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Abstract

Seismic ambient noise sources have received increased attention recently, creating new possibilities to study the Earth’s sub-

surface and the atmosphere-ocean-solid Earth coupling. In efforts to locate such noise sources using nonlinear finite-frequency

inversions, methodological developments such as pre-computed wavefields and spatially variable grids were necessary. These

make inversions feasible for the secondary microseismic sources in a frequency range up to 0.2 Hz on a daily basis. By ob-

taining a starting model for the inversion using Matched Field Processing (MFP) we are able to further steer the inversion

towards acceptable global noise source models and improve the final result. Analysis of one year of daily inversions shows the

seasonal variations of the secondary microseisms and their dependence on the atmosphere-ocean-solid Earth coupling due to

storm-induced ocean waves. We present a web framework, SANS (Seismic Ambient Noise Sources, sans.ethz.ch), where daily

regional- to global-scale seismic ambient noise source maps are made available to the public. This eases the implementation

of time-variable noise source distributions into full-waveform ambient noise tomography and time-dependent subsurface mon-

itoring methods. Additionally, it encourages other studies to verify if changes in the seismic data are due to changes in the

subsurface velocity or spatio-temporal variations of noise sources.
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Key Points:5

• We combine Matched Field Processing and nonlinear finite-frequency inversion to6

locate ambient noise sources7

• We present a web framework for publicly available daily regional to global scale8

seismic ambient noise source maps (sans.ethz.ch)9

• Analysis of a full year of daily inversions shows the seasonal variations of the sec-10

ondary microseisms11

Corresponding author: Jonas K. H. Igel, jonas.igel@erdw.ethz.ch

–1–



manuscript submitted to JGR: Solid Earth

Abstract12

Seismic ambient noise sources have received increased attention recently, creating13

new possibilities to study the Earth’s subsurface and the atmosphere-ocean-solid Earth14

coupling. In efforts to locate such noise sources using nonlinear finite-frequency inver-15

sions, methodological developments such as pre-computed wavefields and spatially vari-16

able grids were necessary. These make inversions feasible for the secondary microseis-17

mic sources in a frequency range up to 0.2 Hz on a daily basis. By obtaining a starting18

model for the inversion using Matched Field Processing (MFP) we are able to further19

steer the inversion towards acceptable global noise source models and improve the final20

result. Analysis of one year of daily inversions shows the seasonal variations of the sec-21

ondary microseisms and their dependence on the atmosphere-ocean-solid Earth coupling22

due to storm-induced ocean waves. We present a web framework, SANS (Seismic Am-23

bient Noise Sources, sans.ethz.ch), where daily regional- to global-scale seismic am-24

bient noise source maps are made available to the public. This eases the implementa-25

tion of time-variable noise source distributions into full-waveform ambient noise tomog-26

raphy and time-dependent subsurface monitoring methods. Additionally, it encourages27

other studies to verify if changes in the seismic data are due to changes in the subsur-28

face velocity or spatio-temporal variations of noise sources.29

Plain Language Summary30

The Earth is constantly vibrating due to various man-made and natural sources.31

One of the main sources of natural background noise is the ocean, specifically when ocean32

waves come into contact with the solid Earth. The strength of these sources strongly de-33

pends on the wave height, which changes constantly due to atmospheric phenomena such34

as storms. We study these seismic waves, so-called seismic ambient noise, to analyse the35

spatial and temporal variations which allow us to study the interaction between the at-36

mosphere, ocean, and solid Earth, as well as imaging the subsurface. In this study, we37

combine two different methods, namely Matched Field Processing (MFP) and nonlin-38

ear finite-frequency inversions, to create regional to global scale seismic ambient noise39

source maps on a daily basis. By looking at a full year of daily noise source maps we can40

observe the seasonal variations of noise sources. These daily noise source maps are pre-41

sented on a website (sans.ethz.ch) where anyone can download the results and imple-42

ment them in their own research. We hope that this will aid others by simplifying the43

implementation of noise source information which should make tomography and mon-44

itoring methods more accurate.45

1 Introduction46

Seismic ambient noise sources have been studied thoroughly over the last few decades.47

Specifically, since studies showed that they could be used to study the Earth’s interior48

(Aki, 1957; Shapiro & Campillo, 2004; Shapiro et al., 2005; Sabra et al., 2005) further49

research was performed to understand the generation of ambient vibrations (e.g. Ard-50

huin, Stutzmann, et al., 2011; Ardhuin & Herbers, 2013; Ardhuin et al., 2015; Gualtieri51

et al., 2014, 2015), and new methods were developed to help locate these sources (e.g.52

Gerstoft & Tanimoto, 2007; Retailleau et al., 2017; Retailleau & Gualtieri, 2019; Gal et53

al., 2018; Sager, Ermert, et al., 2018; Ermert et al., 2020; Igel et al., 2021). More data-54

driven methods like correlation-based beamforming have been used to obtain the direc-55

tionality (e.g. Bucker, 1979; Hinich, 1979; Ruigrok et al., 2017) and physical location (e.g.56

Ishii et al., 2005; Meng et al., 2012; Retailleau et al., 2017; Retailleau & Gualtieri, 2019)57

of noise sources.58

In theory, cross-correlation functions approach the Green’s functions for homoge-59

neously distributed, uncorrelated, random noise sources and an equipartioned wavefield.60
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Many ambient noise interferometry studies assume that the noise sources are sufficiently61

homogeneous for the cross-correlations to converge to Green’s functions (e.g. Nakata et62

al., 2019; Snieder & Wapenaar, 2010; Weaver et al., 2009; Wapenaar, 2004; Wapenaar63

