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Abstract

Flooding is one of the most devastating natural hazards to which our society worldwide must adapt, especially as its severity

and occurrence tend to increase with climate changes. This research work focuses on the assimilation of 2D flood observations

derived from remote-sensing images acquired during overflowing events. To do so, the resulting binary wet/dry maps are

expressed in terms of wet surface ratios (WSR) over a number of floodplain subdomains. This ratio is assimilated jointly with

in-situ water-level gauge observations to improve the flow dynamics within the floodplain. An Ensemble Kalman Filter with a

dual state-parameter analysis approach is implemented on top of a TELEMAC-2D hydrodynamic model. The EnKF control

vector is composed of spatially-distributed friction coefficients and a corrective parameter of the inflow discharge. It is extended

with the hydraulic states within the floodplain subdomains. This data assimilation strategy was validated and evaluated over a

reach of the Garonne river. The observation operator associated with the WSR observations, as well as the dual state-parameter

sequential correction, was first validated in the context of Observing System Simulation Experiments. It was then applied to two

real flood events that occurred in 2019 and 2021. The merits of assimilating SAR-derived WSR observations, in complement to

the in-situ water-level observations, are shown in the parameter and observation spaces with assessment metrics computed over

the entire flood events. It is also shown that the hydraulic state correction within the dual state-parameter analysis approach

significantly improves the flood dynamics, especially during the flood recession.
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Abstract16

Flooding is one of the most devastating natural hazards to which our society world-17

wide must adapt, especially as its severity and occurrence tend to increase with climate18

changes. This research work focuses on the assimilation of 2D flood observations derived19

from remote-sensing images acquired during overflowing events. To do so, the resulting20

binary wet/dry maps are expressed in terms of wet surface ratios (WSR) over a num-21

ber of floodplain subdomains. This ratio is assimilated jointly with in-situ water-level22

gauge observations to improve the flow dynamics within the floodplain. An Ensemble23

Kalman Filter with a dual state-parameter analysis approach is implemented on top of24

a TELEMAC-2D hydrodynamic model. The EnKF control vector is composed of spatially-25

distributed friction coefficients and a corrective parameter of the inflow discharge. It is26

extended with the hydraulic states within the floodplain subdomains. This data assim-27

ilation strategy was validated and evaluated over a reach of the Garonne river. The ob-28

servation operator associated with the WSR observations, as well as the dual state-parameter29

sequential correction, was first validated in the context of Observing System Simulation30

Experiments. It was then applied to two real flood events that occurred in 2019 and 2021.31

The merits of assimilating SAR-derived WSR observations, in complement to the in-situ32

water-level observations, are shown in the parameter and observation spaces with assess-33

ment metrics computed over the entire flood events. It is also shown that the hydraulic34

state correction within the dual state-parameter analysis approach significantly improves35

the flood dynamics, especially during the flood recession.36

1 Introduction37

1.1 Flood monitoring and forecasting38

Flooding is one of the most common, yet most severe and costliest natural disas-39

ters worldwide. According to figures provided by the United Nations Office for Disas-40

ter Risk Reduction, flooding accounted for 43.4% of all 7,255 disaster events recorded41

globally between 1998 and 20171. Flood forecasting systems rely on both monitoring and42

numerical modelling. Most modelling systems concatenate hydrologic rainfall-runoff mod-43

els that represent the dynamics of the catchment with hydrodynamic models that sim-44

ulate the dynamics of the river bed and the floodplain. River hydrodynamic models rely45

on solving the Shallow Water equations (SWE) which are depth-averaged Navier-Stokes46

equations. They are used to predict river water surface elevation (WSE) and discharge,47

thus allowing for flood risk assessment. However, these numerical models remain imper-48

fect due to the uncertainties in the model itself and its inputs, e.g., friction and bound-49

ary conditions (BC), which translate into uncertainties in the model outputs, i.e. wa-50

ter level and discharge. A well-established method for reducing such uncertainties is to51

periodically adjust these models by assimilating various available observations. As a re-52

sult, flood simulation and forecast capability have greatly improved thanks to the ad-53

vances in data assimilation (DA) (Madsen & Skotner, 2005; Neal & Jeffrey, 2007; Neal54

et al., 2009). Continuous time-series of gauged water levels and/or discharges recorded55

at sparse locations have been used for model calibration and validation. DA strategies,56

namely EnKF, classically consist in combining these time-series measurements with nu-57

merical models to correct the hydraulic states and reduce the uncertainties in the model58

parameters, e.g., friction coefficients, upstream inflow (Neal & Jeffrey, 2007). EnKF re-59

lies on the stochastic computation of the forecast error covariance matrix amongst a lim-60

ited number of perturbed simulations. Therefore, this approach depends strongly on the61

characteristics of the observing network, i.e., the density, the frequency and the statis-62

tics of errors of the observation (Mirouze et al., 2019). However, due to installation and63

1 https://www.prevention-web.net/knowledgebase
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maintenance costs, limnimetric in-situ gauge stations providing water levels are only avail-64

able at a few locations within a catchment (Mason et al., 2012), and they are usually in-65

stalled by the river. Such a spatial scarcity is a limitation for numerical model precision66

in simulation and forecast, especially in the floodplain. This can be overcome by the use67

of other data sources such as remote sensing (RS) flood maps that, despite low revisit68

frequency, offer a 2D representation of the flow dynamics.69

1.2 Assimilation of remote sensing flood-related data70

Leveraging RS products in the context of flood risk management presents a great71

opportunity to improve the ability of flood monitoring and forecasting (G. Schumann72

et al., 2009). In the recent years, SAR systems have played a major role in operational73

flood management, due to its reliability to collect day-and-night observations regardless74

of weather conditions. Water bodies and flooded areas typically exhibit low backscat-75

ter on SAR images since most of the incident radar pulses are specularly reflected away76

upon arrival at the water surfaces. Therefore, the detection of flooded areas is straight-77

forward on SAR images, with several exceptions, e.g. in urban environment, vegetated78

areas, or when facing variability of water roughness and speckle. Indeed, mis-detection79

of flooded vegetation areas (i.e. partially submerged vegetation) mainly occurs because80

signals cannot reach the water surfaces beneath vegetation being caught in volume scat-81

tering from the canopy, or due to multiple-bounce effects between the tree trunks and82

the underneath water surfaces. It could also occur in urban areas due the complexity of83

the landscape geometry (e.g. shadow, layover, highly reflective scatterers). Over the last84

decades, the literature on DA into hydrodynamic models mainly focused on the assim-85

ilation of in-situ or RS-derived WSE observations (Hostache et al., 2010), mostly because86

this is a state variable in any hydraulic model, thereby rendering the DA more straight-87

forward. Such methods involve retrieving WSE from the combination of RS-derived flood88

extent maps with topography data. Yet, this relies on the use of precise and high-resolution89

Digital Terrain Models (DTM) and still requires some further research to prevent po-90

tential bias from such a usage (Cian et al., 2018). As a result, recent studies have been91

carried out to directly assimilate flood extent maps in hydraulic models. Flood proba-92

bility maps have also been estimated by a Bayesian approach applied to SAR images,93

and subsequently assimilated into a particle filter-based data assimilation framework (Hostache94

et al., 2018; Dasgupta, Hostache, Ramsankaran, Schumann, et al., 2021; Revilla-Romero95

et al., 2016; Di Mauro et al., 2021). Cooper et al. (Cooper et al., 2019) proposed a new96

observation operator that directly uses backscatter values from SAR images as obser-97

vations in order to bypass the flood edge identification or flood probability estimation98

processes. However, this approach has only been implemented with synthetical SAR im-99

ages in the scope of a twin experiment. It relies on the hypothesis that SAR images must100

yield distinct distributions of wet and dry backscatter values, which may not hold for101

real SAR data due to aforementioned limitations.102

The increasing availability of highly spatially distributed RS observations of flood103

extent and water levels offer new opportunities for investigation and analysis (e.g., (Bates,104

2004; G. Schumann et al., 2009)). The possibility of using SAR imagery data for the val-105

idation and calibration of two-dimensional (2D) hydraulic models was first highlighted106

by Jung et al. (Jung et al., 2012). Since then, the increasing amount of RS data and the107

advances in Machine Learning algorithms dedicated to water detection have enabled a108

great number of research work dedicated to hydrologic and hydraulic models calibration/validation109

for real-time forecasting. The combination of RS data with local hydrodynamic mod-110

els has thus been greatly studied in the literature as it allows to overcome the limita-111

tions of both incomplete and uncertain sources of knowledge on the river and floodplain112

dynamics. A comprehensive review by Grimaldi et al. (Grimaldi et al., 2016) provides113

an analysis on the use of coarse-, medium- and high-resolution RS observations of flood114

extent and water level to improve the accuracy of hydraulic models for flood forecast-115

ing. It points out that RS data should be used as a complement data source—but not116
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as an alternative—to the in-situ data in order to calibrate, validate, and constraint the117

hydraulic models. This stems from their low precision and acquisition frequency (Grimaldi118

et al., 2016). Indeed, compared to in-situ data, RS data provide useful flood extent and119

flood edge information at a large coverage, usually covering the whole considered catch-120

ment, but they are much sparser in terms of frequency. In addition, uncertainty exists121

in flood extent mapping from RS observations, e.g. SAR images, which originates from122

both the input images and the classification algorithm itself. As a matter of fact, clas-123

sification overall accuracy of flooded areas varies considerably and only in rare cases ex-124

ceeds 90% (G. J.-P. Schumann et al., 2012). An updated review from Dasgupta et al.125

(Dasgupta, Hostache, Ramsankaran, Grimaldi, et al., 2021) provides the state-of-the-art126

on the assimilation of Earth Observation data with hydraulic models for the purpose of127

improved flood inundation forecasting.128

1.3 Objective and Outline129

As the severity and occurrence of flood events tend to intensify with climate change,130

the need for flood forecasting capability increases. In this regard, the Flood Detection,131

