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Abstract

In observations and cloud-resolving model (CRM) simulations, large-scale domains where convection is more aggregated (clus-

tered into a smaller number of clouds) are associated with a drier troposphere. What mechanisms explain this drying? Hy-

potheses involve dynamical and microphysical processes. The goal of this study is to quantify the relative importance of these

processes. We use a series of CRM simulations with different dynamical regimes and different kinds of convective organization

forced by external forcings (isolated cumulonimbi, tropical cyclones, squall lines). We interpret the simulation results in the

light of a hierarchy of simpler models (last-saturation model, analytical model). In CRM simulations, the troposphere is drier in

the environment of more aggregated convection (tropical cyclones and squall lines). A last-saturation model is able to reproduce

the drier troposphere even in absence of any microphysical processes or horizontal motions. Cloud intermittence is the key

factor explaining this drying: when clouds are more intermittent, subsiding air parcels are more likely to encounter a cloud.

An analytical model highlights the key role of the duration of convective systems. Remoistening by microphysical processes

contributes to the moister troposphere when convection is less aggregated, though its importance is secondary smaller than that

of intermittence. We suggest that the observed anti-correlation between convective aggregation and relative humidity may, at

least partially, be mediated by the duration of convective systems.
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Abstract15

In observations and cloud-resolving model (CRM) simulations, large-scale domains where16

convection is more aggregated (clustered into a smaller number of clouds) are associated17

with a drier troposphere. What mechanisms explain this drying? Hypotheses involve dy-18

namical and microphysical processes. The goal of this study is to quantify the relative19

importance of these processes. We use a series of CRM simulations with different dy-20

namical regimes and different kinds of convective organization forced by external forc-21

ings (isolated cumulonimbi, tropical cyclones, squall lines). We interpret the simulation22

results in the light of a hierarchy of simpler models (last-saturation model, analytical model).23

In CRM simulations, the troposphere is drier in the environment of more aggregated con-24

vection (tropical cyclones and squall lines). A last-saturation model is able to reproduce25

the drier troposphere even in absence of any microphysical processes or horizontal mo-26

tions. Cloud intermittence is the key factor explaining this drying: when clouds are more27

intermittent, subsiding air parcels are more likely to encounter a cloud. An analytical28

model highlights the key role of the duration of convective systems. Remoistening by mi-29

crophysical processes contributes to the moister troposphere when convection is less ag-30

gregated, though its importance is secondary smaller than that of intermittence. We sug-31

gest that the observed anti-correlation between convective aggregation and relative hu-32

midity may, at least partially, be mediated by the duration of convective systems.33

Plain Language Summary34

Water vapor in the Earth’s atmosphere is the main contributor to the greenhouse35

effect. As global climate warms, the atmospheric water vapor content increases, ampli-36

fying the warming. This so-called water vapor feedback is the largest feedback at play37

in the context of global warming. This feedback can be modulated by changes in atmo-38

spheric relative humidity. Previous studies have suggested that, as climate warms, trop-39

ical storms could become more aggregated into a smaller number of larger storms, and40

that more aggregated storms lead to a drier troposphere. This would yield a negative41

climate feedback partially opposing the water vapor feedback. The goal of this paper is42

to understand by which mechanisms more aggregated storms lead to a drier atmosphere.43

Using high-resolution simulations (between 750 and 4km in horizontal) of isolated show-44

ers, squall lines and cyclones, combined with theoretical models, we show that the main45

mechanism is cloud intermittence, which is related to the life duration of storms. When46

storms are more aggregated, they live longer, so clouds are less intermittent, and so sub-47

siding air parcels around clouds are less likely to be remoistened by another cloud dur-48

ing their descent.49

1 Introduction50

1.1 Convective organization and importance for climate51

Deep convection in the atmosphere, which manifests itself as storms, is responsi-52

ble for most of the precipitation in the tropics. It can take the form of isolated, small-53

scale (about 10 km) and short-lived (about 1 hour) cumulonimbus clouds, or “organize”54

into bigger convective systems. “Organized” convective systems are characterized by their55

large size (e.g. >100 km) and by a meso-scale circulation and an internal structure (Houze Jr56

& Betts, 1981). For example, squall lines are arcs of convective cores, typically preceded57

by gust fronts and followed by an extended region of stratiform clouds (Gamache & Houze,58

1981). Tropical cyclones are the most spectacular manifestations of convective organ-59

ization, with scales up to 1000 km, and a circular structure comprising an eye, deep eye-60

wall clouds and spiraling rainbands with extensive stratiform clouds (Houze, 2010). One61

measure of convective organization is the degree of spatial aggregation, which quanti-62

fies the extent to which convection in a large-scale domain (e.g. 100-1000 km) is clus-63

tered into a small number of convective system (Tobin et al., 2012).64
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Mesoscale convective organization matters for climate because different types of65

convective organization have different impacts on their large-scale environment, in par-66

ticular tropospheric relative humidity (RH). For a given rain rate in average over a large-67

scale domain, states with more aggregated convection are associated with a drier envi-68

ronment both in observations (Tobin et al., 2012) and in cloud resolving model (CRM)69

simulations (Bretherton et al., 2004). This favors enhanced longwave emission to space.70

In turn, convective aggregation is favored over warmer sea surface temperatures in CRM71

simulation (Wing et al., 2017). Therefore, convective organization can act as a climate72

feedback in the context of global warming (Mauritsen & Stevens, 2015; Bony et al., 2016).73

Meso-scale convective organization may be a key missing component in global climate74

models used for projections (Mapes & Neale, 2011; Tobin et al., 2013; Moncrieff, 2019).75

1.2 What mechanisms explain the drier troposphere when convection76

is more aggregated?77

Before being able to assess the possible impact of convective organization on cli-78

mate and account for it in climate models, it is necessary to better understand the mech-79

anisms at play. In this study, we focus on this question: what mechanisms explain the80

observed drier troposphere when convection is more aggregated?81

First of all, is the relationship between convective aggregation and RH a causal re-82

lationship? The observed anti-correlation between convective aggregation and tropospheric83

RH could be due to their simultaneous correlation with large-scale conditions. Indeed,84

large, long-lived convective systems are more frequent at the edges of the inter-tropical85

convergence zone (Roca et al., 2014). In these regions, the large-scale circulation advects86

drier air from higher latitudes. Dry air intrusions have been shown to favor the organ-87

ization of convection into large systems such as squall lines (Diongue et al., 2002; Roca88

et al., 2005). Therefore, large-scale advection of dry air could favor both a dry tropo-89

sphere and aggregated convection. However, even in CRM simulations without any large-90

scale circulation or horizontal advection, the troposphere is drier when convection is more91

aggregated (Bretherton et al., 2005). This suggests that convective aggregation impacts92

the tropospheric RH. In the following, we will review hypotheses that have been proposed93

to explain this impact (fig 1).94

1. Hypothesis #1: microphysical moistening (fig 1 purple). Aggregated convection95

could be associated with a reduced moistening of the environment by microphys-96

ical processes (Tobin et al., 2012). When convection is more aggregated into a smaller97

number of clouds, the interface between clouds and their environment is smaller98