& Fokkema, 2006). However, several studies have shown that the omni-present ambient64

noise wavefield changes on a daily basis (e.g. Bertelli, 1872; Longuet-Higgins, 1950; Ard-65

huin et al., 2015) and the cross-correlation and Green’s function diverge if more realis-66

tic constraints - such as global or local energy and directionality constraints - are im-67

plemented into the modelling (Tsai & Sager, 2022). The heterogeneity of noise source68

distributions can have a significant effect on travel times, particularly for monitoring ap-69

plications (Zhan et al., 2013; Delaney et al., 2017). Prior knowledge of the noise source70

locations can help distinguish if changes in the cross-correlations are due to changes in71

the noise source distribution or subsurface velocities.72

Inspired by work in helioseismology (Woodard, 1997), recent works introduced the73

direct numerical modelling of noise cross-correlations for any heterogeneous noise source74

distribution on Earth (Tromp et al., 2010; Hanasoge, 2013b; Fichtner, 2014; Ermert et75

al., 2017; Sager, Ermert, et al., 2018; Datta et al., 2019). This has resulted in several stud-76

ies using adjoint techniques (e.g. Fichtner et al., 2006) and sensitivity kernels (e.g. Tromp77

et al., 2010; Fichtner, 2014) to invert for the seismic ambient noise source distribution78

for different frequency ranges on various scales (Ermert et al., 2017; Xu et al., 2019; Igel79

et al., 2021). Expanding on these adjoint and sensitivity kernel techniques, Bowden et80

al. (2021) showed that certain beamforming algorithms are mathematically similar to81

the first iteration of nonlinear finite-frequency inversions.82

The direct forward-modelling of ambient noise cross-correlations allows us to cir-83

cumvent common assumptions in ambient noise studies - e.g. wavefield equipartition-84

ing and a quasi-random noise source distribution - that are necessary for Green’s func-85

tion retrieval (e.g. Shapiro & Campillo, 2004; Shapiro et al., 2005; Wapenaar & Fokkema,86

2006; Sánchez-Sesma & Campillo, 2006). Additionally, full-waveform ambient noise to-87

mography methods are capable of directly implementing information about the noise source88

distribution (Sager, Ermert, et al., 2018). Recent developments have made the compu-89

tation of cross-correlations for ambient noise source inversions more efficient by using spa-90

tially variable grids and pre-computed Green’s function databases (Ermert et al., 2020;91

Igel et al., 2021); particularly for the frequency range of secondary microseismic sources92

(between 0.1 and 0.2 Hz). This allows us to rapidly invert for the noise source distribu-93

tion on a regional to global scale with reasonable computational cost by taking advan-94

tage of high performance computing (HPC) resources.95

Building on these various developments, we present a web framework to make daily96

Seismic Ambient Noise Source (SANS) maps available to the public (sans.ethz.ch). In-97

depth knowledge of the ambient noise source distribution should help to improve am-98

bient noise tomography and imaging methods; particularly to ensure that changes in the99

subsurface are not confused with the spatio-temporal variations of the microseismic noise100

source distribution. Providing these maps should ease the implementation in full wave-101

form ambient noise tomography methods and encourage future studies to take the noise102

source distribution into account.103

In this paper, we focus on the combination of Matched Field Processing (MFP) with104

nonlinear finite-frequency inversions to improve the inversion results, and present the web105

framework SANS, where the daily ambient noise maps are made publicly available. Since106

both methods have previously been described individually in detail, we refer the inter-107

ested reader to earlier publications for more in-depth derivations and explanations (Bowden108

et al., 2021; Ermert et al., 2020; Igel et al., 2021).109
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2 Methodology110

In the following section, we will explain the main steps of the two methods: non-111

linear finite-frequency inversions and Matched Field Processing (MFP). Despite the dif-112

ferences in the approaches taken, Bowden et al. (2021) show that these methods are well113

connected. Both have their advantages and disadvantages: MFP is an efficient, data-driven114

approach that works on any cross-correlation data. An inversion is computationally more115

expensive but - in contrast to MFP - models the wave propagation more accurately and116

allows us to account for the nonlinearity by using an iterative approach.117

More importantly, an inversion allows for prior knowledge to be implemented. Hence118

we use the more efficient, data-driven MFP algorithm to compute a starting model for119

the nonlinear finite-frequency inversion, to avoid local minima and accelerate the con-120

vergence towards an acceptable model. Both methods rely on the fact that vertical-component121

seismic ambient noise data in the frequency range of 0.1 to 0.2 Hz are dominated by sur-122

face waves.123

2.1 Nonlinear Finite-Frequency Inversion124

The inversion method is based on a concept from helioseismology (Woodard, 1997)125

which enables the direct modelling of cross-correlations for any noise source power-spectral126

density (PSD). The work has been adapted for applications to Earth by several authors127

(e.g. Tromp et al., 2010; Hanasoge, 2013a; Fichtner, 2014; Ermert et al., 2017; Sager,128

Ermert, et al., 2018) with some additional implementations of pre-computed wavefields129

(Ermert et al., 2020) and spatially variable grids (Igel et al., 2021) to improve efficiency130

and make inversions feasible for higher frequencies. In the following section we will pro-131

vide a short overview of the gradient-based iterative inversion method. For more details,132

the reader is referred to the aforementioned publications.133

2.1.1 Cross-correlation modelling134

The following equation allows us to forward model the cross-correlation wavefield135