Alert and rapid Mapping (FloodDAM) project (Kettig et al., 2021), funded by the Space132

for Climate Observatory initiative, was set out to develop pre-operational numerical tools133

to enable quick responses in various flood-prone areas while improving the resolution,134

reactivity, and predictive capability. In our previous works (Nguyen et al., 2021, 2022),135

flood extent maps were inferred from Sentinel-1 (S1) images by a Random Forest (RF)136

developed in the framework of the FloodML project (Huang et al., 2020; Kettig et al.,137

2021). In these works, in-situ water level time series at observing stations of the river138

bed were assimilated in order to sequentially correct friction and inflow discharge. Ac-139

cordingly, the hydrodynamic model results in re-analysis and forecast modes are improved.140

S1-derived flood extent were then used as independent validation observations provid-141

ing valuable information, especially in the floodplain. The EnKF algorithm was favored142

and implemented as it allows to stochastically estimate the covariance matrices between143

the model inputs/parameters and its outputs, without formulating the tangent linear of144

the hydrodynamics model, under the assumption that the errors in the control vector145

are properly described by a Gaussian probability density function. Taking further ad-146

vantage of S1-derived flood extents, the DA of flood extent maps, expressed in terms of147

wet surface ratios (WSR) computed as the ratio of wet pixels detected on S1-derived wa-148

ter masks, over the total number of pixels in a subdomain of the floodplain, is here in-149

vestigated. This strategy aims at reducing comprehensively the uncertainties in the model150

parameters and forcing, and consequently improve the overall flood re-analysis and fore-151

cast capability especially in the floodplain. This article presents a DA approach to ac-152

commodate 2D WSR observations alongside with in-situ water level time-series within153

an EnKF framework implemented on a 2D hydrodynamics model on the Garonne river.154

A dual state-parameter DA strategy is implemented to reduce the uncertainties in fric-155

tion coefficients, upstream forcing and hydraulic state (water level in selected floodplain156

subdomains). The control vector is augmented with a water level state correction that157

is uniform over a limited number of subdomains in the floodplain. This work is first car-158

ried out in the context of Observing System Simulation Experiment (OSSE) where ob-159

servations are generated from a reference simulation with chosen settings, considered as160

the truth. Generated in-situ and WSR synthetical observations are then assimilated into161

an ensemble DA with a priori (background) settings that differ from the true settings.162

This strategy is common in DA studies as it allows to validate a DA algorithm and whether163

its analysis manages to bring the resulting control vector closer to the truth’s settings,164

as well as the resulting model state closer to the synthetical observations than the a pri-165

ori state. The DA strategy is then tested for real flood events, assimilating both water166

level data measured at in-situ gauge stations and WSR observations derived from S1 im-167

ages. The DA results are validated with respect to independent data from Sentinel-2 (S2)168

optical images and high water marks (HWM) that are available and relevant. The lat-169
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ter is a collaborative dataset of high water marks2 contributed by occasional observers170

in the floodplain is used as independent data for validation purposes.171

The remainder of the paper is organized as follows. Section 2 gathers the material172

and data used in this study. Subsection 2.1 presents the hydrodynamic numerical solver173

TELEMAC-2D3 (T2D). Its implementation on the Garonne Marmandaise catchment for174

the representation of flooding along with the associated sources of uncertainties are de-175

scribed in subsection 2.2. The reference flood events and the in-situ and remote sens-176

ing data that are used for assimilation and validation purposes are then described in sub-177

section 2.3. The EnKF algorithm for dual state-parameter correction is presented in sec-178

tion 3. The description of the control vector, the forecast and analysis steps are proposed179

in subsection 3.1, subsection 3.2 and subsection 3.3, respectively. Section 4 provides a180

thorough description of the experimental settings and assessment metrics for the DA strat-181

egy. The experimental settings for DA cycling and observation errors are gathered along182

with the metrics that are used to assess the performance of the DA simulations with re-183

spect to assimilated and independent data. Experimental results are presented in Sec-184

tion 5, first in the framework of OSSE (subsection 5.1), then for real events (subsection185

5.2). The merits of assimilating RS data for simulation evaluation in the river bed and186

the floodplain are highlighted in the control and the observation space for OSSE and real187

experiments, especially at the flood peak and during the flood recess. Conclusions, lim-188

itations, and perspectives are given in Section 6.189

2 Methodology190

2.1 Hydrodynamic model191

The non-conservative form of the SWE are written in terms of water level (denoted
by H [m]) and horizontal components of velocity (denoted by u and v [m.s-1]). They ex-
press mass and momentum conservation averaged in the vertical dimension, assuming
that (i) vertical pressure gradients are hydrostatic, (ii) horizontal pressure gradients are
due to displacement of the free surface, and that (iii) horizontal length scale is signif-
icantly greater than the vertical scale. The SWE read:

∂H

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂Z

∂x
+ Fx +

1

H
div

(
Hνe

−−→
grad (u)

)
(2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂Z

∂y
+ Fy +

1

H
div

(
Hνe

−−→
grad (v)

)
(3)

where Z [m NGF69] is the water surface elevation and νe [m2.s-1] is the water diffusion192

coefficient. The water level H = Z − Zb is computed from Z with Zb [m NGF69] the193

bottom elevation. In the following, the water surface elevation is shortened as WSE and194

the water level as WL. t stands for time and g is the gravitational acceleration constant.195

div and
−−→
grad are respectively the divergence and gradient operators.196

In addition, Fx and Fy [m.s-2] are the horizontal components of external forces (fric-
tion, wind and atmospheric forces), defined as follows:

Fx = − g

K2
s

u
√
u2 + v2

H4/3
− 1

ρw

∂Patm

∂x
+

1

H

ρair
ρw

Cd Uw,x

√
U2
w,x + U2

w,y (4)

Fy = − g

K2
s

v
√
u2 + v2

H4/3
− 1

ρw

∂Patm

∂y
+

1

H

ρair
ρw

Cd Uw,y

√
U2
w,x + U2

w,y (5)

2 https://www.reperesdecrues.developpement-durable.gouv.fr/
3 www.opentelemac.org
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where ρw/ρair [kg.m-3] is the water/air density ratio, Patm [Pa] is the atmospheric197

pressure, Uw,x and Uw,y [m.s-1] are the horizontal wind velocity components, Cd [-] is the198

wind drag coefficient that relates the free surface wind to the shear stress, and lastly, Ks199

[m1/3.s−1] is the river bed and floodplain friction coefficient, using the Strickler formu-200

lation (Gauckler, 1867).201

In order to solve Eq. (1)-(3), initial conditions {H(x, y, t = 0) = H0(x, y); u(x, y, t =202

0) = u0(x, y); v(x, y, t = 0) = v0(x, y)} are provided, and boundary conditions (BC)203

are described with a time-varying hydrogram upstream and a rating curve downstream.204

The Strickler coefficient is prescribed uniformly over defined subdomains, and calibrated205

according to the observing network. The hydrodynamic numerical model T2D is used206

to simulate and predict WSE and velocity from which the flood risk can be assessed. T2D207

solves the SWE derived from Navier-Stokes equations with an explicit first-order time208

integration scheme, a finite-element scheme and an iterative conjugate gradient method209

(Hervouet, 2007). The results are obtained at each point of the mesh mapped onto the210

catchment topography.211

Figure 1: T2D Garonne Marmandaise domain. The VigiCrue observing stations are
indicated as black circles. The different river friction zones are indicated as colored seg-
ments of the river bed. The floodplain is divided into five subdomains that are hatched
in different colors. The inset figure at the bottom left corner magnifies the urban area of
Marmande nearby its namesake gauging station.

2.2 Study area and description of the uncertainties212

The study area is the Garonne Marmandaise catchment (southwest of France) which213

extends over a 50-km reach of the Garonne River between Tonneins and La Réole (Fig-214

ure 1). Since the 19th century, it has been equipped with infrastructures. As such, a sys-215

tem of dykes and weirs had been progressively built to protect floodplains from flood-216
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ing events, such as the historic flood of 1875, and to manage submersion and flood re-217

tention areas. Observing stations operated by the VigiCrue network4 are located at Ton-218

neins, Marmande, and La Réole (indicated as black circles in Figure 1, providing water-219

level measurements every 15 minutes.220

A T2D model was developed and calibrated over this catchment, which was built221

on a mesh of 41,000 nodes using bathymetric cross-sectional profiles and topographic data222

(Besnard & Goutal, 2011). The topography of the catchment was generated using IGN223

(French National Mapping Agency) maps as well as aerial photographs for photogram-224

metric reconstruction (Besnard & Goutal, 2011). A local rating curve at Tonneins is used225

to translate the observed WL into a discharge time-series. Discharge time-series Q(t) are226

then applied as forcing over the whole upstream interface (cyan arrow in Figure 1), in-227

cluding both river bed and floodplain boundary cells. This modeling strategy was im-228

plemented to allow for a cold start of the model with any inflow value. However, it prompts229

an over-flooding of the upstream first meander, until the water returns to the river bed.230

