
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
18
46
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Dense vegetation promotes denudation in Patagonian rainforests

Christian H Mohr1, Violeta Tolorza2, Viktoria Georgieva3, Henry Munack4, Klaus M
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Abstract

A geomorphological key paradigm predicts that intact forests are erosional idle, however comprise an efficient weathering machine

sustaining high soil production rates. Only during times of disturbance, e.g., by earthquakes, those forests are observed to jump

up to high-erosion-state, then being capable of releasing some of Earth’s highest sediment yields involving massive pulses of

organic carbon. Coastal temperate rainforests, in particular, do not only store unparalleled carbon stocks building up a globally

important carbon sink, but are also home to high (endemic) biodiversity. Here we document extraordinarily high catchment-

averaged denudation rates, across multiple disturbance cycles, under the dense vegetation of the Patagonian rainforests. There,

10 Be-derived denudation rates of >0.8 m kyrˆ-1 exceed any known value from the entire Chilean Andes orogen, a highly

variable >3.000 km long natural laboratory involving steep climatic and topographic gradients. We argue that such high

denudation rates are consistent with a first-order control of the rainforest itself. High biomass loads exert a soil surcharge that

promotes landsliding already along a relatively low critical slope angle. In contrast, denudation rates from more arid, and less

forested sectors of the Chilean Andes though going along with steeper critical slope angles remain below half of our new rates

derived from the Patagonian rainforests. Taken together, our study provides indication that denudation, to a higher degree than

hitherto agreed on, operates as a continuous process involving soil production, vegetation, physical erosion and ecohydrological

processes. Such a holistic denudational continuum, finally, is different from prevailing views that vegetation generally stabilizes

hillslopes, thus promoting steep slope gradients, however, limiting landsliding activity.

1



 
1 

 

Dense vegetation promotes denudation in Patagonian rainforests 1 

 2 

Christian H Mohr1, Violeta Tolorza2, Viktoria Georgieva3, Henry Munack4, Klaus M 3 

Wilcken5, Réka-Hajnalka Fülöp5, Alexandru T Codilean4, Eric Parra1 and Sebastien 4 

Carretier6 5 

 6 

1University of Potsdam, Institute of Environmental Sciences and Geography, 14476 Potsdam, 7 

Germany, cmohr@uni-potsdam, eric.parra.hormazabal@uni-potsdam.de 8 

2Universidad de la Frontera, Department of Civil Engineering, Faculty of Engineering and 9 

Sciences. 4811230 Temuco, Chile, violeta.tolorza@ufrontera.cl 10 

3Universidad Austral de Chile, Institute of Physics and Mathematics, Faculty of Science, Edificio 11 

Pugín - Campus Isla Teja, Valdivia, Chile, viktoria.georgieva@uach.cl 12 

4School of Earth, Atmospheric and Life Sciences, and ARC Centre of Excellence for Australian 13 

Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia, 14 

henrymunack@gmail.com, codilean@uow.edu.au 15 

5Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, 16 

Australia, klaus.wilcken@ansto.gov.au, rekaf@ansto.gov.au 17 

6Géosciences Environment Toulouse (GET), Université de Toulouse, IRD, UPS, CNRS, 31400 18 
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A geomorphological key paradigm predicts that intact forests are erosional idle, however 23 

comprise an efficient weathering machine sustaining high soil production rates. Only 24 

during times of disturbance, e.g., by earthquakes, those forests are observed to jump up to 25 

high-erosion-state, then being capable of releasing some of Earth’s highest sediment yields 26 

involving massive pulses of organic carbon. Coastal temperate rainforests, in particular, do 27 

not only store unparalleled carbon stocks building up a globally important carbon sink, but 28 

are also home to high (endemic) biodiversity. Here we document extraordinarily high 29 

catchment-averaged denudation rates, across multiple disturbance cycles, under the dense 30 

vegetation of the Patagonian rainforests. There, 10Be-derived denudation rates of >0.8 m 31 

kyr-1 exceed any known value from the entire Chilean Andes orogen, a highly variable 32 

>3.000 km long natural laboratory involving steep climatic and topographic gradients. We 33 

argue that such high denudation rates are consistent with a first-order control of the 34 

rainforest itself. High biomass loads exert a soil surcharge that promotes landsliding 35 

already along a relatively low critical slope angle. In contrast, denudation rates from more 36 

arid, and less forested sectors of the Chilean Andes – though going along with steeper 37 

critical slope angles – remain below half of our new rates derived from the Patagonian 38 

rainforests. Taken together, our study provides indication that denudation, to a higher 39 

degree than hitherto agreed on, operates as a continuous process involving soil production, 40 

vegetation, physical erosion and ecohydrological processes. Such a holistic denudational 41 

continuum, finally, is different from prevailing views that vegetation generally stabilizes 42 

hillslopes, thus promoting steep slope gradients, however, limiting landsliding activity. 43 

Keywords: Patagonia; Coastal Temperate Rainforest; Denudation; 10Be; Chile44 
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Forests, disturbances, and denudation 45 

 Aside from regulating climate patterns 1 and accumulating carbon from the atmosphere 46 

to build up important global carbon sinks2, intact forests are essential to Earth’s habitats because 47 

they protect soils from erosion3. In turn, forest disturbance, such as deforestation, wildfires, 48 

earthquakes, or windstorms promote erosione.g., 4,5 by exposing bare surfaces to erosive rainfall, 49 

reducing evapotranspiration, or weakening slope and river-bank stability through reduced soil 50 

cohesion and root anchoring3. Yet, some of Earth’s highest denudation rates, i.e., the mass removal 51 

from Earth’s surface by combined erosion and weathering processes, have been derived from lush 52 

coastal temperate rainforests, for instance those covering the New Zealand’s Southern Alpse.g., 4. 53 