((Beucler et al., 2020), fig 1b, purple rays). Microphysical processes that moisten99

the surrounding air along this interface (detrainment of cloud droplets and ice crys-100

tals, rain evaporation, snow sublimation) are thus less effective.101

2. Hypotheses #2: dynamical processes. Purely dynamical processes could explain102

the drier troposphere. To first order, the RH of an air parcel is controlled by the103

altitude at which it has last saturated (Sherwood, 1996; Sherwood et al., 2010).104

This is called the last-saturation paradigm. In clouds, the air is saturated (RH=1,105

fig 1 purple squares). Around clouds, the air slowly subsides, adiabatically warms,106

and thus its RH decreases (fig 1 multicolored arrows going from purple towards107

blue, green, yellow, orange and red). Far from clouds, the air subsides from the108

upper troposphere and is thus very dry (fig 1 orange). This paradigm is very skill-109

ful to explain the large-scale distribution of free-tropospheric RH in response to110

the large-scale circulation ((Pierrhumbert & Roca, 1998; Dessler & Sherwood, 2000)).111

We hypothesize that this paradigm can also be skillful to explain the RH at the112

meso-scale around clouds.113
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Figure 1. Schematic illustrating the 4 hypotheses proposed to explain the drier troposphere

when convection is more aggregated. We show the processes controlling the RH at a given mid-

tropospheric level (horizontal dashed line) in a disaggregated state (a) and aggregated state (b).

The domain-mean rain rate and cloud fraction are the same in both cases. The multicolored

arrows represent the subsiding air parcels, which are saturated as they leave clouds (purple) and

dry as they descend (colors changing to blue, green, yellow and red). The purple rays around

clouds show the moistening by microphysical processes. The dashed blue clouds show previous

clouds that have dissipated. Hypothesis #1 (purple): moistening of the environment by micro-

physical processes is more effective when the number of clouds is larger, due to a larger interface

area between clouds and the environment. Hypothesis #2a (green): when convection is more

aggregated, areas around large convective systems that are far from any clouds are larger, so the

areas with very dry air, falling from the upper troposphere without meeting any cloud, is larger.

Hypothesis #2b (blue): when convection is more aggregated, convective systems are larger and

longer lived. The air has a lower probability of having met previous clouds during its descent.

Hypothesis 2c (brown): when convection is more aggregated, the subsidence around clouds is

larger, reducing the probability of air parcels to meet clouds.

(a) Hypothesis #2a: spatial arrangement. When convection is more aggregated,114

a larger fraction of the domain is far from any clouds. The domain-mean is thus115

drier ((Romps, 2021), fig 1b green).116

(b) Hypothesis #2b: cloud intermittence (fig 1 blue): while hypothesis #2a is framed117

in terms of spatial aggregation, it could also be extended to the temporal dis-118

tribution of clouds. The RH distribution within a domain can be understood119

as a balance between the time scale of subsidence and the time scale at which120

air parcels encounter clouds (Sherwood et al., 2006). This time scale may de-121

pend on convective organization (Ryoo et al., 2009). When convection is dis-122

aggregated, isolated cumulonimbi grow and dissipate randomly across the do-123

main (fig 1a). Clouds are more intermittent. If an air parcel falls outside a cloud,124

it is likely that newly-formed clouds will grow at its location during its descent.125

In contrast, when convection is more aggregated, convective systems are longer126

lived. If an air parcel falls outside a cloud, it is less likely to meet a newly-formed127

cloud during its descent (fig 1b).128

(c) Hypothesis #2c: subsidence velocity. When convection is more aggregated, the129

subsidence velocity in the environment could be larger. CRM studies of self-130

aggregation show a larger subsidence velocity in the environment due to the ef-131

fect of water vapor and cloudiness on longwave radiation (Bretherton et al., 2005;132

Muller & Held, 2012). This enhanced subsidence is part of a feedback loop that133

favors self-aggregation of convection. A larger subsidence reduces the proba-134

bility of descending air parcels to meet clouds (Sherwood et al., 2006).135
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Table 1. Overview of the 6 simulations: type of convective organization, horizontal domain

and resolution, vertical grid, forcing, domain-mean rain rate, domain-mean and standard devia-

tion of precipitable water (PW).

Simulation
name

Convective
organiza-
tion

Horizontal
domain
(km)

Horizontal
resolu-
tion
(km)

Vertical
grid
(num-
ber of
levels)

Large-
scale
ascent

Additional
forcing

Domain-
mean
rain
rate
(mm/d)

PW
mean ±
standard
devi-
ation
(kg/m2)

Cb pop-corn 96×96 0.750 96 no none 2.5 56±2

Cb+ pop-corn 96×96 0.750 96 yes none 8.5 69±4

TC tropical
storm

512×512 4 96 no rotation 3.0 47±16

TC+ tropical
cyclone

512×512 4 96 yes rotation 9.4 49±20

SL squall line 256×256 2 64 no wind
shear

3.2 44±7

SL+ squall line 256×256 2 64 yes wind
shear

8.3 51±6

1.3 Goal and approach136

The goal of this study is to test these different hypotheses, and quantify their rel-137

ative importance. To do so, we run CRM simulations with different kinds of convective138

organization: isolated cumulonimbi, cyclones, or squall lines (section 2). In reality, con-139

vective organization typically occurs as a response to external forcing (Houze, 2004). There-140

fore, the realism of aggregated states obtained through from self-aggregation have been141

questioned (Stein et al., 2017; Muller et al., 2022). This is why here we consider aggre-142

gated states driven by external forcings. In addition, organized convection is typically143

observed in regions of large-scale ascent (Tan et al., 2013; Jakob et al., 2019). Therefore,144

we run CRM simulations both in radiative-convective equilibrium (RCE) and with pre-145

scribed large-scale ascent (Warren et al., 2020; Risi et al., 2021).146

To understand the mechanisms controlling RH in the CRM simulations, we design147

a hierarchy of simpler models (Held, 2005).148

• First, we develop a simple last-saturation model that accounts for remoistening149

processes to quantify the relative importance of the microphysical (hypothesis #1)150

and dynamical (hypotheses #2) processes (section 3).151

• Second, we propose an even simpler, analytical models, to estimate the microphys-152

ical and dynamical contributions to the changes in relative humidity and to pro-153

vide a more detailed physical interpretation of these contributions (section 4).154
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2 Cloud Resolving Model simulations and their simulated humidity155

2.1 Description of the simulations156

We run 6 simulations (table 1) with two regimes of large-scale circulation (section157

2.1.3) and three kinds of convective organization: isolated cumulonimbi, tropical cyclones158

(section 2.1.4) and squall lines (2.1.5).159

2.1.1 Cloud Resolving model160

We use the non-hydrostatic Cloud Resolving Model (CRM) System for Atmospheric161

Modeling (SAM) ((Khairoutdinov & Randall, 2003)), version 6.10.9. This model solves162

anelastic conservation equations for momentum, mass, energy and water, which is present163

in the model under six phases: water vapor, cloud liquid, cloud ice, precipitating liquid,164

precipitating snow, and precipitating graupel. We use the bulk, mixed-phase microphys-165

ical parameterization from (Thompson et al., 2008). The model version is the same as166

in (Risi et al., 2020, 2021).167

2.1.2 Radiative-convective equilibrium simulations.168

Simulations are three-dimensional, with a doubly-periodic domain. They are run169

in radiative-convective equilibrium over an ocean surface. The sea surface temperature170