The downstream BC at La Réole is described with a local rating curve. In the follow-231

ing, both upstream and downstream areas are excluded from the computation of assess-232

ment metrics to limit the impact of the choice of the BC strategy and topographic er-233

rors on the results. Over the simulation domain, the friction coefficient is defined over234

seven zones, including six segments from Ks1 to Ks6 for the river bed and one Ks0 for235

the entire floodplain, as illustrated in Figure 1 with solid colored segments of the rived236

bed and white background color for the floodplain. A priori values for friction in the river237

bed are set from a calibration process using in-situ WL observations at Tonneins, Mar-238

mande and La Réole for selected set of past flood events, summarized by Table 1. The239

description of the friction coefficients is highly prone to uncertainties related to the zon-240

ing assumption, the calibration procedure, and the set of calibration events. In the fol-241

lowing, these coefficients are considered as random variables with a gaussian Probabil-242

ity Density Function (PDF) with mean x0 and standard deviation σx estimated from243

the calibration process (Table 1). The a priori values are further improved with the DA244

strategy. The uncertainty in the upstream BC is also taken into account. Indeed, the245

limited number of in-situ observations yields errors in the formulation of the rating curve246

that is used to translate the observed WL into discharge, especially for high flow. Thus,247

a multiplicative factor µ on the time-dependent discharge time-series is considered as a248

random variable with a gaussian PDF centered at 1. Lastly, in order to account for the249

evapotranspiration, ground infiltration and rainfall processes that are lacking in the T2D250

Garonne model, a state correction is implemented in the floodplain. The floodplain is251

divided in five subdomains based on the description of the storage areas (Besnard & Goutal,252

2011) and the dyke system of the catchment. A uniform WL correction δHk with k ∈253

[1, 5] over each subdomain is added to the control vector. Each δHk is considered as a254

random variable with a zero-mean Gaussian with a standard deviation set to 0.25 [m].255

The calibrated friction coefficient values, and the default values of 1 for µ and 0 for δHk256

are used as setting for the free run experiment further denoted as FR.257

2.3 Flood events and Observations258

Two significant flood events having occurred in December 2019 and January-February259

2021 are studied in this research work. In-situ WL measured every 15 minutes at Ton-260

neins, Marmande and La Réole are shown in Figure 2a and Figure 2b, respectively. A261

simulation period of 25 days was selected around the flood peak for each event in order262

to properly capture the flood and the recess periods. All of the time-varying plots in this263

article are made in local time (UTC +01:00).264

4 https://www.vigicrues.gouv.fr/
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Table 1: Characteristics of the Gaussian PDF for friction coefficients, multiplicative coeffi-
cient for inflow and water level correction in the subdomain of the floodplain.

Variable Unit Calibrated/ Standard 95% confidence
default values x0 deviation σx interval

Ks0 m1/3.s−1 17 0.85 17 ± 1.67
Ks1 m1/3.s−1 45 2.25 45 ± 4.41

Ks2 ,Ks3 m1/3.s−1 38 1.9 38 ± 3.72
Ks4 ,Ks5 ,Ks6 m1/3.s−1 40 2.0 40 ± 3.92

µ - 1 0.06 1 ± 0.0136
δHk (k ∈ [1, 5]) m 0 0.25 0 ± 0.0566

Table 2: General information on the studied flood events.

Event First date Last date Nb of S1 images Nb of usable S2 images Nb of HWM

2019 2019-12-08 2020-01-02 11 2 120

2021 2021-01-16 2021-02-10 12 0 178

Sentinel-1 (S1) is the first satellite series of the Copernicus program (Torres et al.,265

2012). This SAR system works at C-band, with a central frequency of 5.405 GHz. The266

Interferometric Wide (IW) mode with 250-km-wide swath used in this study offers a ground267

resolution of approximately 20 × 22 m; this product is then resampled, reprojected and268

distributed at 10 × 10 m for the Ground Range Detected (GRD) products. In order to269

improve the revisit time, Sentinel-1 works as a constellation of two polar-orbiting iden-270

tical satellites Sentinel-1A launched on 2014-04-03 and Sentinel-1B on 2016-04-26, al-271

lowing a six-day revisit time. The S1 GRD IW products are leveraged as the predom-272

inant data source to produce binary water maps using Machine Learning algorithms de-273

veloped by CNES and CLS in the framework of the FloodML project (Huang et al., 2020;274

Kettig et al., 2021). The specifications of the flood extent mapping method applied to275

S1 images are detailed in (Nguyen et al., 2022).276

Similarly, Sentinel-2 (S2) mission comprises a constellation of two multispectral in-277

strument satellites, Sentinel-2A launched on 2015-06-23 and Sentinel-2B on 2017-03-07.278

They are placed in the same sun-synchronous orbit, phased at 180 degrees to each other.279

They provide 290-km swath width and a high revisit time (10 days at the equator with280

one satellite, and 5 days with 2 satellites under cloud-free conditions which might result281

in 2-3 days revisit at mid-latitudes due to orbit overlapping). In order to perform the282

flood extent mapping on S2 images, an extraction of features based on the Normalized283

Difference Vegetation Index (NDVI) (Huang et al., 2021) and the Modified Normalized284

Difference Water Index (MNDWI) (Xu, 2006) was carried out. They are then used as285

the inputs for the implemented RF classifier (Kettig et al., 2021).286

The double-peak flood event in 2019 was observed by eleven S1 SAR images, pro-287

vided by the constellation of S1-A and S1-B ascending and descending orbits, and two288

S2 images with acceptable cloud cover condition. The 2021 flood event is composed of289

a single peak (but with a stronger flow than that of 2019) and was observed by 12 S1290

images. The flood peak was reached on 2021-02-04 and it exceeded the highest thresh-291

old level for flood risk at Marmande, set out by the French national flood forecasting cen-292

ter (SCHAPI) in collaboration with the departmental prefect (see Figure 2b). It should293

–8–



manuscript submitted to Water Resources Research

2019-12-07

2019-12-09

2019-12-11

2019-12-13

2019-12-15

2019-12-17

2019-12-19

2019-12-21

2019-12-23

2019-12-25

2019-12-27

2019-12-29

2019-12-31

2020-01-02
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

In
-s

itu
 w

at
er

 le
ve

l [
m

]

Red threshold

Red threshold

Red threshold

Tonneins Marmande Vigicrue La Reole S1 overpass time S2 overpass time

(a) 2019 flood event

2021-01-15

2021-01-17

2021-01-19

2021-01-21

2021-01-23

2021-01-25

2021-01-27

2021-01-29

2021-01-31

2021-02-02

2021-02-04

2021-02-06

2021-02-08

2021-02-10
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

In
-s

itu
 w

at
er

 le
ve

l [
m

]

Red threshold

Red threshold

Red threshold

Tonneins Marmande Vigicrue La Reole S1 overpass time

(b) 2021 flood event

Figure 2: Water level H time-series for (a) 2019 flood event, and (b) 2021 flood event, at
Tonneins (blue), Marmande (orange) and La Réole (green). S1 and S2 overpass times are
indicated as vertical dashed lines, respectively in black and in red. The red thresholds for
the WL associated with the highest level of flooding risk at each observing stations are
shown as horizontal dash-dotted lines with the same color.

be noted that for the S1 images from the ascending orbit 132, a small part of the down-294

stream area (including La Réole) is a no-data area as it is out of range from the acqui-295

sition. As aforementioned, two S2 optical images are available for 2019 near the first flood296

peak at 2019-12-15 12:05 and 2019-12-17 11:54 thus providing independent data for val-297

idation, with a cloud cover percentage of 40.58% and 11.28%, respectively. Due to high298

cloud cover, none of the S2 images acquired during the 2021 provides reliable observa-299

tions. The SAR S1 image acquired on 2021-02-02 18:55 and the derived flood extent map300

by FloodML for the same date are shown respectively in Figure 3a with grayscale (from301

dark to bright) indicating the backscatter values (from low to high), and in Figure 3b302

where wet pixels are indicated in white. The simulated flood extent for the free run (FR)303

introduced in Sect. 2.2 using the calibrated and default parameter values (Table 1) is shown304

in green in Figure 3b. The ratio between the number of wet pixels and the total num-305

ber of pixels, named WSR, is formulated for each of the five subdomains of the flood-306

plain indicated in hatched colored areas in Fig 1. WSR is further considered as the ob-307

servation for the DA strategy. In order to account for mis-detection of wet pixels in veg-308

etated regions, exclusion layers were identified from four land cover classes (deciduous309

and coniferous forests, orchards, and diffused built-up areas) of the IOTA2 land cover310
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map (Inglada et al., 2017) produced on the French territory. These highly vegetated ar-311

eas shown in red in Figure 3b were excluded from the comparison between the model312

flood extent and the RS-derived observation, as well as from the WSR and further as-313

sessment computation. A zoomed-in view of Figure 3c over the zones 1, 2 and 3 of the314

floodplain is provided in Figure 3b with the same color code. Figure 3d complements the315

zoomed-in view with the effective areas (color-coded according to Figure 1) for the com-316

putation of WSR, taking into account the excluded pixels (in red). Lastly, as aforemen-317

tioned, there are 120 HWM observations available for the 2019 flood event whereas 178318

observations were collected in the aftermath of the 2021 event (as it was more severe).319

(a) (b)

(c) (d)

Figure 3: 2D flood extent observation derived from S1 data. (a) SAR S1 (VV polariza-
tion) image acquired on 2021-02-02 18:55:00, (b) the S1-derived flood extent binary map
with red regions representing the areas to be excluded from the comparison between flood
extents, green outline: the free run using calibrated and default parameter values, (c)
zoomed-in view of sub-figure 3b and (d) zoomed-in view of the effective areas for the com-
putation of WSR on the zones 1-3 taking into account exclusion layers, overlaid on the
flood extent map.
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3 Data Assimilation320

3.1 Description of the control vector321

The implemented DA algorithm consists in a cycled stochastic EnKF, where the322

control vector x is composed of the seven friction coefficients Ksk with k ∈ [0, 6], one323

multiplicative parameter µ to modify the time-varying upstream BC Q(t), and five state324

corrective variables δHk with k ∈ [1, 5] over the floodplain zones. Altogether these n =325