There, steep slopes frequently fail despite sustaining dense, pristine forests gathering system-54 

relevant amounts of carbon5,6, thus conditioning young landscape ages with respectively short 55 

forest turnover times of these ecosystemse.g., 5. High precipitation rates required to sustain dense 56 

vegetation enhance denudation, potentially exceeding vegetation’s anchoring effects7. Under 57 

undisturbed conditions, however, such rainfall-denudation scaling is non-monotonic8–10 and 58 

denudation rates break down after vegetation cover exceeds 50-85%7. Yet, quantifying 59 

disturbances’ long-term contribution to total denudation remains poorly documented because of 60 

the annual or at most decadal focus of disturbance-related erosion studies, with a few noticeable 61 

exceptionse.g., 11. However, such information is not only needed to estimate the effect of single 62 

disturbances on geomorphic processese.g., 11, but also to assess the functioning of forests as carbon 63 

sources or sinks over hundreds to thousands of years. Leaning on the cyclic concepts of disturbance 64 

ecology12, we define long-term here as the timespan that covers multiple disturbance cycles typical 65 

to the regional disturbance regime, allowing an eco-geomorphic system to recover to a pre-66 

disturbance state. As will be shown in the following, ubiquitous in situ 10Be is a particularly 67 
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suitable nuclide for denudation studies on such time scales13,14 for two reasons: First, it does not 68 

integrate too long back into the past, hence justifying the strong assumption of stable vegetation 69 

cover throughout the period constrained by the data. Second, despite the latter, 10Be’s averaging 70 

timescale still embraces multiple disturbance cycles. 71 

 72 

The Coastal Rainforests of Patagonia 73 

 The coastal temperate rainforests (abbreviated as CTR) of Northern Patagonia form part 74 

of the Valdivian Rainforest Biome, a global ecological hotspot15 ranking among the most organic 75 

carbon rich biomes on Earth16. The CTRs of Northern Patagonia are marked by a cool Pacific 76 

maritime, continuously wet climate (2,000 – 4,500 mm precipitation yr-1)17. This climate 77 

promotes dense, contiguous evergreen broadleaf forests17,18 that mostly consist of Nothofagus 78 

nitida, Podocarpus nubigenus, Drimys winterii, Amomyrtus meli and Luma apiculata6,19. 79 

Following an abrupt expansion of the forest cover at around 17,800 BP20, these forests generally 80 

remained unchanged in composition and spatial extent at least during the last 1,000-2,000 81 

years21. Early human occupation was intermittent and thus unlikely disturbing forests. First 82 

noticeable human-made disturbances followed the arrival of European and Chilean settlers in the 83 

late 19th century22,23 who settled mostly in the lowland given inaccessibility of higher valleys. 84 

Furthermore, insect or pest-driven mortality is much less important than in drier forests24. 85 

Relevant fire has been absent for >11,000 years24,25. Instead, landslides are the prime, though 86 

consequential disturbance agente.g., 26,27. Recent disturbances by earthquakes28, volcanic 87 

eruptions29, or winds30 enabled hundreds of landslides on hillslopes formerly sustaining dense 88 

forest vegetation. Estimated recurrence intervals for important earthquakes and volcanic 89 

eruptions (>M8 and VEI 4, respectively) are around 102 years, respectively6,31. Severe 90 
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windstorms occur on the yearly to decadal scalee.g., 32. Given said regional disturbance regime, 91 

we regard 10Be as an excellent candidate as it integrates over a long enough timescale to cover 92 

multiple disturbance cycles and so is suitable for looking at the effect of ‘ecological’ disturbance 93 

on denudation and erosion. 94 

 95 

Denudation of Coastal Temperate Rainforests 96 

Here we present first 10Be denudation rate estimates for the Patagonian CTR (Figure 1). 97 

We contextualize those rates using a compilation of published, recalculated catchment-wide 10Be 98 

denudation rates along the Chilean Andes. With slope gradients between 50 and 70%, our study 99 

catchments are relatively steep. They are underlain mostly by granitoid lithologies33 covered by 100 

soils thinner than 2m29 (see also Supplementary Figure 2C), which in turn set a maximum bound 101 

for shallow landslide thickness. Deeper-seated landslides involving bedrock are rare exceptionse.g., 102 

26,27. Our catchments under investigation are comparable in size, i.e., 4-28 km2 and do merely 103 

extend into the highest elevated parts of the Andes Cordillera, thus leaving only a small part of the 104 

catchments above the treeline. Despite the overall low elevation of this Andes sector, several peaks 105 

exceed well above 2,500 m asl. Mean annual precipitation (MAP) and mean annual potential 106 

evapotranspiration (MEP) is 1,600-2,700 mm and 630-810 mm, respectively, yielding aridity 107 

indices (AI) – i.e., the ratio between MAP and MEP34 – well above 1.66. From here on, we 108 

distinguish between humid (AI > 1) and arid (AI < 1) conditions, respectively34. The high 109 

evapotranspiration rates are mainly due to the dense forest vegetation that covers large parts of all 110 

studied catchments. 111 
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 112 

Figure 1. Catchment-averaged CRN denudation rates across the Western Chilean Andes orogen. (a) 113 

Denudation rates in m kyr-1, estimated by detrital 10Be using grain size range 0.125-1.00 mm compiled 114 

by Ref 35 (yellow) and this study (purple) for the north Patagonian CTR overlaying the Aridity Index 115 

(AI). (b) Study area, denudation rates, and iso-lines of annual groundwater recharge in mm yr-1 Ref36. 116 

