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Abstract

We use seismic ambient noise recorded by ocean bottom nodes (OBNs) in the Gorgon gas field, Western Australia to compute

time-lapse seafloor models. The extracted hourly cross-correlation (CC) functions of 0.1 – 1 Hz contain mainly Scholte waves

with very high signal to noise ratio. The conventional time-lapse analysis suggests relative velocity variations (dv/v) up to

1% assuming a spatially homogeneous dv/v, with a likely 24-hour cycling pattern. With high-resolution baseline models from

full waveform inversion of Scholte waves, we propose a double-difference waveform inversion (DD-WI) method using travel

time differences for localizing the time-lapse dv/v in the heterogeneous subsurface in depth. The time-lapse velocity models

show velocity increase/decrease patterns in agreement with that from conventional analysis, with more notable changes at the

shallower depths. We demonstrate the feasibility of using ambient noise for quantitative monitoring of subsurface property

changes in the horizontal and depth domain at an hourly basis.
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Key Points: 13 

• We present a new method for high-resolution 4-D passive monitoring of subsurface 14 

physical property. 15 

• We compute hourly quantitative time-lapse images of velocity changes in the horizontal 16 

and depth domain from offshore ambient noise.  17 

• The method opens new avenues for 4-D monitoring using ambient noise from dense 18 

arrays and DAS. 19 
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Abstract 21 

We use seismic ambient noise recorded by the ocean bottom nodes (OBNs) in the Gorgon gas 22 

field, Western Australia to compute time-lapse seafloor models. The extracted hourly cross-23 

correlation (CC) functions of 0.1 – 1 Hz contain mainly Scholte waves with very high signal to 24 

noise ratio. The conventional time-lapse analysis suggests relative velocity variations (dv/v) up 25 

to 1% assuming a spatially homogeneous dv/v, with a likely 24-hour cycling pattern. With high-26 

resolution baseline models from full waveform inversion of Scholte waves, we propose a double-27 

difference waveform inversion (DD-WI) method using travel time differences for localizing the 28 

time-lapse dv/v in the heterogeneous subsurface in depth. The time-lapse velocity models show 29 

velocity increase/decrease patterns in agreement with that from conventional analysis, with more 30 

notable changes at the shallower depths. We demonstrate the feasibility of using ambient noise 31 

for quantitative monitoring of subsurface property changes in the horizontal and depth domain at 32 

an hourly basis.  33 

1 Introduction 34 

Temporal variations of subsurface physical properties have been commonly observed, for 35 

example, within active volcanos and fault zones, natural resources (e.g., hydrocarbon, 36 

geothermal) production fields, and carbon/hydrogen capture/storage in rock reservoirs (Lumley, 37 

2001; Brenguier et al., 2008; Takano et al., 2014; Roche et al., 2021). Seismic monitoring using 38 

environmental ambient noise (passive seismic data) has been demonstrated as a powerful and 39 

cost-effective solution for detecting and quantifying such property changes (Sens-Schönfelder 40 

and Wegler, 2006). A simple cross-correlation (CC) of ambient noise wavefield recorded at two 41 

receivers reconstructs the virtual interstation Green's function, which can be interpreted as the 42 

seismic response that would be measured at one of the receiver locations as if there is a source at 43 

the other location (e.g., Shapiro and Campillo, 2004). The ever-present natural ambient sources 44 

enable continuous and reliable retrievals of the seismic responses between pairs of stations 45 

across times, for example at a daily (de Ridder and Biondi, 2013) or hourly basis (Mao et al., 46 

2019); the waveform changes (e.g., the travel time shifts) from the time-lapse CC functions can 47 

be used for deriving the temporal variations of seismic velocity (dv/v) (Richter et al., 2014). 48 

Compared with expensive controlled-source seismic survey for time-lapse monitoring (Hicks et 49 

al., 2016), seismic monitoring using ambient noise helps reduce the operational cost significantly 50 
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and is also environmentally friendly; it is also preferred to monitoring methods using nature-51 

sourced earthquakes because of the lack of repeatability and universal distribution for the latter 52 

(Kamei and Lumley, 2017). 53 

Previous studies suggest that seismic ambient noise is mainly originated from the interaction of 54 

the ocean with the solid earth (Stehly et al., 2006; Gualtieri et al., 2020). The main signals 55 

extracted from seismic ambient noise are usually surface waves (e.g., Shapiro and Campillo, 56 

2004; Stehly et al., 2006; Brenguier et al., 2016), albeit body waves have also been observed 57 

(e.g., Roux et al., 2005; Nakata et al., 2016; Saygin et al., 2017).  Both the coda part and direct 58 