13 parameters are assumed to be constant over a DA cycle, yet their evolution in time326

is made possible by DA between cycles. The DA cycle c covers a time window, denoted327

by Wc = [tstart, tend] of length T = 18 hours over which nobs,c observations are as-328

similated. The cycling of the DA algorithms consists in sliding the time window of a pe-329

riod Tshift = 6 hours so that the cycles c and c+ 1 overlap over 12 hours.330

It could be argued that the DA algorithm is more a smoother than a filter as it op-331

erates over a sliding time window. Yet, as the control vector is composed of model pa-332

rameters and corrections that are assumed constant over the assimilation window (as op-333

posed to the model state), the smoothing resumes to a filtering. The EnKF algorithm334

relies on the propagation of Ne members with perturbed values of x, denoted by xi. The335

forecast values of xi are denoted by xf,i
c (superscript index f stands for “forecast”), where336

i ∈ [1, Ne] is the ensemble member counter.337

3.2 Description of the EnKF forecast step338

The EnKF forecast step consists in the propagation in time, over Wc, of the con-339

trol and model state vectors. The EnKF is applied to model parameters that, by def-340

inition, do not evolve in time over the cycle c. The absence of propagation model for the341

control vector implies that the forecast for the control vector at cycle c should remain342

equal to its analysis at cycle c − 1. Yet, in order to avoid ensemble collapse, artificial343

dispersion is introduced with the addition of perturbations θ to a global value xa,glo
c−1 is-344

sued from the previous cycle. For the friction coefficients Ksk with k ∈ [0, 6], and the345

forcing parameter µ, xa,glo
c−1 is chosen as the mean of the analysis from the previous cy-346

cle xa
c−1 (superscript index a stands for “analysis” and • stands for the average over the347

ensemble). For the floodplain state corrections δHk with k ∈ [1, 5], xa,glo
c−1 is set to 0.348

The forecast step thus reads:349

xf,i
c =

{
x0 + θi

1 if c = 1

xa,glo
c−1 + θi

c if c > 1
(6)

with
xa,glo
c−1 =

[
(Ksk)

a
c−1 with k ∈ [0, 6], µa

c−1, 0 for each δHk with k ∈ [1, 5]
]
, (7)

and
θi
c ∼ N

(
0, (σi

c)
2
)
, (8)

where

σi
c =

 σx if c = 1,

λ
√

1
Ne−1

∑Ne

i=1(x
a,i
c−1 − xa

c−1)
2 + (1− λ)σx if c > 1.

(9)

For the first cycle, the perturbed friction, upstream forcing coefficient values and350

floodplain state perturbations are drawn within the PDFs described in Table 1. For the351

next cycles, the set of coefficients issued from the mean analysis at the previous cycle352

c−1 is further dispersed by additive perturbations θ (Eq. (8)) drawn from the Gaus-353

sian distribution with zero mean and a standard deviation obtained from the linear com-354

bination of the standard deviation of the analysis at c−1 and σx described in Table 1.355
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The two terms are weighted by the hyperparameter λ (Eq. (9)). This technique is an ad-356

vanced alternative to anomalies inflation for avoiding the well-known ensemble collapse,357

better suited for heterogeneous control of parameters. The combined update of the vari-358

ance for the re-sampling of the parameters allows to preserve part of the information from359

the background statistical description that may differ amongst the parameters and over360

time while also inheriting analyzed variance from the previous cycle. In the following im-361

plementation, λ is set to 0.3. This tuning was chosen after the analysis of the ensemble362

spread in the control space along the DA cycles.363

The background hydraulic state, associated with each member of the ensemble of
inputs, denoted by sf,ic , results from the integration of the hydrodynamic model Mc: Rn →
Rm from the control space to the model state (of dimension m) over Wc:

sf,ic = Mc(s
a,i
c−1,x

f,i
c ). (10)

The initial condition for Mc at tstart is provided by a user-defined restart file for364

the first cycle. For the following cycles, it takes in a full restart sa,ic−1 saved from the anal-365

ysis run of the previous cycle sa,ic−1 at time tstart + Tshift. Note that in order to avoid366

inconsistencies between the state and the analysed set of parameters at tstart, a short367

spin-up integration is run on the 3 hours preceding tstart. It should be noted that the368

perturbations δHk (k ∈ [1, 5]) (Eq. 6) are evenly distributed on the time steps in [tstart−369

3h, tstart+Tshift] and added to the simulated WL field, while enforcing that the result-370

ing WL at each pixel remains non-negative.371

The control vector equivalent in the observation space for each member, denoted
by yf,i

c , stems from:

yf,i
c = Hc(s

f,i
c ) (11)

where Hc: Rm → Rnobs is the observation operator from the model state space to the
observation space (of dimension nobs) that selects, extracts and eventually interpolates
model outputs at times and locations of the observation vector yo

c over Wc. The obser-
vation vector here gathers observations of different types (in-situ WL and WSR), at dif-
ferent times over Wc. The observation operator Hc is thus composed of two operations
that are applied separately to the T2D hydraulic state. On the one hand, a selection op-
erator that extracts the WL at time and locations of the in-situ observations. On the
other hand, a flood mask generator that applies a threshold of 5 cm on the WL simu-
lated field at S1 overpass times, in order to identify the wet/dry pixel mask, then com-
putes WSR observations by counting the number of wet pixels in each subdomain of the
floodplain. It should be noted that, in the following, the observation operator regard-
ing the in-situ observations, also includes a bias removal step to take into account a sys-
tematic model error. Eq. (11) thus reads

yf,i
c = Hc(s

f,i
c )− ybias (12)

where ybias is an a priori knowledge of the model-observation bias. Such a bias was di-372

agnosed and estimated during the 24-hour quasi-stationary non-overflowing period of 2021-373

01-15. This yields ybias
Tonneins = 0.72, ybias

Marmande = 0.40, and ybias
LaRéole = −0.24 m (Nguyen374

et al., 2021, 2022).375

3.3 Description of the EnKF analysis step376

The EnKF analysis step stands in the update of the control and model state vec-
tors. When applying a stochastic EnKF (Asch et al., 2016), the observation vector yo,i

is perturbed, and an ensemble of observations yo,i
c (i ∈ [1, Ne]) is generated:

yo,i
c = yo

c + ϵc with ϵc ∼ N (0,Rc). (13)
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Rc = σobs
2Inobs

is the observation error covariance matrix (Inobs
is the nobs × nobs iden-377

tity matrix). Rc is assumed to be diagonal, of standard deviation σobs , as the observa-378

tion errors are assumed to be uncorrelated, Gaussian with a standard deviation propor-379

tional to the observation σobs,c = τyo
c . This stochastic perturbation was not set up for380

the WSR observations in yo,i
c in order to avoid values beyond the physical range [0, 1]381

for the ratio.382

The innovation vector over Wc is the difference between the perturbed observation
vector yo,i

c and the model equivalent yf,i
c from Eq. (11) and Eq. (13). It is weighted by

the Kalman gain matrix Kc and then added as a correction to the background control
vector xf,i

c , so that the analysis control vector xa,i
c reads:

xa,i
c = xf,i

c +Kc (y
o,i
c − yf,i

c ), (14)

with
xa,i
c =

[
(Ksk)

a,i
c with k ∈ [0, 6], µa,i

c , (δHk)
a,i
c with k ∈ [1, 5]

]
. (15)

The Kalman gain reads:

Kc = Px,y
c [Py,y

c +Rc]
−1

. (16)

Py,y
c is the covariance matrix of the error in the background state equivalent in the ob-

servation space yf
c . P

x,y
c is the covariance matrix between the error in the control vec-

tor and the error in yf
c . Both matrices are stochastically estimated within the ensem-

ble:

Px,y
c =

1

Ne
XT

c Yc ∈ Rn×nobs (17)

Py,y
c =

1

Ne
YT

c Yc ∈ Rnobs×nobs (18)

with:
Xc =

[
xf,1
c − xf

c , · · · ,xf,Ne
c − xf

c

]
∈ Rn×Ne (19)

Yc =
[
yf,1
c − yf

c, · · · , yf,Ne
c − yf

c

]
∈ Rnobs×Ne (20)

and

xf
c =

1

Ne

Ne∑
i=1

xf,i
c ∈ Rn (21)

yf
c =

1

Ne

Ne∑
i=1

yf,i
c ∈ Rnobs . (22)

It should be noted that a localization on Px,y
c was implemented so that only the WSR383

observations are used to account for errors in the floodplain state through the estima-384

tion of δHa,i
k . Consequently, the correction of the hydraulic state in the floodplain is only385

activated when WSR are available over the assimilation window. This prevents from equi-386

finality issues due to the size of the ensemble. Indeed, the stochastic approximation in387

Eq. (17) and Eq. (18) could infer some artificial sensitivity of the hydraulic state in the388

floodplain with respect to the friction coefficients in the river bed.389

The analyzed hydrodynamic state, associated with each analyzed control vector xa,i
c

is denoted by sa,ic . It results from the integration of the hydrodynamic model Mc with
the updated friction coefficients (Ksk)

a,i
c , the upstream forcing Qup using µa,i

c and the
state correction in the floodplain δHa,i

k over Wc, starting from the same initial condi-
tion as each background simulation within the ensemble. In order to preserve a smooth
WL field, the mean of the analysis for δHa

k computed within the ensemble is considered
(Eq. (25)).

sa,ic = Mc(s
a,i
c−1, x̃

a,i
c ), (23)
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with

x̃a,i
c =

[
(Ksk)

a,i
c with k ∈ [0, 6], µa,i

c , (δHk)ac with k ∈ [1, 5]
]
, (24)

and

(δHk)ac =
1

Ne

Ne∑
i=1

(δHk)
a,i
c with k ∈ [1, 5]. (25)

4 Experimental settings390

4.1 Specifications of Observing System Simulation Experiments391
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Figure 4: True values of the control vector for the reference simulation over the syntheti-
cal 2021 event in OSSE. Top left: Ks0 , bottom left: Ksk with k ∈ [1, 6], top right: µ (left
y-axis, dashed cyan curve) and Q(t) (right y-axis, solid cyan curve), bottom right: δHk

with k ∈ [1, 5]. These color codes are identical to those of Figure 1. The S1 overpass times
are indicated as vertical black dashed lines.