(c) 2.5D-representations of studied catchments with respective denudation rates (m kyr-1) and tree 117 

cover (%)37. Bubble size scaling applies to all figures. Numbers refer to sample IDs (see 118 

Supplementary Table 2). 119 

 120 
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 121 

Figure 2. Denudation rate vs slope. A: For humid (purple) and arid (orange) conditions along the 122 

Chilean Andes Orogen. Purple and orange lines are models41 considering 54% and 60% for critical 123 

slopes. Error bars refer to ± 1σ. B: Denudation rate vs slope. The violet circles refer to compiled 10Be 124 

denudation rates from the OCTOPUS database35 from New Zealand38,39 and the Pacific Northwest40. 125 

The blue circles refer to humid Chile42–44 and our new data, that is highlighted by the grey frame. 126 

Circle size scales with log10 of catchment size, and purple dashed line is the refers to the purple model 127 

in A 41. 128 

 129 

With up to 0.83 m kyr-1 (Supplementary Table 2), our new denudation rate estimates 130 

exceed any previously published rates from fluvial sands in Chile (Figure 2A, 3A).  Our new 131 

denudation rates rival the maximum rates (>85-quantile) from formerly glaciated, largely forest 132 

covered landscapes with similar climate, such as New Zealand38,39, and the Pacific Northwest40 133 

(Figure 2B). Together with the Patagonian rainforest, these regions form the bulk of the global 134 

CTR Biome. Denudation rates are often reported to positively scale with precipitation under 135 

diverse climatic regimese.g., 45, but to be in negative relationship to vegetation cover8–10. Our high 136 



 
8 

 

rates, however, coincide with both the highest fractions of forest cover and highest humidity 137 

along the Chilean Andean orogen (Figure3A) where forest cover mimics MAP (R2=0.77). The 138 

same general pattern holds true for MAP, yet with lower predictive power, i.e., R2=0.52 139 

(Supplementary Figure 1). For humid conditions, AI predicts denudation rates much better than 140 

precipitation (R2 =0.84) (Figure 3B). In this context, we recall that unlike precipitation, AI 141 

recognizes evapotranspiration, and thus includes the biotic processes of root water uptake and 142 

interception. In contrast, abiotic precipitation did not perform as a suitable predictor (Figure 4). 143 

Consequently, we suggest AI’s explanatory power for catchment-averaged denudation rates to 144 

represent a positive relationship between forest cover and denudation. With 1,600-2,700 mm 145 

annual precipitation46 and annual groundwater recharge of 180-400 mm36 (Figure 1B), 146 

evapotranspiration in native forests (630-810 mm yr-1)47 forms an integral part of the regional 147 

water balance, equaling 25-50% of the precipitation amount. Simplifying for hydrological years, 148 

i.e., assuming zero interannual net changes in soil watere.g., 49, the amount of evapotranspiration 149 

loss is relevant for the regional hydrology. Diurnal streamflow oscillations may reflect such 150 

losses in the absence of ‘noise’, e.g., rainfall48. In fact, we see such diurnal cycles in catchments 151 

across the Valdivian rainforest biome. AI accounts for evapotranspiration effect of the forest 152 

cover on the regional hydrology which, in turn, is neglected by abiotic precipitation. 153 

Consequently, our findings suggest that ecohydrological processes, such as evapotranspiration, 154 

need to be accounted for when comparing denudation rates on centennial to millennial time 155 

scales across biomes.  156 
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 157 

Figure 3. A: Denudation rates, forest cover, mean elevation, slope, mean annual precipitation 158 

(MAP), and aridity index (AI) along a N-S transect of the Chilean Main Cordillera. Red and violet 159 

squares refer to arid and humid climate, respectively. B: Scaling between denudation rates and the 160 

aridity index for humid climate, i.e., AI >1 (R2 =0.84, 10,000 Monte-Carlo simulations, y=-161 

1.625±0.10 * 4.925±0.55X), squares scale with NDVI (Normalized Difference Vegetation Index).  162 

 163 

With 0.63 m kyr-1, the catchment with highest average elevation (BE-13), is not among the 164 

fastest denuding catchments of our dataset. From this observation we infer that it is not freeze-165 

thaw related processes, e.g., frost driven bedrock erosion49, that is mainly recorded in our 10Be 166 

data. Instead, frequent shallow landsliding is the key erosive 27,29,30 process in the Patagonian CTRs 167 

providing sediment to the drainage network (Supplementary Figure 2c). Hence, we conclude that 168 

supply is not limiting denudation in these forests. Instead, transport-limited fluvial erosion controls 169 

sediment export. 170 

Given the rather shallow soil depths, the idea of biotic controls on denudation on centennial 171 

to millennial time scales is congruent with a lower ‘humid’ critical slope angle, i.e., 54 %, 172 
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compared to arid conditions (60 % (Figure 2A). Ref50 report denudation rates increasing 173 

nonlinearly with slope for the Chilean Andean Orogen. However, a lower ‘humid’ critical slope 174 

angle suggests, that in the presence of vegetation, catchments are more prone to denudation for a 175 

given slope gradient. This may seem counter-intuitive at first sight, because vegetation is 176 

commonly considered to stabilize hillslopes by root anchoringe.g., 51. How can dense vegetation 177 

cause enhanced denudation? 178 

With up to 1,000 Mg ha-1 e.g., 6,47 of biomass, Patagonian CTRs are among Earth’s ‘heaviest’ 179 

biomes16. For a given slope gradient, such high biomass loads may be sufficient to cause failure 180 

of hillslopes that would have been otherwise stable, simply driven by their own weight52. Cyclic 181 

biomass surcharge following disturbances may lead to a tipping-bucket response to landsliding 182 

largely confined into steep hilltops53. Our results support the notion of hillslope failures generally 183 

being constrained to steep slopes (Fig. 4). Averaged over the last 20 years without obvious 184 

disturbance impairment27,29,30, landslide erosion has lowered the landscape by ~ 0.4 m kyr-1 (see 185 

data for Huequi in Supplementary Table 3). These erosion rates are too low to exclusively explain 186 

the high denudation rates within the Patagonian CTRs. From a denudational perspective, these 187 

forests are apparently capable of efficiently adding to, though with the help of, mass wasting 188 

effects. Weathering may benefit from vegetation as well7. We cannot quantify weathering rates 189 

due to the lack of suitable data. However, judging from sites with comparably productive forests 190 

under similar humid climates55, we anticipate soil production rates of ≤ 0.5 mm yr-1 for the 191 