(SST) is 30◦C. Diurnal cycles are ignored, diurnal-mean solar influx is applied. The sim-171

ulations are run during 50 days. The last 10 days of simulation are analyzed with three-172

dimensional instantaneous output files every 30 minutes.173

2.1.3 Large-scale circulation174

Organized convection is typically observed in regions of large-scale ascent (Tan et175

al., 2013; Jakob et al., 2019). Therefore, in half of our simulations we impose a large-176

scale vertical ascent with a cubic shape, reaching -40 hPa/d at 400 hPa and 0 hPa/d at177

the surface and above 100 hPa (Risi et al., 2020, 2021). From this large-scale ascent, large-178

scale tendencies in temperature and specific humidity are calculated and added in a hor-179

izontally uniform way to all grid points of the domain. The resulting cooling destabi-180

lizes the troposphere and the resulting moistening reduces the drying effect of entrain-181

ment, both resulting in enhanced domain-mean rain rate (Risi et al., 2020, 2021; War-182

ren et al., 2020).183

Without large-scale ascent, the domain-mean rain rate ranges from 2.5 mm/d to184

3.2 mm/d depending on convective organization (table 1). With large-scale ascent, it ranges185

from 8.3 to 9.4 mm/d.186

2.1.4 Set-up for the cyclone simulations187

We use a doubly-periodic domain of 512 km×512 km with a horizontal resolution188

is 4 km and 96 vertical levels. This horizontal resolution is sufficient to properly simu-189

late the internal structure of a cyclone (Gentry & Lackmann, 2010). Cyclones sponta-190

neously develop in radiative-convective equilibrium simulations when some rotation is191

added (Khairoutdinov & Emanuel, 2013; Muller & Romps, 2018). Here the effect of ro-192

tation is added through a Coriolis parameter that corresponds to a latitude of 40◦. Al-193

though no tropical cyclones are expected to form at such latitudes, a strong rotation al-194

lows us to simulate a small cyclone (Chavas & Emanuel, 2014) that can fit our small do-195

main. This allows the simulation to remain computationally reasonable. The initial con-196

ditions are spatially homogeneous and one unique cyclone develops spontaneously through197

self-aggregation mechanisms after a few days. This is consistent with the time scale for198

cyclogenesis in other self-aggregation studies (Muller & Romps, 2018).199
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2.1.5 Set-up for the squall line simulations200

We use a doubly-periodic domain of 256 km×256 km with a horizontal resolution201

is 2 km and 96 vertical levels. Squall lines spontaneously develop in radiative-convective202

equilibrium simulations when horizontal wind shear is added (Robe & Emanuel, 2001;203

Muller, 2013; Abramian et al., 2022). We add a horizontally uniform wind in the x di-204

rection that reaches 10 m/s at the surface and linearly decrease to 0 m/s up to 1 km.205

This uniform surface wind is subtracted when calculating surface fluxes, to avoid this206

simulation to have significantly higher surface fluxes. The radiative fluxes are imposed,207

because interactive radiation leads to some radiative feedbacks that disfavor the organ-208

ization into squall lines. The convection quickly organizes into a line, after about one209

day of simulation.210

2.2 Overview of the simulations211

Simulations of isolated cumulonimbi, cyclones and squall lines are called “Cb”, “TC”212

and “SL” respectively. Simulations with large-scale ascent are denoted with a “+” (ta-213

ble 1). Fig 2 shows snapshots of precipitable water at arbitrary time steps for the 6 sim-214

ulations. Videos of these simulations are available in SI (SI videos V1). In absence of ad-215

ditional forcing, radiative-convective equilibrium simulations with or without large-scale216

ascent exhibit typical disaggregated, “pop-corn” convection, with at least 10 simultane-217

ous isolated cumulonimbi in the domain (fig2 a-b).218

When rotation is added, convection aggregates into a tropical storm in the case with-219

out large-scale ascent (fig2c), and into a category 4 tropical cyclone in the case with large-220

scale ascent (fig2c). The standard deviation of precipitable water can be considered a221

proxy for the degree of convective aggregation (Wing et al., 2016). When rotation is added,222

the standard deviation rises from 2 to 16 kg/m2 and from 4 to 20 kg/m2 without and223

with large-scale ascent respectively (table 1), confirming the much higher degree of ag-224

gregation in cyclone simulations relative to disaggregated simulations.225

When wind shear is added, convection aggregates into squall lines (fig 2e-f). The226

standard deviation of precipitable water rises from 2 to 7 kg/m2 and from 4 to 6 kg/m2
227

without and with large-scale ascent respectively (table 1), confirming the higher degree228

of aggregation in squall line simulations relative to disaggregated simulations, although229

the increase is less dramatic than for tropical cyclone simulations.230

2.3 Simulated domain-mean humidity231

Most simulated relative humidity profiles show a trimodal structure with maxima232

corresponding to the 3 main levels of convective outflows: in the boundary layer, near233

the freezing level, and in the upper troposphere (fig 3a). This is consistent with obser-234

vations (Johnson et al., 1999). Whatever the convective organization, simulations with235

large-scale ascent are typically moister than simulations without large-scale ascent through-236

out the whole troposphere, except for TC simulations below 3 km (fig 3c). The moister237

troposphere associated with more large-scale ascent and heavier rain rates is also con-238

sistent with observations (Bretherton et al., 2004).239

Whatever the regime of large-scale ascent and the convective organization type (cy-240

clone or squall line), organized convection is associated with a drier troposphere at all241

levels (fig 3d). This is consistent with observations (Tobin et al., 2012) and previous sim-242

ulations (Bretherton et al., 2005). Aggregated simulations are drier even though they243

have slightly higher rain rates than their disaggregated counterparts (table 1). This con-244

firms that even with realistic, forced types of convective organization, the relationship245

between aggregation and tropospheric humidity holds.246
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Figure 3. (a) Domain-mean relative humidity profiles for the 6 simulations. (b) Probability

distribution of RH at 5 km. Differences in domain-mean RH profiles between simulations with

and without large-scale ascent. (c) Differences in domain-mean RH profiles between simula-

tions of organized convection and pop-corn convection. The horizontal lines highlights the 5 km

horizontal level.

The probability distribution of RH in the mid-troposphere shows a unimodal dis-247

tribution (fig 3b), consistent with (Ryoo et al., 2009). The distribution is broader for more248

aggregated simulations, consistent with the larger standard deviation of precipitable wa-249

ter (table 1). For aggregated simulations, the most frequent RH is dry, consistent with250

a large fraction of the domain that experiences little convection. The tail for larger RH251

corresponds to the fraction of the domain that experiences more convection. When RH252

is drier, it is the dry peak that is drier. This is consistent with the observation that in253

more aggregated states, it is the environment outside convection that is drier (Tobin et254

al., 2012).255

Now we aim at explaining the physical mechanisms responsible for the drier tro-256

posphere when convection is more aggregated. With this aim, we develop a last-saturation257

model.258
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Figure 4. Schematic illustrating the last-saturation model.

