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Abstract

Elevated nitrate concentrations in German water bodies are a widespread problem, potentially resulting from a long history

of excess nitrogen (N) inputs. Here, we investigated long-term (1950-2014) N dynamics across 89 German catchments using

a process-based model. Results showed that the mean fractions of N surplus (excess) exported to the river, removed by

denitrification, accumulated in the soil zone, and accumulated in groundwater across all catchments are 27%, 58%, 14%,

and 1%, respectively. Dissolved inorganic N in groundwater could affect the stream N levels over decades as indicated by

long groundwater transit times. A cluster identified four catchment groups with distinct archetypal long-term N transport

and retention dynamics, which can be partly linked to the catchments’ topographic and geological conditions. This hints at

underlying mechanisms that explain spatial differences in the fate of diffuse N inputs to catchments and opens the possibility

for better-targeted management
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Key Points:

• We provided insights into the long-term (1950-2014) nitrogen (N) trans-
port and retention across various German catchments

• Large-sample assessment shows that most of N surplus was removed by
denitrification and accumulated in the soil zone

• Four catchment clusters with distinct nitrogen transport and retention
dynamics could be distinguished and explained by catchment attributes

Abstract

Elevated nitrate concentrations in German water bodies are a widespread prob-
lem, potentially resulting from a long history of excess nitrogen (N) inputs. Here,
we investigated long-term (1950-2014) N dynamics across 89 German catch-
ments using a process-based model. Results showed that the mean fractions of
N surplus (excess) exported to the river, removed by denitrification, accumu-
lated in the soil zone, and accumulated in groundwater across all catchments
are 27%, 58%, 14%, and 1%, respectively. Dissolved inorganic N in groundwater
could affect the stream N levels over decades as indicated by long groundwater
transit times. A cluster identified four catchment groups with distinct archety-
pal long-term N transport and retention dynamics, which can be partly linked
to the catchments’ topographic and geological conditions. This hints at under-
lying mechanisms that explain spatial differences in the fate of diffuse N inputs
to catchments and opens the possibility for better-targeted management.

Plain language summary

High nitrate concentrations in German water bodies are a widespread problem,
potentially linked to a long history of excess nitrogen (N) inputs on agricultural
fields. In this study, we analyzed the long-term N transport and accumulation
in various catchments across Germany from 1950 to 2014 using a process-based
model. We further clustered these catchments into different types according
to their long-term N patterns and linked these groups with their catchment
characteristics. Our results show that only a small part of the net N input
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was exported to rivers while most of the net N input was lost to the atmosphere
(denitrified). The majority of the remaining N surplus was stored in the soil zone.
The age of N in discharge was found to be years to decades, suggesting that past
N inputs will still have an impact on the future stream water quality status. A
cluster identified four catchment groups, which can be partly explained by the
catchment’s topographic and geological conditions. This hints at underlying
mechanisms that explain spatial differences in the fate of diffuse N inputs to
catchments and opens the possibility for better-targeted management.

1 Introduction

Human activities, especially agricultural management practices, have drastically
changed the Earth’s landscape and disturbed the global nitrogen (N) cycle (Fo-
ley, 2017; Vitousek et al., 1997). N surplus (excess of N inputs to the soil that
were not taken up by crops) from global croplands increased more than fivefold
from 16 Tg N yr−1 in 1961 to 86 Tg N yr−1 in 2010 (Zhang et al., 2021) and it
is likely to continue increasing until at least 2050 (Bouwman et al., 2013). In
many areas, excess use of N fertilizers for crop production was identified as one
of the main causes of surface water and groundwater deterioration, resulting in
negative impacts on human health and aquatic ecosystems (Evans et al., 2019).
Regulations at the national and international levels, e.g., the Clean Water Act
in the United States (EPA, 1972), the Nitrates Directive in Europe (CEC, 1991),
and the Action Plan for the Zero Increase of Fertilizer Use in China (Ju et al.,
2016), have been introduced to reduce excess N inputs to agricultural lands and
to protect water quality. However, the implementation of such mitigation regu-
lations does not always lead to immediate or clear responses of surface water and
groundwater quality (Brown & Froemke, 2012; EEA, 2021; Smith et al., 1987).
This requires a sound understanding of long-term N transport and retention.

The lag times from changes in N management practices and changes in ground-
water or surface water quality vary from years to decades (Chen et al., 2014,
2018; Meals et al., 2010). The reason for these lag times was discussed to be the
accumulation of N in the soil (mainly soil organic nitrogen - SON) as biogeo-
chemical legacy and in the subsurface (unsaturated and groundwater, mainly
dissolved inorganic nitrogen - DIN) as hydrological legacy (e.g., Basu et al.,
2022; Chen et al., 2018; Van Meter et al., 2016, 2017). SON and groundwa-
ter DIN accumulations are controlled by the soil mineralization rate in the soil
and groundwater transit times, respectively. Several studies suggest that most
of the N surplus in the catchment is stored as SON while groundwater DIN
is comparatively small (Ascott et al., 2017; Chen et al., 2018; Galloway et al.,
2003; Liu et al., 2021; Van Meter et al., 2016). Nevertheless, groundwater DIN
storage could affect stream water quality status over decades due to long transit
times (Chen et al., 2018). There have been several studies explored the bio-
geochemical and hydrological lag times, for example, in the Mississippi River
basin (Van Meter et al., 2016, 2017), the Susquehanna River basin (Van Meter
et al., 2017), the Weser River basin (Sarrazin et al., 2022), and in other basins
(Chen et al., 2018). The aforementioned studies, however, were conducted in
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individual or only a few catchments. Understanding and predicting long-term
N transport and retention across a variety of landscape characteristics, hydro-
climatic drivers, and anthropogenic impacts rather requires studies with a large
sample of catchments.

In recent years, some studies have linked long-term N transport and retention
with catchment attributes using a large sample of catchments to discuss underly-
ing processes controlling the build-up of N legacies. However, only a few studies
have explicitly separated the soil (biogeochemical legacy) and groundwater (hy-
drological legacy) N dynamics. For example, McDowell et al. (2021) found that
lag times between soil N leaching and riverine N export in 34 catchments in
New Zealand varied from 1 to 12 years with higher lag times in catchments with
higher altitudes, less steep slope, higher stream order, and higher evapotranspi-
ration. In 14 nested catchments located in the Grand River Watershed, Liu et
al. (2021) reported that about 82-96% of the catchment N was stored in the
soil and the remaining was stored in groundwater. The mean transit times in
groundwater in these catchments ranged from 5 to 34 years with longer transit
times found in catchments with higher tile drainage density.