Patagonian CTRs. As we can then assume that rates of both erosion and soil production are largely 192 

equivalent, we therefore regard the study area as largely in quasi steady state. When summing up 193 

both rates, we come close to our observed denudation rates. Hence, our findings imply that 194 

denudation operates as a more continuous process involving soil production, vegetation, and 195 
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physical erosion. Such a holistic denudational continuum, finally, is different from prevailing 196 

views that vegetation stabilizes hillslopes, leading to steep slopes with relatively little 197 

landslidinge.g., 54. The higher rates we report here slightly exceed previously published exhumation 198 

rates derived from low-temperature thermochronology and constraining the record of Patagonian 199 

glaciations (5-7 Myr) along the Patagonian Andes yielding 0.2-0.7 m kyr-1 Ref56–58. 200 

Thermochronology derived rates average a period, of which we can assume at most the last 16,000 201 

years as comparable to the current forest conditionse.g., 20. Given the promoting effect of the forests 202 

on denudation, however, we might be looking at higher post-glacial compared to glacial 203 

denudation rates. Consistently, we may therefore treat our results to be a realistic representation of 204 

post-glacial denudation within the Patagonian CTRs but rule out depletion effects in 10Be due to a 205 

glacial heritage. 206 

 207 

Figure 4. A: Relative variable importance for humid (n=12) and arid (n=50) conditions, respectively, 208 

for the random forest regression of 10Be denudation rates from Chile (see SI). All predictor variable 209 

importance was normalized to 100% (see SI), color density scales with relative importance. B: 210 
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Observed vs predicted values for standardized denudation rates for humid (purple) and arid (red) 211 

conditions, respectively. Purple and red lines refer to linear regressions; grey dashed line refers to 212 

the 1:1-line. We treat latitude, however, as a metric that integrates large scale climatic and 213 

environmental conditions, thus largely mimicking AI. 214 

 215 

The last glaciation in the study area ceased around 17,500 BP, followed by an extensive 216 

Andean deglaciation within just 1,000 years20 and the fast succession of evergreen temperate 217 

rainforests. Our study catchments do not extent into unvegetated high-Andean regions but sustain 218 

a dense and continuous forest cover (Figure 1, Supplementary Table 1). Furthermore, we could 219 

not identify any glacial heritage, such as moraine deposits, or striations. In fact, abundant boulders 220 

and large grain sizes of fluvial deposits support the notion of active recent erosion within the active 221 

channels of local rivers rather than reworking of glacial sediment (Supplementary Figure 2a). 222 

Hence, we regard the reworking of glacial deposits as negligible, and thus consider depletion 223 

effects in 10Be implausible. Our own modeling exercise to test for a possible glacial erosion 224 

inheritance (Supplementary Figure 3) underpins that cosmogenic detrital 10Be records post-glacial 225 

conditions in mountainous regions that were glaciated in the past. 226 

Over timespans of less than 400 years, forest may stop accumulating carbon59, though carbon 227 

accumulation progressively scales with time since forest disturbance at the scale of individual 228 

trees60. These two opposing trends condition our understanding for how forest disturbances may 229 

distribute broad-scale carbon stocks within each single pool of the carbon cycle. An active 230 

disturbance regime promotes carbon export on time scales that may comprise multiple disturbance 231 

events61.  Given the minimal impact of human activity across the Patagonian rainforests, a primary 232 

production rate of around 600 gC m-2 yr-1 Ref6 and denudation rates averaged over 720-1,300 years, 233 

our study provides a benchmark to assess modern denudation and landscape turnover rates against 234 
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presumably undisturbed forest conditions in one of the global hotspots for biodiversity and organic 235 

carbon62. 236 
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FIGURE CAPTIONS 467 

Figure 5. Catchment-averaged CRN denudation rates across the Western Chilean Andes orogen. 468 

(a) Denudation rates in m kyr-1, estimated by detrital 10Be using grain size range 0.125-1.00 mm 469 

compiled by Ref 35 (yellow) and this study (purple) for the north Patagonian CTR overlaying the 470 

Aridity Index (AI). (b) Study area, denudation rates, and iso-lines of annual groundwater recharge 471 

in mm yr-1 Ref36. (c) 2.5D-representations of studied catchments with respective denudation rates 472 

(m kyr-1) and tree cover (%)37. Bubble size scaling applies to all figures. Numbers refer to sample 473 

IDs (see Supplementary Table 2). 474 

 475 

Figure 6. Denudation rate vs slope. A: For humid (purple) and arid (orange) conditions along the 476 

Chilean Andes Orogen. Purple and orange lines are models41 considering 54% and 60% for critical 477 

slopes. Error bars refer to ± 1σ. B: Denudation rate vs slope. The violet circles refer to compiled 478 

10Be denudation rates from the OCTOPUS database35 from New Zealand38,39 and the Pacific 479 

