assumptions underlying application of the classical parametrization71
scheme of Osborn (1980) to the Arctic environment, our major goal in the current work is72
to employ direct numerical simulations (DNSs) to calibrate a proper mixing parametrization73
scheme that is applicable to the special circumstances of the Arctic environment that might74
replace the Osborn methodology.75

Another significant flaw in the Osborn methodology derives from its failure to differentiate76
between reversible turbulent stirring processes and irreversible mixing processes. In fact,77
Osborn’s parametrization failed to recognize that only irreversible diabatic process can78
contribute to turbulent diapycnal diffusivity. Previous research (e.g. Winters et al. (1995),79
Winters &D’Asaro (1996), Peltier &Caulfield (2003)) have established that it is the evolution80
of the background potential energy reservoir that determines the temporal evolution of81
irreversible mixing. Based upon detailed energy budget analyses, Salehipour & Peltier (2015)82
further proposed a formula for the irreversible diapycnal diffusivities which resembles the83
original Osborn formula but only takes irreversible buoyancy flux into account. Even though84
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the original Osborn formula correctly captures the total amount of mixing once the system85
enters into a stationary state, in the analysis of the instantaneous evolution of KH billows that86
will be performed in what follows, the distinction between reversible and irreversible fluxes87
has been shown to become very critical. It should be noticed that the distinction between88
reversible and irreversible processes described above had only been recognized in the study89
of stratified turbulence in either the single component case or the two-component case in90
which both components are stably stratified scalar fields (Smyth et al. (2005)). The most91
recent work of Ma & Peltier (2021) extended the analysis to include the case in which one of92
the scalars is unstably stratified. This was first applied to the case of salt-fingering double-93
diffusive turbulence, which develops under conditions in which warm salty water lies above94
relatively colder and fresher water. As we will demonstrate in what follows the theoretical95
framework established in Ma & Peltier (2021) that is based on sorting both individual fields96
separately can be carried over almost without modification to the diffusive convection system97
with only the roles played by temperature and salinity in the energy budget switched. In what98
follows, the formulae for the irreversible diapycnal diffusivities for both heat and salt will99
be derived that provide the basis for the new mixing analysis to be discussed herein. It will100
be important to recognize that an alternative definition of background potential energy for101
double-diffusion is provided in the recent work of Middleton & Taylor (2020). In this work102
only the density field is sorted and the separate definitions of irreversible heat fluxes and103
irreversible salt fluxes, which are important in our analyses to follow, cannot be defined. For104
this reason, we will employ the method discussed in Ma & Peltier (2021) as the basis for our105
turbulent analyses.106
In what follows this analysis will be based on a series of DNS analyses that simulate mixing107

induced by the development and the break-down into turbulence of a primary KH instability108
in the diffusive-convection environment. KH instability has always been considered to be the109
dominant mechanism responsible for mixing the ocean pycnocline (Gregg et al. (2018)). It110
has been well studied by water tank experiments (e.g. Thorpe (1973), Patterson et al. (2006))111
and an extensive amount of theoretical analysis and DNS–based numerical simulations as112
a basis for understanding the nature of the life-cycle in single component fluids (see the113
recent review of Caulfield (2021)). Through a combination of secondary instability analyses114
and DNSs in the past fifty years (e.g. Corcos & Sherman (1976), Klaassen & Peltier (1985),115
Palmer et al. (1994), Staquet (1995), Caulfield & Peltier (2000), Staquet (2000), Mashayek &116
Peltier (2012a,b), Salehipour et al. (2015)), the "zoo" of secondary instabilities that drive the117
primary KH billow to turbulence has been well understood and which secondary instabilities118
from the “zoo” dominates the turbulent transition is largely determined by the Reynolds119
number of the flow (Mashayek & Peltier (2012a,b)). Furthermore, mixing efficiencies and120
diapycnal diffusivities for density have been shown to vary significantly as different secondary121
instabilities are involved in driving the system into a fully turbulent state (Mashayek & Peltier122
(2013)). It has also been demonstrated that mixing efficiencies are also strongly dependent123
on the background stratification and the Prandtl number (see Caulfield & Peltier (2000),124
Salehipour et al. (2015) and Rahmani et al. (2016)) being employed.125
Although the evolution of the classical KH billows and its influence on mixing have been126

well studied in the literature, it has never been studied in the diffusive convection environment127
which has to be considered in the context of understanding Arctic stratification andmixing. In128
fact, the coexistence of temperature and salinity fields in the development of KH billows has129
been studied in the system in which both temperature and salinity fields were set to be stably130
stratified (Smyth et al. (2005)) as well as in the system that favors the salt-fingering-favorable131
stratification (Smyth & Kimura (2011) and Kimura et al. (2011)). It has been found in Smyth132
et al. (2005) that the differential diffusion (the differences in the diapycnal diffusivities133
between temperature and salinity) only become significant when Reb is smaller than 100.134
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In the work to be discussed in the current paper, we will perform DNSs of KH billows135
engendered turbulence that develops in the diffusive convection environment to discuss136
its mixing properties and compare them with the existing literature on single component137
systems and doubly stable systems of Smyth et al. (2005). By performing these analyses,138
we will demonstrate that the diapycnal diffusivities for heat and salt operate independently139
of one another being coupled only through the buoyancy Reynolds number Reb. It is worth140
remarking that this conclusion actually provides critical support for an assumption underlying141
the recent paper of Ma & Peltier (2022) in which we have described a new mechanism for the142
formation of thermohaline staircases in the diffusive convection environment of the Arctic143
Ocean. The basic assumption of Ma & Peltier (2022) is that the diapycnal diffusivities for144
heat and salt are only a function of Reb. That this assumption in that paper is verified by145
the DNS-based turbulence analyses to be presented in what follow will be one of the major146
conclusions of the current paper.147
The remainder of the present paper is organized as follows. In section 2 we will discuss148

the governing formulae for mixing in the diffusive convection environment by performing a149
detailed energy budget analysis that differentiates the irreversible and reversible processes.150
We will then discuss the numerical settings for our DNSs on KH instability and subsequent151
turbulent mixing in section 3. The time evolution of KH life cycles in these simulations will152
be discussed and compared for simulations with different non-dimensional parameters in153
section 4. In the ensuing section 5 we will specifically discuss the functional dependence154
of the diapycnal diffusivities for heat and salt in order to compare them with the existing155
data-based parametrization of Bouffard & Boegman (2013). Based on these discussions, a156
new algorithm is provided at the end of section 5 for future implementation to improve the157
understanding of Arctic Ocean turbulence measurements. Finally we will offer a Summary158
and Conclusions of the results obtained in this paper in section 6.159

2. Scalar diffusivities in a diffusive convection system160

The Osborn (1980)’s formula continues to be widely employed to estimate the diapycnal161
diffusivity for density Kρ based on the measured viscous dissipation rate in the field of162
physical oceanography. His formulation of the mixing problem for a single component fluid163
has recently been tested by Salehipour & Peltier (2015) in order to produce results for164
turbulent diffusivity that involve only irreversible mixing processes. In the formulation of165
the mixing problem in this section we will properly extend the results of Salehipour &166
Peltier (2015) to apply to the diffusive convection circumstance in which the stratification167
is determined simultaneously by a stably stratified salinity field and an unstably stratified168
temperature field as is characteristic of the Arctic Ocean environment. Therefore, we will169
first review both the canonical models of Osborn (1980) as well as the modified form of170
Osborn’s formulation described by Salehipour & Peltier (2015). This will be followed by171
presentation of a careful energy budget analysis and the new formulae that apply to the case172
of Arctic Ocean turbulence that is of interest to us here.173

2.1. Previous representation of scalar diffusivity in the single component fluid174

The Osborn (1980) formulation of the mixing efficiency problem was derived on the basis175
of the following simplified equation for the conservation of turbulent kinetic energy:176

P = H + ε, (2.1a)

Focus on Fluids articles must not exceed this page length
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in which the shear production of the background flow is P, the turbulent buoyancy flux isH
and the viscous dissipation is ε, all of which are defined as follows:

P = −〈u′w′
du
dz
〉, (2.2a)

H =
g

ρ0
〈ρ′w′〉, (2.2b)

ε = 2ν〈si j si j〉. (2.2c)

In above equations, the overbar on a variable f represents the horizontal average of the field177
f , the bracket 〈.〉 represents the vertical average, u = (u, v,w) is the velocity field that is178
further separated into the horizontally averaged fields u and the perturbated field u′ to it. ρ0 is179
the reference density and ρ′ = ρ−ρ0 is the density perturbation. si j = (∂ui/∂xj+∂u j/∂xi)/2180
is the strain rate tensor.181
By employing the definition of the flux Richardson number Rf = H/P, Osborn (1980)182

wrote the diapycnal diffusivity KOsb
ρ in the form of:183

KOsb
ρ =

H

N2 = ν
H

ε

ε

νN2 = νΓ
OsbReb, (2.3a)

Γ
Osb =

H

ε
=

Rf

1 − Rf
. (2.3b)

in which ΓOsb is usually referred to as the flux coefficient and the value 0.2 was estimated184
to be the upper bound for ΓOsb in the original work of Osborn (1980). In the subsequent185
practical application of this formulation of the mixing problem, ΓOsb has always been186
assumed to be equal to the constant value 0.2 when applied to the understanding of187
oceanographic measurements. This is in spite of the fact that there exists significant evidence188
from simulations demonstrating that the value of Γ = 0.2 may not be accurate (see the recent189
review of Gregg et al. (2018) concerning its application in the field of oceanography).190
However, as pointed out by Winters et al. (1995) and Peltier & Caulfield (2003), the191

buoyancy flux defined in (2.1) contains the influence of both irreversible and reversible192
mixing process whereas only the irreversible component should contribute to mixing when193
this is represented by a diapycnal diffusivity. In order to differentiate true irreversible mixing194
from adiabatic stirring, a background potential energy BPE is defined by "sorting" the three-195
dimensional density field into a vertical profile ρ∗(z, t) with a decreasing upwards density:196