Some recent studies have directly linked N surplus to riverine N export without
an explicit separation between the soil zone and groundwater (e.g., Dupas et
al., 2020; Ehrhardt et al., 2021). In these studies, ‘missing N’ is often used
to refer to the amount of N that can be either stored in the catchment or be
permanently removed via denitrification. For example, lag times between N sur-
plus and the peak riverine N export (mode of the N transport time distribution)
in 16 catchments located in Western France were found to vary from 2 to 14
years, depending on catchment lithology (Dupas et al., 2020). In these catch-
ments, about 45-88% of N surplus was missing N. At a larger scale spanning
over 238 catchments in Western Europe, the mode of N transport times were
reported to be around 5 years, on average with a higher mode of N transport
times in catchments with higher potential evapotranspiration and lower precip-
itation seasonality (Ehrhardt et al., 2021). They also found that catchments
with thicker unconsolidated aquifers have a larger amount of missing N while
a higher fraction of consolidated and porous aquifers show a smaller amount
of missing N. While these studies provided empirical (data-based) evidence on
the fate of missing N, there is generally a lack of understanding of the different
components of the missing N (e.g., soil N storage, groundwater N storage, soil
and groundwater N denitrification) and their relation to catchment character-
istics, especially in German landscape. This knowledge gap is important for a
more mechanistic understanding of long-term N characteristics in catchments
and allows better-targeted management strategies for abating N pollution.

The aims of this study are (1) to provide quantitative estimations of different
components of the ‘missing N’ across German catchments and (2) to discuss the
linkages between long-term N transport and retention, and catchment charac-
teristics. To this end, we investigated long-term N transport and retention in
different terrestrial components (soil and groundwater) across 89 catchments in
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Germany with diverse settings. We used a parsimonious, process-based model
that allows for an explicit characterization of biogeochemical and hydrological
legacies. Moreover, we discussed how our findings could be used for management
purposes and provide potential implications for other catchments.

2 Materials and Methods

2.1 Study area and data

The study uses data from 89 catchments (out of which 70 are non-nested catch-
ments) located in Germany (Figure 1a). In total, the study area has a non-
overlapping area of 120,596 km2, which is about one-third of the German ter-
ritory. The catchment area varies between 19 and 49,760 km2 with a median
area of 742 km2, covering both German lowlands and mountainous areas. Agri-
culture is the dominant land use in most of the study catchments, accounting
for (median value) 56% of the catchment area. Consolidated rock was found
to be the dominant aquifer material in more than half of the selected catch-
ments. The distribution of precipitation, air temperature, topographic gradient
(slope), aquifer depth (Figure 1b), and other catchment characteristics (Figure
S4) indicate that the selected catchments have diverse settings.
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Figure 1. Overview of the selected catchments, represented by (a) the land use
map (EEA, 2019) and location of the study catchments, and (b) the boxplots of
some catchment attributes (Ebeling et al., 2022). For better visualization, the
boxplots only show the values within 1.5 times interquartile range below and
above the 25th and 75 percentiles.

The catchment-scale annual N-surplus from 1950 to 2014 was calculated from the
fractional contribution from agricultural and non-agricultural land uses (forest,
buildup, and other vegetated and non-vegetated lands), based on their relative
areas. Land uses were constructed by combining the Corine Land Cover dataset
(EEA, 2019), the History Database of the Global Environment dataset (HYDE
dataset, Goldewijk et al., 2017), and statistical agricultural area data of Ger-
many (Statistisches Bundesamt, 2021) similar to Sarrazin et al. (2022). The N
surplus for agricultural areas is available at the county level for the period 1995-
2014 (Häußermann et al., 2020) and at the state level for the period 1950-1998
(Behrendt et al., 2003). The two datasets were harmonized to create consistent
time series of N surplus for the period 1950-2014 following Ehrhardt et al. (2021)
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and Ebeling et al. (2022). The N surplus for non-agricultural areas was esti-
mated as the sum of atmospheric N deposition (Lamarque et al., 2012; Tilmes et
al., 2016) and biological N fixation. Biological N fixation rates of 16 kg ha-1 yr-1
for forest and 2.7 kg ha-1 yr-1 for the other vegetated land were taken based on
the mean rates reported in Cleveland et al., (1999) for temperate forest and natu-
ral grassland, respectively (Sarrazin et al., 2022). The catchment-scale annual N
point sources for the period 1950-2014 were constructed using the methodology
of Morée et al. (2013) and information on population counts (HYDE dataset),
protein supply (FAO, 1951, 2021a, 2021b), and population connection to sewer
and wastewater treatment plants (WWTPs; Eurostat, 2016, 2021; Seeger, 1999)
(for further details see Sarrazin et al., 2022). The reconstructed N loading from
WWTPs was constrained to follow the N loading reported by the authority for
the period 2012-2016 (Büttner, 2020; Yang et al., 2019), following Sarrazin et
al. (2022).

Daily instream nitrate concentrations were reconstructed from irregularly ob-
served instream NO3-N data using Weighted Regression on Time, Discharge and
Season (WRTDS, Hirsch et al., 2010) and were aggregated (discharge-weighted
mean) to yearly estimates. Simulated daily discharges from the mesoscale Hy-
drologic Model (mHM, Kumar et al., 2013; Samaniego et al., 2010) were bias-
corrected using piece-wise linear regression and used for gap filling if observed
discharges were not available for WRTDS (Ehrhardt et al., 2021). Further de-
tails on instream nitrate (NO3-N) concentrations and discharge data at outlets
of selected catchments can be obtained from Ebeling et al. (2022). For all
of the selected gauging stations, the minimum time series length of instream
NO3-N concentrations was 20 years and the median number of observations
was 426 [min = 154, max = 1294]. In general, the performance of the WRTDS
is acceptable (Figure S3) with a median R2 of 0.63 (interquartile range = [0.49,
0.73]).

2.2 Representation of N transport in the catchment

In this study, we used a parsimonious representation of soil N dynamics and
a mechanistic representation of N transport in groundwater using the concept
of StorAge Selection (SAS) function (Botter et al., 2011; Nguyen et al., 2021,
2022; Van der Velde et al., 2010). The model, called the StorAge Selection
function for Nitrate (SAS-N, Figure S1), consists of two dominant N storages
representing the soil zone and groundwater (e.g., Nguyen et al., 2021; Van Meter
et al., 2017). The SAS-N model (1) can be considered as an improved version of
the catchment-scale lumped transfer function approach (Ehrhardt et al., 2021)
with an explicit representation of the soil and groundwater compartments, and
(2) has a more realistic representation of groundwater transport with dynamics
groundwater transit times compared to other models (e.g., Van Meter et al.,
2017). The SAS-N model operates at a yearly time step and is driven by N
surplus and effective precipitation (the difference between precipitation and ac-
tual evapotranspiration). N surplus can be accumulated in the soil zone as soil
organic nitrogen (SON), denitrified, or leached to the groundwater as dissolved
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inorganic nitrogen (DIN, nitrate). Leached N to the groundwater can be further
denitrified and exported to the stream using the SAS approach (Benettin et al.,
2013; Nguyen et al., 2022). N point sources (e.g., from WWTPs) are added to
the riverine N export and routed to the catchment outlet taking into account
instream removal (Sarrazin et al., 2022). A detailed description of the SAS-N
model is given in the supporting information (Text S1).