The framework of an OSSE is based on a deterministic simulation with a selected392

set of time-varying parameters over the flood event, as shown in Figure 4. This refer-393

ence simulation is further denoted as true. In the present work, the true friction param-394

eter Ksk with k ∈ [0, 6], are set from the results of a previous DA experiments on the395

real 2021 flood event. In Figure 4, the true friction coefficient for the floodplain Ks0 is396

plotted in black on the top left panel and the true friction coefficients Ksk with k ∈ [1, 6]397

for the river bed are plotted on the bottom left panel. The time-series discharge for the398

2021 event is used as the upstream BC for the OSSE experiment. The true multiplica-399

tive correcting factor µ for the inflow is also issued from a previous DA analysis, and is400

added a cosine function as perturbation. It is plotted as a dashed cyan curve on the top401

right panel in Figure 4 (left y-axis) along with the inflow BC at Tonneins, represented402

by a solid cyan curve (right y-axis). The state correction true values were set up with403

negative cosine curves for the three first groups of S1 observations (from the beginning404

of the event until the flood peak), and a constant water removal of −18 cm over the flood405

recession period. They are shown on the bottom right panel in Figure 4. For the sake406

of consistency, the color codes for Ksk with k ∈ [1, 6] and for δHk with k ∈ [1, 5] are407

identical to their effective areas depicted in Figure 1.408
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The true simulation is used to provide synthetic observations using the observa-409

tion operator Hc from Eq. (11) applied at the in-situ and S1 observation times from the410

real 2021 event. This stands in the extraction of the true simulated WL values at all ob-411

servation times and locations, first to generate synthetical in-situ observations, and sec-412

ond to extract the wet/dry pixels for WSR computation. Thus this experiment is fur-413

ther denoted as synthetical 2021 event. These synthetical in-situ and WSR observations414

are then assimilated in a DA experiment, with a priori settings that differ from the truth.415

The OSSE experiments aim at assessing the performance of the DA method involving416

both types of observations (in-situ and WSR), especially its capacity to retrieve the true417

parameters (forcing data, friction coefficients and state correction).418

4.2 Experimental setup and assessment metrics419

In both OSSE and real event experiments, one free run FR (without assimilation),420

and three DA experiments were carried out with different configurations regarding the421

types of observations that are assimilated and the active components of the control vec-422

tor, as detailed in Table 3. Two types of observations are considered: (i) in-situ WL ob-423

servations at the three VigiCrue stations Tonneins, Marmande and La Réole every 15424

minutes, (ii) WSR values computed over the five floodplain zones at S1 overpass times.425

Then, two options of control vector are involved, one with all six friction coefficients and426

the inflow multiplicative coefficient, whereas the other one is extended with the water427

state correction in the floodplain. With these configurations, three experiments are called428

IDA, IWDA and IHDA. IDA experiment only assimilates in-situ WL observations (syn-429

thetical observations in the context of OSSE) and the control vector is limited to fric-430

tion coefficients Ksk with k ∈ [0, 6] and the inflow multiplicative coefficient µ. IWDA431

experiment assimilates in-situ WL and WSR observations (synthetical in the context of432

OSSE) with the same control vector as IDA. IHDA has an extended control vector that433

also includes δHk with k ∈ [1, 5], it assimilates the same in-situ WL and WSR obser-434

vations (synthetical in the context of OSSE) as IWDA. For the DA experiments, the pro-435

portionality coefficient used to specify the observation error τ (cf. subsection 3.3) for in-436

situ data is fixed to 15%, meaning that σobs amounts to 15% of the observation value,437

whereas the value of τ for WSR data varies from 10% to 20% depending on how early438

the observation time is within the 18-hour assimilation window. All DA experiments where439

carried out using Ne = 75 members. In the following, the subscript OSSE is used in440

the experiment name to distinguish the OSSE from the real modes.441

The metrics employed for 1D and 2D assessment are formulated with respect to442

the observations that are synthetical in the context of OSSE, or with respect to the real443

observations from the VigiCrue gauge stations (for the in-situ WL) and from S1/S2 im-444

ages (for 2D flood extent maps and derived WSR).445

Table 3: Summary of the Free Run and DA experiment settings.

Exp. Assimilated Nb of Control
name DA observations members Ne variables

FR No - 1 -
IDA(OSSE)/IDA Yes In-situ WL 75 Ks[0:6] , µ

IWDA(OSSE)/IWDA Yes In-situ WL and WSR 75 Ks[0:6] , µ
IHDA(OSSE)/IHDA Yes In-situ WL and WSR 75 Ks[0:6] , µ, δH[1:5]
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4.2.1 1D metrics for water level time-series assessment446

The quality of the simulated WL, noted Hm, is assessed with respect to in-situ ob-
served WL, noted Ho, computing the root-mean-square error (RMSE) between the sim-
ulated and the observed WL time-series, sampled at observation times, along the assim-
ilation windows for the entire flood event:

RMSE =

√√√√ 1

nobs

nobs∑
i=1

(Hm
i −Ho

i )
2 (26)

In the case of OSSE, the RMSE is also formulated with respect to the control param-447

eters, computing the difference between their true value and the DA analysis.448

4.2.2 2D metrics for flood extent assessment449

The simulated flood extent maps are generated from the T2D simulated WL 2D450

field, by applying a threshold of 5 cm below which the pixel is considered as dry and above451

which it is considered as wet. The T2D WL output field is first projected onto the reg-452

ular grid of the S1 image (ground sampling distance: 10 × 10 m) so as to allow for a straight-453

forward comparison between observed and simulated flood extent. In the case of OSSE,454

the water flood maps from the reference simulation are used instead of the observed flood455

extent maps from S1 images.456

The metrics to compare the simulated and the observed flood extents are the Crit-
ical Success Index (CSI) and Cohen’s kappa index (κ). CSI considers the FloodML flood
extent maps as the reference observed flood maps (ground truth) based on which the T2D
simulated flood extent maps are evaluated, whereas the objective of κ index is used to
measure the agreement between the two flood extent estimators. The formulation of these
indices relies on the count of pixels following one of four outcomes that constitute a con-
tingency map: True Positives (TP ) and True Negatives (TN), respectively, are the num-
ber of pixels correctly predicted as flooded and correctly identified as non-flooded, False
Positives (FP ) or over-prediction is the number of non-flooded pixels incorrectly pre-
dicted as flooded, and False Negatives (FN) or under-prediction is the number of missed
flooded pixels. Based on these counts, the CSI and κ indices are computed as follows:

CSI =
TP

TP + FP + FN
, (27)

κ =
po − pe
1− pe

(28)

where po is the observed proportionate agreement and pe is the probability of a random
agreement, defined as follows:

po =
TP + TN

TP + FP + FN + TN
,

pe =
TP + FN

TP + FP + FN + TN
× TP + FP

TP + FP + FN + TN
.

These two metrics range from 0% when there is no common area (i.e. no agreement) be-457

tween the simulated and the observed flood extents, and reach their highest value of 100%458

when the prediction provides a perfect fit to the observed flood extents. While CSI is459

conventionally the most widely used metric for this comparison, Cohen’s kappa index460

provides a better overall metric with TN pixels also being taken into account. Lastly,461

it should be noted that the magnitude and the size of the flood (and consequently the462

number of pixels used for the computation) were shown by (Stephens et al., 2014) to have463

a significant influence on these indices; thus limiting their use for different event and dif-464

ferent catchment comparison. This limitations has no impact here, as CSI and κ indices465

are used to compare different numerical experiments on a single catchment and on the466

same event.467
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5 Results and Discussions468

Quantitative performance assessments are carried out in the control and in the ob-469

servational spaces by comparing (i) the parameters yielded by the different DA analy-470

sis, including a comparison to the true parameters in OSSE, (ii) the different analyzed471

WL time-series with synthetical or real in-situ observations, (iii) the different analyzed472

WSR with real or synthetical WSR observations in the floodplain, and (iv) the contin-473

gency maps and the overall CSI and Cohen’s kappa index computed for the different an-474

alyzed flood extent maps, with respect to the synthetical or real observed flood extent475

maps. First, these comparisons in OSSE mode (subsection 5.1) allow to assess the ben-476

efits of assimilating spatially distributed RS-derived observations, with an augmented477

control vector, in order to represent the floodplain dynamics, and advocates for this strat-478

egy in real experiment mode. Then, subsection 5.2 presents all these quantitative assess-479

ments concerning the two real flood events, 2019 and 2021.480

5.1 Results for OSSE experiments481

5.1.1 Results in the control space for OSSE482

Figure 5 shows the analyzed parameters from the different DA experiments, with483

blue lines for IDA, green lines for IWDA and red lines for IHDA for the synthetical 2021484

flood event. The true parameter values are plotted in black and the calibrated or default485

values x0 are indicated by horizontal dashed lines. The overpass times of S1 over the 2021486

event are depicted by vertical dashed lines. The analyzed values for Ksk (with k ∈ [0, 6])487

are shown on the left column, while that of the inflow correction µ is in the top panel488

of the right column. The reference and the analyzed values in IHDA experiment for δHa
k489

with k ∈ [1, 5] are shown on the other panels of the right column, respectively in black490

and in red (0 for the default value). The bottom right panel displays the upstream forc-491

ing for reference purposes.492

For the synthetical 2021 event, it appears that all three DA analyses succeed in re-493

trieving the true friction coefficients in the river bed, with a lesser success on the 5th and494

6th river segments (i.e. Ks5 and Ks6). This is most likely due to equifinality issues, as495

the downstream part of the flow is also influenced by the friction in the middle part of496

the river near Marmande (corresponding to the 3rd and 4th river segments controlled by497