Cij , for two stations at locations x1 and x2, for an arbitrary noise source PSD Snm, at136

points ξ on the Earth’s surface ∂⊕, using the Green’s functions G, in the frequency do-137

main (Fichtner, 2014; Ermert et al., 2017; Sager, Boehm, et al., 2018; Igel et al., 2021):138

Cij(x1,x2) =

∫
∂⊕

G∗
in(x1, ξ)Gjm(x2, ξ)Snm(ξ)dξ. (1)

We imply the Einstein summation convention for repeated indices, and ∗ indicates the139

complex conjugate. To reduce the computational cost we pre-compute the Green’s func-140

tions G using the time-domain spectral-element codes for spherically symmetric Earth141

models AxiSEM to model wave propagation (Nissen-Meyer et al., 2014), and Instaseis142

to extract seismograms (van Driel et al., 2015) with 1-D isotropic PREM (Dziewonski143

& Anderson, 1981) as underlying velocity model. The Green’s function database is then144

re-used for subsequent iterations and inversions. Additionally, we implement spatially145

variable grids with regional dense areas and no grid points on land, to reduce the num-146

ber of possible noise sources, and thus the modelling parameters for regional applications147

(Igel et al., 2021). The combination of pre-computed wavefields and spatially variable148

grids allows us to efficiently invert for the noise source distribution of the secondary mi-149

croseisms in a frequency range of 0.1 to 0.2 Hz (Ermert et al., 2020; Igel et al., 2021).150

2.1.2 Inversion151

Once we have modelled the synthetic cross-correlations, we measure the difference152

to the observed cross-correlations using the logarithmic energy ratio (e.g. Ermert et al.,153
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Figure 1. Our chosen measurement is the logarithmic energy ratio as previously used by

Ermert et al. (2020) and Igel et al. (2021) (see Equation 2). To obtain a misfit we take a mea-

surement of synthetic Ai (bottom) and observed Aobs
i (top) cross-correlations and compute the

L2-norm (see Equation 3).

2017). This measurement quantifies the asymmetry of the cross-correlation which arises154

from a heterogeneous noise source distribution as illustrated in Figure 1. The logarith-155

mic energy ratio computes the ratio of the energies E+ and E− of the expected surface156

wave arrival window w(τ) in the causal and acausal parts of the cross-correlation C(τ):157

A = ln

( ∫
[w(τ)C(τ)]2dτ∫
[w(−τ)C(τ)]2dτ

)
= ln

(
E+

E−

)
(2)

In contrast to full-waveform misfits, the logarithmic energy ratio aims to match the
energy in the causal and acasual expected surface wave arrival windows. Although this
measurement contains less information, it is much more robust, and relatively insensi-
tive to unknown 3-D Earth structure (Sager, Boehm, et al., 2018) due to only compar-
ing energies in a certain time window. Consequently, this allows us to use a simple 1-
D PREM (Dziewonski & Anderson, 1981) velocity model to compute synthetic cross-correlations.
During the inversion we aim to minimise the squared L2-norm, i.e. the misfit χ, of the
measurements Ai and Aobs

i on the synthetic and observed cross-correlations, respectively:

χ =
1

2

N∑
i=1

[
Ai −Aobs

i

]2
(3)

where N is the number of measurements.158

Adjoint techniques (e.g. Fichtner et al., 2006) allow us to compute source sensi-159

tivity kernels (e.g. Tromp et al., 2010; Hanasoge, 2013b; Fichtner, 2014) which provide160

a spatial reference of where an increase or decrease in noise source strength should de-161

crease the misfit. By compiling the gradient, i.e. the sum of all sensitivity kernels, we162

can update the noise source distribution and continue with the next iteration by re-computing163

the cross-correlations, misfits, and sensitivity kernels. To minimise the misfit we adopt164

a gradient-based iterative scheme using the steepest descent method, including regular-165

isation and step-length tests. Several synthetic and real-data tests have shown that there166

are usually no significant improvements in the noise source distribution after roughly 5167

iterations. Hence, we run 8 iterations of the inversion to ensure that we have converged168

to a model that explains the data based on our measurement.169

In previous research (Igel et al., 2021), we used a homogeneous distribution in the170

ocean as the initial noise source distribution. For a gradient-based iterative inversion method171
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like ours, a good initial model can be helpful in steering the inversion towards an accept-172

able global noise source model and avoid local minima.173

By introducing a different method to locate noise sources - namely Matched Field174

Processing - we are able to efficiently create a more realistic initial model from the same175

observed cross-correlations. This is similar to full-waveform inversions, where starting176

models are often constructed with more efficient methods such as ray-based travel time177

tomography or dispersion curve analysis (e.g. Virieux & Operto, 2009; Teodor et al., 2021).178

2.2 Matched Field Processing179

Matched Field Processing, in this context, may be considered similar to beamform-180

ing and backprojection methods, where time-shifts are applied to the data and rays are181

backprojected to obtain a source location. However, whereas beamforming generally as-182

sumes plane waves arrive at an array of sensors, MFP directly considers sources anywhere183

within a computational domain and estimates travel times accordingly. This makes it184

very suitable for global ambient noise source studies, where stations from all over the globe185

may be used. Additionally, it is able to map noise sources on any grid, which allows us186

to use the same source grid for MFP and the inversion.187

MFP algorithms of varying complexity have been developed, for example: to lo-188

cate hydrothermal acoustic sources (Cros et al., 2011); microseismic sources in exploration189

geophysics (Corciulo et al., 2012); glacial tremors (Umlauft et al., 2021); or applied to190

three-component seismic array data for microseisms (Gal et al., 2018). The algorithm191