BPE = g/ρ0〈ρ∗(z, t)z〉. The energy stored in this background potential energy reservoir is197
the minimum potential energy which can not be transformed into kinetic energy. On the198

other hand, the differences between this BPE and the total potential energy PE = g/ρ0〈ρz〉199
is defined as the available potential energy (APE), as this part of the potential energy is200
"available" to be transferred back to macroscopic motion. In a closed domain (no body force,201
no boundary flux), the time derivative of the BPE can be shown (Winters & D’Asaro (1996))202
to be:203

d
dt

BPE =M + Dp, (2.4a)

M + Dp =
κg

ρ0V

∫
V

−
dz
dρ∗
|∇ρ|2dV . (2.4b)

In above equations, κ is the density diffusivity in the single component system. Since204
dBPE/dt is always positive, BPE is a monotonically increasing function in time. M is205
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the irreversible buoyancy flux that characterizes instantaneous mixing strength across the206
pycnocline that is generated due to the macroscopic fluid motion and Dp characterizes the207
part of mixing that would occur even in a completely motionless flow. In fact Dp is always208
negligible if any form of turbulence is developed in a system that is not incredibly small so209
that the second equation in (2.4) can also be treated as the definitions forM.210

Based on these definitions, Salehipour & Peltier (2015) derived a modified expression for211
the diapycnal diffusivities in which the flux Richardson number Rf in (2.3) is replaced by212
the irreversible mixing efficiency E as:213

K irr
ρ = ν

M

ε

ε

νN2
∗

= νΓirr Reb∗, (2.5a)

Γ
irr =

M

ε
=
E

1 − E
, (2.5b)

in which N2
∗ is the squared buoyancy frequency in the sorted profile but is always identical to214

the traditional definition of N2 (see Salehipour & Peltier (2015), so that Reb∗ = Reb). (2.5)215
have the same form as (2.3), except that the irreversible versions of physical quantities in216
(2.5) are employed in place of Osborn’s original expressions. Through these modifications,217
the formulae now correctly define the diapycnal diffusivities in terms of quantities involving218
irreversible mixing processes.219

2.2. Scalar diffusivities in the presence of two diffusing species220

We will here proceed to extend (2.5) to a diffusive-convection system, following similar221
approaches that were applied in Ma & Peltier (2021) to the understanding of diapycnal222
diffusivities in salt fingering turbulence. The existence of the unstably stratified scalar223
field of temperature in the Arctic Ocean region allows potential energy to kinetic energy224
conversion and thereby the creation of macroscopic motion, which was unavailable in the225
single-component case in which the background stratification of density was stably stratified.226
Thus, an energy budget analysis will be needed in order for a correct characterization of the227
diapycnal diffusivities for both scalars to be defined.228

The total kinetic energy per unit mass may be represented as K = |u2 |/2. Based on the229
assumption of the linear equation of state ρ = ρ0(1 − α(Θ − Θ0) + β(S − S0)) (thermal230
expansion rate α and haline contraction rate β are both assumed to be constant), we define231
the averaged potential energy per unit mass and decompose it into a temperature reservoir232
PEΘ and a salinity reservoir PES as follows:233

PE =
g

ρ0
〈ρz〉,234

= −gα〈Θz〉 + gβ〈Sz〉 + g〈z〉, (2.6)235

= PEΘ + PES + PE0.236

Here PE0 is a constant term that will be ignored in what follows.237

The time derivatives of K, PE , PEΘ, PES can be derived straightforwardly by assuming238
that the two fluid components obey the Boussinesq governing equations which leads to the239
system:240



7

dK
dt
= −HΘ −HS − ε, (2.7a)

dPEΘ
dt

= HΘ +DpΘ, (2.7b)

dPES

dt
= HS +DpS, (2.7c)

dPE
dt
=

dPEΘ
dt
+

dPES

dt
,

= HΘ +HS +DpΘ +DpS, (2.7d)
= H +Dp,

where

HΘ = −gα〈Θ′w′〉, (2.8a)
HS = gβ〈S′w′〉, (2.8b)

DpΘ = gακθ 〈
∂Θ

∂z
〉, (2.8c)

DpS = −gβκs 〈
∂S
∂z
〉. (2.8d)

Just as in the single component case, the buoyancyfluxesHS andHΘ contain the contributions241
from both reversible processes and irreversible processes. The reversible fluxes capture the242
energy transfer between the kinetic energy reservoir and the available potential energy243
reservoirs APES and APEΘ, while the irreversible fluxes transfer energy between APES and244
APEΘ and background potential energies BPES and BPEΘ. Specifically, the background245
potential energies BPEΘ and BPES are defined as the part of the potential energy that246
is associated with adiabatic re-arrangements of the temperature and salinity profiles to247
monotonically-decreasing profiles Θ(zθ∗) and S(zs∗) and APEΘ and APES describes the248
differences between total energies and background potential energies, namely:249

BPEΘ = −gα〈Θ(zθ∗, t)zθ∗〉, (2.9a)
BPES = gβ〈S(zs∗, t)zs∗〉, (2.9b)
APEΘ = PEΘ − BPEΘ, (2.9c)
APES = PES − BPES . (2.9d)

The irreversible buoyancy fluxes for heat (MΘ) and salt (MS), again, characterize the250
time-derivative of BPEΘ and BPES in a closed system as:251
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Kinetic
Energy

Internal
Energy

APEϴ

APE

APES

BPEϴ

BPE

BPES
DpS>0

Dpϴ<0

MS>0HS

Mϴ<0Hϴ

ϵ

Figure 1: Graphical demonstration of energy budgets in the diffusive convection
environment. The direction of the energy flow of the positive/negative transportation is

clarified using arrows.

d
dt

BPEΘ = gακθ 〈
dzθ∗
dΘ
|∇Θ|2〉,

=MΘ + DpΘ, (2.10a)
d
dt

BPES = −gβκs 〈
dzs∗
dS
|∇S |2〉,

=MS + DpS, (2.10b)
d
dt

BPE =
d
dt

BPEΘ +
d
dt

BPES,

=MΘ +MS + DpΘ + DpS, (2.10c)
≡ M + Dp .

The above sets of equations imply simply that: while BPES is a monotonical increasing252
function with time as in the traditional definition of background potential energy for a253
single component fluid, BPEΘ is a monotonically decreasing function which irreversibly254
releases energy to APEΘ which can then be transported to the kinetic energy reservoir. The255
total background potential energy BPE , however, can either increase or decrease with time,256
depending upon the relative strengths of the negativeMΘ and positiveMS in the system. The257
energy exchanges described above can also be visualized in the simplified diagram shown258
in Figure 1. It should be noticed that the APEΘ has a slightly different meaning with the259
traditional implication of available potential energy: while available potential energy usually260
refers to the amount of potential energy stored by the reversible process that is available to261
be released to the kinetic energy reservoir in the single component case (also applies for262
APES), here the APEΘ (have a negative value through its definition) represents the amount263
of energy that has already been transported into the kinetic energy reservoir. However, this264
part of energy is lost through reversible process so that it could possibly be transported back265
through convection in the future evolution of the flow field. Combining APEΘ and APES266
together, the APE reservoir represents the part of the potential energy that can be exchanged267
with the kinetic energy reservoir through reversible processes.268
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Given the definition of the irreversible buoyancy fluxes MΘ and MS above, we can derive269
the irreversible diapycnal diffusivities for heat and salt as follows:270

K irr
Θ
=
MΘ

gα〈 dΘ
dzθ∗
〉
, (2.11a)

= ν
MΘ

ε

N2

gα〈 dΘ
dzθ∗
〉

ε

νN2 , (2.11b)

= ν
MΘ

ε

Rρ∗ − 1
−1

ε

νN2 , (2.11c)

= νΓirr
Θ

Reb, (2.11d)

K irr
S = −

MS

gβ〈 dS
dzs∗
〉
, (2.11e)

= −ν
MS

ε

N2

gβ〈 dS
dzs∗
〉

ε

νN2 , (2.11f)

= ν
MS

ε

Rρ∗ − 1
Rρ∗

ε

νN2 , (2.11g)

= νΓirrS Reb, (2.11h)

where

Rρ∗ ≡
β〈 dS

dzs∗
〉

α〈 dΘ
dzθ∗
〉
, (2.12a)

Γ
irr
Θ
≡
−(Rρ∗ − 1)MΘ

ε
, (2.12b)

Γ
irr
S ≡

(Rρ∗ − 1)MS

εRρ∗
. (2.12c)

In above equations, Rρ∗ is always identical with the traditional Rρ (due to the same reason271

that N2
∗ is identical to N2 which we have mentioned above) so that we will not differentiate272

them in what follows. Γirr
Θ

and Γirr
S

are defined as the flux coefficients for temperature and273

salinity separately (Γirr
Θ

has also been previously introduced as "the dissipation ratio" in the274
literature (e.g. St. Laurent & Schmitt (1999)). Since the overall stratification is stable we have275
Rρ > 1, this leads to the fact that both Γirr

Θ
and Γirr

S
are positive, guaranteeing the diapycnal276

diffusivities for both scalars K irr
Θ

, K irr
S

to be positive.277
Meanwhile, the diapycnal diffusivity for density can be derived in the form of the density278

flux coefficient as:279

K irr
ρ =

M

N2 , (2.13a)

= ν
M

ε

ε

νN2 , (2.13b)

= νΓirrρ Reb . (2.13c)

By employing the buoyancy fluxM as a summation ofMθ andMs, it is straightforward to280
show that Γirrρ (or K irr

ρ ) can be determined by Γirr
Θ

(or K irr
Θ

) and Γirr
S

(or K irr
S

) from:281
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Γ
irr
ρ =

Rρ
Rρ − 1

Γ
irr
S −

1
Rρ − 1

Γ
irr
Θ
, (2.14a)

K irr
ρ =

Rρ
Rρ − 1

K irr
S −

1
Rρ − 1

K irr
Θ
. (2.14b)