3 Last-saturation model259

We hypothesize that the main reason for the drier troposphere in aggregated con-260

vection is because air parcels descend from higher up without encountering any cloud.261

This is why we build our model based on the last-saturation paradigm (Sherwood, 1996).262

Our approach is inspired by the probabilistic model of (Sherwood et al., 2006).263

3.1 Description of the model264

3.1.1 Last-saturation model with vertical back-trajectories265

According to the last-saturation paradigm, the specific humidity of a parcel is at266

saturation in clouds and is conserved as it subsides outside clouds (fig 4). Therefore, the267

RH of an air parcel at instant t and in the grid box x, y, z0 depends on the altitude where268

it was last saturated, zlast:269

hlast(t, x, y, z0) =
qsat(zlast(t, x, y, z0))

qsat(z0)
(1)

where qsat is the specific humidity at saturation, which is a function of tempera-270

ture and pressure, which are both functions of altitude. Here we assume that the tem-271

perature is temporally and horizontally uniform. This approximation is justified since272

in the tropics temperature homogenizes very quickly (Bretherton & Smolarkiewicz, 1989).273

qsat is thus a function of altitude only.274

We assume that in the environment, air parcels slowly subside with a vertical ve-275

locity wenv(z) that is temporally and horizontally uniform (fig 4). In reality, w may vary276

in space and time. This hypothesis is a strong simplification which will be discussed in277

section 3.4. The wenv(z) profile is calculated as:278

wenv(z) =

∑

t,x,y w(t, x, y, z) · U(t, x, y, z)
∑

t,x,y U(t, x, y, z)
+ wLS(z)

where w(t, x, y, z) is the vertical velocity anomaly simulated by the CRM, U(t, x, y, z)279

is 0 if the grid box is cloudy and 1 otherwise; wLS(z) is the large-scale vertical velocity280

profile. A grid box is considered cloudy if its total condensate content (liquid + ice) is281

greater than 10−5g/kg. Results are not very sensitive to this threshold.282

At each instant and grid point t, x, y, z0, we build a back-trajectory that describes283

how altitude ztraj evolves as time ttraj goes back, with time step dt (typically 30 min-284

utes):285
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ztraj(t, x, y, z0, ttraj − dt) = ztraj(t, x, y, z0, ttraj)− wenv(z) · dt

The back-trajectory is continued until it reaches the level zmax where wenv(z) first286

exceeds −10−4 m/s, to avoid calculating infinite back-trajectories. If the trajectory en-287

counters a cloud in a given grid box and at some trajectory time-step tlast, the back-trajectory288

is stopped and the altitude is recorded as the last-saturation altitude:289

zlast(t, x, y, z0) = ztraj(t, x, y, z0, tlast)

If no cloud is encountered, then zlast is set to zmax.290

Therefore, the RH can be calculated at all instants and all grid points, as long as291

enough time steps are available to calculate a back-trajectory up to zmax. The calcu-292

lation is valid only in the free troposphere: in the boundary layer, surface evaporation293

becomes a key control of RH (Stevens, 2006).294

3.1.2 Static version of the last-saturation model295

According to the last saturation model, since back-trajectories go back both in al-296

titude and time, the RH is expected to depend both on the vertical and temporal vari-297

ability of clouds. To check the relative importance of the vertical and temporal variabil-298

ity, we also design a “static” version of the last saturation model, in which back-trajectories299

are assumed to reach the upper troposphere instantaneously. At each instant and grid300

point, zlast(t, x, y, z0) is simply the lowest cloud above z0. This is equivalent to neglect-301

ing the temporal variability of clouds, or assuming that the time scale of subsidence is302

much shorter than that between two clouds.303

3.1.3 Accounting for remoistening by microphysical processes304

To quantify the possible role of microphysical processes, a moistening tendency is305

added when the subsiding air parcels are outside clouds. The final relative humidity of306

the air parcel arriving at z0 is:307

h(t, x, y, z0) =
qf (t, x, y, z0)

qsat(z0)

where qf (t, x, y, z0) is the specific humidity of the subsiding air parcel when it ar-308

rives at z0:309

qf (t, x, y, z0) = qsat(zlast(t, x, y, z0)) +

tlast+dt
∑

ttraj=t

(

dq

dt

)

remoist

(ztraj) · dt

where
(

dq
dt

)

remoist
is the remoistening term affecting the descending air parcel. In310

reality, microphysical remoistening is likely a function of distance to cloud. But for the311

sake of simplicity, and for consistency with wenv , we assume that this remoistening term312

is horizontally and temporally uniform, depending on altitude only. This strong assump-313

tion will be discussed in section 3.4. We diagnose the remoistening term as a residual314

from the moisture budget in average over all non-cloudy air parcels:315

(

∂q

∂t

)

remoist,env

= max

(

0,

[

∂q

∂t

]

env

+ wenv ·
[

∂q

∂z

]

env

)

(2)
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where [.]env stands for the average over all non-cloudy air parcels. This remoist-316

ening term includes the moistening tendency by microphysical processes (evaporation317

of rain and cloud droplets, sublimation of ice crystals, snow and graupel), but also the318

remoistening by horizontal advection or by sub-grid scale mixing. It may also include319

the impact of co-variations between w and ∂q
∂z
. While the microphysical term is directly320

available from the outputs, the other terms would be more complicated to diagnose. This321

is why we calculate
(

∂q
∂t

)

remoist,env
as a residual.322

3.1.4 Method to decompose humidity differences323

The goal of this last-saturation model is to quantify the contributions of different324

processes to the RH differences between pairs of simulations: ∆h = h2−h1, where sub-325

scripts 1 and 2 denote simulations.326

We have 3 predictions of the RH for each simulations:327

1. prediction with the last-saturation model with the remoistening term (section 3.1.3):328

hdyn,remoist329

2. prediction with the last-saturation model without the remoistening term (section330

3.1.1): hdyn331

3. prediction with the static version of the last-saturation model (section 3.1.2): hstat.332

The RH of each simulation can thus be decomposed as:333

h ≃ hdyn,remoist = (hdyn,remoist − hdyn) + (hdyn − hstat) + hstat

The first term represents the effect of remoistening and the second term represents334

the effects of the temporal variations in cloudiness. Further, we note hdyn2,w1
the pre-335

diction with the last-saturation model without the remoistening term for simulation 2336

but with wenv(z) from simulation 1, and hstat2,qs1 the prediction with the static version337

of the last-saturation model for simulation 2 but with qsat(z) from simulation 1. We can338

thus decompose the RH difference between the 2 simulations into 5 contributions:339

∆h = ∆(hdyn,remoist − hdyn)+(hdyn2 − hdyn2,w1
)+(hstat2 − hstat2,qs1)+(hstat2,qs1 − hstat1)

+ (hdyn2,w1
− hdyn1 −∆hstat)

The 5 contributions are:340

1. difference in the remoistening outside clouds: ∆ (hdyn,remoist − hdyn),341

2. difference in the subsidence velocity outside clouds wenv(z): hdyn2 − hdyn2,w1
,342

3. difference in the thermal structure of the troposphere qsat(z): hstat2−hstat2,qs1 ,343