could also be adapted to be nearly identical to full-waveform methods by including syn-192

thetic Green’s functions (Bowden et al., 2021; Schippkus & Hadziioannou, 2022). Although193

there may be some value to more complex MFP implementations, we prefer the com-194

putationally efficient version described below, as the subsequent inversion iterations will195

add further complexity.196

2.2.1 Constant Velocity MFP197

Our MFP algorithm is based on the assumption that a point source at a proposed
noise source location for a set surface wave group velocity will lead to signal in the cross-
correlation at a certain lag. The first step is to compute all cross-correlations and cre-
ate a grid of possible noise sources. Subsequently, we iterate over all possible noise sources
and compute the travel times to the stations based on a constant surface wave speed v
of 2,900 m

s . This surface wave speed is roughly the average Rayleigh wave group veloc-
ity in the 0.1 to 0.2 Hz frequency range in PREM (Dziewonski & Anderson, 1981) and
has provided good results for synthetic and real-data applications. For such a narrow
frequency band we can consider the group velocity to be roughly constant. The travel
time difference ∆tij between arrivals ti and tj at the two receiver locations xi and xj

determines the lag at which the current noise source location x would result in a signal
in the cross-correlation:

∆tij = ti − tj =
||x− xi||

v
− ||x− xj ||

v
. (4)

Note that ||.|| denotes the vector norm for a 2-D example as illustrated in Figure 2. For198

our applications we extend the vector norm from 2-D to a sphere where it is adapted to199

be the great circle distance between the noise source locations and stations.200

Finally, the corresponding value of the cross-correlation - or in our case the value201

of the square envelope of the cross-correlation as explained in section 2.2.2 - is added to202

the ’power’ of that grid point, and we repeat the process for the next possible noise source203

location. This is equivalent to applying phase shifts to the raw signals and then mea-204

suring coherencies, as MFP or beamforming is often described. An illustration of this205
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Figure 2. Illustration of the Matched Field Processing algorithm. We iterate over all possible

noise sources, calculate the travel time difference ∆t and finally obtain the value from the cross-

correlation, e.g. red dot for the actual waveform value or blue dot for the value of the square

envelope. Additionally, we calculate the standard deviation of the envelope and set everything

below twice the standard deviation to 0. This increases the signal-to-noise ratio and improves the

final MFP power map. This process is repeated for every possible noise source location and every

station pair.

algorithm can be seen in Figure 2. By using a larger array of stations, we are able to spa-206

tially restrict the locations of noise sources and obtain a map of noise source ’power’.207

2.2.2 Square Envelope Measurement208

The simplest MFP method uses the value of the cross-correlation waveform to ob-209

tain the ’power’ for each noise source location. However, since this often results in strong210

fluctuations of the noise source power due to the oscillatory nature of the waveforms and211

struggles with low signal-to-noise ratios we instead take the value of the square envelope212

S(C(τ)) of the cross-correlation C(τ).213

S(C(τ)) = C2(τ) +H(C(τ))2, (5)

where H indicates the Hilbert transform. Additionally, we compute the standard devi-214

ation σ(S(C(τ))) of the square envelope and set all values below twice the standard de-215

viation to 0, i.e. we do not add any ’power’ for those noise source locations.216

Besides increasing the signal-to-noise ratio when a signal is present, this also smooths217

the resulting noise source and avoids the fluctuations of noise source power. This does218

mean that for cross-correlations with no clear signal, i.e. where the square envelope is219
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nearly constant, nothing is removed and the signal-to-noise ratio can not be increased.220

This has little effect on the final MFP power distribution as it would add a near con-221

stant value.222

P (C(τi)) =

{
0 if S(C(τi)) < 2 ∗ σ(S(C(τ)))

S(C(τi)) else ,
(6)

where P (C(τi)) is the MFP power for the time lag τ at source location i and cross-correlation223

C(τi). Synthetic and real data tests show that using the square envelope with a cut-off224

threshold greatly increases the contrast of the final MFP maps and ensures that we mainly225

use the signal from the cross-correlations.226

To account for geometric spreading we multiply each value of the square envelope227

of the cross-correlations with an amplitude decay factor Di as introduced by previous228

studies (e.g. Corciulo et al., 2012; Bowden et al., 2021), which depends on the surface229

wave group velocity v, the average frequency of our bandpass filter f , and the average230

distance of the station pair to the proposed source location ri:231

Di =

√
2v

πfri
(7)

This process is repeated for all possible noise source locations and cross-correlations,232

and the values of the square envelope of the cross-correlations are added up as illustrated233

in Figure 2. Of course, more sophisticated methods to model either the travel times or234

amplitude decays and attenuation can be implemented in MFP (Bowden et al., 2021;235

Schippkus & Hadziioannou, 2022). Such modelling is precisely the point of subsequent236

iterations of the full-waveform approach, whereas the MFP is only intended to give a com-237

putationally efficient initial model.238

In contrast to other array-based beamforming methods, MFP works best when the239

stations surround the noise source location. We illustrate this in Figure 3 by running a240

synthetic example, where we forward model cross-correlations using the pre-computed241

Green’s function database and cross-correlation model code from the inversion with a242

dominant noise source blob within the domain, and a frequency content of 0.1 to 0.2 Hz.243

We apply the MFP algorithm to two sets of stations: 6 stations in closer proximity and244