The SAS-N model contains six calibration parameters (Text S1 and Table S1).
These parameters were identified by running the model for each catchment with
50,000 parameter sets generated by uniform Latin Hypercube Sampling within
their pre-defined ranges (Table S1). The model performance was evaluated
against instream nitrate concentrations at the corresponding catchment outlet
with the root mean square error. The model was run from 1800 to 2014 with
1800-1949 taken as the warm-up period. Results from the 30 best simulations
from each catchment were used for all of the following analyses (see Text S2 for
more detail on the model performance).

2.3 Cluster analysis

The objectives of the cluster analysis were to find distinct archetypes of long-
term N transport and retention and to characterize their relationships with
catchment attributes. In water quality studies, the k-means clustering algo-
rithm (Hartigan & Wong, 1979) has been used, e.g., to understand patterns
and controls of catchment-scale nitrate storage (Ascott et al., 2017), groundwa-
ter geochemistry (Frapporti et al., 1993), and aquifer vulnerability (Javadi et al.,
2017). As an unsupervised machine learning approach, k-means clustering does
not require prior knowledge about the underlying patterns of the datasets. The
modelled long-term (1950-2014) mean behavioral N fluxes and stores character-
izing transport and retention processes, including the transit times, from the 30
best model simulations (behavioral simulations) for each catchment were used
for the clustering (Text S3). Then, statistical properties of various catchment
attributes (Figure 1b and S4) within each cluster were calculated to identify
differences in the catchment attributes among clusters. The tuning parameter
of the k-means is the number of clusters that we optimized using a combina-
tion of the silhouette (Rousseeuw, 1987), elbow (Kodinariya & Makwana, 2013),
and gap statistic (Tibshirani et al., 2001) methods to have a robust estimation
(Figure S5).

3 Results and discussion

3.1 Long-term N transport and retention

The simulated long-term (1950-2014) N fluxes and stores across all catchments
(Figure 3a and Text S3) shows that only 27 (mean of mean behavioral simula-
tions) ± (standard deviation of mean behavioral simulations) 13% of N surplus
was exported to the stream, in other words, the ‘missing N’ accounts for 73 ±
13% of N surplus (equivalent to 35 ± 6 kg ha-1 year-1). These estimated values
are well within the range reported by Ehrhardt et al. (2021) for Western Euro-
pean catchments. Results from our study suggest that the majority of N surplus
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was removed by denitrification in the soil zone (30 ± 15%) and groundwater (27
± 11%). This is in line with the findings from Sarrazin et al. (2022), who showed
that more than half of the N surplus in the Weser catchment in Germany was re-
moved via denitrification. Seitzinger et al. (2006) also found that denitrification
in the soil was generally higher than in groundwater at a global scale. About
14 ± 11% of N surplus that entered the catchments between 1950 and 2014 was
accumulated in the soil zone while only 1 ± 0.9% in the groundwater with an av-
erage groundwater N storage of nearly 33 kg ha-1 in 2014 across all catchments.
A dominance of soil N accumulation over groundwater N accumulation in catch-
ments has been confirmed in earlier studies across western France (Dupas et al.,
2020), the Danube (Malagó et al., 2017), the Weser (Sarrazin et al., 2022), and
the Mississippi (Van Meter et al., 2016) river basins. An independent estimation
based on groundwater N-stocks and maximum increase in groundwater nitrate
concentration also showed that only around 1% of N surplus was accumulated
in the European groundwater zone (Howarth et al., 1996). Although groundwa-
ter N accumulation during the study period (1950-2014) was found to be low
compared to soil N storage, groundwater N storage predominantly consists of
dissolved inorganic N in the form of nitrate, which could affect stream water
quality status over decades in catchments with very long transit times. For ex-
ample, we found that the mean transit times of discharge (and dissolved N), the
time elapsed since a water parcel enters the groundwater to the time it leaves
the catchment via discharge, varied between 3.2 and 20.3 years with a median
value of 7.1 years (Figure 2b). It should be noted that there is also a variability
in the simulated long-term N fluxes and stores among behavioral simulations
within a catchment. In general, higher simulated fluxes or storages have higher
standard deviations, except the instream N export because it is the calibrated
variable (Figure S6).
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Figure 2. Long-term (1950-2014) N transport and retention in the study catch-
ments (Text S3), represented by (a) boxplots of the long-term mean behavioral
N fluxes and stores and (b) mean behavioral groundwater transit times, and the
simulated time series of (c) N surplus, (d, e) changes in the mean behavioral
soil (�soil_stor*) and groundwater (�gw_stor*) N storages, respectively, since
1950, and (f) riverine N export in terms of the mean behavioral concentration
and loading. Vertical lines in orange in panels (c-f) depict the year 1988.

The time series of N fluxes and stores among different catchments show a wide
range of variations in levels but also similarities in patterns (Figure 2c-f). The
N surplus, mean behavioral soil N and groundwater N accumulations from all
catchments show a significant increasing trend (Mann-Kendall trend test (MK,
Mann, 1945; Kendall, 1975) with p-value < 0.001) during the 1950-1988 pe-
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riod (Figure 2c-e). After 1988, N surplus declined significantly (MK, p-value <
0.05, mean slope = -0.93) in 74 catchments, out of which 13 and 3 catchments
nevertheless showed an increasing trend in soil N and groundwater N accumula-
tion (MK, p-value < 0.05, mean slope < -0.77), respectively. While the median
N surplus across all 89 catchments in 2014 was reduced by 57% compared to
that of 1988, the median of the mean behavioral soil, groundwater N accumula-
tion, instream N concentrations and loadings decreased only by 15% and 16%,
23%, and 49%, respectively (Figure 2c-f, blue lines). The small reduction of
groundwater N storage since 1988 found in this study is also in line with a slight
decline in observed groundwater nitrate concentrations in recent decades across
Germany (Van Grinsven et al., 2012).

3.2 Linking N characteristics to landscape attributes

Results from the k-means analysis indicate that the study catchments can be
grouped into four clusters based on their underlying N export and retention
dynamics (Figures 3a-b and S5). In general, catchments in the same cluster are
located closer to each other (Figure 3a). This is expected as spatial similarity
in neighborhood exists for many hydrological and water quality processes (De-
tenbeck et al., 1996; Western et al., 2004). The number of catchments within
each cluster varies from 12 to 32 and each catchment cluster shows distinct long-
term N dynamics (Figures 3a-b). The salient features of the four clusters can
be summarized as: catchment cluster one has high soil N leaching (soil_leach)
and riverine N export (n_export), and short groundwater transit times (t_time),
catchment cluster two is characterized by high soil (�soil_stor) and groundwater
(�gw_stor) N accumulation and long groundwater transit times (t_time), catch-
ment cluster three shows high soil denitrification (soil_deni), and catchment
cluster four has high groundwater denitrification (gw_deni).