Although K irr
Θ

and K irr
S

are both positive as has been demonstrated above, (2.14) shows that282

K irr
ρ can be negative if the temperature term dominates. As we will see below, this situation283

might occur in the early and late evolution stage of KH instability growth in the strongly284
stratified case, in which situation the strength of the turbulence is weak enough and the285
temperature mixes more efficiently than salinity.286
As in the single-component case, the irreversible flux coefficient Γirrρ can be written in the287

form of instantaneous mixing efficiency as:288

Γ
irr
ρ =

E

1 − E
, (2.15a)

E =
M

M + ε
=
MΘ +MS

MΘ +MS + ε
. (2.15b)

In the single component case E always remains in the range 0 < E < 1 and clearly289
represents the amount of irreversible mixing relative to the viscous dissipation. However, in290
the diffusive-convection environment E can both take negative values and values that are291
much larger than 1, in the cases ofM < 0 following its definition in (2.15). Therefore, E no292
longer carries the meaning of "efficiency" in the doubly diffusive system and we will employ293
the flux-coefficient form of the diffusivities in (2.11) rather than the mixing-efficiency form294
in our analyses in what follows.295
Another important physical quantity is the ratio of (irreversible) diapycnal diffusivity for296

salinity to that for temperature, namely:297

d =
K irr
S

K irr
Θ

. (2.16)298

The ratio of diapycnal diffusivities d has been widely used in the literature (e.g. Gargett et al.299
(2003), Merryfield (2005), Smyth et al. (2005), Jackson & Rehmann (2009)) to characterize300
the degree of differential diffusivity in the system where both temperature and salinity fields301
are stably stratified. These analyses demonstrate that d is close to unity in the strong turbulence302
limit, but decreases rapidly as turbulence intensity decreases or stratification strengthens, see303
Gregg et al. (2018) for further discussion.304
The above formulae provide us the theoretical basis required for calibration of the305

irreversible components of diapycnal diffusivities in studies of doubly diffusive turbulence.306
Using DNSs that we will introduce in the next section, we will investigate quantitively307
how energy is transferred between the different energy reservoirs and how the irreversible308
diapycnal diffusivities evolve in a typical KH life cycle.309

3. Parameter choices for direct numerical simulations of KH instability with two310
oppositely diffusing species311

In this section we will discuss the design of the DNSs to be employed to study the evolution312
of the KH billow and the turbulence to which this evolution gives rise. We will first discuss313

Rapids articles must not exceed this page length
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Figure 2: Sketch of initial condition for the scalar fields (a) and streamwise velocity field
(b) in our KH simulation. In (a) the dashed, dotted and sold line represent S(z), Θ(z) and

ρ(z) respectively.

how the KH system is formulated in section 3.1, which will be followed by a discussion of314
the detailed numerical methodology to be employed in section 3.2.315

3.1. Theoretical Preliminaries316

In order to study themixing induced by vertical shear in a system stratified in both temperature317
and salinity, we apply the idealized initial vertical profiles for horizontal velocity, temperature318
and salinity as follows:319

u(x, y, z, t = 0) = U0tanh
( z

h

)
, (3.1a)

Θ(x, y, z, t = 0) = −∆Θtanh
( z

h

)
, (3.1b)

S(x, y, z, t = 0) = −∆Stanh
( z

h

)
, (3.1c)

where (x,y,z) is the stream-wise, span-wise and vertical directions (positve z direction is set320
to be antiparallel with gravity) respectively and (u,v,w) represents the velocity component321
in each of these directions. h is half the thickness for the shear layer (which is also half the322
thickness of the salinity and temperature interfaces in the model system to be employed),323
∆Θ, ∆S and U0 are half the variations of initial temperature, salinity and horizontal velocity324
profiles across the interface, as shown in the sketch of these initial profiles in Figure 2. Both325
Θ(z) and S(z) will contribute to the density through an idealized linear equation of state326
ρ = ρ0(1 − αΘ + βS). To mimic the stratification in the Arctic region, we have relatively327
colder and fresher water above warmer and saltier water while keeping the density profile328
gravitationally stable. This requires that the stably stratified salinity contributes more to329
density than the unstably stratified temperature profile, namely ∆ρ = β∆S − α∆Θ > 0, as330
illustrated in Figure 2.331
The flows of interest to us will be described by the (non-dimensional) Boussinesq332

approximation by the system:333
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∂u

∂t
+ u · ∇u = −∇p − J(

Rρ
Rρ − 1

S −
1

Rρ − 1
Θ)ez +

1
Re
∇2u, (3.2a)

∇ · u = 0, (3.2b)
∂Θ

∂t
+ u · ∇Θ =

1
RePr

∇2
Θ, (3.2c)

∂S
∂t
+ u · ∇S =

1
ReSc

∇2S, (3.2d)

in which the non-dimensionalization has employed h as the length-scale, ∆Θ, ∆S and U0 as334
the temperature, salinity and velocity scales respectively. The five non-dimensional control335
parameters in this set of field equations are the Reynolds number Re, the bulk Richardson336
number J, density ratio Rρ, Prandtl number Pr as well as Schmidt number Sc, which are337
defined as follows:338

Re =
U0h
ν
, (3.3a)

J =
g∆ρh
ρ0U2

0
=

g(β∆S − α∆Θ)h
ρ0U2

0
, (3.3b)

Rρ =
β∆S
α∆Θ

, (3.3c)

Pr =
ν

κθ
, (3.3d)

Sc =
ν

κs
. (3.3e)

Compared with the single component fluid upon which most studies of KH instability to-date339
have focused, we have introduced the Schmitt number Sc and the density ratio Rρ into the340
parameter space. Sc represents the ratio of momentum diffusivity to the salinity diffusivity341
in the ocean. It is usually much higher than the Pr due to much lower diffusivity of salinity342
compared to that of heat. The density ratio Rρ characterizes the relative importance of343
salinity and temperature to the stratification of density, a parameter which lies in the range344
of (1 < Rρ < ∞) in the system which is our intention to study. In the limit of Rρ → ∞, the345
unstably stratified temperature field Θ(x, y, z, t) is decoupled from the momentum equation346
in (3.2a), so that the system described by (3.1) and (3.2) essentially returns to that for a single347
component fluid whose stratification is entirely determined by salinity. On the other hand,348
if Rρ is close to 1, the unstably stratified component in the system becomes so strong that349
the system will also be susceptible to the buoyancy induced oscillatory diffusive-convection350
instability. In this scenario, the system is difficult to investigate numerically since both shear-351
driven instability and buoyancy driven instability are involved and the widely separated352
length scales are activated simultaneously. More importantly, this small density ratio region353
of parameter space has seldom been observed in the Arctic ocean (Shibley et al. (2017)). For354
this reason we will restrict our discussion in this paper upon a much wider range of density355
ratio Rρ > 2 that is more representative of observed conditions in the Arctic Ocean.356

3.2. Detailed design characteristics of the ensemble of DNS simulations357

Governing equations (3.2) are integrated in a hexahedron of size (Lx, Ly, Lz) using the open-358
source computational fluid dynamics solver Nek5000 (Paul F. Fischer &Kerkemeier (2008)).359
Nek5000 was originally developed at Argonne National Laboratory based on the spectral360
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Numbering J Rρ Pr Sc Lx Ly Lz Resolution
1 0.12 2 7 70 14.15 5 20 1120×399×595
2 0.12 5 7 70 14.15 5 20 1120×399×595
3 0.12 8 7 70 14.15 5 20 1120×399×595
4 0.12 ∞ N.A. 70 14.15 5 20 1120×399×595
5 0.12 2 7 70 28.30 3 20 2240×399×595
6 0.05 2 7 70 14.31 3 20 1225×266×966
7 0.05 ∞ N.A. 70 14.31 5 20 1225×427×847

Table 1: Governing parameters for the direct numerical simulations performed in this
paper.

element method in such a way as to support a user-defined complex geometry (see Fischer361
(1997), Fischer et al. (2002) for example). It is well suited for use to simulate highly turbulent362
flows (see Salehipour et al. (2015), Ma & Peltier (2021) for example) since it allows users to363
economically design the computational mesh in such a way as to contain higher resolution364
in more strongly turbulent regions and lower resolution elsewhere.365
The detailed information for each of our numerical simulations that are to be discussed366

in this paper are summarized in Table 1. We integrate the doubly diffusive systems with367
different initial bulk Richardson number J and different density ratio Rρ to investigate their368
influences on the evolution of the KH life cycle. We furthermore perform control simulations369
of the single component KH billow (simulation number 4,7) to illustrate in detail how the370
introduction of another diffusing species will influence the evolution of KH billows. For371
most of the simulations performed in this paper, we set the streamwise extent of our domain372
Lx to contain one wavelength of the fastest growing mode of linear instability, except in373
simulation number 5 in which we select the domain length to contain twice the fastest374
growing wavelength in order to investigate the secondary pairing instability that we will375
describe in the next section. The spanwise extent of the domain Ly is set to be 5h and a376
slightly smaller domain of 3h has been selected for the high-resolution simulation numbers377
5 and 6, both of which have been shown to be large enough to ensure that the fastest growing378
modes of secondary cross-stream instabilities are adequately resolved (Mashayek & Peltier379
(2011)). Lz is set to 20h in all these simulations.380
It is notoriously difficult to perform DNSs that involve the evolution of the salinity field:381

the low haline diffusivity requires an extremely high resolution so that the Batchelor scale382
for salinity LB = (νκ

2
s/ε)