4. difference in the cloud fraction profile: hstat2,qs1 − hstat1,344

5. difference in the cloud intermittence: hdyn2,w1
−hdyn1−∆hstat. This represents345

the difference in the last-saturation prediction from which the effects of the dif-346

ferences in subsidence velocity, cloud fraction profile and thermal structure are sub-347

tracted.348

3.2 Validation of the last-saturation model349

The last-saturation model with the remoistening term captures to first order the350

RH profiles (fig 5a). It captures the moister RH with large-scale ascent in most of the351

troposphere (fig 5c) and the drier RH for aggregated simulations (fig 5d).352
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The predicted probability distributions of RH are not as smooth as those simulated353

by the CRM (fig 5b). Consistent with the CRM (fig 3b), the distributions for the ag-354

gregated simulations show a peak for dry RH, and the variations in domain-mean RH355

are associated with variations in the position of the dry peaks. However, the predicted356

distributions for Cb and Cb+ are too broad relative to those simulated by the CRM, while357

it is the opposite for SL and SL+. Hereafter, we will focus on the domain-mean RH.358

The correlation across the different simulations between predicted and CRM RH359

is above 0.95 throughout the troposphere below 8 km (fig 6a, red). The slope of the cor-360

responding linear relationship around 0.9 shows that the predicted RH is very similar361

to the CRM RH, though slightly underestimated by about 10% (fig 6b, red). Given the362

simplicity of this model, we consider that this agreement is sufficient to use this model363

to investigate the mechanisms controlling tropospheric RH.364

Without the remoistening term, the skill of the prediction to capture the CRM RH365

is slightly lower than with the remoistening term. The correlation between predicted and366

CRM RH ranges from 0.7 to 0.95, and the predicted RH is underestimated relative to367

the CRM RH by about 10 to 20% (fig 6a-b green). Yet, given the simplicity of this model,368

the skill is surprisingly good (fig 6c, empty squares). This shows that the moistening by369

microphysical processes around clouds (hypothesis #1) is not the first order process con-370

trolling the RH.371

Predictions with the static version of the last-saturation model are much less skill-372

ful to capture the CRM RH, with much weaker correlation coefficients (fig 6a blue). The373

predicted RH values are unrealistically low, below 10% (fig 6c, empty circles). The dif-374

ferences between simulations are underestimated, with a slope between predicted and375

CRM RH below 0.2 (fig 6b, blue). This shows that the cloud intermittence, not just the376

spatial arrangement of clouds, is key to determine the RH.377

We now use the predictions by the three versions of the model to decompose the378

RH difference between simulation pairs.379

3.3 Decomposing the humidity differences380

3.3.1 Humidity differences associated with large-scale circulation381

We first test our decomposition approach to understand why the troposphere is moister382

in case of large-scale ascent. Since the latter is better understood, this serves as a san-383

ity check for our decomposition approach.384

In the Cb and TC simulations, the main driver for the moister free troposphere in385

case of large-scale ascent is the larger cloud intermittence. In case of large-scale ascent,386

clouds are more intermittent, which increases the probability of air parcels to meet a cloud387

during their descent. This is consistent with the framework of (Sherwood et al., 2006),388

where the RH depends on the relative time scales of the subsidence and of the remoist-389

ening by clouds. In the SL simulations, in contrast, the main driver for the moister free390

troposphere in case of large-scale ascent is the more efficient moistening in the environ-391

ment. The environment-mean moistening tendency is larger for SL+ than for SL (fig 8a),392

maybe due to stronger detrainment from a more intense squall line. In the cyclone and393

squall line simulations, the cloud fraction also contributes to the moistening (fig 7, green).This394

is because the cloud fraction is larger in case of large-scale ascent (fig 8b), enhancing the395

probability to meet clouds.396

We notice that for all organization types, the environment subsides faster in case397

of large-scale ascent (fig 8c). This may sound counter-intuitive. This is because in case398

of large-scale ascent, the overturning circulation between the cloudy regions and their399

environment is more intense. This contradicts the idea that the subsidence velocity in400

the environment is constrained by the radiative cooling that varies little (Craig, 1996;401
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Emanuel, 2019). In the environment, the more intense overturning circulation dominates402

over the large-scale ascent, leading to faster subsidence. As a consequence, air parcels403

have less time to meet clouds during their descent. The contribution of the subsident ve-404

locity in the environment thus opposes the changes of the free tropospheric humidity (fig405

7b-c magenta). Note however that the realism of the simulated environment velocity in406

CRM simulations on limited, doubly-periodic domain can be questioned (Risi et al., 2021).407

It is sensitive to whether the prescribed effect of large-scale ascent is assumed horizon-408

tally uniform, as is the case here, or assumed concentrated in cloudy regions (Singh et409

al., 2019).410

To summarize, the moister troposphere in case of large-scale ascent is due to dif-411

ferent reasons for the different organization type: greater cloud intermittence or large412

remoistening around clouds.413

3.3.2 Humidity differences associated with convective organization414

For both organization type or dynamical regimes (except in the lower troposphere415

of the TC), the main driver of the tropospheric drying compared to Cb is the cloud in-416

termittence (fig 9 cyan). When convection is disaggregated, clouds appear and die ran-417

domly across the domain. Air parcels that subside have a high probability of encoun-418

tering these short-lived clouds. In contrast, when convection is more aggregated, air parcels419

that are away from the large, nearly stationary convective system have a very low prob-420

ability to meet a cloud. Therefore, a larger portion of the domain is drier and the domain-421
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mean RH is lower (SI video V2 illustrating the importance of cloud intermittence). This422

validates our hypothesis #2b.423

Remoistening around clouds has a smaller, but significantly positive contribution424

to the drying, for all cases except for SL+ minus Cb+ (fig 9 brown). This supports hy-425

pothesis #1, though it is not the main contribution. This result is consistent with the426

much larger moistening tendency simulated for Cb and Cb+ than for the other simu-427

lations (fig 8a). The larger contribution of remoistening around clouds when convection428

is more disaggregated can directly be tied to the number of convective systems, as will429

be shown in section 4.2.430

The cloud fraction often has a small positive influence (fig 9 green). The subsidence431

velocity generally has a negative contribution to the drying (fig 9 magenta). When con-432

vection is more aggregated, the subsidence in the environment is slower (fig 8a). We can433

thus discard hypothesis #2c. This may sound counter-intuitive, given that subsidence434

in the environment has been suggested to be a driver of convective self-aggregation (Bretherton435

et al., 2005; Muller & Held, 2012). Rather, we find that the overturning circulation be-436

tween cloudy regions and their environment is more intense in disaggregated cases. It437

is possible that the larger subsidence velocity for more aggregated cases is a specific re-438

sult for self-aggregation cases that does not hold for aggregation driven by external forc-439

ing.440

To summarize, the drier troposphere in case of more aggregated convection is ro-441

bustly due to the reduced cloud intermittence, and to a lesser extent, to remoistening442

of the environment around clouds.443

3.4 Discussion of a few approximations of the last saturation model444

The simple model is based on many approximations, and we discuss here three of445

them.446

First, we assume that the time step dt of 30 minutes is sufficient to correctly de-447

scribe the temporal variability of the cloud field. To assess this assumption, we re-calculated448

the domain-mean RH using time steps dt of 24 hours, 6 hours, or 1 hour instead of 30449

minutes (fig 10). We can see that as dt increases, RH tends towards that predicted in450

the static state. The temporal variability of the cloud field is less well captured at low451

temporal resolution. As dt decreases, the RH converges toward an asymptotic value (fig452