Ks3 and Ks4). Also due to the equifinality issues, the analysis for the floodplain friction498

Ks0 probably compensates for the analysis of Ks3 at the beginning of the event during499

low flow. As the water begins to occupy the floodplain, this equifinality issue lessens and500

the analysis on the floodplain friction becomes more efficient, and converges to the true501

value. It should be noted that despite these equifinality issues, all analyzed friction co-502

efficients remain within physical ranges (both for the ones in the river bed and the one503

in the floodplain) and closer to the true value than to the default value, especially near504

the flood peak. It is also worth-noting that, as expected, the assimilation of in-situ ob-505

servations at Marmande (located in the 4th river segment) allows for an excellent anal-506

ysis on Ks4 for IDA, and no additional information from the floodplain is necessary to507

constrain the friction in this segment. The analysis for the multiplicative factor µ is very508

noteworthy for all 3 DA experiments, even with a small underestimation as water reces-509

sion starts. Given the localization step in the EnKF algorithm, the analysis for the state510

correction in the floodplain δHk (k ∈ [1, 5]) only activates when WSR observations are511

present over the 18-hour assimilation window. Hence, the analysis for the WL correc-512

tion (IHDA in red) is zero most of the time, including in between two S1 overpass times513

(in this catchment there is a minimum of 24 hours between two S1 observations from dif-514

ferent orbits). For the assimilation windows that include WSR observations, the IHDA515

analysis succeeds in retrieving the values that are close to the true values for all subdo-516

mains of the floodplain and over the entire event.517
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Figure 5: Analyzed values of the control vector for IDA (blue), IWDA (green), and IHDA
(red) in OSSE. The default values are represented with horizontal dashed lines, whereas
the S1 overpass times are shown with vertical dashed lines. Left column: friction coeffi-
cients in the floodplain Ks0 , and in the river bed Ksk (with k ∈ [1, 6]). Right column,
from top to bottom: multiplicative correction to the inflow µ, state correction δHk (with
k ∈ [1, 5]), and upstream forcing Q(t).

5.1.2 Results in the observation space: Water levels at observing sta-518

tions for OSSE519

The RMSE (Eq. (26)) computed over the entire event, for the WL from FR sim-520

ulation, as well as from IDA, IWDA and IHDA analyses, with respect to the reference521

WL at Tonneins, Marmande, and La Réole are presented in Table 4. For each observ-522

ing station, the lowest RMSE values are underlined. Table 4 shows that all DA exper-523

iments succeed in significantly reducing the WL errors, compared to that of FR. The re-524

duction in RMSE with respect to FR amounts to 79%, 89%, and 91%, respectively, at525

Tonneins, Marmande, and La Réole, with very close values for IDA, IWDA and IHDA.526

The RMSE at observing stations remains under 5.5 cm for all DA experiments. This level527

of precision is expected in OSSE, in coherence with the prescribed observation error. It528

validates the performance of the implemented EnKF solution. These results illustrate529

that the correction of the hydraulic state in the river bed can be properly achieved as-530

similating WL at observing stations only, and that the complementary assimilation of531

WSR is of greater interest when assessing the dynamics of the floodplain.532

5.1.3 Results in the observation space: WSR in the floodplain for OSSE533

The WSR in the five floodplain zones for the simulated WL in FR and the ana-534

lyzed WL in the three DA experiments are compared to the WSR computed from the535

–18–



manuscript submitted to Water Resources Research

Table 4: Water level RMSE w.r.t. reference water levels at VigiCrue observing stations,
for 2021 synthetical event, in OSSE.

Exp. Root-Mean-Square Error [m]
name Tonneins Marmande La Réole

FR 0.260 0.397 0.578

IDA 0.052 0.042 0.053

IWDA 0.055 0.044 0.054

IHDA 0.052 0.045 0.050

reference simulation in Figure 6. The WSR values are shown in Figure 6a and the mis-536

fit between the reference and simulation WSR values (i.e. observed WSR - simulated WSR)537

are shown in 6b. The WSR for the truth are plotted in black, whereas the WSR for FR538

are in orange. The color code for the DA experiments is the same as in Figure 5: IDA539

in blue, IWDA in green, and IHDA in red. From the beginning of the event to the flood540

rising limb (around 2021-02-01), the impact of assimilating WSR is insignificant as the541

water has not overflowed to the floodplain. The WSR values in the reference and the ex-542

periment are thus null or close to zero.543

Near the flood peak, FR underestimates flooding in most of the zones, with the ex-544

ception of zone 5. Both IDA and IHDA present improved results with greater WSR val-545

ues than FR. The merits of IHDA (red) versus IWDA (green) is clearly visible during546

the flood recess (after 2021-02-03) in all zones when the T2D model alone in FR fails to547

evacuate the water. The WSR values in IHDA are brought significantly close to the ref-548

erence WSR values, while WSR values for IDA and IWDA are not better than those of549

FR. This illustrates how the augmented control vector with δHk (with k ∈ [1, 5]) al-550

lows for an efficient assimilation of the information in the floodplain expressed as WSR551

measurements, and an associated correction of the floodplain dynamics. This shows that552

IHDA is the most efficient DA strategy to represent the floodplain, thus advocates for553

its application in real event mode.554

5.1.4 2D validation with contingency maps, CSI and κ indices for OSSE555

Figure 7 displays the resulting contingency maps for FR and DA experiments for-556

mulated for the T2D simulated flood extent maps with respect to those of the reference557

simulation in OSSE. The correctly predicted pixels are represented in light blue when558

non flooded, and in dark blue when flooded in the (synthetical) observations. The in-559

correctly predicted non-flood and flooded pixels (respectively, underprediction and over-560

prediction) are represented in yellow and in red. Contingency maps are shown for the561

synthetical 2021 event at the time of the flood peak (top panel) and during water recess562

(bottom panel). The resulted CSI (Eq. (27)) and the κ indices (Eq. (28)) are also indi-563

cated. At the flood peak, FR significantly underestimates flooding over several subdo-564

mains of the floodplain. While the assimilation of in-situ data in IDA and the joint as-565

similation of WSR in IWDA bring some improvements, the most significant improvement566

comes from the extended control vector involving the hydraulic state associated with the567

assimilation of WSR in IHDA. During the water recess, IDA and IWDA fail to bring any568

improvement with respect to FR. Yet, the correction of the hydraulic state in the sub-569

domains of the floodplain associated with the assimilation of WSR in IHDA leads to an570

effective drying of the floodplain that is in good agreement with the synthetical obser-571

vation.572
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Figure 6: (a) WSR values computed in OSSE for the reference run (black), FR (orange),
IDA (blue), IWDA (green), and IHDA (red) over the five subdomains of the floodplain.
(b) Misfit between the reference WSR and the simulated WSR values in the five flood-
plain zones.

Figure 8a (respectively, Figure 8b) depicts the CSI (respectively, the κ index) yielded573

by FR and DA experiments at all S1 overpass times. Within the OSSE framework, all574

DA experiments result in flood extent maps that are in relative agreement with the ref-575

erence flood maps. Indeed, IDA, IWDA and IDA allow for a significant improvement with576

respect to FR near the flood peak (2021-02-03 19:00). Yet, IHDA outperforms both IDA577

and IWDA, especially during the flood recess. IHDA leads to a CSI above 68% at ev-578

ery time steps (and above 88% before water recession period). During the flood recess579

(last three timesteps), IDA and IWDA have a CSI varying between 38-63% while IHDA580

has a CSI above 68% at all 3 timesteps. The results on the κ index, while also involv-581

ing the TN counts (cf. subsection 4.2.1), provide the same conclusions. The analysis of582

the contingency maps as well as the CSI and κ indices demonstrate the merits of the as-583

similation of the WSR observations, together with the correction of the hydraulic state584

in subdomains of the floodplain. This strategy is thus applied in real event mode in the585

following subsection.586

5.2 Results for real experiments587

In this subsection, the quantitative assessments are carried out in two real flood588

events, 2019 and 2021.589

5.2.1 Results in the control space590

Similarly to Figure 5, the analyzed parameters from the different DA experiments591

in real mode for 2019 event (respectively, 2021 event) are shown in Figure 9a (respec-592

tively, in Figure 9b), where horizontal black dashed lines stand for the default values x0,593

blue curves for IDA, green curves for IWDA, and red curves for IHDA. The analyzed val-594

ues for Ksk (with k ∈ [0, 6]) over the flood events are shown on the left column of each595

figure. The analysis for the inflow correction µ is shown in the top panel of the right col-596

umn. The analyzed values for δHa
k (with k ∈ [1, 5]) by IHDA are shown on the other597
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Figure 7: Contingency maps computed between simulated flood extent (from left to
right: FR, IDA, IWDA and IHDA) with respect to the synthetical flood extent maps from
the reference simulation in OSSE. First row: flood peak on 2021-02-03 18:48; Second row:
flood recess on 2021-02-07 07:06.
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Figure 8: (a) CSI and (b) κ indices computed for the FR and DA experiments with
respect to the synthetical flood extent from the reference simulation in OSSE, at S1 over-
pass times.

panels of the right column. The bottom panel of the right column displays the upstream598

forcing for reference purposes.599

For all DA experiments and for both 2019 and 2021 events, the analysis values for600

the friction coefficients in the river bed and the floodplain remain within physical ranges,601

including the ones in the river bed and the one in the floodplain. The increment are larger602
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during the flood event, as the misfit between the background run and the observations603

increases. The analysis for IHDA are closer to that of IWDA, compared to IDA, as in604

both experiments the control vector is extended with the hydraulic state. The analysis605

is quite far from the calibrated values for the friction of the 5th and 6th river segments606