(ballistic) arrivals of the extracted seismic responses have been used for monitoring and can be 59 

sensitive to minor velocity changes at the order of 0.1% (Sens-Schönfelder and Wegler, 2006; 60 

Brenguier et al., 2020; Takano et al., 2020). It is of common practice for seismic passive 61 

monitoring to detect the temporal changes with a spatially homogeneous change assumption 62 

(Sens-Schönfelder and Wegler, 2006), however it remains challenging to characterize their 63 

detailed spatial distribution. There have been studies using ballistic surface wave arrivals (de 64 

Ridder and Biondi, 2013; de Ridder et al., 2014; Mordret et al., 2014) that localize the velocity 65 

changes in the horizontal plane but without determining the depth extent, and using the eikonal 66 

equation for describing the physics which is less accurate than inversion methods based on the 67 

elastic-wave equation. Mordret et al. (2020) estimate velocity changes in depth from dispersion 68 

measurements however with a 1-D assumption. The spatial extent of changes has also been 69 

determined using coda sensitivity kernels (Obermann et al., 2013; Rodríguez Tribaldos et al., 70 

2021) but the resolution is relatively low. Compared with the established workflows for 71 

determining quantitative 4-D (space-time) models of temporal velocity changes using body 72 

waves from controlled seismic sources (e.g., Lumley, 2001; Zhang & Huang, 2013; Yang et al., 73 

2016; Hicks et al., 2016), there has been a significant knowledge gap for subsurface real-time 74 

monitoring using surface waves from ambient noise.  75 

Seismic monitoring using ambient noise has great potential for industrial applications, including 76 

the real-time monitoring of carbon/hydrogen geological storage in subsurface rock reservoirs for 77 

the ongoing decarbonization efforts. We present a study for spatio-temporal monitoring of the 78 

subsurface heterogeneous physical property changes using offshore seismic ambient noise. We 79 

extract hourly Scholte wave of 0.1 – 1 Hz from two-day seafloor seismic noise recorded by the 80 
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vertical component of ocean bottom nodes (OBNs). Time-lapse analysis shows temporal changes 81 

of the seafloor velocity (dv/v) up to ~1%. With a baseline seafloor model from FWI of Scholte 82 

waves, we propose a double-difference waveform inversion (DD-WI) method using differential 83 

arrival times for estimating high-resolution time-lapse velocity models. Synthetic and field data 84 

studies show that it is feasible for 4-D real-time quantitative monitoring using ambient noise, i.e., 85 

detecting and localizing subtle subsurface velocity changes in the horizontal and depth domain at 86 

an hourly basis using ambient noise data from dense arrays.  87 

2 Data and ambient noise interferometry 88 

Between 2015 and 2016, Chevron Australia and its partners acquired a 3-D OBN seismic survey 89 

over the Gorgon gas field for a better description of the Gorgon reservoir sands for carbon 90 

capture and storage, with the survey area located in the North West Shelf offshore of Western 91 

Australia, approximately 200 km from the mainland (Fig. 1a and 1b). Both the in-line and cross-92 

line intervals were 375 m, with 120 OBN lines covering an area of ~ 436 km2. The inline 93 

direction was 115o/295o, about perpendicular to the coastal line. The water depth in the survey 94 

region was between 200 - 600 m. Each node comprised four channels, with two horizontal 95 

components (X, Y) and one vertical component (Z) for measuring displacement, and a 96 

hydrophone component for recording pressure. The data were recorded continuously with a 2 97 

millisecond interval. The survey used controlled air-gun seismic sources, but there were several 98 

quiet time windows without using controlled active sources. The recorded ambient seismic 99 

wavefield in the absence of active seismic sources provides the opportunity for passive seismic 100 

monitoring using a dense seismic array of industrial scale. We select a time window of Julian 101 

Days 1 and 2 of 2016 for the passive seismic monitoring experiment.  102 
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103 
Fig. 1. Map of the ocean bottom seismic survey in Western Australia and cross-correlation (CC) functions from 104 

ambient noise interferometry. (a) Ocean Bottom Node (OBN) seismic survey in the Gorgon gas field offshore 105 

Western Australia by Chevron Australia and its partners. (b) Zoom-in of the red rectangle in (a), with the color on 106 

the OBNs suggesting water depths; the black arrow indicates Line 3924. (c) CC functions for Line 3924 sorted by 107 

offsets (the distance between stations of a station pair) from Hour 15 of Julian Day 1, 2016. We limit the CC 108 

functions to 3 km. 109 

We detrend and down-sample the vertical component of the data from 250 Hz to 20 Hz with 110 

anti-aliasing filtering. The ambient noise data are then filtered at 0.1 – 1 Hz. We divide the 111 
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recordings of the selected quiet time window without active source shooting into hour-long 112 

segments; each segment is then subdivided into 30 s long records with a 50% overlap. Green's 113 

functions are reconstructed by computing CC functions of the 30 s ambient noise window 114 

between station pairs. We use weighted phase stacking (Schimmel et al., 2011) for stacking the 115 