10, dashed blue line). We can see that the RH predicted for dt = 30 minutes corresponds453

almost exactly to the asymptotic value. We thus conclude that the time step dt of 30454

minutes is sufficient to correctly describe the temporal variability of the cloud field.455

Second, we assumed that wenv(z) and
(

∂q
∂t

)

remoist,env
are horizontally and tem-456

porally uniform in the environment. In reality, both variables systematically vary as a457

function of the distance to the nearest cloud. To assess this effect, we calculated the ver-458

tical velocity and the moistening tendency not only as a function of altitude in average459

over all non-cloudy points (e.g. equation 2), but as a function of both altitude and of460

the distance to the nearest cloud (Figs 11 for w and 12 for
(

∂q
∂t

)

remoist
). We can see that461

air parcels subside the most strongly just around clouds, consistent with subsiding shells462

(Glenn & Krueger, 2014). This is where the moistening term is strongest. Therefore we463

expect that the larger subsidence velocity and the larger moistening tendency around464

clouds compensate each other, at least partially.465

Third, we assumed that air parcels vertically subside and we neglect all horizon-466

tal motions. We expect that in reality, horizontal motions would favor the encounters467

of air parcels with clouds. In addition, air parcels are expected to diverge from cloud tops468

as they detrain. Therefore, parcels in the environment far from clouds will be interpreted469

as very dry by our last-saturation model, whereas in reality some of them may have lat-470
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erally detrained from clouds. We expect that this effect is at least partially accounted471

for by our calculation of
(

∂q
∂t

)

remoist,env
as a residual term from the moisture budget.472

To summarize, several approximations of the last-saturation model may lead to some473

biases. However, the capacity of the simple model to capture the RH simulated by the474

CRM shows that these biases are small, or that they compensate each other. We con-475

sider that they are sufficiently small to use the last-saturation model to decompose the476

RH differences between simulation pairs (section 3.3).477
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Figure 12. Same as fig 12 but for the the moistening tendency undergone by air parcels

subsiding in the environment around clouds. Positive values indicate moistening.

4 Analytical models to understand the cloud intermittence and remoist-478

ening contributions479

The previous section has shown that the main contribution to the drier troposphere480

when convection is more aggregated is cloud intermittence. Moistening around clouds481

by microphysical processes is a secondary contribution. The goal of this section is to de-482

sign even simpler models for the last-saturation altitude (section 4.1) and for the remoist-483

ening term (section 4.2) to help interpret these two contributions.484

4.1 Cloud intermittence: key role of the life duration of convective sys-485

tems486

As an indication for the domain-mean RH, we develop an analytical model to es-487

timate the domain-mean last-saturation altitude zlast, where zlast is the last altitude where488

a cloud is encountered as a parcel subsides down to z0.489

4.1.1 Last-saturation altitude as a Markov chain490

We denote tlast the time of the air parcel descent from zlast to z0, and nlast the num-491

ber of time steps of this descent: tlast = nlast·dt. The number of time steps of the back-492

trajectory increase as we go back in time.493

The probability for nlast to be 0 (i.e. zlast = z0) is the probability that an air par-494

cel is cloudy at step 0 of the trajectory:495

P (nlast = 0) = P (C0) (3)

where P (Cn) is the probability to be cloudy at trajectory step n. This corresponds496

to the cloud fraction at the altitude where the trajectory is at trajectory step n.497

The probability for nlast to be 1 is the probability that an air parcel is cloudy at498

the 1st trajectory step, and then unsaturated at trajectory step 0:499

P (nlast = 1) = P (C1 ∩ U0) = P (C1) · P (U0|C1) (4)

where P (Un−1|Cn) is the probability that an air parcel is unsaturated at trajec-500

tory step n− 1 knowing that it was cloudy at trajectory step n.501
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For nlast > 1, the probability for nlast is the probability that an air parcel is cloudy502

at time step nlast, then unsaturated at all trajectory steps from nlast − 1 to 0:503

P (nlast) = P (Cnlast
) · P (Unlast−1

|Cnlast
) ·

nlast−1
∏

n=1

P (Un−1|Un) (5)

where P (Un−1|Un) is the probability that an air parcel is unsaturated at trajec-504

tory step n− 1 knowing that it was unsaturated at trajectory step n.505

The probability distribution for nlast can thus be formulated in terms of a Markov506

chain with transitional probabilities P (Un−1|Un). This is reminiscent of cloud overlap507

formulation (Hogan & Illingworth, 2000; Bergman & Rasch, 2002), except that here the508

overlaps are temporal and not just vertical.509

Since P (Cn|Un−1) = 1−P (Un|Un−1), and using the property that P (A|B)·P (B) =510

P (A ∩B), we can demonstrate that511

P (Un−1|Un) =

(

1− P (Un−1|Cn) ·
P (Cn)

P (Un−1)

)

· P (Un−1)

P (Un)

We assume that the probabilities are stationary and spatially homogeneous, so P (Un−1) =512

P (Un) = 1− f and P (Cn) = f , where f is the cloud fraction. We thus get:513

P (Un−1|Un) = 1− P (Un−1|Cn) ·
f

1− f

Therefore, P (Un−1|Un) can be estimated from P (Un−1|Cn). To calculate the prob-514

ability distribution of nlast, all we need to calculate is P (Un−1|Cn). This is the goal of515

the next section.516

4.1.2 Case of N convective systems of same size and life duration that517

randomly appear in the domain518

The transitional probability P (Un−1|Cn) can directly be diagnosed from the CRM519

simulations. We find that the estimates along trajectories are virtually identical to es-520

timates ignoring the vertical displacement of air parcels (Fig 13a, dashed lines almost521

invisible below solid lines). The transitional probabilities are thus determined by the tem-522

poral evolution of clouds, not their vertical distribution. This justifies our approxima-523

tion that convective systems are vertical cylinders (fig 14a). For the sake of simplicity,524

we assume that the cloud fraction f is vertically uniform along a trajectory. We thus as-525

sume that the transitional probabilities are vertically uniform and depend only on the526

appearance and dissipation of cloud systems. In other words, P (Un−1) is the probabil-527

ity of having no cloud at time n−1, and P (Cn) is the probability of having a cloud at528

time n, whatever the altitude. We further assume that there always are N convective529

systems of the same size and the same life duration D that randomly appear anywhere530

in the domain, except where there was already a previous convective system (fig 14a).531

The probability P (Un−1|Cn) is the probability that the cloud, where the parcel is,532

dissipates between time steps n and n−1. We assume that the probability of dissipa-533

tion of a system is uniform during its lifetime:534

P (Un−1|Cn) =
dt

D
(6)

Note that we here assume that dt is sufficiently small so that dt ≤ D. In the limit535

case where dt = D, then clouds never live longer than a time step, so the probability536

to have no cloud given that there was no cloud at the previous time step is 1.537
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Figure 13. (a) Transitional probability P (Un−1|Cn) along the parcel trajectories (solid) and

neglecting the vertical displacement of air parcels (dashed). Dashed lines are almost below solid

lines. (b) Transitional probability at the time scale of 10h, i.e. the probability that no clouds

appear during the next 10 hours knowing that there was a cloud at a given time step. (c) Transi-

tional probability at 5 km as a function of the time scale over which we check that the cloud does

not re-appear. (d) Life duration of clouds based on the transitional probability at the time scale

of 10h.
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and appears somewhere else
cloud dissipates

1-f

(a) N cylindric clouds (b) cyclindric cloud with its moistening fringe

f/N

f/N
f/N

f/N f/N

l R

Figure 14. (a) N convective systems with a cylindrical shape and life duration D dissipate

and appear randomly anywhere in the domain except where some convective systems are already

present (1− f). In this schematic, N = 4 and D = 4 · dt, so that at each time step, one convective

system dissipates (dashed blue line) and appears somewhere else. (b) Schematic showing the

moistening fringes (purple) around the convective systems.