Regarding the catchment attributes, catchments in cluster one are charac-
terized by high altitude (dem.median), high precipitation (P_mm), high topo-
graphic slopes (slo.median), low topographic wetness index (twi_mean) (Figure
3c). We argue that these conditions lead to a dominance of fast shallow flow
paths with short transit times in both soil and groundwater, resulting in low
soil and groundwater N storage, high soil N leaching, low denitrification, and
high riverine N export relatively to N surplus (Figure 3a). In addition, shallow
aquifers and high fraction of consolidated rocks (f_consol) in catchment cluster
one are also factors that may lead to low N storage and short transit times in
groundwater (Figure 3b-c). The catchments in cluster one are also minimally
disturbed mountainous forested catchments with low N surplus (Figure 3c). In
contrast, catchments in cluster two can be interpreted as managed lowland
catchments (low altitudes and slopes) with agriculture-dominated landscapes
and high N surplus (Figure 3c). Lower precipitation and higher aridity (AI) in
these catchments could cause lower soil moisture that restricts soil denitrifica-
tion and flushing (leaching) of soil N, leading to higher soil N storage. Lower
topographic slopes and deeper aquifers observed in these catchments facilitate
deeper flow paths with longer transit times. Long transit times in combination
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with low aquifer denitrification rate could be an explanation for the relatively
high fraction of groundwater N accumulation compared to the other clusters.
High N accumulation in the catchments leads to low riverine N export.

Catchment cluster three is located in a comparable range of altitudes to catch-
ment cluster one but with lower slopes and higher fractions of agriculture, lower
precipitation, higher precipitation seasonality, and lower mean temperature.
Soil denitrification in the catchment cluster three was found to be the high-
est among the four catchment clusters. The precipitation seasonality (P_SIsw)
with higher summer precipitation causes higher soil moisture during the warm
and biologically active season and could thus enhance soil denitrification. Ad-
dionally, high soil pH might cause high soil denitrification in the cluster three, as
shown for southern Germany (Müller et al., 2022). Groundwater denitrification
in the catchment cluster three is relatively low compared to the others due to
low soil N leaching. Catchment cluster four is located in the lowland areas as
is catchment cluster two, but with slightly higher precipitation, causing higher
soil N leaching and lower soil N storage (Figure 3a, c). The mean fraction of
sedimentary aquifers (f_sedim) in catchment cluster four is the highest among
the four catchment clusters with deep aquifer. This could indicate long transit
times, high anoxic conditions and abundance of electron donors (Ebeling et al.,
2021; Knoll et al., 2019), resulting in high groundwater denitrification in the
catchment cluster four.
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Figure 3. Clustering of catchment functioning based on long-term N charac-
teristics (a) spatial distribution of catchment clusters, (b) boxplots of long-term
mean N characteristics (Text S3) in four clusters, and (c) boxplots of catch-
ment attributes (Table S3) of the corresponding clusters. The aov (Analysis of
Variance Model) and TukeyHSD (Tukey Honest Significant Differences) R (R
Core Team, 2021) functions were used for comparing the means among clusters.
Catchment attributes that are not statistically different at least in one cluster
are not shown here. For better visualization, the boxplots only show the values
within 1.5 times interquartile range below and above the 25th and 75 percentiles.

4 Summary and implication

In this modeling study, we were able to shed new light on the fate of the ‘missing
N’ across German catchments from 1950 to 2014 and their linkage with catch-
ment characteristics. The results found in this study, however, are subjected to
uncertainty due to, for example, data and parameter uncertainties that have not
been fully explored (Sarrazin et al., 2022). Nevertheless, our findings are quanti-
tatively in line with existing studies within the study area or elsewhere (Section
3.1) and the cluster analysis gave plausible results regarding existing process
understanding (Section 3.2). Our results suggest that there is in general a large
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amount of accumulated N in the soil zone as biogeochemical legacy while the
magnitude of groundwater N (in form of dissolved inorganic N) accumulation is
low. Still, both biogeochemical and hydrological N legacies could have a signifi-
cant impact on instream water quality for the next few decades as shown by the
mean transit time of discharge could be up to 20.3 years. The k-means cluster-
ing identified four catchment clusters with different N transport and retention
characteristics, which are further explained by some of the selected landscape
attributes (e.g., climatic, topographic, and aquifer properties).

We propose that results from the cluster analysis can be used for a qualitative
assessment of long-term N characteristics in other catchments within and be-
yond the physical boundaries of our study area. In particular, our results have
shown that catchments located in close spatial proximity tend to behave more
similarly than catchments located at more distant from each other. Therefore,
long-term N characteristics in ungauged catchments can possibly be inferred
from their neighboring catchments. On the other hand, knowing the catchment
attributes could help to identify the catchment archetype of N transport (clus-
ter) as demonstrated in this study (Section 3). The linkage between catchment
characteristics and dominant N transport, storage and removal processes could
inform the development of robust parameter regionalization techniques in future
modelling studies (e.g., Kumar et al., 2013; Samaniego et al., 2010).

This study highlights the importance of considering N legacy effects in water
quality modeling, management, evaluation programs, and having catchment-
specific N management approaches as catchment responses to N surplus are
highly heterogeneous. Neglecting N legacies in catchment water quality mod-
eling could provide “the right results for the wrong reasons”, leading to false
conclusions for management practices. In catchments with a high accumulation
of N in the soil zone, a long-term effort could be needed to achieve good chemi-
cal status for the groundwater bodies as N in the soil zone will continue to leach
to the groundwater, potentially causing elevated groundwater N concentrations
over a long period. This, together with long transit times in groundwater, could
delay the effects of current management practice and improvement in surface wa-
ter quality, which should be taken into account for evaluation programs. To have
effective, locally adapted management and evaluation programs, it is necessary
to answer questions about the expected timing and magnitude of improvements
in surface water and groundwater quality after new mitigation measures have
been introduced.
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Key Points: 16 
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 Four catchment clusters with distinct nitrogen transport and retention dynamics could be 21 
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Abstract 23 

Elevated nitrate concentrations in German water bodies are a widespread problem, 24 

potentially resulting from a long history of excess nitrogen (N) inputs. Here, we investigated 25 

long-term (1950-2014) N dynamics across 89 German catchments using a process-based model. 26 