(i.e. Ks5 and Ks6), which is most likely due to the poor quality of the model topogra-607

phy in the downstream part of the domain, and the large misfit between the in-situ and608

the simulated WLs at La Réole. As previously remarked in OSSE mode, the analysis in609

the 4th friction segment (i.e. Ks4), that includes Marmande, is similar for IDA, IWDA610

and IHDA, showing that the assimilation of in-situ WLs suffices to account for friction611

errors in this area. Over the other friction zones, IDA is often closer to the default val-612

ues. The analyses on µ are similar for IDA, IWDA, and IHDA for both events. This sug-613

gests that the in-situ WLs observed at Tonneins are enough to constraint the multiplica-614

tive correction to the inflow and that the use of additional data in the floodplain is not615

necessary. Concerning IHDA, the mostly negative correction on all δH values increases616

(i.e. more water is removed in the corresponding floodplain zones) as the flood rises, es-617

pecially at the flood peak and during recess in order to account for the T2D model’s lim-618

itation in physical process. During the recess period, the correction of the hydraulic state619

contributes in evacuating the water in the floodplain.620

The results of IDA, IWDA and IHDA on the 2019 event show a greater dispersion621

than on the 2021 event. This may be due to the more complex flood dynamic of the 2019622

event with two peaks and thus results in a degraded representation between the first re-623

cess and the second flood peak. As opposed to the assessment carried out in OSSE mode624

(subsection 5.1.1), the evaluation of the DA experiment results in the control space does625

not allow to quantitatively assess which DA strategy provides the best performance due626

to unknown true values of controlled parameters, thus further validations in the obser-627

vation space are necessary.628
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(a) 2019 flood event
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Figure 9: Analyzed values of the control vector for IDA (blue), IWDA (green), and IHDA
(red), for (a) 2019 and (b) 2021 real events. The default values are represented by hor-
izontal dashed lines, whereas the S1 overpass times are shown as vertical dashed lines.
Left column: friction coefficients in the floodplain Ks0 , and in the river bed Ksk (with
k ∈ [1, 6]). Right column, from top to bottom: multiplicative correction to the inflow µ,
state correction δHk (with k ∈ [1, 5]), upstream forcing Q(t).

5.2.2 Results in the observation space: Water levels at observing sta-629

tions630

The RMSEs computed over time for the 2019 event (respectively, 2021 event), for631

the WLs from the FR, IDA, IWDA and IHDA, with respect to the observed WLs at Ton-632

neins, Marmande, and La Réole are summarized in Table 5a (respectively, in Table 5b).633

For each observing station, the lowest RMSE values are underlined. Table 5 shows that634

all DA experiments succeed in significantly reducing the WL errors compared to those635

of FR, even though such reductions are less significant than in OSSE (Table 4).636

For the 2019 event, the reductions in RMSE with respect to FR amount to 50%,637

77%, and 57%, respectively, at Tonneins, Marmande, and La Réole, with close values be-638

tween IDA, IWDA, and IHDA. For the 2021 event, those reductions are 34%, 80%, and639

84%, respectively, at Tonneins, Marmande, and La Réole. For both event, the RMSEs640

at Tonneins and Marmande remain under 8 cm for all DA experiments, whereas it is un-641

der 14 cm at La Réole. While the RMSEs at Tonneins remain similar between the two642

events, a trade-off between Marmande and La Réole can be remarked for the 2019 and643

the 2021 events. These indicates that the model struggles to represent the dynamics at644

La Réole, most likely due to errors in topography in the downstream part of the domain,645
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to errors in the rating curve used as downstream BC or to the presence of non-modeled646

tributaries that might play a significant role for high flows.647

Table 5: Water level RMSE w.r.t. in-situ water levels at VigiCrue observing stations. The
lowest RMSE is underlined.

(a) 2019 flood event

Exp. Root-Mean-Square Error [m]
name Tonneins Marmande La Réole

FR 0.129 0.220 0.318
IDA 0.060 0.045 0.125

IWDA 0.064 0.049 0.128
IHDA 0.064 0.051 0.138

(b) 2021 flood event

Exp. Root-Mean-Square Error [m]
name Tonneins Marmande La Réole

FR 0.106 0.392 0.536
IDA 0.062 0.071 0.081

IWDA 0.069 0.077 0.081
IHDA 0.065 0.073 0.079

It should be noted that the best DA strategy according to in-situ WL RMSE is IDA648

(although ever so slightly). The assimilation of WSR in the floodplain (in IWDA and649

IHDA) leads to a smaller WL improvement from FR at observing stations than IDA does.650

This is because the dynamics of the T2D model may be consistent with the real dynam-651

ics within the river bed, but not coherent with real dynamics in the floodplain. Indeed,652

while in OSSE mode (subsection 5.1), the observations in both the river bed and the flood-653

plain were obtained from the same set of reference parameters which results in IHDA654

achieving the lowest RMSEs, it is highly probable that, for the real events, no set of model655

parameters allows to represent simultaneously a realistic and consistent dynamics in the656

river bed and in the floodplain. Therefore, a more complex hydrodynamic model should657

be considered to overcome these limitations, for instance, by considering a finer zoning658

of friction in the river bed and the floodplain, an addition of lateral tributaries that mainly659

carry a large volume of water for high flows, a more precise description of the topogra-660

phy in the floodplain, or an addition of physical processes in the SWE solver such as rain661

and evapotranspiration. A preliminary conclusion here is that the assimilation of data662

in the floodplain is shown to under-perform the assimilation of (in-situ) WL data in the663

river bed, especially when the performance is only assessed through the metrics in the664

river bed.665

5.2.3 Results in the observation space: WSR in the floodplain666

The WSR in the five floodplain subdomains for the simulated WL in FR and the667

analyzed WL in the three DA experiments with a threshold of 5 cm are compared to the668

WSR computed from the observed S1-derived flood extent maps, and shown in Figure 10669

and Figure 11, respectively for the 2019 and 2021 events. For the 2019 event (respec-670

tively, 2021 event), the WSR values are shown in Figure 10a (respectively, Figure 11a)671

and the misfit between simulation and observation WSR values (i.e. observed WSR - sim-672

ulated WSR) are shown in Figure 10b (respectively, Figure 11b). The color codes for the673

experiments are the same as in previous figures, i.e. FR in orange, IDA in blue, IWDA674

in green, and IHDA in red.675

As previously noted in OSSE, the impact of assimilation WSR is not significant676

until the floodplain is active. In most subdomains, when the floodplain is active, the model677

(FR and all DA experiments) tend to overflood, especially during flood recess period.678

First, it should be noted that the analysis for IDA and IWDA does not bring much im-679

provement with respect to FR in the 2019 flood event. The improvement is much more680
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evident for IHDA, in both events, especially at the flood peak and during the recess pe-681

riod. For the 2019 event, IHDA brings a significant improvement for the subdomains 3,682

4 and 5 as the misfits in subdomains 1 and 2 have already been small for FR (hence the683

contributions from IHDA are less obvious). Such an improvement over all subdomains684

is much more evident in the 2021 event. A significant overprediction at the timestep right685

before the first peak (2019-12-15 07:00) in subdomain 4 and 5 can be observed. This could686

stem from the characteristics of SAR backscatter which intensifies as the soil moisture687

increases due to rainfalls while the area has not been flooded. The correction of the hy-688

draulic state in the floodplain for IHDA, during the recess of the first peak (between 2019-689

12-17 and 2019-12-21), allows for a better simulation of the second flood peak than in690

FR. For both events, the assimilation of WSR by IHDA with the hydraulic state correc-691

tions brings an improvement is all subdomains and the floodplain is efficiently emptied692

after the flood peak.693
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Figure 10: 2019 flood event - (a) WSR values computed for the S1-derived flood extent
(black), FR (orange), IDA (blue), IWDA (green), and IHDA (red) over the five floodplain
zones. (b) Misfit between the observed WSR and the simulated WSR values in the five
floodplain zones.

5.2.4 2D validation with contingency maps, CSI and κ indices694

Similarly to the OSSE, 2D validations are carried out by evaluating contingency695

maps comparing T2D water masks with S1- or S2-derived flood maps at their overpass696

times, and by quantitatively assessing the resulting CSI and the κ index scores. How-697

ever, since the flood dynamic is quite different and even more complex in the 2019 flood698

event, let us start with the 2D validation on this event. Figure 12 depicts the contingency699

maps based on the comparison of the T2D simulated flood extent maps from FR and700

DA experiments with respect to those derived from S1 or S2 images during the 2019 flood701

event. The contingency maps are shown from top to bottom, at satellite overpass time702

right before the first flood peak by S2 (2019-12-15 12:00), at flood peak by S1 (2019-12-703

16 19:00), during the flood falling limb by S2 (2019-12-17 12:00) and by S1 (2019-12-17704

19:00), and at the beginning of the second flood peak (2019-12-23 19:00) for S1. It should705

be stressed that, in this work, S2 imagery data are not assimilated and only are used for706
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Figure 11: 2021 flood event - (a) WSR values computed for the S1-derived flood extent
(black), FR (orange), IDA (blue), IWDA (green), and IHDA (red) over the five floodplain
zones. (b) Misfit between the observed WSR and the simulated WSR values in the five
floodplain zones.

validation as independent data. The associated CSI and the κ indices are indicated on707

each contingency map.708

For 2019 flood event, IHDA brings noticeable improvements with respect to FR,709

IDA and IWDA before the flood peak (first row in Figure 12), with better predictions710

of the flooded pixels, mostly in subdomain 1 and 3. A relatively significant overpredic-711

tion on subdomain 4 and 5 from all experiments can be observed on these first-row fig-712

ures. It is coherent with the remark made on the WSR validation (subsection 5.2.3). At713

the first flood peak observed by S1 image (second row in Figure 12), IHDA allows bet-714

ter predictions of the flooded pixels, mostly in subdomain 1. During the first flood re-715

cess (third and fourth row in Figure 12), the improvement brought by IHDA is not as716

visible as at the flood peak (second row). The added validation of the S2 image at 2019-717