CC functions within each hour-long segment to improve the signal to noise ratio. Fig. 1c shows 116 

the CC functions at Hour 15 Day 1 for Line 3924 (indicated by the black arrow in Fig. 1b), 117 

which contain mainly Scholte waves (travelling along the interface between the seawater and 118 

seafloor) and provide constraints for the shear-wave velocity of the seafloor. The hourly 119 

extracted CC functions have a very high signal to noise ratio. The energy concentrates on the 120 

positive side of the CC time lags, suggesting that the ambient noise between 0.1 and 1 Hz 121 

propagates from the ocean to the coast. 122 

3 Methods and results 123 

3.1 Seismic velocity temporal monitoring 124 

A baseline (reference) data for each station pair can be obtained by stacking the hourly CC 125 

functions across all the available hours from the two-day passive recordings. We compare the 126 

ballistic part of the Scholte wave arrivals of the baseline data with that of the hourly CC 127 

functions for quantifying the temporal velocity variations. The conventional time-lapse analysis 128 

using the stretching method assumes that the relative velocity variation (dv/v) is uniform in 129 

space, therefore we have the relation of dv/v with the relative travel time change (dt/t) as 130 

dv/v=-dt/t	(Sens-Schönfelder and Wegler, 2006).  Fig. 2 shows the derived velocity changes 131 

across the two days. We notice that the seafloor velocity changes up to 1% (Fig. 2a), with a 132 

likely sinusoidal pattern of ~ 24-hour cycle. The smaller offsets, which provide constraints for 133 

the shallower depths, generally have larger velocity variations than those from the relatively 134 

larger offsets (Fig. 2b), which are more associated with the velocities at the greater depths. The 135 

velocity changes from Fig. 2 can be interpreted as the average velocity changes of the seafloor 136 

where the extracted Scholte waves propagate through. The temporal changes of velocities from 137 
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more survey lines, as indicated by the black arrows in Fig. S1, are shown in Fig. S2, which 138 

suggests similar patterns of velocity temporal changes with Fig 2.  139 

 140 

 141 

Fig. 2. The relative velocity temporal changes (dv/v) from the stretching method. (a) dv/v of the seafloor 142 

at an hourly basis for Julian Day 1 and Day 2 of 2016. The velocity changes were estimated from the 143 

ballistic part of the extracted Scholte waves in Line 3924. Each black dot is the dv/v from a station pair 144 

measurement. The blue curve is the average dv/v. (b) The average velocity changes from CC functions of 145 

different offset ranges, for example ‘0.2-0.6’ refers to CC functions of 0.2 – 0.6 km offset. 146 

 147 

We sort the CC functions of all the station pairs into common-station gathers. Each common-148 

station gather can be considered as a seismic common-source gather that the shared common 149 

station is the source, and the rest of the stations from the selected survey line are the receivers. Fig. 150 

3 contains common-station gathers of the baseline data and the monitoring data from Hour 15 of 151 

Day 1 (Fig. 3a) and Hour 1 of Day 2 (Fig. 3b). We observe that the main difference between the 152 

baseline and monitoring data of different hours are the arrival times of the Scholte waves. Scholte 153 

waves from Hour 15 of Day 1 arrive later than the baseline data (Fig. 3a, 3c), indicating a velocity 154 

decrease than the baseline model, while those from Hour 1 of Day 2 arrive at an earlier time than 155 

the baseline data (Fig. 3b, 3d), suggesting a velocity increase; these observations from the 156 

common-station gathers are consistent with Fig. 2.  157 
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 158 

Fig. 3. Common-station gathers sorted from CC functions of station pairs of Line 3924. (a) is the 159 

comparison of the baseline data (solid black curve) and the monitoring data (dashed red curve) of Hour 15 160 

Day 1. (b) is the comparison of the baseline data (solid black curve) and the monitoring data (dashed red 161 

curve) of Hour 1 Day 2. (c) and (d) are zoom-in of the seismic trace at -1.9 km and 1.5 km offsets (from 162 

left to right, indicated by the blue and green arrows, respectively) from (a) and (b). 163 
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 164 