1/4 can be resolved in our DNS grids. To this end we employ383
a compromise value of Sc=70 and Pr=7, a condition which has relatively mild mesh384
requirements while keeping an order of magnitude difference between the salinity and385
temperature diffusivities. Meanwhile, the small Batchelor scale that needs to be resolved386
in DNS also exerts a constraint on the Reynolds number: a value of Re = 600 provides the387
LB that is available for our current simulations. As will be demonstrated in what follows,388
this intermediate value of the Reynolds number will lead to values of the buoyancy Reynolds389
number in the turbulent phase of billow evolution on the order of O(10), which is in the range390
of moderate turbulent intensity observed to characterize Arctic ocean turbulence as discussed391
in Dosser et al. (2021). To design themost efficientmesh for each of these simulationswe have392
employed a series of low resolution simulations to calibrate LB, according to which the mesh393
resolution for the high-resolution simulations has been selected so that the depth-dependent394
mesh size is always smaller than 3LB within the entire life cycle of the KH turbulence (the395
pre-determination of mesh grids are described in Appendix A).396
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In these simulations, the initial condition (3.1) is seeded with a small-amplitude two-397
dimensional structure equal to that of the fastest growing mode (the non-dimensional398
horizontal velocity amplitude is set to 0.005) in the linear stability analysis of the Taylor-399
Goldstein equation. A further component of the initial conditions consisting of white noise400
of magnitude 0.0005(∆Θ,∆S) is included to seed the growth of the secondary instabilities.401
We choose periodic boundary conditions for salinity and temperature as well as velocity402
fields in the streamwise and spanwise directions. Meanwhile, on the top and bottom surfaces403
of the domain, we assume free-slip and impermeable boundary conditions for velocity and404
insulated boundary conditions for the temperature and salinity fields.405

4. Time evolution of the KH billows in the diffusive convection environment406

In this section, we will discuss the characteristics of the time evolution of our simulation407
results for KH wave life cycles.408

4.1. Different phases of evolution of KH instability with two oppositely stratified species409

In order to aid our analysis of the KH instability and its subsequent nonlinear evolution410
we decompose the velocity field into the horizontally averaged mean field u, the spanwise411
averaged component u2d associate with the primary KH wave as well as an inherently three-412
dimensional component u3d that is associated with the secondary instability arising from the413
primary KH billow, namely:414

u = u + u2d + u3d, (4.1)415

the individual components of these vector fields are defined as:

(u,0,0) = (u, v,w), (4.2a)
(u2d,0,w2d) = 〈(u − u, v,w)〉y, (4.2b)
(u3d, v3d,w3d) = (u − u − u2d, v,w − w2d). (4.2c)

In the above equations, the symbol 〈.〉y represents averaging the field over the spanwise416
direction. The total kinetic energy K of the flow can then be decomposed as K =417

K + K2d + K3d and the values of K2d and K3d represent the growth of the primary KH418
billow and the growth of three-dimensional turbulence respectively. Here we illustrate the419
evolution of K,K2d and K3d, normalized by the initial kinetic energy K0 in Figure 3(a)420
and Figure 3(b) for simulation number 2 (J=0.12, Rρ=5). Following Peltier & Caulfield421
(2003), this compartmentalization allows us to define four different characteristic times422
t2dmax, td, t3dmax, tend to divide the system into four different phases of evolution. The first423
phase represents the growth of the initially two-dimensional primary KH billow, begins at424
t = 0 and ends at t = t2dmax which is defined as the time when the two-dimensional KH425
billow saturates (the time that K2d reaches its maximum). During the second phase, the426
saturated KH billow continues to evolve in a two-dimension fashion. This phase ends at td427
which characterizes the onset of three-dimensional secondary instability. Quantitively td is428
defined by the time that the viscous dissipation rate ε(t) doubles its initial value. Shortly429
after td, the three-dimensional secondary instability starts to grow as shown in the curve of430
K3d in Figure 3(b), until K3d reaches its maximum value at t3d. The fourth stage represents431
the decay of three-dimensional turbulence until the flow becomes laminar at tend which we432
take to be defined as the time that K3d falls below 10% of its peak value.433
Visualizations of the salinity field and temperature field at these characteristic times for434

simulation number 2 are illustrated in Figure 4. The primary KH billow can be clearly435
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Figure 3: Evolution of K, K2d , K3d and various components of PE , BPE normalized by
the initial kinetic energyK0 as a function of time in simulation number 2. The four vertical
dashed lines represent the values for the four characteristic times t2dmax, td, t3dmax, tend .

observed for both the salinity field and the temperature field at both t2dmax (shown in436
Figure 4(a,b)) and td (shown in Figure 4(c,d)) when the flow is dominated by two-dimensional437
dynamics. The development of secondary instabilities then drives the system into a fully438
turbulent state as depicted in Figure 4(e,f). It is important to note that although temperature439
and salinity fields display essentially identical structures at t2dmax and td, they appear440
significantly different in the fully turbulent stage: the turbulent patches are much smaller441
in the salinity field than in the temperature field. The much smaller diffusivity for the442
salinity field allows the existence of finer structure in the turbulence when compared with443
the temperature field. Finally at tend the three-dimensional turbulence decays and the flow444
collapses into a laminar state which is characteristic of both the salinity and temperature445
fields in Figure 4(g,h).446
The development and collapse of the KH billow eventually mixes the physical properties of447

the flow by transforming a significant fraction of the initial kinetic energy of the initial shear448
flow into background potential energies. In order to evaluate the variation of background449
energies, we have sorted both the temperature field and the salinity field utilizing the450
parallel sorting algorithm proposed in Salehipour et al. (2015) to obtain the background451
potential energies for our DNS data in the evolution process. In Figure 3(c), we plot the452
evolution of background potential energies BPEΘ, BPES , BPE that can be compared with453
the conventional potential energies PEΘ, PES , PE (all have had their initial values subtracted454
and are normalized byK0) for simulation number 2. As we discussed in section 2, the kinetic455
energies in our current doubly diffusive system continue to extract energy from BPEΘ and456
transfer energy to BPES , leading to monotonic decrease of BPEΘ and monotonic increase of457
BPES . The total background potential energy is then determined by the summation of BPEΘ458



16 Y. Ma and W. R. Peltier

a) b)

c) d)

e) f)

g) h)

Figure 4: Iso-surfaces for both the salinity fields (left row) and the temperature fields (right
row) at four different characteristic times t2dmax (a,b), td (c,d),t3dmax (e,f), tend(g, h).

and BPES . Since the density stratification is dominated by the stably stratified salinity field,459
BPE experiences an overall increase with time for this specific run (an example involving a460
decrease in BPE will be discussed in the strongly stratified case in what follows).461
Despite the fact that the stratification is mainly determined by salinity, the temperature462

field mixes more effectively than salinity considering the fact that molecular diffusivity for463
temperature is 10 times higher than that for salinity in our DNSs. This can be quickly verified464
by referring to Figure 3(c): from t = 0 to t = tend, BPES increases by total amount of465
0.0095K0 whereas BPEΘ decreases by the total amount of 0.0038K0. The ratio of their466
relative variations γtot can then be straightforwardly evaluated to have the value of 2.5 which467
is much smaller than the density ratio Rρ = 5, demonstrating that mixing in the temperature468
field leads to a more significant change in its background potential energy compared with469
salinity. We can also directly compare the variations of irreversible diapycnal diffusivities470
for salinity and temperature. In Figure 5(a), we plot the evolution of irreversible flux for471
temperature MΘ, salinity MS , and density M respectively (all non-dimensionalized byU3

0/L)472
for simulation number 2. The associated evolution of bulk-averaged diapycnal diffusivities473
are plot in Figure 5(b). It is clear that K irr

Θ
is significantly higher than K irr

S
in all different474

stages of evolution, especially at approximately t = td just before the onset of the secondary475
instabilities. The diffusivity ratio d for the evolution is shown in Figure 5(c). Consistently, d476
is smaller than 1 except for the time near t3dmax at which the three-dimensional turbulence477
reaches the maximum amplitude. The combined diapycnal diffusivities for density K irr

ρ can478

then be determined byK irr
Θ

andK irr
S

based on (2.14).Generally speaking,K irr
ρ is close toK irr

S
479

since salinity is the dominant component in determining the stratification. However, stronger480
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K irr
Θ

is representing the stronger negative part of the density flux induced by temperature so481

that K irr
ρ will be influenced to be smaller.482

The fact that the temperature mixes more effectively than salinity can also be verified483
in their flux coefficients in Figure 5(d). The irreversible flux coefficients for temperature484
Γirr
Θ

reaches its peak of approximately 0.4 before the onset of three-dimensional secondary485
instability, and drops to the value of approximately 0.1 in the fully turbulent stage. While486
the value of Γirr

Θ
in the life cycle remains comparable with the canonical value of 0.2, the487

irreversible flux coefficients for salinity Γirr
S

is always considerably lower than 0.2. This488
again emphasizes the idea that different flux coefficients should be assumed for temperature489
and salinity separately due to their different values of molecular diffusivity. The combined490
flux coefficient for density can also be determined through the relation (2.14b). Similar to491
the evolution of K irr

ρ , Γirrρ is also close to Γirr
S

. The finite differences between Γirr
S

and Γirrρ492
are mostly minor in the fully turbulent regime, which keeps increasing as turbulence dies493
at the end of the simulation life cycle. In Figure 5(e) we also show the time-evolution of494
dissipation ratio for temperature εΘ ≡ |∇Θ|2/(RePr) and salinity εS ≡ |∇S |2/(ReSc) which495
are non-dimensionalized by dimensional units of ∆Θ2U2

0/L and ∆S2U2
0/L separately. These496

physical quantities also reflect the strength of mixing in the turbulence life-cycle and their497
evolution are consistent with the evolution of diapycnal diffusivities for both scalars as in498
Figure 5(b).499

4.2. Influences of bulk Richardson number J and density ratio Rρ500

Having discussed the typical characteristics of the evolution of KH billows and the mixing501
properties of turbulence in this doubly diffusive system, we will focus next upon the influence502
the governing parameters J and Rρ upon the detailed characteristics of turbulent mixing that503
were discussed above in general terms for simulation number 2.504
To demonstrate the specific influences of these two governing parameters, we show in505