12-17 12:00 provides an interesting remark. Indeed, the observed flood extent detected718

on this image is more similar to the one captured by the S1 image at 2019-12-16 19:00719

(or 17 hours backward) than the one right afterward at 2019-12-17 19:00 (or 5 hours for-720

ward). Such a situation, taking into account the fact that these three images in partic-721

ular were acquired in the span of 24 hours during the start of the falling limb, shows the722

different tendencies between the in-situ WL and the floodplain dynamics. This empha-723

sizes the complexity of the flood dynamics in the floodplain, and advocates for the fur-724

ther addition of the S2-derived flood observations in the DA. Such a remark of S1 and725

S2 incoherence is rarely possible due to the unavailability of S2 images during a flood726

event because of cloud cover problem. Lastly, the fifth row of Figure 12 shows an over-727

all improvement spread out over the five subdomains. This is also thanks to the state728

corrections applied at the timesteps between the two flood peaks.729
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Figure 12: 2019 flood event - Contingency maps computed between simulated flood ex-
tent (from left to right: FR, IDA, IWDA and IHDA) with respect to S1-derived flood
extent (row 2, 4 and 5) and S2-derived flood extent (rows 1 and 3).
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Figure 13 displays the contingency map for the 2021 flood event (flood peak ob-730

served at 2021-02-03 19:00 and recess 2021-02-07 07:00), with metrics computed with re-731

spect to S1 derived flood extent as no S2 data where available. For 2021, the assimila-732

tion of WSR data brings a significant improvement at the flood peak (first row in Fig-733

ure 13) in all subdomains in terms of the correctly predicted flood pixels. The recess pe-734

riod (second row in Figure 13) simulated by IHDA is also better than that of IDA and735

IWDA, yet, some residual flooded pixels remain, leading to still over-predicted areas. Fig-736

ure 14 depicts the CSI (left column) and the κ index (right column) yielded by FR and737

DA experiments at all S1 overpass times, for 2019 event (top panels) and 2021 event (bot-738

tom panels), with the same color code used previously. These confirm the merits of the739

DA strategy in IHDA, especially for flood recess.740
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Figure 13: 2021 flood event - Contingency maps computed between simulated flood ex-
tent (from left to right: FR, IDA, IWDA and IHDA) with respect to S1-derived flood
extent.

5.2.5 Post-event measure validation with HWM observations741

Figure 15a and 15b illustrate the validations leveraging the collective public datasets742

of HWM for the 2019 and the 2021 flood events. They allow us to evaluate the spatially743

distributed observed highest WL at various points on the river banks or within the flood-744

plain, as opposed to the remote sensing-derived 2D flood extents that lack WL informa-745

tion. However, for the sake of conciseness, only the comparisons between FR and IHDA746

experiments are shown. First, since the flood 2019 event is of a smaller scale compared747

to the 2021 event, fewer HWM observations were collected. The HWM errors between748

the simulated WL and the observed WL are classified into four range, taking ± 1 me-749

ter as a baseline for small errors While an agreement between the errors is not available750
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Figure 14: CSI (left column) and κ (right column) index computed for the FR (orange),
IDA (blue), IHDA (green), and IWDA (red) experiments with respect to the S1-derived
observed flood extent, for the 2019 flood event (top) and 2021 flood event (bottom).

in the 2019 flood event, an unanimous improvement by IHDA compared to FR at var-751

ious points can be noted, from strong to weak underprediction (visually, from big yel-752

low triangles to small yellow ones). Similar results are found between IDA, IWDA, and753

IHDA. Since this validation only concerns the highest WL after an event, the relevance754

of IHDA demonstrated strongly over the flood recess becomes unseen.755
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Figure 15: Post-event HWM validations over the (a) 2019 and (b) 2021 flood events. A
negative value indicates an underprediction (yellow triangles) by the simulation whereas a
positive value indicates an overprediction (red triangles).
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6 Conclusions and Perspectives756

This study presents the merits of assimilating 2D flood extent observations derived757

from remote sensing Sentinel-1 SAR images with an Ensemble Kalman Filter implemented758

on the 2D hydrodynamics model TELEMAC-2D. The flood extent information is expressed759

in terms of Wet Surface Ratio computed over defined sensitive subdomains of the flood-760

plain. The WSR is assimilated jointly with in-situ water level observations. The study761

was carried out over the Garonne Marmandaise catchment, focusing on two flooding events762

in 2019 and 2021. Four experiments were realized; one in free run mode and three in DA763

mode. The control vector gathers friction and forcing correction, and is augmented with764

correction of the hydraulic state in subdomains of the floodplains (IHDA experiment)765

that constitute the innovative strategy of this work. All of the DA experiments were im-766

plemented by a cycled EnKF with an 18-hour assimilation window sliding with 6-hour767

overlapping. The DA strategy was first assessed in OSSE that mimics the 2021 flood event,768

then applied in re-analysis mode to both real events. The simulation results were com-769

prehensively assessed with 1D and 2D metrics with respect to assimilated data as well770

as with respect to independent flood extent, derived from Sentinel-2 optical imagery data771

or High Water Mark collective public observations when they are available.772

The first DA experiment (IDA) involves only in-situ observations whereas the sec-773

ond one (IWDA) assimilates both in-situ observations and WSR observations derived774

from 2D flood extent maps. These two experiments focus on the sequential correction775

of friction coefficients and inflow discharge. In OSSE, they demonstrated effectiveness776

in retrieving the true parameters and providing relevant assessment results. The spot-777

light of the article is the IHDA experiment, which not only assimilates both types of ob-778

servations (similar to IWDA), but also handles a dual state-parameter estimation within779

the EnKF, by treating inflow discharge and friction coefficients as well as the hydraulic780

state variable in five particular floodplain subdomains, representing evapotranspiration781

and/or ground infiltration processes that are unavailable in the T2D model.782

We have shown that the assimilation of in-situ data in IDA improves the simula-783

tion in the river bed, yet, the dynamics in the floodplain remains incorrect with a sig-784

nificant underestimation of the flood (both events). Indeed, the in-situ observations lo-785

cated in the river bed, do not bring information on the dynamics in the floodplain. The786

assimilation of WSR data in the floodplain, in IWDA, brings additional improvements,787

that remains limited as the dynamics of the rived bed and that of the floodplain are not788

sensitive to model parameters that are accounted for in the control vector. The correc-789

tion of the augmented control vector in IHDA allows to better represent the flood peak790

and to efficiently dry out the floodplain during the recess period. In OSSE mode, IHDA791

results in simulated WLs and WSRs that are very close to the synthetic observations,792

and yields better estimates of true friction and discharge parameters than IDA and IWDA.793

In real event mode, from FR to IHDA, the RMSE computed with respect to in-situ data794

in the river bed is reduced by up to 77-80% at Marmande, whereas the CSI computed795

with respect to remote-sensing flood extent maps is improved by up to 19.33 percent-796

age points for the 2021 flood event (and 5.27 percentage points for the 2019 flood event).797

This study confirms the assertion that a densification of the observing network, espe-798

cially in the floodplain, with remote sensing data and advanced DA strategy, allows to799

improve the representation of the dynamics of the flow in the floodplains.800

This work rely on the implementation of an advanced DA strategy for TELEMAC-801

2D, especially the development of the observation operator dedicated to WSR, as well802

as the definition of the associated augmented control vector. Yet, it should be noted that803

the definition of the subdomains in the floodplain over which the hydraulic state is uni-804

formly corrected, requires a deep understanding of the dynamics of the flood, and is thus805

not straightforward. This aspect could be further investigated, for instance based on a806

global sensitivity analysis with respect to the hydraulic state but also to other sources807

of uncertainty such as topography, especially in the downstream area. Indeed, the same808
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dual state-parameter estimation approach could be applied to correct the bathymetry809

and topography provided that the size of the uncertainties is reduced, for instance work-810

ing with a spatially uniform correction or a correction that is only projected onto a lim-811

ited number of principal components of the errors. In this perspective, we aim to con-812

sider using high- and very-high-resolution topography as additional inputs to the model.813

The use of other imagery datasets (e.g. Landsat-8 and Landsat-9) can also be investi-814

gated. In the present work, the combination between remote-sensing data with regards815

to S1 and S2 data requires further investigation as it seems that the improvements made816

using S1-derived flood extent maps does not necessarily lead to an improvement with817

regards to S2-derived flood extents. This could stem from the differences between the818

S1 and S2 measurement, and the flood extent mapping algorithm. In addition, the iden-819

tification of S1 or S2 exclusion maps should also be considered taking into account the820

limitations of each data source. Finally, an major perspective of this work stands in the821

potential non-gaussianity of the WSR observations. This limitation can amount to a loss822

of optimality of the EnKF which relies on the assumption that the observational error823

follows a gaussian distribution. On going work, based on a rich literature based on a change824

of variable to transform the non-gaussian error into gaussian errors (widely known as Gaus-825

sian anamorphosis) is on going and yield promising early results.826

Acronyms827

BC Boundary condition828

CSI Critical Success Index829

DA Data Assimilation830

EnKF Ensemble Kalman Filter831

FloodML Flood Machine Learning832

FR Free Run833

HWM High Water Marks834

IDA In-situ (only) DA Experiment835

IWDA In-situ and WSR DA experiment836

IHDA In-situ and WSR DA experiment with extended control vector837

OSSE Observing System Simulation Experiment838

PDF Probability Density Function839

RMSE Root-Mean-Square Error840

RS Remote Sensing841

SAR Synthetic Aperture Radar842

SWE Shallow Water Equations843

S1 Sentinel-1844

S2 Sentinel-2845

T2D TELEMAC-2D846

WL Water Level847

WSE Water Surface Elevation848

WSR Wet Surface Ratio849
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