3.2 Full waveform inversion for baseline model estimation 165 

The dense array of OBNs provides the opportunity for computing time-lapse quantitative images 166 

of velocity changes, i.e., localizing the temporal velocity changes in the horizontal and depth 167 

domain of the subsurface, from the continuous recordings of ambient noise using high-resolution 168 

waveform inversion technique.  169 

A baseline velocity model is necessary for comparing with the time-lapse subsurface models. We 170 

use the full waveform inversion (FWI) (Tarantola, 1984; Shipp & Singh, 2002; Guo et al., 2022) 171 

technique for estimating a high-resolution baseline model using the extracted Scholte waves. For 172 

its numerical implementation, a gradient-based linearized inversion approach is used for 173 

updating the velocity model iteratively in the aim of minimizing the misfit between synthetic and 174 

observed data, with the gradients of the data misfit to model parameters efficiently calculated by 175 

the adjoint-state method from the cross-correlation of the source and adjoint wavefields 176 

(Tarantola, 1984; Fichtner et al., 2006). The source and adjoint wavefields can be obtained by 177 

source-wavelet generated forward wave propagation and adjoint-source generated backward 178 

wave propagation (Shipp & Singh 2002). We use time-domain staggered-grid finite-difference 179 

(Virieux, 1986) with fourth-order spatial and second-order temporal accuracy for solving the 180 

elastic-wave equation in the stress and particle-velocity formulation.  181 

We use the baseline data in the form of common-station gathers (e.g., Fig. 3) as the observed 182 

data for the baseline FWI. Considering that the phase information in the virtual Scholte waves of 183 

the CC functions is more reliable than the amplitude, here we use a trace-normalized FWI 184 

method (Shen, 2010) where each seismic trace is normalized by the l-2 norm of the trace itself in 185 

the misfit function (Text S1).  186 

Fig. S3a shows the velocity model from the wave-equation dispersion inversion, which uses the 187 

adjoint-state method for fitting the surface wave dispersion spectra (Li et al. 2017; Chen & 188 

Saygin, 2022). With the model in Fig. S3a as the starting model, Fig. 4a shows the velocity 189 

model from the baseline trace-normalized FWI after 50 iterations. The data misfit has been much 190 

reduced after FWI (Fig. S4). The synthetically calculated data after the FWI show much better 191 
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match (Fig. S5) to the extracted Scholte wave arrivals of the observed baseline data than those 192 

from the starting model. The velocity model in Fig. 4a is used as the baseline model for 193 

computing time-lapse seafloor models.  194 

 195 

Fig. 4. Baseline velocity model and time-lapse subsurface models of velocity changes in the shallow 196 

seafloor. (a) The high-resolution baseline velocity model from trace-normalized FWI, which is used as the 197 

starting model for DD-WI. (b) The time-lapse image of velocity changes for Hour 15 Day 1. (c) The time-198 

lapse image of velocity changes for Hour 1 Day 2. The black triangles in (a) indicate the locations of the 199 

OBNs.  200 

3.3 Double-difference waveform inversion for localizing time-lapse velocity changes 201 

The most straightforward approach for generalizing seismic inversion to the time-lapse monitoring 202 

is to perform two inversions for the baseline and the monitoring data respectively, however the 203 

results are sensitive to the baseline model and could be heavily contaminated by the residual data 204 

misfit from the baseline inversion (Yang et al., 2016). Double-difference waveform inversion (DD-205 
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WI) (Denli and Huang, 2009) using differential waveforms has been used for providing more 206 

reliable subsurface models of velocity changes with body waves from controlled sources.  207 

The time-lapse difference of the data mainly manifests in the travel times (Fig. 3), which suggests 208 

that an objective function of the seismic time-lapse inversion problem using travel time differences 209 

(shifts) between the monitoring and baseline data may be the most stable for quantifying the time-210 

lapse velocity models. DD-WI using travel time differences as an objective function has been 211 

proposed before, but in the background of seismic adjoint tomography for estimating seismic wave 212 

velocity structures, where the differential measurements are constructed between receivers (Yuan 213 

et al., 2016). We introduce it for elastic-wave equation based time-lapse inversion where the 214 

differential measurements are constructed between baseline and monitoring data.  215 

Here, we propose the DD-WI method using travel time differences for obtaining time-lapse 216 

velocity models using the extracted Scholte waves from ambient noise. The misfit function is 217 

defined as  218 

𝐽 = ∑ ∑ *∆𝑡!,#$ − ∆𝑡!,#% *
&		'(

#)*
'%
!)*   (1) 219 

where ∆𝑡!,#$  is the travel time difference between the monitoring and the baseline observed data, 220 

and ∆𝑡!,#%  is the travel time difference between the synthetic data from the monitoring model and 221 

the baseline FWI model. 𝑖 and 𝑗 are the indexes for the sources and receivers, Ns and Nr are the 222 

number of sources and receivers. The time difference (shift) can be estimated by comparing 223 

waveform data using cross correlation. The term ‘double-difference’ comes from the two-level 224 

differences in equation 3: (1) the difference between baseline and monitoring data, either synthetic 225 

or observed, and (2) the difference between the synthetic and observed measurements from (1).  226 