35 stations spread out in the whole domain. If the dominant noise source is outside the245

array we see strong smearing and MFP is only able to give us a direction of the dom-246

inant noise source. On the other hand, if the dominant noise source is surrounded by sta-247

tions, MFP is able to constrain the spatial extent of the dominant noise sources more248

accurately.249

2.3 MFP starting model250

Thanks to MFP being most capable when the dominant noise sources are within251

the array, it is a useful method to locate noise sources on a regional to global scale. MFP252

and the finite-frequency inversion use slightly different information from the cross-correlation253

to obtain a noise source distribution. The logarithmic energy ratio is largely insensitive254

to unknown Earth structure, as it only takes the energy in a given window but ignores255

the actual waveform. On the other hand, MFP with the square envelope measurement256

uses more information from the waveform itself but does not properly account for wave257

propagation. Additionally, the resulting MFP maps are harder to interpret in terms of258

physical units as they are not an actual model of a physical quantity but rather an im-259

age of the noise source distribution.260

To combine the two methods we normalise a smoothed MFP noise source map and261

set it as the initial power-spectral density model for the finite-frequency inversion. In con-262
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Figure 3. Example of the MFP algorithm for synthetic cross-correlations modelled with a

dominant noise source blob (⋆) within the domain (A). If the dominant noise source is outside

the array (a), MFP is mainly able to provide a direction (B). If the stations surround the dom-

inant noise source (a), MFP is able to constrain the spatial extent of the dominant noise source

much more accurately (C).

trast to the previously used homogeneous starting model, this greatly reduces the pres-263

ence of inversion artefacts. Synthetic and real-data tests have shown that this improves264

the final noise source maps without significantly increasing the computational cost. Fig-265

ure 4 shows a regional synthetic comparison of two inversions with a homogeneous and266

an MFP starting model. The synthetic cross-correlations were modelled using the noise267

source distribution on the left with added random noise to make them more realistic. The268

random noise is introduced by normalising a random time series, multiplying it by the269

maximum amplitude of the cross-correlation and a scaling factor of 1.5, and finally adding270

it to the cross-correlation. Comparisons show that this resembles our real ambient noise271

cross-correlations more closely.272

The inversion with the homogeneous starting model does contain the most dom-273

inant noise sources but shows a strong tendency to move noise sources closer to the coast,274

especially for the large dominant noise source area off the European coast. In contrast,275

the inversion with an MFP starting model does not lead to strong coastal sources, and276

better represents the spatial distribution of the dominant noise sources in the actual model.277

This is particularly useful for global inversions where MFP can help to avoid inversion278

artefacts due to lack of data by increasing the probability of noise sources in certain ar-279

eas before the first iteration.280

MFP introduces new information to the inversion, as it actually uses the cross-correlation281

waveforms, as opposed to the finite-frequency inversion where we measure the energy in282

the expected surface wave arrival time windows. Hence, we expect this to reduce the null283

space of the inversion and produce a more accurate noise source map. Despite the clear284

differences in the resulting inversion models, the misfits of the final iterations shown in285

Figure 4 are very similar. However, it is clear that the inversion with the MFP starting286

model is visually more similar to the target model than the inversion with a homogeneous287

starting model. This indicates that including the additional waveform information via288

the MFP starting model does reduce the null space and helps to steer the inversion in289

a direction that is more closely aligned with the actual noise source distribution.290

3 SANS: Daily Seismic Ambient Noise Sources291

In light of the recent developments that have significantly decreased the compu-292

tational cost of ambient noise source inversions for the secondary microseisms on a global293

scale (Ermert et al., 2020; Igel et al., 2021), we introduce a new web framework, SANS,294
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Figure 4. Synthetic inversions using cross-correlations with added random noise that were

forward-modelled with the noise source distribution on the left (A) for stations surrounding the

North Atlantic (a). A homogeneous starting model introduces stronger noise sources along the

coast during the inversion (B). In contrast, an inversion with an MFP starting model results in a

noise source distribution that is closer to the target model (C).

where daily Seismic Ambient Noise Sources are made available to the public (sans.ethz295

.ch). Currently, we run two inversions every day: one for a global station list and one296

more regional with stations surrounding the North Atlantic. A regional inversion allows297

for a higher spatial resolution of the noise source distribution in that area.298

Users can obtain the inversion results by either directly looking at a plot of the noise299

source distribution maps online or downloading the inversion output and analysing it them-300

selves, e.g. for implementation in other studies.301

3.1 Data selection and processing302

We download and process the seismic ambient noise data automatically every morn-303

ing at 4 am (CET) using ObsPy (Krischer et al., 2015). All stations within a chosen sta-304

tion list are checked for available data. The station lists are based on globally available305

broadband sensors but limit the minimum distance between stations to roughly 1° (=306

111 km) to avoid smaller arrays. Dense station arrays would lead to high local sensitiv-307

ities that would distort the final noise source distribution. This results in 414 stations308

for the global and 153 stations for the North Atlantic station list. The global distribu-309

tion of stations is illustrated in the resolution analysis in Figure 5 and both station lists310

can be downloaded from the website. The data availability changes on a daily basis, lead-311

ing to roughly 70% of these stations having data available on average.312

After downloading all available data, we remove the instrument response, down-313

sample to 1 Hz, segment the data into 2 h windows, and remove any windows contain-314

ing earthquakes that are in the GCMT catalogue (Ekström et al., 2012) with a minimum315

magnitude of 5.6. Occasionally this can lead to all windows being removed if there was316

one strong or several smaller earthquakes in a day. Subsequently, we compute the daily317

cross-correlations of the windowed seismic ambient noise data by stacking the individ-318

ual cross-correlations of the 12 windows. This helps to increase the signal-to-noise ra-319