Results showed that the mean fractions of N surplus (excess) exported to the river, removed by 27 

denitrification, accumulated in the soil zone, and accumulated in groundwater across all 28 

catchments are 27%, 58%, 14%, and 1%, respectively. Dissolved inorganic N in groundwater 29 

could affect the stream N levels over decades as indicated by long groundwater transit times. A 30 

cluster identified four catchment groups with distinct archetypal long-term N transport and 31 

retention dynamics, which can be partly linked to the catchments’ topographic and geological 32 

conditions. This hints at underlying mechanisms that explain spatial differences in the fate of 33 

diffuse N inputs to catchments and opens the possibility for better-targeted management. 34 

Plain language summary 35 

High nitrate concentrations in German water bodies are a widespread problem, 36 

potentially linked to a long history of excess nitrogen (N) inputs on agricultural fields. In this 37 

study, we analyzed the long-term N transport and accumulation in various catchments across 38 

Germany from 1950 to 2014 using a process-based model. We further clustered these catchments 39 

into different types according to their long-term N patterns and linked these groups with their 40 

catchment characteristics. Our results show that only a small part of the net N input was exported 41 

to rivers while most of the net N input was lost to the atmosphere (denitrified). The majority of 42 

the remaining N surplus was stored in the soil zone. The age of N in discharge was found to be 43 

years to decades, suggesting that past N inputs will still have an impact on the future stream 44 

water quality status. A cluster identified four catchment groups, which can be partly explained by 45 

the catchment’s topographic and geological conditions. This hints at underlying mechanisms that 46 

explain spatial differences in the fate of diffuse N inputs to catchments and opens the possibility 47 

for better-targeted management.   48 
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1 Introduction 49 

Human activities, especially agricultural management practices, have drastically changed 50 

the Earth’s landscape and disturbed the global nitrogen (N) cycle (Foley, 2017; Vitousek et al., 51 

1997). N surplus (excess of N inputs to the soil that were not taken up by crops) from global 52 

croplands increased more than fivefold from 16 Tg N yr−1 in 1961 to 86 Tg N yr−1 in 2010 53 

(Zhang et al., 2021) and it is likely to continue increasing until at least 2050 (Bouwman et al., 54 

2013). In many areas, excess use of N fertilizers for crop production was identified as one of the 55 

main causes of surface water and groundwater deterioration, resulting in negative impacts on 56 

human health and aquatic ecosystems (Evans et al., 2019). Regulations at the national and 57 

international levels, e.g., the Clean Water Act in the United States (EPA, 1972), the Nitrates 58 

Directive in Europe (CEC, 1991), and the Action Plan for the Zero Increase of Fertilizer Use in 59 

China (Ju et al., 2016), have been introduced to reduce excess N inputs to agricultural lands and 60 

to protect water quality. However, the implementation of such mitigation regulations does not 61 

always lead to immediate or clear responses of surface water and groundwater quality (Brown & 62 

Froemke, 2012; EEA, 2021; Smith et al., 1987). This requires a sound understanding of long-63 

term N transport and retention. 64 

The lag times from changes in  N management practices and changes in groundwater or 65 

surface water quality vary from years to decades (Chen et al., 2014, 2018; Meals et al., 2010). 66 

The reason for these lag times was discussed to be the accumulation of N in the soil (mainly soil 67 

organic nitrogen - SON) as biogeochemical legacy and in the subsurface (unsaturated and 68 

groundwater, mainly dissolved inorganic nitrogen - DIN) as hydrological legacy (e.g., Basu et 69 

al., 2022; Chen et al., 2018; Van Meter et al., 2016, 2017). SON and groundwater DIN 70 

accumulations are controlled by the soil mineralization rate in the soil and groundwater transit 71 

times, respectively. Several studies suggest that most of the N surplus in the catchment is stored 72 

as SON while groundwater DIN is comparatively small (Ascott et al., 2017; Chen et al., 2018; 73 

Galloway et al., 2003; Liu et al., 2021; Van Meter et al., 2016). Nevertheless, groundwater DIN 74 

storage could affect stream water quality status over decades due to long transit times (Chen et 75 

al., 2018). There have been several studies explored the biogeochemical and hydrological lag 76 

times, for example, in the Mississippi River basin (Van Meter et al., 2016, 2017), the 77 

Susquehanna River basin (Van Meter et al., 2017), the Weser River basin (Sarrazin et al., 2022), 78 

and in other basins (Chen et al., 2018). The aforementioned studies, however, were conducted in 79 

individual or only a few catchments. Understanding and predicting long-term N transport and 80 

retention across a variety of landscape characteristics, hydroclimatic drivers, and anthropogenic 81 

impacts rather requires studies with a large sample of catchments.  82 

In recent years, some studies have linked long-term N transport and retention with 83 

catchment attributes using a large sample of catchments to discuss underlying processes 84 

controlling the build-up of N legacies. However, only a few studies have explicitly separated the 85 

soil (biogeochemical legacy) and groundwater (hydrological legacy) N dynamics. For example, 86 

McDowell et al. (2021) found that lag times between soil N leaching and riverine N export in 34 87 

catchments in New Zealand varied from 1 to 12 years with higher lag times in catchments with 88 

higher altitudes, less steep slope, higher stream order, and higher evapotranspiration. In 14 89 

nested catchments located in the Grand River Watershed, Liu et al. (2021) reported that about 90 

82-96% of the catchment N was stored in the soil and the remaining was stored in groundwater. 91 

The mean transit times in groundwater in these catchments ranged from 5 to 34 years with longer 92 

transit times found in catchments with higher tile drainage density. 93 
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Some recent studies have directly linked N surplus to riverine N export without an 94 

explicit separation between the soil zone and groundwater (e.g., Dupas et al., 2020; Ehrhardt et 95 

al., 2021). In these studies, ‘missing N’ is often used to refer to the amount of N that can be 96 

either stored in the catchment or be permanently removed via denitrification. For example, lag 97 

times between N surplus and the peak riverine N export (mode of the N transport time 98 

distribution) in 16 catchments located in Western France were found to vary from 2 to 14 years, 99 

depending on catchment lithology (Dupas et al., 2020). In these catchments, about 45-88% of N 100 

surplus was missing N. At a larger scale spanning over 238 catchments in Western Europe, the 101 

mode of N transport times were reported to be around 5 years, on average with a higher mode of 102 

N transport times in catchments with higher potential evapotranspiration and lower precipitation 103 

seasonality (Ehrhardt et al., 2021). They also found that catchments with thicker unconsolidated 104 

aquifers have a larger amount of missing N while a higher fraction of consolidated and porous 105 

aquifers show a smaller amount of missing N. While these studies provided empirical (data-106 

based) evidence on the fate of missing N, there is generally a lack of understanding of the 107 

different components of the missing N (e.g., soil N storage, groundwater N storage, soil and 108 

groundwater N denitrification) and their relation to catchment characteristics, especially in 109 