Figure 6(a)-(d) the evolution of the total kinetic energy K, the background potential energy506
BPE , the buoyancy Reynolds number Reb and the irreversible flux coefficients for density507
Γirrρ separately for two different bulk Richardson number J = 0.05 and J = 0.12 at different508
values of Rρ. By comparing the evolution of kinetic energy and background potential energy509
in Figure 6(a) and (b), it will be clear that a larger proportion of energy is transferred from510
the kinetic energy reservoir to the background potential energies in the weaker stratification511
case J = 0.05, compared with the stronger stratification J = 0.12. This is consistent with512
the role played by bulk Richardson number discussed in Caulfield & Peltier (2000). The513
weaker stratification also naturally leads to a higher Reb (shown Figure 6(c)) at the peak514
of turbulence intensity compared with the stronger stratification case, although Reb in both515
cases remains at a relatively low value due to the small value of Re implemented in these516
simulations. It is also worth noting that the irreversible flux coefficient for density is also517
significantly higher in the turbulent phase for J = 0.05 compared with J = 0.12 as shown518
in Figure 6(d). This decrease of flux coefficient with J is also consistent with previous DNS519
simulations, which is often referred to as the right flank of the non-monotonic functional520
dependence of flux coefficient on the gradient Richardson number (e.g. Caulfield (2021)).521
With this understanding of the effect of J, we turn next to an exploration of the effect of522

Rρ on the evolution of KH billow turbulence in the doubly diffusive system. Rρ represents523
the importance of the salinity field relative to the temperature field on stratification. By524
comparing the evolution of BPE in Figure 6(b), we are able to characterize the different525
behavior of BPE for simulations with different Rρ. At relatively small density ratio Rρ = 2,526
we note that the background potential energy is decreasing prior to t = 100 (before the onset527
of the three-dimensional secondary instability activates). Furthermore, in the special case of528
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Figure 5: Evolution of irreversible fluxes MΘ, MS , M (a) irreversible diapycnal
diffusivities Kirr

Θ
, Kirr

S
, Kirr

ρ (non-dimensionalized by molecular viscosity ν) (b),
diffusivity ratio d (c), flux coefficients Γirr

Θ
, Γirr

S
, Γirrρ (d) and dissipation ratios for

scalars εΘ, εS (non-dimensionalized by dimensional units of ∆Θ2U2
0/L and ∆S2U2

0/L
separately) (e) as a function of time in simulation number 2.

Rρ = 2 at J = 0.12, the total background potential energy experiences a decreasing trend529
again after t = 170 and falls below its initial value at approximately t = 200. This period of530
decreasing BPE may also be verified in Figure 6(d) where it is associated with negative flux531
coefficient.532
For the general comparison between different simulations shown in Figure 6(b), we can533

conclude that a smaller Rρ always leads to a lower net increase of BPE relative to its initial534
value. This can be qualitatively understand as follows: the constantly increase of BPES is535
competing with the constantly decrease of BPEΘ in the evolution of BPE , and the smaller Rρ536
suggests that BPEΘ is playing amore important role in influencing BPE whichmakes it easier537
for BPE to decrease or to remain at a relatively low value. In fact, a quantitative explanation538
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Figure 6: Evolution of total Kinetic energy K (a), background potential energy BPE (b),
buoyancy Reynolds number Reb (c) and irreversible flux coefficients for density Γirrρ (d)
as a function of time in simulations with different governing parameter of bulk Richardson

number J and density ratio Rρ.

for the arguments above can be reached through an analysis of the total irreversible buoyancy539
flux:540

M = N2K irr
ρ , (4.3a)

= N2(
−1

Rρ − 1
K irr
Θ
+

Rρ
Rρ − 1

K irr
S ). (4.3b)

In the above equations, (4.3b) is derived by substituting the relationship between K irr
ρ , K irr

S
541

and K irr
Θ

that we have shown previously in (2.14b) into (4.3a). As we have demonstrated542

in the last subsection, K irr
Θ

is always higher than K irr
S

especially when the turbulence is543

weak. In (4.3b), N2 is fixed since we have employed the same bulk Richardson number J544
in simulations, the variation of Rρ influences the relative importance of K irr

Θ
and K irr

S
to545

influence the instantaneous buoyancy fluxM: In the case of large Rρ, K irr
ρ is close to the546

value of K irr
S

. When Rρ is sufficiently small, on the other hand,M can be negative when547
it is dominated by the negative term in (2.14b), leading to a decreasing BPE as shown in548
the two curves with Rρ = 2 in Figure 6(b) which we mentioned above. Generally speaking,549
the differences between K irr

S
and K irr

Θ
are most significant when the buoyancy Reynolds550

number is small, which explains why these time intervals of decreasing BPE occur either at551
the early or late stage of the KH evolution. In section 5 we will provide a detailed analysis552
of a parametrization scheme that is suitable for K irr

S
and K irr

Θ
in our system based on the553
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buoyancy Reynolds number Reb, so that the detailed value of buoyancy flux in (4.3) can be554
better quantified.555
While we have compared the time evolution of the KH billow under different parameters556

above, it is also beneficial for us to compare the overall effect of mixing that is accumulated557
in the entire evolution cycle. To do this, we firstly define the accumulated irreversible fluxes558
Macc
Θ

,Macc
S

,Macc , accumulated viscous dissipation ratio εacc and accumulated flux ratio559
Γacc
Θ

, Γacc
S

, Γaccρ as the time-integral of the associated physical quantities, following:560

Macc
Θ
=

∫ tend

0
MΘdt, (4.4a)

Macc
S =

∫ tend

0
MSdt, (4.4b)

Macc =Macc
Θ
+Macc

S , (4.4c)

εacc =

∫ tend

0
εdt, (4.4d)

Γ
acc
Θ
=
Macc
Θ

εacc
Rρ − 1
−1

, (4.4e)

Γ
acc
S =

Macc
S

εacc
Rρ − 1

Rρ
, (4.4f)

Γ
acc
ρ =

Macc

εacc
. (4.4g)

These accumulated quantities have been evaluated for our simulations to be shown in561
Table 2. In consistent with our discussions above, simulations with J = 0.05 leads to562
stronger turbulence and stronger mixing compared with J = 0.12, which is reflected in the563
higher values |Macc

Θ
|,Macc

S
,Macc and higher εacc . The influences of variation of Rρ we564

discussed above can also be confirmed in Table 2: Table 2 shows that simulations with higher565
Rρ will have higher values ofMacc , which has been well explained in our discussions above566
using (4.3b). Besides this, it can also be observed that a larger Rρ will lead to smaller values567
of both |Macc

Θ
| andMacc

S
. This can in fact also be explained simply by noting that the two568

coefficients 1/(Rρ − 1) and Rρ/(Rρ − 1) in (4.3b) are both decreasing functions of Rρ. As Rρ569
goes from small values to large values, the system becomes more and more dominated by the570
salinity stratification andMacc

S
gradually converges to their values in the single-component571

cases with the corresponding J.572
Although we have explained how the accumulated buoyancy fluxes vary significantly with573

Rρ, the accumulated flux coefficients for individual component Γacc
Θ

and Γacc
S

are not strong574
functions of Rρ as shown in Table 2. This suggests that Rρ only influences the overall flux575
coefficient Γaccρ by changing the participation between two scalars without influencing much576
on their individual flux coefficients. This will be one of the most important conclusion drawn577
from our analysis, which will be discussed in detail in section 5.578

4.3. Secondary instabilities in the doubly diffusive system579

In our discussions above, we have assumed that three-dimensional secondary instabilities580
that control the transition to three-dimensional turbulence may be fully represented in a581
numerical domain that includes only a single wavelength of the fastest growing mode of582
linear instability in the streamwise direction. As shown in Mashayek & Peltier (2013),583
the path to turbulence can potentially influence the mixing in the system. To this end,584
we will investigate the detailed secondary instability that our simulations are susceptible585
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J Rρ tend Macc
Θ
/K0 Macc

S
/K0 Macc/K0 εacc/K0 Γacc

Θ
Γacc
S

Γaccρ

0.12 2 353 -0.020 0.020 -0.0007 0.13 0.16 0.076 -0.005
0.12 5 308 -0.0038 0.0095 0.0057 0.10 0.15 0.073 0.055
0.12 8 290 -0.0021 0.0084 0.0063 0.10 0.15 0.073 0.063
0.12 ∞ 262 N.A. 0.0084 0.0084 0.10 N.A 0.083 0.083
0.05 2 432 -0.059 0.097 0.038 0.26 0.22 0.18 0.15
0.05 ∞ 419 N.A. 0.041 0.041 0.25 N.A 0.17 0.17

Table 2: Accumulated irreversible heat fluxesMacc
Θ

, irreversible salt fluxMacc
S

, total
irreversible fluxMacc , accumulated viscous dissipation εacc , irreversible temperature
flux coefficient Γacc

Θ
, irreversible salt flux coefficient Γacc

S
and total irreversible flux

coefficient Γacc evaluated for our numerical simulations with different Rρ and J.Macc
Θ

,
Macc

S
,Macc and εacc have been non-dimensionalized by the initial kinetic energy K0

in this Table.

to. In the single component case, the characteristics of these secondary instabilities have586
been summarized in the work of Mashayek & Peltier (2012a,b). In this subsection we will587
firstly provide a brief review of these secondary instabilities, followed by an analysis of the588
secondary instability mechanism(s) that govern the turbulence transition in our DNS-based589
analyses.590
The first candidate from the secondary instability "zoo" is the amalgamation instability or591

pairing instability (Winant & Browand (1974),Pierrehumbert &Widnall (1982), Klaassen &592
Peltier (1989)), which is characterized by the vortex pairing of nearby KH billows. However,593
the vortex merging events have rarely been observed in either oceanographic or atmospheric594
environments since it is always suppressed by other candidate modes of secondary instability595
at high Reynolds number. An example of such competing secondary instabilities is the shear-596
aligned convective instability (Davis & Peltier (1979), Klaassen & Peltier (1985)) which597
arises due to the overturning of the statically unstable regions inside the vortex cores created598
by the roll-up of iso-density surfaces during billow growth. Another well-studied secondary599
instability is the secondary shear instability of the vorticity braid that connects adjacent600
billows in a horizontally periodic array of such structures (Corcos& Sherman (1976), Staquet601
(1995) and Staquet (2000)). The newest member of the "zoo" of secondary instabilities is602
the instability (usually named stagnation point instability) which only exist at sufficiently603
high Reynolds number. Driven by the strain-related deformation of the background flow, the604
instability grows at the stagnation point on the braid and produces a region of recirculation605
near the stagnation point which then evolves into turbulence (see Mashayek & Peltier (2013)606
and Salehipour et al. (2015)).607
In the evolution of KH billows, the route to turbulence is strongly dependent on the608