The adjoint source for the DD-WI of travel time differences (Yuan et al., 2016), which is used for 227 

elastic wave propagation in backward time steps for computing the adjoint wavefields, can be 228 

derived as  229 

𝜒!,# = [∆𝑡!,#$ − ∆𝑡!,#% ]𝜕𝑡	𝑠!,# 	(𝑡 − ∆𝑡!,#% ),   (2) 230 
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where 𝒔𝒊,𝒋 is a seismic waveform trace (1-D time-series vector) from the synthetic data. The only 231 

difference with the FWI is the adjoint source. Both the baseline and time-lapse inversion methods 232 

honor the seafloor bathymetry which is implicitly included when solving the elastic-wave 233 

equation. We apply the DD-WI method to the differential measurements of monitoring and 234 

baseline data for localizing the shear-wave velocity changes in the seafloor at an hourly basis. The 235 

misfit has been largely reduced after inversion (Fig. S6). The derived velocity difference between 236 

the model of Hour 15 Day 1 and the baseline model is shown in Fig. 4b, with that of Hour 1 Day 237 

2 shown in Fig. 4c.  The changes in Fig. 4b are overall negative suggesting a slower velocity than 238 

the baseline model, while the velocity differences in Fig. 4c are mainly positive indicating a faster 239 

velocity than the baseline; both are in agreement with Figs. 2 and 3. We also observe that the 240 

velocity changes are more significant at the shallower depths, up to ~1% relative to the baseline 241 

model, consistent with Fig. 2b where there are larger temporal velocity changes from the CC 242 

functions of smaller offsets (shallower depth) than those of the larger offsets (Fig. 2b). We estimate 243 

time-lapse models of velocity changes from more hours (Figs. S7, S8). We also apply the inversion 244 

method to the monitoring data from more survey lines (Figs. S9, S10); the localized time-lapse 245 

velocity changes of the seafloor show consistent increase/decrease patterns with Fig. S2.  246 

4 Discussion 247 

The observed temporal velocity changes (up to ~1%) is subtle, especially when compared with the 248 

likely difference between the baseline model from FWI and the ground truth of the seafloor. It is 249 

important to test if these velocity changes are real, not coming from the unfitted data in the baseline 250 

inversion. Therefore we perform a series of synthetic tests (Text S2, Fig. S11-S16), especially with 251 

errors in the baseline model and noise in the baseline and time-lapse data.  The inversion results 252 

suggest that the proposed method is robust to data noise and errors in the baseline model, and the 253 

velocity temporal changes localized by DD-WI using differential travel times are reliable.  254 

Surface wave or ambient noise tomography using wave dispersion measurements is usually 255 

performed using a two-step approach, where the construction of 2-D maps of phase/group 256 

velocities at series of frequencies is followed by a point-wise inversion of dispersion data for 1-D 257 

depth profiles at each grid point (Bodin & Sambridge, 2009). This approach assumes smoothly 258 

varying medium and may suffer from lateral discontinuity; furthermore the minor waveform 259 

changes in the monitoring data may be difficult to track from dispersion. On the other hand, we 260 
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build the baseline shear-wave velocity model from surface waves using wave-equation dispersion 261 

inversion followed by FWI to further improve the accuracy and resolution, and finally DD-WI of 262 

arrival time shifts for time-lapse images. The models are updated based on the adjoint-state method 263 

with a numerical solution of the full elastic-wave equation for arbitrarily complicated medium. In 264 

contrast with the two-step method, the inversions we used are able to provide velocity models in 265 

the horizontal and depth domain from surface waves in one step with a few iterations. The 266 

inversion is  sensitive to subtle subsurface property changes by comparing the waveforms directly 267 

using the full physics. 268 

In this study we limit the maximum offset to be 3 km. It is straightforward to include CC functions 269 

from larger offsets for monitoring subsurface property change at the greater depths, but likely with 270 

a lower temporal resolution because of longer recording time of ambient noise for the CC function 271 

convergence. Body waves have been observed in the auto- and cross-correlation functions of 272 

seismic ambient noise (Roux et al., 2005; Nakata et al., 2016; Saygin et al., 2017). As we use DD 273 

measurements of arrival times rather than wave dispersion, the proposed method can be applied 274 

for monitoring using body waves (Brenguier et al., 2020). While we apply the method per survey 275 

line, the method is ready for estimating subsurface velocity change models in 3-D (the horizontal 276 

plane and depth) using 3-D elastic-wave equations, provided that the 3-D seismic responses can 277 

be accurately reconstructed from ambient noise. The time-lapse inversion method is easy to 278 

implement with existing FWI source codes by simply changing the adjoint source for backward 279 

wavefield propagation. Time-lapse inversion using DD measurements of arrival times can also be 280 

implemented using ray-tracing, however elastic-wave equation describes the complete wave 281 

phenomena without the high-frequency approximation.  282 

The extracted seismic responses contain two parts: the direct (ballistic) waves and the coda part 283 