Northwest40. The blue circles refer to humid Chile42–44 and our new data, that is highlighted by the 480 

grey frame. Circle size scales with log10 of catchment size, and purple dashed line is the refers to 481 

the purple model in A 41. 482 

 483 

Figure 7. A: Denudation rates, forest cover, mean elevation, slope, mean annual precipitation 484 

(MAP), and aridity index (AI) along a N-S transect of the Chilean Main Cordillera. Red and 485 

violet squares refer to arid and humid climate, respectively. B: Scaling between denudation rates 486 

and the aridity index for humid climate, i.e., AI >1 (R2 =0.84, 10,000 Monte-Carlo simulations, 487 

y=-1.625±0.10 * 4.925±0.55X), squares scale with NDVI (Normalized Difference Vegetation 488 

Index).  489 
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Figure 8. A: Relative variable importance for humid (n=12) and arid (n=50) conditions, 490 

respectively, for the random forest regression of 10Be denudation rates from Chile (see SI). All 491 

predictor variable importance was normalized to 100% (see SI), color density scales with relative 492 

importance. B: Observed vs predicted values for standardized denudation rates for humid (purple) 493 

and arid (red) conditions, respectively. Purple and red lines refer to linear regressions; grey dashed 494 

line refers to the 1:1-line. We treat latitude, however, as a metric that integrates large scale climatic 495 

and environmental conditions, thus largely mimicking AI.  496 



 
21 

 

SUPPLEMENTARY INFORMATION 497 

Sampled Catchments 498 

The topography of Northern Chilean Patagonia is largely a product of quaternary 499 

volcanism and massive glacial erosion. The latter carved deep fjords between eroded islands and 500 

peninsulas, leaving behind a spectacular landscape of steep slopes and small cirques in headwaters 501 

mounting above broad, flat-bottomed valleys63. All catchments drain into the Pacific Ocean (see 502 

as an example Supplementary Figure 5). 503 

The regional tectonics are dominated by active subduction and intra-arc strike-slip motion 504 

along the Southern Chile Trench and the Liquiñe-Ofqui Fault zone64, respectively, and Quaternary 505 

arc volcanism. Among them, the Chaitén, Michinmahuida and Corcovado volcanoes are prominent 506 

landscape features and belong to the Andean Southern Volcanic Zone (SVZ). 507 

We collected (n = 5) new samples of fluvial sediment in headwater catchments draining parts of 508 

the Northern Chilean Patagonian Andes (43°0’-45°40’S) from north to south along a transect from 509 

Chaitén township to the cities of Coyhaique and Puerto Aysén (Figure 1). Given restricted 510 

accessibility due to dense forest, we sampled headwater catchments that are accessible from the 511 

main roads, i.e., along the Carretera Austral. All headwaters drain into the Pacific Ocean via the 512 

connecting Yelcho, Palena, of Aysén rivers. Dense coastal rainforest dominates all catchments. 513 

Our sampled catchments do not extent into highest-andine regions. Such fact minimizes effects of 514 

glacial and snow cover on shielding on cosmogenic-derived denudation rates. 515 

Our data are the first to fill the Andean gap between 41° and 52°S. The most proximal reported 516 

denudation rates, i.e., north of 41°S and south of 52°S, are at the order of <0.2 m kyr-1 Ref65,66. Yet, 517 

we regard these rates as comparable to a limited degree only. For example, rates from ~ 52°S based 518 

on decennial sediment flux monitoring originate east from the Andean divide in the much drier 519 
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Pampean region65. Likewise, comparison to exhumation rates derived from low-temperature 520 

thermochronology yielding 0.2-0.7 m kyr-1 along the Patagonian Andes56–58 is also limited due to 521 

different time scales constrained. Thermochronology derived rates average a period, of which we 522 

can assume at most the last 16,000 years as comparable to the current environmental, particularly 523 

forest, conditionse.g., 20. 524 

 525 

10Be sampling and lab procedure 526 

Secondary cosmic radiation reacts with minerals of Earth surface producing cosmogenic 527 

nuclides such as 10Be, which production rates are well known for quartz67. The production rate of 528 

a mineral decreases exponentially at depth. When minerals reach a steadily 10Be concentration, it 529 

scales inversely with the rate of surface removal67,68. That surface removal, here called denudation, 530 

involves both physical erosion and chemical weathering. The quartz present in well-mixed fluvial 531 

sediments provides spatially averaged erosion rates from upstream areas, which may range from 532 

single hillslopes to continental river basins13. The timescale for a steadily erosion rate refers to the 533 

mineral residence time within the particle mean free path in rocks67. That is, the characteristic time 534 

τ necessary to erode a ~60 cm thickness strip13 535 

Samples were prepared for cosmogenic 10Be analysis at the University of Wollongong. 536 

Quartz was purified following procedures described in69 using froth flotation to separate feldspars 537 

from quartz, and Be was separated following procedures described in70. Samples were spiked with 538 

≈250 µg of 9Be from a low-level beryl carrier solution added prior to complete HF dissolution. 539 

Sample purity was assessed following dissolution in HF, with native Al concentrations in all 540 

samples being < ≈200 ppm (average = 168 ppm). To test for the presence of native 9Be in our 541 
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samples, we also measured the Be concentration via ICP-OES in the dissolved material, obtaining 542 

concentration differences < 3%, the typical uncertainty of the method (average difference ≈1%).  543 