Reynolds number of the background flow. For the particular value of Re = 600 selected609
for our DNSs, transition to the fully turbulent state is usually obtained through the onset610
of secondary shear-aligned convective instability in the singly-stratified system (see DNSs611
of Caulfield & Peltier (2000), for example). However, it is not yet clear whether this is still612
true in our doubly-diffusive system, considering that the introduction of a second stratified613
component might influence the buoyancy force that causes convective instability. To this end,614
weperformed the same non-separable secondary stability analysis following themethodology615
initially developed by Klaassen & Peltier (1985). By analyzing the stability properties of the616
primary KH billow using this methodology (both the description of this methodology and617
the results obtained by its application are provided in Appendix B), we demonstrated that618
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Figure 7: Streamwise vorticity iso-surfaces of ωx = 0.2 (red) and ωx = −0.2 (blue) for
simulation number 5.

the dominant mode of secondary instability is indeed the secondary shear-aligned convective619
instability.620
In order to visualize the growth of the secondary instability predicted by the non-separable621

analysis we plot in Figure 7 the streamwise vorticity iso-surfaces for simulation number622
5 which contains two fastest growing wavelengths of primary KH instability so that the623
pairing instability would be captured if it were to emerge. However, the pairing of vortices624
did not occur in this longer domain and the secondary shear-aligned convective instability625
remains the dominant mode among the zoo of secondary instabilities. The growth of the626
secondary shear-aligned convective instability can be clearly identified in the convective627
rolls that are aligned with the background shear in Figure 7(a). These convection rolls have628
previously been shown in the DNS analysis of Caulfield & Peltier (2000), Mashayek& Peltier629
(2013) for example and now also in our analyses of KH billow mediated transition in the630
doubly diffusive system. As time evolves, the interaction between neighboring rolls drive the631
system into the three-dimensional turbulent state and eventually relaminarization as shown632
in Figure 7(b)-(d).633

5. Parametrization of scalar diffusivities in the diffusive convection system634

With the properly defined irreversible diapycnal diffusivities (for both heat, salinity and635
density) introduced in section 2 and the DNS data postprocessed in section 4, we are in a636
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good position to explore the parametrization of these diapycnal diffusivities in the diffusive637
convection system.638

5.1. Dependence of diapycnal diffusivities on governing non-dimensional parameters639

It has been widely accepted that the buoyancy Reynolds number Reb is the most-important640
non-dimensional parameter that influences the diapycnal diffusivities (e.g. Caulfield (2021)).641
We will therefore evaluate the irreversible diapycnal diffusivities K irr

Θ
and K irr

S
in the fully642

turbulent regime (t3dmax < t < tend) of each of our DNSs and plot them as a function of643
Reb at each time as shown in the scatter plot in Figure 8(a)(c).The corresponding irreversible644
flux coefficients Γirr

Θ
and Γirr

S
is shown in Figure 8(b)(d) and the diffusivity ratio is shown645

in Figure 8(e). It will be apparent that for our simulations with Rρ = ∞ the temperature field646
is not active in the simulation and thus the K irr

Θ
data (and also d) is not applicable in these647

simulations. Simulations with different bulk Richardson numbers achieved a distribution648
of buoyancy Reynolds number in the range from 20 to 100, which perfectly captures the649
environment of the central Canada Basin region of the Arctic Ocean which is characterized650
by low energy turbulence with Reb < 100 (see the most recent estimations of Dosser et al.651
(2021), for example).652
Scatter plots in Figure 8 shows that both K irr

Θ
and K irr

S
are almost monotonically increasing653

functions of Reb, despite the fact that different values of J and Rρ are employed in these654
simulations. In fact, our simulations with J = 0.05 is characterized by higher Reb compared655
with the J = 0.12 cases, due to the weaker stratification employed. Figure 8 demonstrates656
that the bulk Richardson number J is only contributing to the diapycnal diffusivities through657
its influence on Reb thus there is no need to consider an explicit dependence on J. At the658
same time, different values of Rρ do not significantly change the dependence on Reb either,659
suggesting thatK irr

Θ
andK irr

S
do not strongly depend on Rρ. This is a somewhat unusual result660

considering that past simulations of diffusive-convection interfaces have always revealed661
strong functional dependence of diapycnal diffusivities on Rρ (see Caro (2009), Carpenter662
et al. (2012), Flanagan et al. (2013), Brown&Radko (2021) for example). The key differences663
should be understood as follows: our current system is a dynamically driven (specifically664
shear driven) system and it is the turbulence generated from the background shear that665
causes mixing for both temperature and salinity. For these previous simulations on the666
diffusive interface, on the other hand, the macroscopic motions are mainly induced by the667
release of potential energy from the unstably stratified component (temperature component)668
of the double-diffusive system and such systems should be recognized as the buoyancy-driven669
systems (the system of Brown & Radko (2021) is simultaneously driven by buoyancy and670
shear). Since Rρ controls the relatively strength of the stratification of stably stratification671
component over unstably stratified component, it is apparent that variations of Rρ should672
strongly influence the vertical mixing in the buoyancy-driven systems. Therefore no conflicts673
exists by showing that K irr

Θ
and K irr

S
are weakly dependent on Rρ in our dynamically driven674

system.675
It should be furthermore mentioned that the exiting parametrization scheme of diapy-676

cnal diffusivities implemented in global ocean models have always assumed a functional677
dependence of Rρ (see the KPP parametrization of Large et al. (1994), Kelley (1990), for678
example). Such parametrization schemes have been established based on the assumption that679
a series of thermohaline staircases will be formed in the diffusive convection environment680
and the fluxes across the diffusive interfaces staircases (which has been regarded as the681
buoyancy driven system as mentioned above) are strongly dependent on Rρ (see Marmorino682
& Caldwell (1976), Linden & Shirtcliffe (1978) for example). As discussed in Peltier et al.683
(2020), the conventional parametrization scheme for diapycnal diffusivity under conditions684
of diffusive-convection water column stratification may lead to a significant over-estimation685
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Figure 8: Irreversible diapycnal diffusivities Kirr
S

(a) Kirr
Θ

(c), irreversible mixing
effeciencies Γirr

S
(b) Γirr

Θ
(d) and diffusivity ratio (e) evaluated for the fully turbulent

regime of DNSs plotted as a function of Reb . Each scatter point represents the average
value over non-overlapping time-interval of 5 non-dimensional units. The solid line shows
the parametrization of above values in the work of Bouffard & Boegman (2013). The three
vertical dashed line represents the three critical values of Reb that separates four different

regimes of Bouffard & Boegman (2013)’s parametrization scheme.

of diapycnal diffusivities when it is inserted into an enhancement to diapycnal diffusivity686
based upon the assumption that a staircase has formed even if the turbulence level is so687
high that the staircase would not be able to form. In this scenario, a parametrization based688
on the dynamically driven system (will be discussed in the following subsection) should be689
employed instead.690

5.2. Comparison with the existing turbulent parametrization of Bouffard & Boegman691
(2013)692

In fact, the weak dependence of K irr
Θ

and K irr
S

on Rρ essentially suggests that the temperature693
field and salinity field are weakly coupled in the development of turbulence, they react to694
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the background shear, stratified turbulence and buoyancy forcing as if they are the only695
diffusing species in the system. It is therefore of great interest to compare our results for696
the dependence of these diffusivities upon buoyancy Reynolds number to those previously697
published for single component systems. To be useful for our purposes such parametrization698
would have to include explicit dependence on the Prandtl number (Schmitt number) to provide699
different parametrizations for temperature and salinity. To our knowledge, the only turbulent700
parametrization scheme that stresses the differences in the Prandtl number (Schmitt number)701
is that based upon the recent work of Bouffard & Boegman (2013) (hereafter BB). By702
examining extensive sets of published data from both laboratory experiments (e.g. Jackson703
& Rehmann (2003), Rehmann & Koseff (2004)) and direct numerical simulations (e.g. Shih704
et al. (2005), Smyth et al. (2005)) on single component fluids with either the Prandtl number705
for temperature or the Schmidt number for salinity, BB extend previous parametrizations706
of Shih et al. (2005) to incorporate a proper dependence upon Pr into their parametrization707
scheme. Their scheme therefore dependent on both Reb and Pr (Sc) as:708

KBB
ρ (Reb,Pr) =



κ, if Reb < 10
2
3 Pr−

1
2 ,

0.1
Pr

1
4
νRe

3
2
b
, if 10

2
3 Pr−

1
2 < Reb < (3ln

√
Pr)2,

0.2νReb, if (3ln
√

Pr)2 < Reb < 100,

2νRe
1
2
b
, if Reb > 100 .