(Shapiro and Campillo, 2004). We apply the method to the ballistic part of the Scholte waves. The 284 

coda part can be more sensitive to subtle velocity changes because the multiple scattering process 285 

caused by heterogeneities samples the propagation medium very densely and for a long time (Sens-286 

Schönfelder and Wegler, 2006) and has been widely used for detecting very small velocity changes 287 

with a spatially uniform change asumption (Hillers et al., 2014). However its convergence requires 288 

longer recording time and the sophisticated propagation paths make inversion difficult. Apart from 289 

localizing the velocity changes from ballistic surface wave arrivals (de Ridder et al., 2014; Mordret 290 
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et al., 2014, 2020), there have been studies for determining the spatial extent of changes from coda 291 

waves using sensitivity kernels (Obermann et al., 2013), which is derived based on the diffusion 292 

approximation (Pacheco & Snieder, 2005) and is more of a modeling perspective. The resolution 293 

is lower than that from the wave-equation based inversion.  294 

The observed changes of shear-wave velocity decrease with increasing depths, generally follows 295 

the seafloor bathymetry and seems to have a 24-hour cycling pattern. Previous studies (e.g., 296 

Takano et al., 2014) have related onshore crustal velocity changes of 0.1-0.3% to the solid earth 297 

tide from the gravitational field of the Sun and Moon, which could cause the opening/closure of 298 

cracks or pores in the shallow subsurface leading to velocity decrease/increase respectively. The 299 

periodicity of non-volcanic tremor at the subduction zone (Nakata et al., 2008) and the 300 

microseismicity at the Mid-Atlantic Ridge (Leptokaropoulos et al., 2021) can also be induced by 301 

the earth tide. The changes in sea height caused by the ocean tide through the influence of gravity 302 

can create overburden loading variations on the seafloor and cause temporal velocity changes 303 

(Dean et al., 1994). The velocity changes caused by earth tide decrease with depths (Hillers et al., 304 

2015), consistent with what we have observed. In addition to the solid earth and ocean tides, the 305 

pressure loading of long-wavelength ocean infragravity waves can also induce seafloor vertical 306 

deformation (seafloor compliance), which is sensitive to the shear modulus structure (Crawford et 307 

al., 1999) and therefore could cause shear-wave velocity temporal changes. The physical 308 

mechanism behind the sinusoidal temporal velocity changes (up to 1%) in the shallow seafloor 309 

observed at this site remain under investigation.  310 

 311 

5 Conclusions 312 

In this study, we demonstrate that the new passive monitoring technique provides a cost-effective 313 

and environmentally-friendly solution for real-time 4-D quantitative monitoring of subsurface 314 

property changes with high temporal (hourly) and spatial (hundreds of meters) resolution. Using 315 

seismic ambient noise data recorded by a dense array of OBNs offshore Western Australia, we 316 

detect temporal variations of shear-wave velocity up to 1% in the seafloor, with a likely 24-hour 317 

cycling pattern. To localize the velocity changes in the subsurface, we first build a high-318 

resolution baseline seafloor model from FWI of Scholte waves. Then from DD-WI of wave 319 
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arrival time differences we obtain the quantitative time-lapse seafloor images containing the 320 

heterogeneous relative velocity variations in the horizontal and depth domain, where the velocity 321 

changes decrease with increasing depths. The elastic-wave equation based workflow from 322 

building high-resolution baseline model to time-lapse inversion using surface wave 323 

measurements honors the full wave physics, is robust to data noise and errors from the baseline 324 

model, and is sensitive to subtle velocity changes, which can be applied to dense passive seismic 325 

data from seismic arrays and Distributed Acoustic Sensing (DAS) for real-time monitoring of 326 

groundwater level, volcano, subduction zone and CO2 capture storage, in the aim for an in-depth 327 

understanding of the evolving 4-D Earth.    328 
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Text S1. 