10Be/9Be ratios were measured using the 6MV SIRIUS facility at ANSTO71 and were 544 

normalised to the KN-5-2, KN-5-4, and KN-6-2 Ref72 standards. Analytical uncertainties for the 545 

final 10Be concentrations (atoms g-1) include AMS measurement uncertainties (larger of counting 546 

statistics or standard deviation of repeats and blank corrections) in quadrature with 1-2% for 10Be 547 

standard reproducibility (depending on the individual AMS measurement conditions) and 1% 548 

uncertainty in the 9Be carrier concentration. 549 

Denudation rates were calculated using the open-source program CAIRN v.173. Basin-550 

averaged nuclide production from neutrons and muons was calculated with the approximation of74 551 

and using a sea-level and high-latitude total production rate of 4.3 atoms g-1 yr-1 Ref73. Production 552 

rates for catchment-wide denudation rates were calculated at every grid cell of a hydrologically 553 

enforced 90 m SRTM DEM75, using the time-independent Lal/Stone scaling scheme76. 554 

Atmospheric pressure was calculated via interpolation from the NCEP2 reanalysis data77. 555 

Topographic shielding was calculated from the same DEM using the method of78 with  = 8 and 556 

 = 5. 557 

All data that we used here as for comparison reasons were obtained from the OCTOPUS 558 

database35 and66. We recalculated the data of44,66 using the Octopus protocol. Our new data are 559 

calculated in the same way. The differences from all recalculated and original data44,66 were minor, 560 

i.e. the ratio was 0.969±0.112 (see Supplementary Table 4). 561 

 562 

GIS-computations 563 
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We ran all spatial computations to calculate catchment-wide covariates in QGIS 3.2.2, GRASS 564 

7.8.2 and SAGA 2.3.2. To this end we derived topographic metrics such as elevation and local 565 

slope from SRTM digital elevation models, i.e. 30 and 90m ground resolution75 to both broadly 566 

characterize the topography and also being consistent with the OCTOPUS data. We extracted 567 

catchment-wide mean annual precipitation from the CHIRPS v2 product evaluated for Chile by79 568 

the tree cover percent from37, the bare surfaces from80 and the aridity34,81. The latter can be 569 

expressed by the dimensionless Aridity Index (AI) that is defined as 570 

𝐴𝐼 =
𝑀𝐴𝑃(𝑚𝑚)

𝑀𝐴𝐸(𝑚𝑚)
 

(eq. 1)  

where MAP refers to mean annual precipitation and MAE to mean annual potential 571 

evapotranspiration. MAE is calculated using the Hargreaves model and validated using n = 2288 572 

Penman-Monteith values at climate stations in South America (and Africa)81. We estimated 573 

spectral indices such as NDVI within each catchment using Google Earth Engine82. Mean NDVI 574 

was computed on COPERNICUS/S2_SR collection of January 2021 with less than 20% of cloudy 575 

pixel percentage (https://developers.google.com/earth-engine/datasets/catalog/ 576 

COPERNICUS_S2_SR#description).  577 

 578 

Calculation of landslide erosion rates  579 

We used the landslide inventories of30 who approximated the total affected area for each 580 

landslide, that is source, runout, and deposition zones. We used the landslide area and calculated 581 

the volume of the eroded material by assigning a maximum depth of the landslide slide plane of 582 

2m consistent with29, who measured the geometry of landslides around Chaitén volcano from 583 

photogrammetric unmanned aerial vehicle (UAV) surveys and randomly confirmed landslide scar 584 
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and deposit depth using measuring tape and an inclinometer. At none of these sites did we find 585 

deposits thicker than about 2 m.  586 

Next, we averaged the calculated landslide volume (L3) across the area(s) (L2). The total 587 

area of Huequi peninsula is 897 km2, Chaitén (2,413 km2), and Calbuco (4,750 km2)30. Lastly, we 588 

divided calculated height (L, here as m) by the period (20 years) covered by the landslide 589 

inventory. We approximated the date of landslide occurrence at annual precision judging from the 590 

timestamps of image pairs showing the latest undisturbed conditions and the earliest landslide 591 

occurrence. We recorded 411 landslides (total landslide area: 32.7 km2) during 2001-2019 for 592 

Calbuco, 616 landslides (total landslide area: 19.4 km2) during 2001-2019, and 38 landslides for 593 

Huequi (total landslide area: 3,4 km2) during 2001-2019. The results are shown in Supplementary 594 

Table 3. 595 

 596 

Data Analysis on denudation rates 597 

We used Random Forest regression83 to identify the most relevant topographic, climatic, 598 

and disturbance-related controls on the denudation rates for Chile (see Supplementary Table 1). 599 

Random forests (RF) are ensembles of decision trees trained on data, forming a robust 600 

nonparametric model capable of handling large nonlinear, noisy, fragmented, or correlated 601 

multidimensional data for classification84,85, and combine bootstrap aggregating with random 602 

variable selection83. The strategy is to explore the importance of predictors using bootstrapped data 603 

and predictor subsets for growing decision trees. Our response variable refers to the erosion rates 604 

(mm/year). Predictor variables include continuous data on hydro-climatology, geology, land cover 605 

and topography. We grew random forests with 10,000 individual trees, setting the number of 606 

variables at each node to 2 (out of a total of 9 predictors, see Figure 4). We assessed relative 607 
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variable importance for a random forest regression of 10Be denudation rates. To this end, we 608 

normalized all predictor variable importance to 100%. We employ Random Forest (RF) statistics 609 

to quantify controls for the observed erosion rates. Our RF-model fit was good for humid 610 

conditions, but poor for arid conditions (R2=0.62 vs R2=0.06). 611 

We calculated the critical slope following 49 using ordinary least square modeling fitting 612 

for humid (AI>1) and arid (AI<1) subsets of our data compilation for the Chilean Andes orogen. 613 

Comparing to other similar landscapes, we excluded data from Hopkins and Dobson valley, 614 