To summarize, the probability distribution for nlast is given by:538

P (nlast = 0) = f (7)

For nlast ≥ 1:539

P (nlast) = f · dt
D

·
(

1− dt

D
· f

1− f

)nlast−1

(8)

We can check that:540

+∞
∑

nlast=0

P (nlast) = f + f · dt
D

· 1− 0

1− 1 + dt
D

· f
1−f

= 1

4.1.3 Case of uniform subsidence velocity and expression for the last-541

saturation altitude542

If the subsidence velocity of air parcels is vertically uniform, then543

nlast =
zlast − z0
wenv · dt

This allows us to calculate the distribution of zlast: for zlast − z0 < wenv · dt,544

P (zlast) =
f

dt · wenv

(9)

and for zlast − z0 ≥ wenv · dt,545

P (zlast) = P (nlast) ·
dnlast

dzlast
=

f

D · wenv

·
(

1− dt

D
· f

1− f

)nlast−1

(10)
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If we assume that ln
(

1− dt
D

· f
1−f

)

≃ − dt
D

· f
1−f

, we can check again that:546

∫ +∞

zlast=z0

P (zlast) · dzlast = 1

This set of equation allows to approximate the distribution of zlast − z0 to first547

order. The shape of the P (zlast) distribution is reminiscent of that in (Sherwood et al.,548

2006) where remoistening events followed a random Poisson process.549

We now estimate the domain-mean value of zlast from this distribution:550

zlast =

∫ +∞

zlast=z0

P (zlast) · zlast · dzlast

Assuming again that ln
(

1− dt
D

· f
1−f

)

≃ − dt
D
· f
1−f

and that dt · f ≪ D · (1− f),551

and performing an integration by parts, we calculate that:552

zlast − z0 ≃ wenv ·D · (1 − f)3

f
(11)

We thus expect zlast to be smaller, and thus the troposphere to be moister, for larger553

f , for smaller wenv, and for larger life duration D. The dominant contribution of the554

intermittence contribution in section 3.3 suggests that D is a key factor. Its estimate and555

physical meaning is the subject of the next sub-section.556

4.1.4 Estimate and physical meaning of the life duration of convective557

systems558

The transitional probability P (Un−1|Cn) can directly be diagnosed from the CRM559

simulations (Fig 13a). Since convection in TC+ is strongly aggregated into a single, nearly560

stationary tropical cyclone, we would expect the transitional probability P (Un−1|Cn) to561

be very small. However, contrary to expectations, the transitional probability for TC+562

is not dramatically smaller than for other simulations (Fig 13a, blue). This is because563

the transitional probability actually combines two effects: (1) the moving borders of clouds,564

and (2) the actual dissipation of a convective system. The first effect leads to clouds ap-565

pearing and disappearing at a very high frequency with little effect on the RH. This ef-566

fect is however problematic because our simple Markov chain is based on the previous567

time step only. We would need to account for a longer memory. To more accurately pre-568

dict the RH, we thus focus on the second effect. We estimate the life duration D based569

on the probability that no clouds appear during several time steps following a cloud. If570

we calculate the transitional probability as the probability that no clouds re-appear dur-571

ing the next 10 hours, we can find that consistent with expectations, the smallest tran-572

sitional probability is by far for TC+, followed by the squall lines (Fig 13b). After 10573

hours, the transitional probabilities converge toward some value that correspond to the574

actual disappearance of convective systems (Fig 13c). We thus use this time scale to es-575

timate the life duration of convective systems, as D = dt/P (Un−1|Cn).576

In the mid-troposphere, we obtain life durations of the order of 6 hours for TC+,577

3 hours for SL+, 1 hour for SL and 30 minutes for Cb, TC and Cb+ (Fig 13d). For cu-578

mulonimbus clouds, this is consistent with what we expect from their life cycles. For TC,579

the small life duration is also consistent with the relatively disorganized character of this580

simulation (Fig 2b) For squall lines and TC+, D is smaller than their actual duration581

(infinite in our simulations), because they propagate. We can show that in case of prop-582

agative systems, the same equations hold except that D is replaced by an effective du-583

ration Deff ≤ D which decreases as systems propagate (SI text S1).584
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4.1.5 Results and discussion585

Using the life duration D as diagnosed from the previous section, we find that the586

simple scaling from equation 11 is able to qualitatively capture the shape and magni-587

tude of the RH profiles relative to the prediction by the last saturation model without588

remoistening (fig 15a, compare with fig 5a). In particular, the scaling captures the “C-589

shape” simulated for the TC, SL and SL+ cases and observed in reality (Romps, 2014).590

In the scaling, this shape is caused by the maximum cloud fraction in the upper tropo-591

sphere (fig 8b) and by the minimum cloud life time in the lowest levels (fig 13d). Impor-592

tantly, the scaling captures the moister RH simulated when the large-scale dynamical593

regime is more ascending (fig 15c, compare with fig 5c), and the drier RH simulated when594

convection is more aggregated (fig 15d, compare with fig 5d). The RH profiles predicted595

by the simple scaling significantly correlate across simulations with those predicted by596

the last-saturation model without remoistening (fig 15b, solid red). The simple scaling597

performs almost as well as the RH predicted by the full probability distribution from equa-598

tion 10 (15b, dashed red).599

Using the simple scaling, we can isolate the relative contributions of D, f and wenv600

on the predicted RH, by predicted the RH if only one parameter varies. We find that601

the contribution of wenv opposes the RH differences across simulations (negative corre-602

lation for the dashed cyan line in fig 15b). Both D and f combine to explain the RH dif-603

ferences across simulations (positive correlations for the dashed blue and magenta lines604

in fig 15b). We find that variations in f explain most of the variations in RH when the605

large-scale ascent varies, while variations in D explain most of the variations in RH when606

the convective aggregation varies (not shown). This supports the idea that the longer607

duration of convective systems is the main factor responsible for the drier RH when con-608

vection is more aggregated.609

We note that zlast does not depend on N , but on D: it depends on the cloud in-610

termittence, but not at all on the spatial arrangement of clouds. In addition, we find that611

this result would be unchanged even if some fraction of the domain never experiences612

convection (SI text S2). These results support hypothesis #2b (cloud intermittence) and613

contradict hypothesis #2a (spatial arrangement).614

4.2 Remoistening by microphysical processes: role of spatial aggrega-615

tion616

We have shown that the remoistening around clouds significantly contributes to617

the moister troposphere when convection is more disorganized, consistent with hypoth-618

esis #1. We now aim at better understanding, at least qualitatively, this contribution.619