German landscape. This knowledge gap is important for a more mechanistic understanding of 110 

long-term N characteristics in catchments and allows better-targeted management strategies for 111 

abating N pollution. 112 

The aims of this study are (1) to provide quantitative estimations of different components 113 

of the ‘missing N’ across German catchments and (2) to discuss the linkages between long-term 114 

N transport and retention, and catchment characteristics. To this end, we investigated long-term 115 

N transport and retention in different terrestrial components (soil and groundwater) across 89 116 

catchments in Germany with diverse settings. We used a parsimonious, process-based model that 117 

allows for an explicit characterization of biogeochemical and hydrological legacies. Moreover, 118 

we discussed how our findings could be used for management purposes and provide potential 119 

implications for other catchments. 120 

2 Materials and Methods 121 

2.1 Study area and data 122 

The study uses data from 89 catchments (out of which 70 are non-nested catchments) 123 

located in Germany (Figure 1a). In total, the study area has a non-overlapping area of 120,596 124 

km2, which is about one-third of the German territory. The catchment area varies between 19 and 125 

49,760 km2 with a median area of 742 km2, covering both German lowlands and mountainous 126 

areas. Agriculture is the dominant land use in most of the study catchments, accounting for 127 

(median value) 56% of the catchment area. Consolidated rock was found to be the dominant 128 

aquifer material in more than half of the selected catchments. The distribution of precipitation, 129 

air temperature, topographic gradient (slope), aquifer depth (Figure 1b), and other catchment 130 

characteristics (Figure S4) indicate that the selected catchments have diverse settings.  131 
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 132 

Figure 1. Overview of the selected catchments, represented by (a) the land use map (EEA, 2019) 133 

and location of the study catchments, and (b) the boxplots of some catchment attributes (Ebeling 134 

et al., 2022). For better visualization, the boxplots only show the values within 1.5 times 135 

interquartile range below and above the 25th and 75 percentiles. 136 

The catchment-scale annual N-surplus from 1950 to 2014 was calculated from the 137 

fractional contribution from agricultural and non-agricultural land uses (forest, buildup, and 138 

other vegetated and non-vegetated lands), based on their relative areas. Land uses were 139 

constructed by combining the Corine Land Cover dataset (EEA, 2019), the History Database of 140 

the Global Environment dataset (HYDE dataset, Goldewijk et al., 2017), and statistical 141 

agricultural area data of Germany (Statistisches Bundesamt, 2021) similar to Sarrazin et al. 142 

(2022). The N surplus for agricultural areas is available at the county level for the period 1995-143 

2014 (Häußermann et al., 2020) and at the state level for the period 1950-1998 (Behrendt et al., 144 

2003). The two datasets were harmonized to create consistent time series of N surplus for the 145 

period 1950-2014 following Ehrhardt et al. (2021) and Ebeling et al. (2022). The N surplus for 146 

non-agricultural areas was estimated as the sum of atmospheric N deposition (Lamarque et al., 147 

2012; Tilmes et al., 2016) and biological N fixation. Biological N fixation rates of 16 kg ha-1 yr-1 148 

for forest and 2.7 kg ha-1 yr-1 for the other vegetated land were taken based on the mean rates 149 

reported in Cleveland et al., (1999) for temperate forest and natural grassland, respectively 150 

(Sarrazin et al., 2022). The catchment-scale annual N point sources for the period 1950-2014 151 

were constructed using the methodology of Morée et al. (2013) and information on population 152 

counts (HYDE dataset), protein supply (FAO, 1951, 2021a, 2021b), and population connection 153 
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to sewer and wastewater treatment plants (WWTPs; Eurostat, 2016, 2021; Seeger, 1999) (for 154 

further details see Sarrazin et al., 2022). The reconstructed N loading from WWTPs was 155 

constrained to follow the N loading reported by the authority for the period 2012-2016 (Büttner, 156 

2020; Yang et al., 2019), following Sarrazin et al. (2022). 157 

Daily instream nitrate concentrations were reconstructed from irregularly observed 158 

instream NO3-N data using Weighted Regression on Time, Discharge and Season (WRTDS, 159 

Hirsch et al., 2010) and were aggregated (discharge-weighted mean) to yearly estimates. 160 

Simulated daily discharges from the mesoscale Hydrologic Model (mHM, Kumar et al., 2013; 161 

Samaniego et al., 2010) were bias-corrected using piece-wise linear regression and used for gap 162 

filling if observed discharges were not available for WRTDS (Ehrhardt et al., 2021). Further 163 

details on instream nitrate (NO3-N) concentrations and discharge data at outlets of selected 164 

catchments can be obtained from Ebeling et al. (2022). For all of the selected gauging stations, 165 

the minimum time series length of instream NO3-N concentrations was 20 years and the median 166 

number of observations was 426 [min = 154, max = 1294]. In general, the performance of the 167 

WRTDS is acceptable (Figure S3) with a median R2 of 0.63 (interquartile range = [0.49, 0.73]).  168 

2.2 Representation of N transport in the catchment 169 

In this study, we used a parsimonious representation of soil N dynamics and a 170 

mechanistic representation of N transport in groundwater using the concept of StorAge Selection 171 

(SAS) function (Botter et al., 2011; Nguyen et al., 2021, 2022; Van der Velde et al., 2010). The 172 

model, called the StorAge Selection function for Nitrate (SAS-N, Figure S1), consists of two 173 

dominant N storages representing the soil zone and groundwater (e.g., Nguyen et al., 2021; Van 174 

Meter et al., 2017). The SAS-N model (1) can be considered as an improved version of the 175 

catchment-scale lumped transfer function approach (Ehrhardt et al., 2021) with an explicit 176 

representation of the soil and groundwater compartments, and (2) has a more realistic 177 

representation of groundwater transport with dynamics groundwater transit times compared to 178 

other models (e.g., Van Meter et al., 2017). The SAS-N model operates at a yearly time step and 179 

is driven by N surplus and effective precipitation (the difference between precipitation and actual 180 

evapotranspiration). N surplus can be accumulated in the soil zone as soil organic nitrogen 181 

(SON), denitrified, or leached to the groundwater as dissolved inorganic nitrogen (DIN, nitrate). 182 

Leached N to the groundwater can be further denitrified and exported to the stream using the 183 

SAS approach (Benettin et al., 2013; Nguyen et al., 2022). N point sources (e.g., from WWTPs) 184 

are added to the riverine N export and routed to the catchment outlet taking into account instream 185 

removal (Sarrazin et al., 2022). A detailed description of the SAS-N model is given in the 186 

supporting information (Text S1).  187 

The SAS-N model contains six calibration parameters (Text S1 and Table S1). These 188 

parameters were identified by running the model for each catchment with 50,000 parameter sets 189 

generated by uniform Latin Hypercube Sampling within their pre-defined ranges (Table S1). The 190 

model performance was evaluated against instream nitrate concentrations at the corresponding 191 

catchment outlet with the root mean square error. The model was run from 1800 to 2014 with 192 