NZ, 39 that are locally affected by deep-seated landslides, thus comprise a different process domain. 615 

We also excluded the work by86 as these catchments are dominated by shrublands and/or extend 616 

into high-alpine terrain86 in contrast to our catchments.  617 

  618 
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Supplementary Table 619 

Supplementary Table 1. Properties of studied catchments. Slope and elevation come from 90m 620 

SRTM data75, MAP from satellite-based rainfall product CHIRPS 1981-2016 Ref79, AI comes 621 

from34,81 from, forest cover from37, and fraction of granitic lithology with respect to total 622 

catchment area from33. Uncertainty is given as ± 1σ. 623 

Sample ID BE10-01 BE10-08 BE10-13 BE10-14 BE10-15 

Lat (º) -43.1676 -43.8284 -45.4609 -45.4593 -45.3626 

Lon (º) -72.4277 -72.3521 -72.3238 -72.3426 -72.5708 

Slope (%) 58.2 ± 28.1 51.6 ± 25.6 70.5 ± 32.5 57.1 ± 28.4 49.9 ± 25.3 

Catchment (km2) 28. 44 18.00 10.81 4.09 8.53 

MAP (mm) 2528 2703 1635 1731 2513 

Elevation (m asl) 921 ± 308 838 ± 473 983 ± 315 823 ± 288 866 ± 274 

AIMedian 2.06 2.02 1.66 1.79 2.04 

Forest cover (%) 60.8 69.5 52.5 72.3 76.7 

Granitic (%) 40.2 
 

96 
 

100 
 

99.1 
 

97.9 
 

 624 
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 625 

Supplementary Table 2. Summary of cosmogenic 10Be measurements and calculated denudation, uncertainty is given as ± 1σ 626 

 627 

Sample ID 
UOW 

Sample 
ID 

ANSTO 
Cathode 

ID 

Total 
Qtz (g) 

9Be Spike 
(µg) 

27Al ICP 
(µg.g-1) 

9Be ICP 
(µg) 

%Diff 9Be(a) 
10Be/9Be(b,c) 

(10-15) 

10Be(c) 
(atoms.g-1) 

CAIRN Total 
Scaling Factor 

Erosion Rate(c) 
(mm.yr-1) 

Averaging 
Timescale (kyr) 

BE-10-1 UOW001 Be829 40.160 263.9 203.9 257.6 2.43 16.90 ± 0.94 7421 ± 443 2.13 0.83 ± 0.18 0.7 

BE-10-8 UOW002 Be830 39.985 261.5 173.9 261.8 0.11 18.11 ± 1.00 7912 ± 471 2.14 0.79 ± 0.17 0.8 

BE-10-13 UOW003 Be831 40.367 261.9 144.6 262.2 0.10 24.49 ± 1.23 10618 ± 584 2.31 0.63 ± 0.13 1.0 

BE-10-14 UOW004 Be832 40.118 261.5 189.7 263.2 0.67 19.76 ± 1.13 8604 ± 527 2.03 0.69 ± 0.15 0.9 

BE-10-15 UOW005 Be833 40.236 262.3 128.4 259.3 1.17 30.28 ± 1.37 13192 ± 665 2.13 0.47 ± 0.10 1.3 

a) difference between 9Be spike added and 9Be measured in dissolved sample via ICP-OES 

b) corrected using a procedural blank with 10Be/9Be = 0.483 ± 0.165 x 10-15 (n=5) 

c) uncertainties at 1-sigma level 

 628 

 629 
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Supplementary Table 3. Landslide erosion rates estimated for three areas within the CTR of 630 

northern Patagonia: 1) Calbuco area (affected by the Calbuco eruption in 2015; 2) Huequi area 631 

(without relevant human or natural disturbances and used as representing undisturbed state); 3) 632 

Chaitén area where rainforest stand in various states of post-volcanic disturbance following the 633 

2008 Chaiten eruption. 634 

 635 

Study area 
Reference coordinates Total volume 

(km3) 
Landslide erosion  

(m kyr-1) 
Lat (º) Long (º) 

Calbuco -41.1917 
 

-72.4909 0.06542 0. 72 

Huequi -42.3680 
 

-72.5919 0.00678 0. 39 

Chaiten -42.7799 
 

-72.5222 0.03882 0. 84 

 636 

 637 
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 638 

Supplementary Table 4. New and compiled 66 data of detrital 10Be concentration and denudation rates for samples of grain size 639 

between 0.126-1 mm within Chilean Western Andes. *Denudation rates recalculated for Octopus database in this work. 640 