Misfit function and adjoint source for trace-normalized FWI 

The misfit function 𝑱 for the trace-normalized FWI is defined as (Shen, 2010) 
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where 𝒔𝒊,𝒋 and 𝒅𝒊,𝒋	are seismic traces (1-D time-series vectors) from the synthetic and field data, 
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Text S2. 

Synthetic tests: sensitivity of time-lapse inversion to baseline model errors and data noise.  

The observed temporal velocity changes (up to ~1%) is subtle, therefore it is important to test if 

these velocity changes are real, not coming from the unfitted data in the baseline inversion. We 

perform a series of synthetic tests. We use the same frequency range, recording geometry and 

inversion parameters of the field data for these tests. We use the FWI derived model (Fig. 4a) as 

the baseline model for generating the ‘observed’ baseline data. We then add 1% positive and 

negative Gaussian-shaped velocity anomalies (‘temporal changes’, 1 km horizontal extension and 

0.2 km thickness, Fig. S11a) to the baseline model (Fig. 4a) for generating the ‘observed’ 

monitoring data. We first use the true baseline model (Fig. 4a) as the starting model for DD-WI as 

a benchmark, with the inverted models of velocity changes in Fig. S11b and S11c from DD-WI 

using waveform and travel time differences respectively.  



The tomographic velocity model in Fig. S3a, which contains much larger difference with the true 

baseline model than the added velocity anomalies, is then used as the starting model for the DD-

WI. By using the tomographic model as the baseline model, we create a scenario similar to the 

field data study where the differences between the baseline model used for inversion and the 

ground truth baseline model are very likely much larger than the observed temporal changes, and 

we are able to test the robustness of time-lapse inversion to baseline models. Both the DD-WI 

methods using waveform (Yang et al., 2016) and travel time differences have been applied. The 

results suggest that the proposed algorithm is able to recover the subtle velocity differences very 

well (Fig. S12c), and is less sensitive to the baseline model than DD-WI using waveform 

differences (Fig. S12b). We then add noise to the baseline and monitoring data respectively. The 

signal to noise ratio (S/N) is ~8, lower than that of the extracted hourly CC functions, and the 

inverted models (Fig. S13) suggest that DD-WI using travel times is more robust to noise. Fig. 

S14 suggests that the method is able to recover more subtle velocity perturbations (0.5%).  

We also test if the inversion methods and data settings can recover velocity anomalies of smaller 

size (0.5 km horizontal extension and 0.2 km thickness, Fig. S15a). When using the true baseline 

model (Fig. 4a) as the starting model for time-lapse inversion (which is not going to happen in 

field data studies, benchmark test), DD-WI using waveform differences can recover the anomalies 

better (Fig. S15). However, when there are errors in the baseline model, DD-WI using travel time 

differences provides better results (Fig. S16). Therefore the proposed method is robust to data 

noise and errors in the baseline model, and the velocity temporal changes localized by DD-WI 

using travel time differences are reliable.  

 
 
 
 
 
 
 
 
 



 
 

Figure S1. Ocean Bottom Node (OBN) seismic survey in the Gorgon gas field of the offshore of 
Western Australia by Chevron Australia and its partners. The colors on the OBNs suggest water 
depths. The black arrows indicate the positions of Line 3524, 3924 and 4324, respectively.  
 
 
 
 
 
 



 
 
 
Figure S2. The shear-wave velocity changes (dv/v) of the seafloor at an hourly basis for Day 1 
and Day 2 of 2016 from Lines 3524, 3924 and 4324, from CC functions of different offset ranges. 
The velocity changes were estimated using the stretching method from the ballistic part of the 
extracted Scholte waves of the CC functions. 
 
 
 



 
 
 
Figure S3. The velocity models from wave-equation dispersion inversion (Chen & Saygin, 2022), 
which are used as the starting models for baseline FWI. (a), (b) and (c) are the shear-wave 
velocity models for Line 3924, 3524 and 4324 (Fig. S2), respectively.  
 



 
 
Figure S4. Waveform misfit as a function of iterations for trace-normalized FWI (baseline FWI). 
The waveform misfit was calculated using equation S1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S5. A comparison of observed (extracted from ambient noise) and synthetic seismic 
waveform data. (a) The observed data (black) and the synthetic waveform (dashed red) using the 
starting model (Fig. S3a) of baseline FWI, and (b) the observed data (black) and the synthetic 
waveform (dashed red) using the final model from baseline FWI (Fig. 4a). The waveform match 
between observed and synthetic data has been much improved after baseline FWI.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Figure S6. Misfit as a function of iterations for DD-WI, for (a) Hour 15 Day 1 and (b) Hour 1 Day 
2. The misfit was calculated using equation 1.  
 