1800-1949 taken as the warm-up period. Results from the 30 best simulations from each 193 

catchment were used for all of the following analyses (see Text S2 for more detail on the model 194 

performance).  195 
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2.3 Cluster analysis 196 

The objectives of the cluster analysis were to find distinct archetypes of long-term N 197 

transport and retention and to characterize their relationships with catchment attributes. In water 198 

quality studies, the k-means clustering algorithm (Hartigan & Wong, 1979) has been used, e.g., 199 

to understand patterns and controls of catchment-scale nitrate storage (Ascott et al., 2017), 200 

groundwater geochemistry (Frapporti et al., 1993), and aquifer vulnerability (Javadi et al., 2017). 201 

As an unsupervised machine learning approach, k-means clustering does not require prior 202 

knowledge about the underlying patterns of the datasets. The modelled long-term (1950-2014) 203 

mean behavioral N fluxes and stores characterizing transport and retention processes, including 204 

the transit times, from the 30 best model simulations (behavioral simulations) for each catchment 205 

were used for the clustering (Text S3). Then, statistical properties of various catchment attributes 206 

(Figure 1b and S4) within each cluster were calculated to identify differences in the catchment 207 

attributes among clusters. The tuning parameter of the k-means is the number of clusters that we 208 

optimized using a combination of the silhouette (Rousseeuw, 1987), elbow (Kodinariya & 209 

Makwana, 2013), and gap statistic (Tibshirani et al., 2001) methods to have a robust estimation 210 

(Figure S5). 211 

3 Results and discussion 212 

3.1 Long-term N transport and retention 213 

The simulated long-term (1950-2014) N fluxes and stores across all catchments (Figure 214 

3a and Text S3) shows that only 27 (mean of mean behavioral simulations) ± (standard deviation 215 

of mean behavioral simulations) 13% of N surplus was exported to the stream, in other words, 216 

the ‘missing N’ accounts for 73 ± 13% of N surplus (equivalent to 35 ± 6 kg ha-1 year-1). These 217 

estimated values are well within the range reported by Ehrhardt et al. (2021) for Western 218 

European catchments. Results from our study suggest that the majority of N surplus was 219 

removed by denitrification in the soil zone (30 ± 15%) and groundwater (27 ± 11%). This is in 220 

line with the findings from Sarrazin et al. (2022), who showed that more than half of the N 221 

surplus in the Weser catchment in Germany was removed via denitrification. Seitzinger et al. 222 

(2006) also found that denitrification in the soil was generally higher than in groundwater at a 223 

global scale. About 14 ± 11% of N surplus that entered the catchments between 1950 and 2014 224 

was accumulated in the soil zone while only 1 ± 0.9% in the groundwater with an average 225 

groundwater N storage of nearly 33 kg ha-1 in 2014 across all catchments. A dominance of soil N 226 

accumulation over groundwater N accumulation in catchments has been confirmed in earlier 227 

studies across western France (Dupas et al., 2020), the Danube (Malagó et al., 2017), the Weser 228 

(Sarrazin et al., 2022), and the Mississippi (Van Meter et al., 2016) river basins. An independent 229 

estimation based on groundwater N-stocks and maximum increase in groundwater nitrate 230 

concentration also showed that only around 1% of N surplus was accumulated in the European 231 

groundwater zone (Howarth et al., 1996). Although groundwater N accumulation during the 232 

study period (1950-2014) was found to be low compared to soil N storage, groundwater N 233 

storage predominantly consists of dissolved inorganic N in the form of nitrate, which could 234 

affect stream water quality status over decades in catchments with very long transit times. For 235 

example, we found that the mean transit times of discharge (and dissolved N), the time elapsed 236 

since a water parcel enters the groundwater to the time it leaves the catchment via discharge, 237 

varied between 3.2 and 20.3 years with a median value of 7.1 years (Figure 2b). It should be 238 

noted that there is also a variability in the simulated long-term N fluxes and stores among 239 



manuscript submitted to Geophysical Research Letters 

 

behavioral simulations within a catchment. In general, higher simulated fluxes or storages have 240 

higher standard deviations, except the instream N export because it is the calibrated variable 241 

(Figure S6).  242 

 243 

Figure 2. Long-term (1950-2014) N transport and retention in the study catchments (Text S3), 244 

represented by (a) boxplots of the long-term mean behavioral N fluxes and stores and (b) mean 245 

behavioral groundwater transit times, and the simulated time series of (c) N surplus, (d, e) 246 

changes in the mean behavioral soil (∆soil_stor*) and groundwater (∆gw_stor*) N storages, 247 

respectively, since 1950, and (f) riverine N export in terms of the mean behavioral concentration 248 

and loading. Vertical lines in orange in panels (c-f) depict the year 1988.  249 

The time series of N fluxes and stores among different catchments show a wide range of 250 

variations in levels but also similarities in patterns (Figure 2c-f). The N surplus, mean behavioral 251 

soil N and groundwater N accumulations from all catchments show a significant increasing trend 252 

(Mann-Kendall trend test (MK, Mann, 1945; Kendall, 1975) with p-value < 0.001) during the 253 

1950-1988 period (Figure 2c-e). After 1988, N surplus declined significantly (MK, p-value < 254 

0.05, mean slope = -0.93) in 74 catchments, out of which 13 and 3 catchments nevertheless 255 

showed an increasing trend in soil N and groundwater N accumulation (MK, p-value < 0.05, 256 

mean slope < -0.77), respectively. While the median N surplus across all 89 catchments in 2014 257 
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was reduced by 57% compared to that of 1988, the median of the mean behavioral soil, 258 

groundwater N accumulation, instream N concentrations and loadings decreased only by 15% 259 

and 16%, 23%, and 49%, respectively (Figure 2c-f, blue lines). The small reduction of 260 

groundwater N storage since 1988 found in this study is also in line with a slight decline in 261 

observed groundwater nitrate concentrations in recent decades across Germany (Van Grinsven et 262 

al., 2012).  263 

3.2 Linking N characteristics to landscape attributes 264 

Results from the k-means analysis indicate that the study catchments can be grouped into 265 

four clusters based on their underlying N export and retention dynamics (Figures 3a-b and S5). 266 

In general, catchments in the same cluster are located closer to each other (Figure 3a). This is 267 

expected as spatial similarity in neighborhood exists for many hydrological and water quality 268 

processes (Detenbeck et al., 1996; Western et al., 2004). The number of catchments within each 269 

cluster varies from 12 to 32 and each catchment cluster shows distinct long-term N dynamics 270 