Name and 
reference 

Cosmogenic 
Nuclide 

Concentration 
(at/g) Carretier 

et al. 2018 

Cosmogenic 
Nuclide 

Concentration 
uncertainty 

(at/g) Carretier 
et al 2018 

Cosmogenic 
Nuclide 

Concentration 
(at/g) Octopus 

Cosmogenic 
Nuclide 

Concentration 
uncertainty 

(at/g) Octopus 

Denudation rate 
(mm/a) Carretier 

et al 2018 

Denudation rate 
uncertainty 

(mm/a) Carretier 
et al 2018 

Denudation rate 
(mm/a) Octopus 

Denudation rate  
uncertainty 

(mm/a) Octopus 

BE10-01     7421* 443*     0.831* 0.177* 

BE10-08     7912* 471*     0.786* 0.167* 

BE10-13     10618* 584*     0.626* 0.131* 

BE10-14     8604* 527*     0.687* 0.147* 

BE10-15     13192* 665*     0.469* 0.098* 

MAU150 129351 14825 129351 7413 0.090 0.017 0.102 0.020 

LON150 64381 29145 64381 14573 0.121 0.058 0.175 0.053 

TEN150 73331 48099 73331 24050 0.170 0.114 0.163 0.067 

TIN150 99370 5275 99370 2638 0.159 0.025 0.163 0.030 

CAC150 91404 10713 91404 5357 0.195 0.037 0.194 0.037 

MAI150 87032 5010 87032 2505 0.250 0.040 0.257 0.047 

ACO150 101191 2915 101191 1458 0.194 0.030 0.211 0.038 

CHO150 195648 6708 195648 3354 0.059 0.009 0.067 0.012 

CHO082050 234948 10795 234948 5398 0.040 0.006 0.047 0.009 

CHO0822S50 198207 5803 198207 2902 0.053 0.008 0.061 0.012 

CHO0823S50 218067 9450 218067 4725 0.048 0.008 0.055 0.010 

ILL150 468966 13507 468966 6754 0.030 0.005 0.031 0.006 

HUR150 593076 38635 593076 19318 0.043 0.007 0.036 0.007 

ELK150 177039 23322 177039 11661 0.129 0.026 0.149 0.029 

ELK250 186943 16714 186943 8357 0.122 0.021 0.141 0.026 

HUA150 479983 13641 479983 6821 0.050 0.008 0.052 0.009 

HUA750 833051 53481 833100 53500 0.029 0.005 0.028 0.005 

HUA1050 588998 16567 589000 16600 0.039 0.006 0.038 0.007 

HUA1250 598649 24962 598600 25000 0.037 0.006 0.035 0.007 

SAN150 1027511 153842 1027511 76921 0.019 0.004 0.017 0.003 

CHIZ187 116710 17124 117000 17000 0.062 0.013 0.077 0.019 
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LL188 1069000 56000 1069000 56000 0.024 0.004 0.023 0.004 

LL288 975000 40000 975000 40000 0.023 0.004 0.023 0.004 

LL388 866000 54000 866000 54000 0.025 0.004 0.0238 0.00463 

LL488 2435000 3000000 2435000 306000 0.012 0.014 0.011 0.002 

LL588 2373000 1490000 2373000 149000 0.012 0.008 0.011 0.002 

Bbd2-244,66 75957 9631  75957*  9631* 0.063 0.012 0.075* 0.018* 

Bbm1-242 116638 9459 117000 9460 0.061 0.010 0.066 0.014 

D1-142 86277 14037 86300 14000 0.074 0.016 0.064 0.017 

C1-1b44,66 113680 20735 113680* 20735* 0.041 0.010 0.039* 0.011* 

C3-244,66 97896 8272 97896* 8272* 0.039 0.007 0.037* 0.009* 

VC1-244,66 95900 10529 95900* 10529* 0.042 0.008 0.042* 0.011* 

LC144,66 89686 24690 89686* 24690* 0.062 0.019 0.073* 0.026* 

Ca144,66 35951 2506 35951* 2506* 0.162 0.027 0.154* 0.034* 

R144,66 252782 8226 252782* 8226* 0.014 0.002 0.013* 0.003* 

H144,66 41242 3172 41242* 3172* 0.159 0.027 0.148* 0.032* 

Mi244,66 93772 4280 93772* 4280* 0.037 0.006 0.035* 0.008* 

641 
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 642 

Supplementary Figure 643 

 644 

Supplementary Figure 1. Denudation rate vs MAP, log-scaled, 10,000 MC simulations, Y = -14.951 ± 3.40 645 

* 4.364 ± 1.059X; R2=0.517. Square size scales with log10 of NDVI. 646 
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 647 

Supplementary Figure 2. RGB UAV-footage. (a) of active channel of Turbio river, boulder of up 648 

to 6 m edge lengths (42°57'16.16"S, 72°23'39.51"W), (b) rare deep landslide close to Chaitén 649 

township (42°57'1.00"S, 72°38'37.88"W), (c) shallow landsliding on the northern hillslopes of 650 

Chaitén volcano (42°48'24.48"S, 72°37'30.61"W). All UAV footage was obtained in 2018 using 651 

a Sensefly eBee RTK (a,c) and DJI Mavic Pro (b). Numbers in (c) refer to contour-parallel 652 

profiles through recent landslides.  653 

 654 

 655 
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 656 

Supplementary Figure 3. Test of a possible glacial erosion inheritance. We test if our denudation 657 

rates could be biased by higher erosion during last glacial maximum and thus be less than 658 

estimated, for example 0.1 m/kyr rather than 0.5 mm/a. We test 3 scenarios with 2 pre-17.5 ka 659 

periods with higher erosion rates over 80 ka. Whatever these rates, the bias on the estimated 660 

erosion rate using riverine 10Be is low. For the red scenario, that predicts the correct 10Be 661 

concentration (see black rectangle in the middle panel), the bias is < 10 % even if the last glacial 662 

maximum corresponded to erosion rates as high as 10 m/kyr. The 10Be production rate is 10 663 

at/g/yr in each case and the 10Be concentration is calculated using muon and neutron productions 664 

89 as well as radioactive decay. 665 
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 666 

 667 
Supplementary Figure 4. Correlation plot illustrating multicollinearities between denudation and 668 

hydroclimatic, geological, and spatial predictors grouped for arid (AI<1) and humid (AI>1) areas 669 

in Chile42–44. New data is included. 670 

 671 

 672 
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Supplementary Figure 5. 360° panorama view of Caleta Gonzalo catchment (42°34’06.91’’S, 673 

72°37’42.60’’). highlighting dense Patagonian coastal temperate rainforest closely connected to 674 

the Pacific Ocean. Drone footage was acquired using a DJI Phantom 4 by Benjamin Sotomayor in 675 

03/2022. 676 

 677 
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