(5.1)709

In the above parametrizations, the diapycnal diffusivities have different power lawdependence710
on Reb in different ranges of Reb. The smallest Reb regime is the molecular regime in which711
molecular diffusivities are assumed. The second regime, the buoyancy-controlled regime,712
(which is originally included in BB) describes the regime in which mixing is strongly713
influenced by the Prandtl number. In this regime, the diapycnal diffusivities increase rapidly714

with Reb at the rate of Re3/2
b

. The third regime is the transitional regime which is consistent715
with the classic Osborn model with flux coefficient fixed to 0.2. For Reb higher than 100 the716
system enters the energetic regime in which diffusivities scale with Re0.5

b
in accordance with717

previous work of Shih et al. (2005).718
BB’s parametrization described above is evaluated at Pr(Sc)=70 and Pr=7 separately for719

different Reb and plotted as the solid line in Figure 8 (a)(c). A strikingly good fit can be720
identified in these figures: for K irr

S
, a close match between the parametrization and our DNS721

data can be found except for the tail of low Reb. In fact, our DNS data strongly support the722
existence of a large buoyancy-controlled regime for salinity (5 < Reb < 70) in which KS723

scales at Re3/2
b

. When Reb drops below approximately 3, however, K irr
S

drops to the level724

of the molecular value in a fashion that is much faster than Re3/2
b

, suggesting a possible725
overestimation of (5.1) in the low Reb range. For the temperature field, the parametrization726
seems to produce a slight overestimation of the diapycnal diffusivities. However, the different727
power laws for the buoyancy-controlled regime and transition regime can be clearly identified728
in our DNS data, demonstrating the reasonableness of the manner in which the partition of729
regimes of BB. Meanwhile, BB’s prediction for flux coefficients as a function form of Reb730
are plotted in Figure 8(b) and (d) to be compared with our numerical data. It can also be seen731
from these two plots that the functional dependence of Γirr

S
and Γirr

Θ
over Reb follows well732

from BB although the values of Γirr
S

and Γirr
Θ

are somewhat smaller than the predicted value733
of BB. Furthermore, we compare the parametrized diffusivity ratio (shown in Fig.5 of BB)734
with our DNS data in Figure 8(c) and again find a good match. Also consistent with previous735
work of Smyth et al. (2005), the diffusivity ratio only reaches unity when Reb reaches the736
level of O(100), otherwise strong differences in the diffusivity ratio between temperature and737
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salinity exist. We interpret these close fits to a parameterization scheme for single component738
systems comprised of a species with Prandtl number 7 and another single diffusing species739
with Schmidt number much higher (70 instead of the actual Schmidt number for salt of 700)740
to fully verify the validate our conclusion that in the diffusive convection regime of the Arctic741
Ocean the turbulent diffusivities for temperature and salinity operate independently. This is742
a critical conclusion as it was upon this assumption that our recently published new theory743
for the formation of the previously unexplained thermohaline staircases in the Arctic Ocean744
has been based (Ma & Peltier (2022)).745
In ending this section further comment is warranted on two subtleties connected to the746

preceding analyses. First it is important to note that the BB’ parameterization is based upon a747
combination of experimental/DNS data (e.g. Shih et al. (2005), Jackson & Rehmann (2003))748
that are evaluated based on the conventional definitions of KΘ and KS . As KΘ and KS are749
determined in quasi-steady states of these systems, it is reasonable to assume that they are750
consistent with the irreversible definitions K irr

Θ
and K irr

S
. The KH system that has been751

studied here, on the other hand, is a transiently evolving system that does not reach a quasi-752
steady state. KΘ and KS are highly variable quantities that frequently obtain negative values753
because they are strongly influenced by the reversible stirring process of the KH billowwhich754
does not contribute to turbulent diffusivity. Therefore we have employed the instantaneous755
values of the turbulence data to compute the irreversible vertical diffusivities K irr

Θ
and K irr

S
756

instead of KΘ and KS in our parametrization study. A second issue that warrants comment757
concerns the question of the impact upon mixing in the event that iso-surfaces of salinity758
and temperature are not parallel and perpendicular to the local gravitational acceleration.759
This is the circumstance that attends the existence of so-called thermohaline intrusions that760
have been suggested previously as an explanation (Bebieva & Timmermans (2017)) for the761
thermohaline staircases observed in the polar oceans in regions where cold and fresh water762
overlies relatively warm and salty water. Although our hypothesis in Ma & Peltier (2022)763
obviated the need to invoke such exotic circumstances it is nevertheless that there continues764
to be interest in what the mixing properties might be in this situation (eg. see the model765
of Middleton & Taylor (2020) as well as chapter 7 of Radko (2013) for a review). In this766
circumstance the turbulent diffusivities KΘ and KS can differ with the irreversible diffusivities767
K irr
Θ

and K irr
S

even if the system is in a quasi-steady state.768

5.3. An algorithm for the determination of diapycnal diffusivities in the stratified turbulence769

In the practicalmeasurement of turbulence andmixing in theArcticOcean, there are generally770
twomost critical physical quantities that are especially important to understand: the diapycnal771
diffusivities for densityKρ and the vertical heat fluxFH . In the recentwork on direct or indirect772
measurements in theArcticOcean (for example, Chanona et al. (2018), Chanona&Waterman773
(2020), Scheifele et al. (2018), Scheifele et al. (2021), Dosser et al. (2021)), a critical level774
of Recr

b
= 10 or Recr

b
= 20 is usually chosen to differentiate the turbulent regimes from the775

molecular regime. In the molecular regime the difference between the molecular diffusion776
for temperature and salinity is identified so that Kρ = Rρ/(Rρ − 1)κs − 1/(Rρ − 1)κθ . In777
the turbulent regime, however, the canonical Osborn’s formula Kρ = KΘ = 0.2νReb we778
discussed in section 2 has been used to estimate both Kρ and KΘ. KΘ is then further used to779
estimate the heat flux.780
Based on our DNS results, at least two major sources of systematic errors in this standard781

procedure may be identified in the determination of Kρ based on the current algorithm782
described above. First, the water column density is mostly influenced by the salinity, whose783

diapycnal diffusivity K irr
S

has a Re3/2
b

dependence in the vast range of buoyancy-controlled784
regime (0.17 < Reb < 96) as predicted by taking Sc=700 in (5.1). Despite a smaller value785
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of Sc=70 applied in our DNS, our data confirmed that such 3/2 power law does exist in786
a wide range of the parameter space (5 < Reb < 60). For such a wide range of Reb (in787
fact a significant proportion of the turbulent measurements in the Arctic lie in this range788
of Reb, see (Dosser et al. (2021) for example), the Osborn formula was suggesting a linear789
dependence on Reb by mistake thus can lead to a strong over-estimation of K irr

S
(considering790

that Re3/2
b

dependence and Reb dependence overlaps at approximately Reb = 100). Second,791

even though K irr
ρ is usually similar to K irr

S
as shown in the previous section, our rigorous792

derivation in (2.14) shows thatK irr
ρ depends upon bothK irr

S
andK irr

Θ
through the relationship793

(2.14b). Therefore the true value of K irr
ρ should be even smaller than the estimation from794

K irr
S

, especially when Rρ is low. Such differences of K irr
ρ and K irr

S
are clearly apparent795

in our Figure 5. For the above reasons, the simplified algorithm that is currently used in796
the oceanographic measurement literature can lead to a large overestimate of Kρ due to the797
existence of two error sources both of which exaggerate Kρ.798
Despite the systematic errors in Kρ estimation mentioned above, the traditional method799

gives relatively better estimates in terms of the temperature diapycnal diffusivity KΘ. In fact,800
at Pr=7 for the temperature field, BB’s parametrization agrees with the canonical Osborn801
formula for a wide range of values of buoyancy Reynolds number (9 < Reb < 100). However,802
an overestimation of KΘ is still present at smaller Reb (Reb < 9) and therefore the estimation803
of the heatflux derived from KΘ based on Osborn’s formula may still lead to exaggeration in804
the low-turbulent environment.805
Given our analysis above, we propose the following simple three-steps algorithm to be806

employed for evaluate the diapycnal diffusivities for density as well as heat-fluxes in the807
measurement in the Arctic:808
1. Calculate KS and KΘ based on the parametrization of BB in (5.1). Replace KS to809

molecular diffusivity κs once Reb drops below a critical value of Recr
b
= 5.810

2. Using the vertical derivatives of scalars Sz andΘz to evaluate Rρ = βSz/αΘz to calculate811
Kρ in individual water columns based on (2.14b), which is restated here as:812

Kρ =
Rρ

Rρ − 1
KS −

1
Rρ − 1

KΘ. (5.2)813

3. Infer the heat flux FH based Fick’s law using the local temperature gradient Θz and the814
estimation of KΘ from step 1.815
In the above algorithm, a critical buoyancy Reynolds number Recr

b
is kept in the first816

step by recognizing that BB parametrization may give overestimation on the KS in the low817
Reb regime. We expect this algorithm to be employed in future estimation of diapycnal818
diffusivities based on the measurements of viscous dissipation ratio.819

6. Summary and Conclusions820

In this paper we have investigated the growth and collapse of KH billows in a diffusive821
convection environment using DNS. By employing a similar but appropriately extended822
methodology of analysis as that previously applied for analysis of the turbulence engendered823
by KH wave breaking in the single component fluid case, we have demonstrated that the evo-824
lution of the KH billow has almost the same characteristics steps as in the single component825
case. The two-dimensional primary KH billow first grows to its maximum amplitude after826
which time the three-dimensional secondary shear-aligned convective instability starts to827
develop which drive the system into a fully turbulent state; later the turbulence dissipates and828
the system returns to a laminar state. Although the background potential energy reservoir now829
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consists of two components, in which the temperature related background potential energy830
BPEΘ keeps releasing energy into turbulence and the salinity background potential energy831
BPES keeps extracting this energy from the turbulence, these two processes are occurring832
independently so that the diapycnal diffusivities (which represent the instantaneous mixing833
rate) are independent of the density ratio Rρ. In fact, we have demonstrated that K irr

S
and834

K irr
Θ

both are solely dependent on the buoyancy Reynolds number Reb and such functional835
dependence fits well with the previous parametrization of Bouffard & Boegman (2013). This836
has allowed us to calibrate a method for the inference of turbulent heat flux based upon837
results for singly-diffusing-species. Utilizing our three-step algorithm based on DNSs and838
the parametrization of Bouffard & Boegman (2013), the systematic errors in the estimation839
of diapycnal diffusivity for density Kρ is expected to be significantly reduced.840