(Figures 3a-b). The salient features of the four clusters can be summarized as: catchment cluster 271 

one has high soil N leaching (soil_leach) and riverine N export (n_export), and short 272 

groundwater transit times (t_time), catchment cluster two is characterized by high soil 273 

(∆soil_stor) and groundwater (∆gw_stor) N accumulation and long groundwater transit times 274 

(t_time), catchment cluster three shows high soil denitrification (soil_deni), and catchment 275 

cluster four has high groundwater denitrification (gw_deni). 276 

Regarding the catchment attributes, catchments in cluster one are characterized by high 277 

altitude (dem.median), high precipitation (P_mm), high topographic slopes (slo.median), low 278 

topographic wetness index (twi_mean) (Figure 3c). We argue that these conditions lead to a 279 

dominance of fast shallow flow paths with short transit times in both soil and groundwater, 280 

resulting in low soil and groundwater N storage, high soil N leaching, low denitrification, and 281 

high riverine N export relatively to N surplus (Figure 3a). In addition, shallow aquifers and high 282 

fraction of consolidated rocks (f_consol) in catchment cluster one are also factors that may lead 283 

to low N storage and short transit times in groundwater (Figure 3b-c). The catchments in cluster 284 

one are also minimally disturbed mountainous forested catchments with low N surplus (Figure 285 

3c). In contrast, catchments in cluster two can be interpreted as managed lowland catchments 286 

(low altitudes and slopes) with agriculture-dominated landscapes and high N surplus (Figure 3c). 287 

Lower precipitation and higher aridity (AI) in these catchments could cause lower soil moisture 288 

that restricts soil denitrification and flushing (leaching) of soil N, leading to higher soil N 289 

storage. Lower topographic slopes and deeper aquifers observed in these catchments facilitate 290 

deeper flow paths with longer transit times. Long transit times in combination with low aquifer 291 

denitrification rate could be an explanation for the relatively high fraction of groundwater N 292 

accumulation compared to the other clusters. High N accumulation in the catchments leads to 293 

low riverine N export.  294 

Catchment cluster three is located in a comparable range of altitudes to catchment 295 

cluster one but with lower slopes and higher fractions of agriculture, lower precipitation, higher 296 

precipitation seasonality, and lower mean temperature. Soil denitrification in the catchment 297 

cluster three was found to be the highest among the four catchment clusters. The precipitation 298 

seasonality (P_SIsw) with higher summer precipitation causes higher soil moisture during the 299 

warm and biologically active season and could thus enhance soil denitrification. Addionally, 300 

high soil pH might cause high soil denitrification in the cluster three, as shown for southern 301 
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Germany (Müller et al., 2022). Groundwater denitrification in the catchment cluster three is 302 

relatively low compared to the others due to low soil N leaching. Catchment cluster four is 303 

located in the lowland areas as is catchment cluster two, but with slightly higher precipitation, 304 

causing higher soil N leaching and lower soil N storage (Figure 3a, c). The mean fraction of 305 

sedimentary aquifers (f_sedim)  in catchment cluster four is the highest among the four 306 

catchment clusters with deep aquifer. This could indicate long transit times, high anoxic 307 

conditions and abundance of electron donors (Ebeling et al., 2021; Knoll et al., 2019), resulting 308 

in high groundwater denitrification in the catchment cluster four.  309 

  310 
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Figure 3. Clustering of catchment functioning based on long-term N characteristics (a) spatial 311 

distribution of catchment clusters, (b) boxplots of long-term mean N characteristics (Text S3) in 312 

four clusters, and (c) boxplots of catchment attributes (Table S3) of the corresponding clusters. 313 

The aov (Analysis of Variance Model) and TukeyHSD (Tukey Honest Significant Differences)  314 

R (R Core Team, 2021) functions were used for comparing the means among clusters. 315 
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Catchment attributes that are not statistically different at least in one cluster are not shown here. 316 

For better visualization, the boxplots only show the values within 1.5 times interquartile range 317 

below and above the 25th and 75 percentiles. 318 

4 Summary and implication 319 

In this modeling study, we were able to shed new light on the fate of the ‘missing N’ 320 

across German catchments from 1950 to 2014 and their linkage with catchment characteristics. 321 

The results found in this study, however, are subjected to uncertainty due to, for example, data 322 

and parameter uncertainties that have not been fully explored (Sarrazin et al., 2022). 323 

Nevertheless, our findings are quantitatively in line with existing studies within the study area or 324 

elsewhere (Section 3.1) and the cluster analysis gave plausible results regarding existing process 325 

understanding (Section 3.2). Our results suggest that there is in general a large amount of 326 

accumulated N in the soil zone as biogeochemical legacy while the magnitude of groundwater N 327 

(in form of dissolved inorganic N) accumulation is low. Still, both biogeochemical and 328 

hydrological N legacies could have a significant impact on instream water quality for the next 329 

few decades as shown by the mean transit time of discharge could be up to 20.3 years. The k-330 

means clustering identified four catchment clusters with different N transport and retention 331 

characteristics, which are further explained by some of the selected landscape attributes (e.g., 332 

climatic, topographic, and aquifer properties).  333 

We propose that results from the cluster analysis can be used for a qualitative assessment 334 

of long-term N characteristics in other catchments within and beyond the physical boundaries of 335 

our study area. In particular, our results have shown that catchments located in close spatial 336 

proximity tend to behave more similarly than catchments located at more distant from each 337 

other. Therefore, long-term N characteristics in ungauged catchments can possibly be inferred 338 

from their neighboring catchments. On the other hand, knowing the catchment attributes could 339 

help to identify the catchment archetype of N transport (cluster) as demonstrated in this study 340 

(Section 3).  The linkage between catchment characteristics and dominant N transport, storage 341 

and removal processes could inform the development of robust parameter regionalization 342 

techniques in future modelling studies (e.g., Kumar et al., 2013; Samaniego et al., 2010).  343 

This study highlights the importance of considering N legacy effects in water quality 344 

modeling, management, evaluation programs, and having catchment-specific N management 345 

approaches as catchment responses to N surplus are highly heterogeneous. Neglecting N legacies 346 

in catchment water quality modeling could provide “the right results for the wrong reasons”, 347 

leading to false conclusions for management practices. In catchments with a high accumulation 348 

of N in the soil zone, a long-term effort could be needed to achieve good chemical status for the 349 

groundwater bodies as N in the soil zone will continue to leach to the groundwater, potentially 350 

causing elevated groundwater N concentrations over a long period. This, together with long 351 

transit times in groundwater, could delay the effects of current management practice and 352 

improvement in surface water quality, which should be taken into account for evaluation 353 

programs. To have effective, locally adapted management and evaluation programs, it is 354 

necessary to answer questions about the expected timing and magnitude of improvements in 355 

surface water and groundwater quality after new mitigation measures have been introduced.  356 
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