 
 



 
 
Figure S7. Time-lapse subsurface models of velocity changes from more hours compared with 
the baseline model (Fig. 4a). The black triangles in (a) indicate the locations of OBNs. 
 
 
 
 



 

 
 
Figure S8. The relative shear-wave velocity changes (dv/v) of the seafloor at an hourly basis for 
Day 1 and Day 2 of 2016 (the same with Fig. 2a), estimated using the stretch method assuming a 
spatially homogeneous dv/v. The green arrows from left to right indicate the dv/v for the time-
lapse images in Fig. S7 from top to bottom.  
 



 
 
Figure S9. Baseline velocity model and time-lapse subsurface models of velocity changes in the 
shallow seafloor for Line 3524. The starting model for baseline FWI is Fig. S3b. (a) The high-
resolution baseline velocity model from trace-normalized FWI, which is used as the starting 
model for DD-WI. (b) The time-lapse image of velocity changes for Hour 15 Day 1. (c) The time-
lapse image of velocity changes for Hour 1 Day 2. The black triangles in (a) indicate the locations 
of the OBNs.  
 
 
 
 
 



 
 
Figure S10. The same with Fig. S9 but for Line 4324 and the starting model for baseline FWI is 
Fig. S3c. 
 
 
 
 
 
 
 
 
 



 
 
Figure S11. The ‘true’ time-lapse model was generated by adding 1% positive and negative 
Gaussian-shape velocity anomalies to the baseline velocity model (Fig. 4a). Each of the anomaly 
has 1 km lateral extension and 0.2 km thickness. The baseline data was generated using the 
baseline velocity model (Fig. 4a), and the monitoring data was generated using the ‘true’ time-
lapse model. As a benchmark tests, DD-WI starts from the true baseline model (Fig. 4a) to see 
how well these perturbations can be recovered. (a) The true velocity anomalies (changes), (b) the 
inverted velocity anomalies from DD-WI using waveform differences, and (c) the inverted 
velocity anomalies from DD-WI using arrival time differences. The inverted velocity anomaly 
model is used as the benchmark for the following tests. 
 
 
 
 
 
 
 
 



 

 
 
Figure S12. The same with Fig. S11, except that instead of starting DD-WI from the ‘true’ 
baseline model (Fig. 4a), we use the model in Fig. S3a as the starting model for DD-WI. The 
model difference between Fig. S3a and Fig. 4a are much larger than the added velocity 
anomalies. (a) The true velocity anomalies, (b) the inverted velocity anomalies from DD-WI using 
waveform differences, and (c) the inverted velocity anomalies from DD-WI using arrival time 
differences.  
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
Figure S13. The same with Fig. 12, except that we add noise into the baseline and monitoring 
data. Signal to noise ratio (S/N) is about 8, lower than that of the extracted CC functions (Fig. 1c) 
from ambient noise. (a) The true velocity anomalies, (b) the inverted velocity anomalies from 
DD-WI using waveform differences, and (c) the inverted velocity anomalies from DD-WI using 
arrival time differences.  
 
 
 
 
 
 
 
 



 
 
Figure S14. The same with Fig. 13, except that the added velocity anomalies are more subtle, 
0.5% of the background velocity. (a) The true velocity anomalies, (b) the inverted velocity 
anomalies from DD-WI using waveform differences, and (c) the inverted velocity anomalies from 
DD-WI using arrival time differences.  
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Figure S15. The ‘true’ time-lapse model was generated by adding 1% positive and negative 
Gaussian-shape velocity anomalies to the baseline velocity model (Fig. 4a). Each of the 
anomalies has 0.5 km lateral extension and 0.2 km thickness. The baseline data was generated 
using the baseline velocity model, and the monitoring data was generated using the ‘true’ time-
lapse model. As a benchmark test, DD-WI starts from the true baseline model (Fig. 4a) to see 
how well these perturbations can be recovered. (a) The true velocity anomalies, (b) the inverted 
velocity anomalies from DD-WI using waveform differences, and (c) the inverted velocity 
anomalies from DD-WI using arrival time differences. The black triangles in (a) indicate the 
locations of OBNs. This test is used as the benchmark for Fig. S16. 
 
 
 
 
 
 
 
 



 
 
Figure S16. The same with Fig. S15, except that instead of starting DD-WI from the ‘true’ 
baseline model (Fig. 4a), we use the model in Fig. S3a as the starting model for DD-WI. The 
model difference between Fig. S3a and Fig. 4a are much larger than the added velocity 
anomalies. (a) The true velocity anomalies, (b) the inverted velocity anomalies from DD-WI using 
waveform differences, and (c) the inverted velocity anomalies from DD-WI using arrival time 
differences.  
 
 


