Groundwater Withdrawals Prediction in Semi-arid Basins Using Machine Learning Algorithms and Integrated Water Management Models

Kiara Tesen¹ and Francisco Suarez¹

¹Pontificia Universidad Católica de Chile

November 21, 2022

Abstract

The use of modeling tools for integrated water resources management is a complex task due to the large number of processes involved in a basin. Moreover, these modeling tools commonly require information that is not readily available, such as illegal water withdrawals, or other data difficult to obtain, which results in groundwater models that fail to capture the aquifer dynamics. In recent years, machine learning algorithms have shown outstanding performance as prediction tools. Despite being questioned for not having a physical basis, they have been used in areas such as hydrology and hydrogeology (e.g., for flow prediction, rain forecast). Thus, the objective of this research is to estimate groundwater withdrawals using machine learning algorithms and integrated water management models. To achieve this objective, ensembles of groundwater levels were generated with a previously calibrated groundwater/surface water integrated model. Then, these ensembles were used as input parameters for Gaussian process regression (GPR) and artificial neural network (ANN) models to construct time series of water withdrawals throughout a basin. This method was applied in the Petorca and La Ligua basins, in central Chile, as they exhibit a contrasting reality in terms of water availability even when they have geographical proximity. Also, these basins are within an effective extraction monitoring program lead by the Chilean water authority that can be used to validate the users' water withdrawal. Our results show that the GPR model, compared to ANNs, adequately estimates the spatiotemporal distribution of groundwater withdrawals in the pilot basins. Thus, the use of machine learning algorithms improves the performance of integrated water resources management models. Groundwater withdrawals prediction in semi-arid basins using machine learning algorithms and integrated water management models

Kiara Tesén^{1,2}; Francisco Suárez¹

¹ Pontificia Universidad Católica de Chile, Departamento de Ingeniería Hidráulica y Ambiental, Santiago, Chile ² Universidad de Piura, Instituto de Hidráulica, Hidrología e Ingeniería Sanitaria, Piura, Perú

OBJECTIVE

Machine Learning Algorithms

Objective

Estimate groundwater withdrawals using machine learning algorithms and integrated water management models.

Part I - Integrated model of water resources

INTRODUCTION

RESULTS

Part II – Machine Learning algorithms - Training

INTRODUCTION

Part II – Machine Learning algorithms - Prediction

Metrics – Training algorithms

Table. Metrics obtained from the training algorithms process in La Ligua river basin.

Algorithm	Configuration	Training results					
Algorithm	Configuration	RMSE	R ²	MSE	MAE		
GPR model	Squared Exponential GPR	0.3768	0.95	0.1420	0.2318		
	Matern 5/2 GPR	0.3426	0.96	0.1174	0.1977		
	Exponential GPR	0.2895	0.2895 0.97		0.1342		
Artificial Neural Network	Narrow Neural Network	0.4357	0.93	0.1898	0.2841		
	Medium Neural Network	0.3999	0.94	0.1599	0.2514		
	Wide Neural Network	0.3627	0.95	0.1316	0.2235		
	Bilayered Neural Network	0.3961	0.94	0.1569	0.2518		
	Trilayered Neural Network	0.3840	0.95	0.1474	0.2387		

Table. Metrics obtained from the training algorithms process in **Petorca** river basin.

Algorithm	Configuration	Training results					
Algontinin	Configuration	RMSE	R ²	MSE	MAE		
GPR model	Squared Exponential GPR	0.1603	0.98	0.0257	0.0749		
	Matern 5/2 GPR	0.1341	0.99	0.0180	0.0599		
	Exponential GPR	0.1311 0.99		0.0172	0.0618		
Artificial Neural Network	Narrow Neural Network	0.2678	0.94	0.0717	0.1732		
	Medium Neural Network	0.2035	0.97	0.0414	0.1306		
	Wide Neural Network	0.1639	0.98	0.0268	0.1011		
	Bilayered Neural Network	0.2103	0.96	0.0442	0.1329		
	Trilayered Neural Network	0.2105	0.96	0.0443	0.1302		

RESULTS

Groundwater withdrawals prediction - Effective groundwater withdrawals predictions show an increase compared to assigned water rights.

OBJECTIVE

RESULTS

Re-calibration WEAP – MODFLOW model – Effective groundwater withdrawals obtained from **Exponential GPR algorithm**

INTRODUCTION

OBJ<u>ECTIVE</u>

Conclusions

- Our results show that the **GPR model**, compared to ANNs, adequately estimates the spatiotemporal distribution of groundwater withdrawals in the pilot basins.
- Thus, the use of machine learning algorithms improves the performance of integrated water resources management models.
- The initial years show a high increase in the effective groundwater withdrawals compared with the water rights in La Ligua river basin. This could be because, with time, the water rights registration has been improved.
- We can assume or deduce that the increase calculated in the effective groundwater withdrawals for the algorithms is due to the illegal extractions in those areas or to temporal water rights awarded from the DGA.

Next steps

- Disaggregated analysis by aquifer sectors.
- Application of other machine learning algorithms, e.g., Support Vector Machines Regression, Linear Regression Models, among others.
- Improve the based model with more observed data and with the support of the stakeholders (water users).

Groundwater withdrawals prediction in semi-arid basins using machine learning algorithms and integrated water management models

Kiara Tesén Arámbulo

katesen@uc.cl kiara.tesen@udep.edu.pe

Annex – Algorithms configuration

Table. GPR model

		Model Hyperparameters							
Algorithm	Configuration	Basis function	Kernel function	Use isotropic kernel	Kernel scale	Signal standard deviation	Sigma	Standardize	Optimize numeric parameters
GPR model	Rational Quadratic GPR	Constant	Rational Quadratic	true	Automatic	Automatic	Automatic	true	true
	Squared Exponential GPR	Constant	Squared Exponential	true	Automatic	Automatic	Automatic	true	true
	Matern 5/2 GPR	Constant	Matern 5/2	true	Automatic	Automatic	Automatic	true	true
	Exponential GPR	Constant	Exponential	true	Automatic	Automatic	Automatic	true	true

Table. Artifitial Neural Network

	Configuration	Model Hyperparameters								
Algorithm		Number of fully connected layers	First layer size	Second layer size	Third layer size	Activation	Iteration limit	Regularization strength (Lambda)	Standardize data	
Artificial Neural Network	Narrow Neural Network	1	10			ReLU	1000	0	Yes	
	Medium Neural Network	1	25			ReLU	1000	0	Yes	
	Wide Neural Network	1	100			ReLU	1000	0	Yes	
	Bilayered Neural Network	2	10	10		ReLU	1000	0	Yes	
	Trilayered Neural Network	3	10	10	10	ReLU	1000	0	Yes	