tio of the final daily ambient noise cross-correlations.320

Similar to Igel et al. (2021), we ignore cross-correlations with a signal-to-noise ra-321

tio below 3.5. The signal-to-noise ratio is determined by dividing the maximum ampli-322

tude within the expected surface wave arrival window by the standard deviation of the323

whole time series. Hence, we define a signal as a clear surface wave arrival within the324

expected window. This is usually the case if the dominant noise source is in-line with325

the station pair. Due to our chosen measurement being the logarithmic energy ratio, cross-326
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correlations with little signal - i.e. asymmetry - would not contribute much to the final327

gradient and update of the noise source distribution. Besides improving the final result328

of the inversion, ignoring cross-correlations below a signal-to-noise threshold also decreases329

the computational cost, as fewer cross-correlations have to be modelled during the in-330

version. During the inversion we apply a band-pass filter between 0.1 and 0.2 Hz as we331

focus on the secondary microseismic noise sources.332

3.2 Web framework333

After the data have been downloaded, processed, and correlated we run 8 iterations334

of the inversion on Piz Daint, a supercomputer at the Swiss National Supercomputing335

Centre (CSCS). The computational cost of the inversions varies with the number of avail-336

able cross-correlations for each day. However, we greatly reduce the computational cost337

since we have already pre-computed the wavefield and extracted the Green’s function338

database which is re-used every day. We run both inversions, one global and one regional339

surrounding the North Atlantic, on 600 cores, with the usual computational times be-340

ing 60 minutes (50 node hours) and 30 minutes (25 node hours), respectively. We use341

two different spatially variable grids, with a more homogeneous distribution of about 29,000342

grid points for the global inversion and a locally dense grid in the North Atlantic with343

roughly 21,000 grid points for the regional inversion. Once the inversions are done, we344

plot the output and copy all relevant files to the ETH web server where the website is345

hosted. These files are then made available to the public on sans.ethz.ch.346

The web framework allows users to look through the iterations of all available in-347

version results and compare them to significant wave height maps (Tolman & Chalikov,348

1996; WAVEWATCH III , 2005) of that day. Note that the generation mechanism of the349

secondary microseisms requires ocean waves travelling in opposite directions to overlap350

(Nakata et al., 2019); therefore the wave height maps are merely a reference as to where351

the areas of dominant noise sources may be and should not be directly compared. Users352

can download the full inversion output folder including the parameter file, station list,353

source grid, further plots such as the gradients, misfit reduction and other relevant files.354

We provide code that helps a user to plot and analyse these results themselves. In the-355

ory, the inversions are reproducible as the inversion code is made available on github.356

However, this does require the additional computation or download of an AxiSEM wave-357

field and access to HPC facilities. The global inversion requires roughly 50 node hours358

which includes the data download, processing, and 8 iterations of the inversion but ex-359

cludes the extraction of a Green’s function database.360

3.3 Resolution analysis361

Recent efforts have estimated the resolution and covariance of noise source full wave-362

form inversions by treating it as a linear problem and using singular value decomposi-363

tion (Xu & Mikesell, 2022). However, due to our nonlinear measurement of the logarith-364

mic energy ratio this is not applicable to our inversion method. To show the effect of the365

changing data and station availability on the resolution of the inversions, we forward model366

cross-correlations with added noise for 414 stations around the globe and perform inver-367

sions with different station lists in Figure 5. The noise source distribution that we use368

to forward-model the data is an adapted significant wave height map from the WaveWatch369

III model (Tolman & Chalikov, 1996; WAVEWATCH III , 2005). The inversions are run370

with the same parameters as the daily SANS inversions. We choose different station lists371

from daily inversions to give a realistic station distribution that would be used for real-372

data inversions.373

The inversion with 414 stations shows the model that we are able to recover us-374

ing all potential stations. Due to the much higher station density in the Northern Hemi-375

sphere the resolution is higher and we are able to recover the dominant noise sources more376
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Figure 5. Synthetic inversions for the target model to show the effect of different stations

(a) on the final inversion models. Inversions with fewer stations still capture the most dominant

noise sources in the final model.

accurately than in the Southern Hemisphere. As we decrease the number of stations we377

can see how the recovered model changes, especially when the stations are predominantly378

in Europe (160 stations) or North America (143 stations). However, even the inversions379

with fewer stations still include the most dominant noise sources from the target model.380

In that sense, the daily global inversions should not necessarily be seen as the global noise381

source distribution for each day, but rather the noise source distribution that the given382

station list is able to observe. Generally, the resolution in the Southern Hemisphere is383

lower due to the lack of station coverage and the North Atlantic usually has the high-384

est resolution since it is surrounded by stations in Europe and North America.385

3.4 Example applications386

In the following section we present two example applications of the daily SANS maps.387

Firstly, we take the average of the daily inversions for Northern Hemisphere summer and388

winter to study the seasonal variations of the secondary microseisms. Secondly, we model389

cross-correlations for different noise source distribution models to illustrate the effect of390

a changing noise source distribution on the cross-correlation waveforms.391
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3.4.1 Seasonal analysis392

Secondary microseismic sources are generated when two oceans travelling in op-393

posite directions overlap, which in turn creates a vertical pressure wave. This induces394

seismic waves at the ocean bottom. The strength of these sources is directly related to395

the wave height of the overlapping waves (Longuet-Higgins, 1950; Hasselmann, 1963; Nakata396

et al., 2019; Ardhuin, Hanafin, et al., 2011).397

Due to the seasonal variations in significant wave height we would expect a sim-398

ilar pattern for the noise source distribution of the secondary microseisms, which has al-399

ready been observed over a century ago (Klotz, 1910; Burbank, 1912; Banerji, 1925). This400

relationship has recently been studied for various different frequency bands of microseisms401

ranging from the hum to secondary microseismic sources (Nishida & Fukao, 2007; Rhie402