This work appears to represent a significantly original contribution to the understanding of841
vertical mixing in the Arctic Ocean environment. One of themajor obstacles in understanding842
vertical mixing in the Arctic Ocean has been associated with the absence of an understanding843
of the thermohaline staircase structures that frequently form and persist in certain regions.844
The current state of understanding of Arctic Ocean staircases appears to be an awkward845
amalgam of distinctly different explanations for mixing in regions in which staircases are846
present (e.g. Timmermans et al. (2008)) and those regions in which staircases are absent.847
In the latter regions it is always assumed that the absence of staircase is due a high level of848
internal wave activity and turbulence induced by internal wave breaking (e.g. Dosser et al.849
(2021)). Aswe have discussed above, the simplifiedOsborn (1980)’s formula has beenwidely850
applied in this case to infer mixing based on the dissipation rate measurements and our new851
algorithm helps to significantly reduce the systematic errors in the estimation process. In852
regions where staircases have formed, on the other hand, a different class of formulas have853
been used to infer the diapycnal diffusivities which have strong dependent on the density854
ratio Rρ (e.g. Large et al. (1994), Kelley (1990)). In this scenario, the mixing are believed855
to be determined by the molecular diffusivities for heat and salt in the sharp interfaces (e.g.856
Linden & Shirtcliffe (1978), Carpenter et al. (2012)) that separate successive well mixed857
regions in the staircase instead of being induced by dynamically driven turbulence.858

These two different scenarios (to be applied in regions with/without staircases) have859
recently been connected in the work of Ma & Peltier (2022) which demonstrated that the860
formation of these staircase structure can be explained using a turbulence parametrization861
scheme. Specifically speaking, Ma & Peltier (2022) showed that the layered structure arises862
spontaneously in a system with constant gradients in the diffusive-convection environment863
by assuming that the diapycnal diffusivities for salt and heat in the Arctic region obey the864
turbulent parametrization described by Bouffard & Boegman (2013). In the current work,865
we have further shown that the effectiveness of this fundamental assumption in Ma & Peltier866
(2022) can be validated using detailed DNS analysis. Therefore, an accurate calibration of an867
accurate turbulent parametrization scheme lies at the heart of understanding vertical mixing,868
in both regions in which staircases are present and in regions where they absent.869

In the future refinement of the turbulence parametrization we have developed using DNS870
of breaking KH billows, a larger Reynolds number Re and higher Schmitt number Sc will871
be applied in order to extend the simulations provided in this work. These critical non-872
dimensional parameters are confined in our current DNSs due to the limitation on the873
available computational resources. Use of a higher Re will lead to a broader range of Reb in874
the KS(KΘ) − Reb diagram so that the parametrization of the energetic regime in Bouffard &875
Boegman (2013)’s parametrization can be closely calibrated; and a higher Sc will make the876
system more physically relevant so that the results can be directly compared with data from877
field measurements. It is also beneficial to study the stratified turbulence in the body-forced878
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Numbering Lx Nx Ny Nz Nc Hc q
1 14.15 1120 399 595 315 2 1.143
2 14.15 1120 399 595 315 2 1.143
3 14.15 1120 399 595 315 2 1.143
4 14.15 1120 399 595 315 2 1.143
5 28.30 2240 399 595 315 2 1.143
6 14.31 1225 226 966 686 4 1.120
7 14.31 1225 427 847 511 3 1.098

Table 3: Detailed mesh information parameters for our DNSs.

system (e.g. Shih et al. (2005), Howland et al. (2020)) to test whether the same turbulent879
parametrization is applicable in that case.880
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Appendix A. Determination of grid resolution using low-resolution simulations888

The computational fluid dynamics solver Nek5000 supports a user-defined complex mesh889
in direct numerical simulations. We utilize this flexible property of the solver to design our890
mesh in such a way as to save computational power, as has also been applied in previous891
works of Salehipour et al. (2015) and Ma & Peltier (2021). Specifically we have performed a892
low-resolution simulation with a uniform grids at 574× 287× 798 points previous to each of893
ourmajor simulations. Themaximum dissipation rate at each depth level has been recorded in894
the full evolution cycle of KH billow in these low-resolution simulations, according to which895
the minimumBatchelor scale (for salinity) at each depth level is computed. The grid intervals896
are then designed to contain Nc uniform grids in the central region of −Hc 6 z 6 Hc . In897
regions above and below this central region, the vertical grid interval is uniformly stretched898
by a fix percentage q between successive elements. Each element is then discretized using899
8th (chosen for our simulations) order Lagrange polynomial interpolants (which means each900
element effectively contains seven grids) as our implementation in Nek5000. The values of901
Hc and q are selected in away that the vertical grid intervals are everywhere below three times902
the Batchelor’s scale for salinity, see Figure 15 of Ma & Peltier (2021) for a visualization.903
Meanwhile, the horizontal grid intervals are always selected to be the same as the uniform904
grid interval in the central region to guarantee accuracy in the central region. The detailed905
mesh information for each of our simulations are summarized in Table 3.906

Appendix B. Settings and results of the secondary instability analysis907

As mentioned in section 4.3 of the main text, we have performed a non-separable stability908
analysis to determine the nature of the three-dimensional instability that the system is subject909
to. In this Appendix B we will briefly discuss the settings and the results of the stability910
analysis.911
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Since the primary KH instability is two-dimensional, the fluid will keep evolving in a912
two-dimensional fashion until the onset of three-dimensional instabilities. Here, we assume913
that the growth of such three-dimensional instabilities are much faster than the evolution of914
two-dimensionalKHbillow.At a given time,we can treat the two-dimensional flow as a quasi-915
steady state that is "frozen" in time to analyze whether a given three-dimensional disturbance916
will be strengthened or suppressed by the background two-dimensional flow. Specifically, we917
assume the background field f (x, y, z) (velocity field,pressure field, temperature or the salinity918
field) at a given time t0 is composed by a two-dimensional background state f̃ (x, z, t0) and a919
three-dimensional perturbation component f3d(x, y, z, t0+ t). Here t has the time scale for the920
growth of three-dimensional instability and based on our assumption we have t << t0. We921
further decompose the three-dimensional perturbation in the normal modes with a spanwise922
wavenumber d and a complex growth-rate σ3d, namely:923

f (x, y, z, t) = f̃ (x, z, t0) + f3d(x, y, z, t) (B 1a)
f3d(x, y, z, t0 + t) = f †3d(x, z, t0)e

idy+σ3d t, (B 1b)

By substituting such expansions for velocity, pressure, temperature and salinity fields into924
(3.2) and linearizing about the background state, we will arrive at a set of equations for the925
perturbation fields. The complex form of this equation set can be found in Klaassen & Peltier926
(1985) and the additional equation for salinity in our system is the same as for the temperature927
equation in Klaassen & Peltier (1985). By further expanding the two- dimensional scalar928
fields into a set of truncated orthogonal basis using a Galerkin method as:929

u†3d =
L∑

λ=−L

N∑
ν=0

uλνFλν, (B 2a)

w†3d =

L∑
λ=−L

N∑
ν=0

wλνGλν, (B 2b)

Θ
†

3d =

L∑
λ=−L

N∑
ν=0
ΘλνGλν, (B 2c)

S†3d =
L∑

λ=−L

N∑
ν=0

SλνGλν, (B 2d)

p†3d =
L∑

λ=−L

N∑
ν=0

pλνFλν, (B 2e)

where

Fλν = eiλαxcos(
νπz
Lz
), (B 3a)

Gλν = eiλαxsin(
νπz
Lz
) (B 3b)

are the orthogonal basis that satisfies the zero-vertical-derivative condition on both top930
and bottom boundaries (z = 0, z = Lz) and periodic boundary condition on stream-wise931
boundaries (x = 0, x = Lx). By substituting these expansions into the field equations932
and diagonalizing these equations by integrating over the two-dimensional domain after933
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Figure 9: Growth-rate (real part of σ3d) of the fastest growing mode of the secondary
instability as a function of spanwise wavenumber d.

multiplying F∗λν or G∗λν on the left-hand side, the original field equations will be transformed934
in the eigenvalue problem that takes the form of:935

σ3dVi = Ai jVj . (B 4)936

Here i or j are indexes for the actual two-dimensional indices (λ, ν) that is constrained over937
the modified triangular scheme of Klaassen & Peltier (1985), namely of 2λ + ν 6 N where938
N is an odd integer. In this work we set N = 33 and use the standard MATLAB routine to939
solve this two-dimensional matrix for the eigenvalue problem to obtain the eigenvalue σ3d940
as the complex growth-rate and the eigenvector Vjas the fastest growing mode.941
In Figure 9, we plot the growth-rate (real part ofσ3d) as a function of spanwisewavenumber942

d for the simulation number 6 with J = 0.05 and Rρ = 2 at t = t2d. We specifically choose the943
simulation number 6 to demonstrate because it has the smallest bulk Richardson number as944
well as the smallest density ratio among all our simulations. Therefore the double-diffusive945
effect of simulation number 6, if it is important, will be the strongest in all simulations.946
However, in Figure 9 we see that the fastest growing wavelength has its peak at approximately947
d = 4.3 which remains consistent with the characteristics of the classical shear aligned948
secondary convective instability described in Klaassen& Peltier (1985) or Peltier &Caulfield949
(2003). Furthermore, the eigenfunction of the fastest growing mode at t2d for salinity and950
temperature separately is plotted in Figure 10 (c)(d), to be compared with the cross-section951
salinity and temperature field at the same time in Figure 10 (a)(b). From these comparisons it952
can be clearly seen that the most unstable mode for both temperature and salinity focuses on953
the statistically unstable region of the primary KH billow. Therefore we have shown that the954
secondary instability that the system will develop is still the classical secondary convective955
instability described in Klaassen & Peltier (1985).956
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Figure 10: Cross section at y=0 for salinity (a) and temperature field (b) at the t2d ,
compared with the fastest growing eigenfunction for the salinity field (c) and temperature

field (d).
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