& Romanowicz, 2006; Ermert et al., 2017; Stutzmann et al., 2012; Landés et al., 2010;403

Gualtieri et al., 2021). Thus, we would expect similar patterns to emerge if we average404

the daily inversions generated by the SANS workflow.405

We include 335 daily inversions from the 17th May 2021 to the 2nd May 2022 in406

the analysis and choose to define Northern Hemisphere summer (21st April to 21st Oc-407

tober) and winter (21st October to 21st April) based on the Icelandic first day of sum-408

mer in 2022. The final iterations of all inversions within those two time ranges are av-409

eraged, resulting in 164 inversions for the summer and 171 for the winter months. Be-410

fore averaging, we smooth the noise source model with a 4◦ Gaussian smoothing filter411

to avoid any artefacts from small changes in the inversion parameters during that time412

period.413

Similarly, we average the significant wave height maps from the WaveWatch III model414

(Tolman & Chalikov, 1996) as a comparison. This should not be taken as a direct com-415

parison but more as a reference of where the probability of more dominant noise sources416

is higher. The actual mechanism of generation of secondary microseismic sources is more417

complicated and requires more complex modelling (Ardhuin, Stutzmann, et al., 2011;418

Ardhuin & Herbers, 2013; Nakata et al., 2019). Figure 6 shows the comparison of the419

normalised average significant wave height with the normalised PSD of the average SANS420

inversions for Northern Hemisphere summer and winter.421

The average inversions show clear seasonal variations that are in-line with our ex-422

pectations. During the Northern Hemisphere summer the more dominant noise sources423

are in the Southern Hemisphere, specifically the South Pacific. As shown by previous424

studies on seasonal noise source variations (Landés et al., 2010; Gualtieri et al., 2021;425

Stutzmann et al., 2012), the Northern Hemisphere winter is dominated by noise sources426

in the North Atlantic. This supports the result of previous studies and shows that the427

SANS inversions are able to observe the spatio-temporal variations of the secondary mi-428

croseismic sources on various timescales.429

3.4.2 Cross-correlation modelling430

A changing noise source distribution has a significant effect on the cross-correlations,431

particularly on a global scale. A common assumption is a homogeneous noise source dis-432

tribution which, in theory, results in a symmetric cross-correlation. However, the noise433

source distribution is often strongly heterogeneous and changes constantly. We forward434

model cross-correlations using our modelling code from the inversion for three different435

noise source distributions to illustrate the changes: (i) homogeneous distribution every-436

where, (ii) homogeneous distribution in the ocean, and (iii) the final SANS inversion model437

for the 9th March 2022.438

In Figure 7 we plot the cross-correlations for 6 station pairs and the three differ-439

ent models. The cross-correlations are filtered between 0.1 and 0.2 Hz. As the noise source440
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Figure 6. Comparison of the normalised average significant wave height and normalised PSD

of the SANS daily inversion results for Northern Hemisphere summer (21st April to 21st Oct)

and winter (21st Oct to 21st April) using a global station distribution (a). Northern Hemisphere

summer is dominated by sources in the Southern Hemisphere and Northern Hemisphere winter is

dominated by sources in the North Atlantic.
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distribution becomes more realistic, the changes to the cross-correlations become more441

and more significant. Especially for full waveform ambient noise studies, the influence442

of a changing noise source distribution should not be ignored. In many cases the main443

arrival also shifts significantly which makes travel time picking more difficult. We en-444

courage future ambient noise studies to consider including information about the noise445

source distribution.446

4 Discussion447

With the daily computation of seismic ambient noise source maps we are able to448

study the interaction between the atmosphere, the ocean, and the solid Earth in near449

real-time. The daily maps show the clear heterogeneous nature of secondary microseis-450

mic noise sources and their strong spatio-temporal variations. Since the generation mech-451

anism of secondary microseismic sources is quite well understood (Longuet-Higgins, 1950;452

Ardhuin, Stutzmann, et al., 2011; Ardhuin & Herbers, 2013; Ardhuin et al., 2015), these453

variations can also be studied by computing ocean surface pressure maps (Ardhuin, Stutz-454

mann, et al., 2011) using significant wave height and bathymetry data. A comparison455

in our previous research (Igel et al., 2021) shows that these ocean surface pressure maps456

and finite-frequency inversions coincide quite well with similar areas of dominant noise457

sources present in both. Similarly, we observe correlation between the location of dom-458

inant noise sources in our daily SANS maps with respect to the higher amplitude sig-459

nificant wave heights. Due to the generation mechanism requiring two overlapping waves460

travelling in opposite directions, this comparison should only be considered as a rough461

reference of where there is a higher probability of dominant noise sources.462

Particularly for ambient noise tomography and monitoring, knowledge of the noise463

source distribution is vital to circumvent common assumptions like the quasi-randomness464

of the noise field and equipartitioning of the wavefield. For these methods, daily maps465

can help reduce the misinterpretation of noise distribution changes as subsurface veloc-466

ity changes. (Sager, Ermert, et al., 2018) inverted for both the noise source distribution467

and subsurface structure at the same time. However, this comes at an increased com-468

putational cost. By already having knowledge of the noise source distribution beforehand,469

we can reduce the complexity and computational cost of such full-waveform ambient noise470

tomography methods. As we illustrate in Figure 7, a heterogeneous noise source distri-471

bution can have a significant effect on the cross-correlations which should not be neglected,472

especially in full waveform ambient noise studies.473

To make our inversion process as efficient as possible we use a simple 1-D PREM474

Earth model to simulate the Green’s functions and cross-correlations. Despite (Sager,475

Boehm, et al., 2018) showing that our measurement of the logarithmic energy ratio is476

largely insensitivity to unknown 3-D Earth structure, this simplification could have an477

effect on the inversion. However, seismic studies within our frequency range of 0.1 to 0.2478

Hz are generally considered less sensitive to small heterogeneities in the crust. Future479

studies might incorporate more complex Earth models (e.g. Fichtner et al., 2018) by pre-480

computing the Green’s function database using a wavefield solver like Salvus (Afanasiev481

et al., 2019). This would also allow the implementation of a fluid ocean layer and 3-D482

structure, albeit at the cost of increased computation time.483

Furthermore, since the availability of ambient noise data changes daily, the num-484

ber of stations included in the daily inversions can fluctuate greatly. This has an effect485

on the spatial sensitivity of the inversion, as dominant noise sources cannot be resolved486

without data from surrounding stations. In combination with the lack of grid points on487

land due to our parameterisation, this can lead to inversion artefacts in areas where we488

would not necessarily expect dominant noise sources; for example in marginal seas like489

Hudson Bay or the Mediterranean Sea. This also happens when there is a lack of coher-490

ent signals in the cross-correlations which are then ignored due to our data selection based491
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on the signal-to-noise ratio. To analyse the effect of the changing data and station avail-492

ability on the resolution, we perform a synthetic test where we forward model cross-correlations493

with added noise and invert for them using different station lists. Generally, the inver-494

sions with fewer stations still include the most dominant noise sources, albeit with a lower495

spatial resolution.496

5 Conclusions and Outlook497

We present a new web framework SANS (sans.ethz.ch) where daily seismic am-498

bient noise source maps for the secondary microseisms on a regional to global scale are499

made available to the public. Two methods are combined to improve the final noise source500

distribution: Matched Field Processing (MFP) and a gradient-based iterative finite-frequency501

inversion. The efficient data-driven MFP approach provides a starting model to steer the502

inversion in the right direction. Pre-computed wavefields and spatially variable grids have503

decreased the computational cost of the inversions, allowing us to run the inversions ev-504

ery morning for the previous days’ data and presenting the results shortly after. Users505

are able to download the inversion results and we provide code to ease the implemen-506

tation of the noise source distribution maps into other workflows. Comparisons to sig-507

nificant wave height maps do show that areas with high waves and strong dominant noise508

sources often coincide, which is in-line with the generation mechanism of secondary mi-509

croseisms. Furthermore, we compute the averages of the noise sources maps for North-510

ern Hemisphere summer and winter and compare them to the averages of the significant511

wave height maps. These show very similar areas of stronger activity which are in-line512

with other studies: Northern Hemisphere summer has more dominant sources in the South-513

ern Hemisphere and Northern Hemisphere winter is dominated by noise sources in the514

North Atlantic.515

We hope that making the noise source distribution data readily available to the pub-516

lic encourages new tomographic studies and methods exploiting seismic ambient noise517

vibrations. The accuracy of tomographic models could be improved by implementing knowl-518

edge of the noise sources. Specifically studies that make assumptions about a homoge-519

neous or quasi-random noise source distribution would benefit and this may lead to more520

accurate velocity models. Studies that focus on time-dependent velocity changes in the521

subsurface often try to observe changes on the order of 1% or less (e.g. Zhan et al., 2013;522

Delaney et al., 2017). Particularly for such monitoring purposes, it is important to ver-523

ify that these changes are not a result of a changing noise source distribution. The near524

real-time seismic ambient noise source maps we present here are a crucial tool to pro-525

vide this verification. Future applications could also make this approach feasible for more526

local studies like the near real-time monitoring of avalanches and landslides.527

Acronyms528

CSCS Centro Svizzero di Calcolo Scientifico529

ETH Eidgenössische Technische Hochschule Zürich530

GCMT Global Centroid Moment Tensor531

HPC High-Performance Computing532

MFP Matched Field Processing533

PREM Preliminary Reference Earth Model534

PSD Power-Spectral Density535

SANS Seismic Ambient Noise Sources536
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Data availability537

The website introduced here can be found on https://sans.ethz.ch/. The in-538

version code is available on github: https://github.com/jigel/noisi inv and is based539

on previous work (Ermert et al., 2020; Igel et al., 2021). Within the repository is a Jupyter540

Notebook Tutorial on how to run an inversion, including downloading, processing, and541

cross-correlating the data. Pre-computed AxiSEM wavefields that can be downloaded542

and implemented are available online at http://ds.iris.edu/ds/products/syngine.543

The seismic data was collected from multiple data centers using ObsPy (Krischer544

et al., 2015) and the authors thank everyone involved in setting up and maintaining these:545

IRIS (http://service.iris.edu), GEOFON (http://geofon.gfz-potsdam.de), ORFEUS (http://www.orfeus-546

eu.org), NIEP (http://eida-sc3.infp.ro), RESIF (http://ws.resif.fr), INGV (http://webservices.ingv.it),547

SCEDC (http://service.scedc.caltech.edu), BGR (http://eida.bgr.de), ETH (http://eida.ethz.ch),548

KOERI (http://eida.koeri.boun.edu.tr), LMU (http://erde.geophysik.uni-muenchen.de),549

NCEDC (http://service.ncedc.org).550
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