The contribution of the remoistening around clouds (hdyn,remoist−hdyn, not shown)620

reflects the remoistening tendency in average over the environment around clouds (
(

∂q
∂t

)

remoist,env
,621

Fig 8a). The composite of the remoistening term as a function of the distance to the near-622

est cloud shows that the moistening tendency is strongest in the vicinity of clouds and623

decays away from clouds (Fig 12). It is thus mainly restricted to a “moistening fringe”624

around clouds (Fig 12), consistent with the hypothesis of (Windmiller & Craig, 2019)625

of a finite zone around clouds where the air is moistened. Assuming that the remoist-626

ening tendency exclusively occurs in the moistening fringes, the remoistening tendency627

in average over the environment can be written as:628

(

∂q

∂t

)

remoist,env

=
Afringe

Aenv

·
(

∂q

∂t

)

remoist,fringe

where Afringe is the area of the domain covered by the moistening fringe, Aenv is629

the area of the domain covered by the environment, and
(

∂q
∂t

)

remoist,fringe
the moist-630
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Figure 15. (a) Vertical profiles of domain-mean RH predicted by the simple scaling from

equation 11. (b) Correlation coefficient as a function of altitude between the domain-mean RH

predicted by the simple scaling from equation 11 (solid red) and that predicted by the last-

saturation model without remoistening, across the 6 simulations. The vertical dashed brown line

indicates the correlation threshold for statistical significance at 90%. The dashed red line shows

the correlation coefficient for the RH predicted by the full probability distribution (equation 10).

The dashed blue, magenta and cyan line show the correlation coefficient for the RH predicted by

the simple scaling if only D, f and w vary respectively. (c-d) Same as figures 5c-d but for the RH

predicted by the simple scaling.
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ening tendency in the moistening fringes. Let’s note L the length of the domain, l ≪631

L the thickness of the fringes and η = N/L2 the density of clouds. For the sake of sim-632

plicity, we assume that all clouds are identical with a radius R, such that the cloud frac-633

tion f is:634

f = ηπR2

We thus have:635

Aenv = L2 · (1− f)

and636

Afringe = N ·
(

π(R + l)2 − πR2
)

≃ 2NπRl = 2 · f · L2 · l · √η · π

Thus637

(

∂q

∂t

)

remoist,env

=
2 · f · l · √η · π

(1− f)
·
(

∂q

∂t

)

remoist,fringe

We thus expect the
(

∂q
∂t

)

remoist,env
to scale with

√
η, i.e. with the density of clouds638

in the domain. This is why the remoistening term systematically contributes to a moister639

troposphere when convection is more disaggregated. In contrast to the intermittence con-640

tribution which is tied to the duration of convective systems, the remoistening contri-641

bution is directly tied to the spatial aggregation as is more frequently studied (e.g. (Tobin642

et al., 2012)).643

We also expect the remoistening term to scale with f , and thus to contribute to644

the moister troposphere when the large-scale dynamical regime is more ascending. How-645

ever, the other factors, i.e. l and
(

∂q
∂t

)

remoist,fringe
, are related to the meso-scale dynam-646

ics of the convective systems and probably also to the spatial resolution. Predicting them647

is beyond the scope of this paper, and this probably explains why the moistening con-648

tribution strongly varies depending on the dynamical regime and organization type.649

5 Summary and discussion650

To summarize, the drier environment when convection is more aggregated that has651

been observed in self-aggregation simulations (Bretherton et al., 2005) remains true in652

simulations with forced types of convective organization (cyclones, squall lines). A sim-653

ple last-saturation model captures the drier environment in more aggregated simulations.654

Using this simple model, we show that the main mechanisms explaining why the tropo-655

sphere is drier in the case of tropical cyclones and squall lines in our CRM simulations656

is the cloud intermittence. According to the last-saturation paradigm, when clouds are657

more intermittent, the probability for air parcels to meet clouds as they descend is larger658

(fig 1, blue). We built an analytical model that highlights the key importance of D, the659

time scale during which convective systems remain at the same location. It corresponds660

to the duration of convective systems, and can be reduced if they propagate.661

The last-saturation paradigm has proven successful in simulating the RH response662

to the large-scale circulation (Sherwood, 1996; Pierrhumbert & Roca, 1998; Dessler &663

Sherwood, 2000). We show here that it is also successful in simulating the RH response664

to convective organization.665
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Moistening of the environment by microphysical processes is more effective when666

the number of clouds is larger, due to a larger interface area between clouds and the en-667

vironment (fig 1, purple). This was hypothesized by (Tobin et al., 2012) and contributes668

positively to the drying in aggregated simulations, but this effect is secondary. This ef-669

fect scales with the square root of the density of convective systems in the domain, i.e.670

is determined by spatial aggregation.671

Apart from the secondary effect of microphysical processes, we show that the spa-672

tial aggregation in itself has little impact on the domain-mean RH. The key mechanism673

is cloud intermittence, i.e. the temporal distribution of clouds. If the tropical cyclone674

had a life duration as short as isolated Cb clouds, the troposphere around it would be675

as moist as in the disaggregated case. Conversely, if the isolated Cb were stationary, the676

troposphere around it would be as dry as in the cyclone case. In reality, the size and life677

duration of convective system are related (Roca et al., 2017). This probably explains why678

spatially aggregated convection is associated with a drier environment: aggregated con-679

vection is statistically associated with longer-lived convective system. Therefore, we hy-680

pothesize that the observed correlation between spatial aggregation and tropospheric dry-681

ness is actually mainly mediated by the life duration of convective systems. Future stud-682

ies are necessary to observationally confirm this hypothesis. Our analytical model also683

suggests that propagative systems such as squall lines or cyclones would be associated684

with higher RH than non-propagative systems of similar size and duration. This also re-685

mains to be observationally assessed.686

Finally, the idealized setting of the simulation prevented us from assessing the im-687

pact of large-scale horizontal advection on the tropospheric humidity. The relative im-688

portance of large-scale advection and local convective processes in explaining the observed689

correlation between spatial aggregation and tropospheric dryness will have to be quan-690

tified in global CRM simulations, such as those performed as part of the DYAMOND691

project (Stevens et al., 2019). In a future study, the last-saturation framework proposed692

here could be adapted to account for large-scale advection in such global simulations.693
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Text S1: Supplementary calculations for the analytical model: Case of prop-

agative systems

To make the calculation easier, here we assume that convective systems have a square

shape. We assume that there are N square convective systems of length l with a life

duration D and propagating at a speed v (fig S1a).

N · l2 = f · L2

So l = L ·
√

f/N .

The area of each cloud that moves away at each time step is:

a = v · dt · l = v · dt · L ·
√

f/N

The probability of being unsaturated knowing that it was cloudy at the previous time

step is the probability that the cloud disappears or moves away.

P (Un−1|Cn) =
dt

D
+ (1−

dt

D
) ·

v · dt · L ·
√

f/N

l2
=

dt

D
+ (1−

dt

D
) ·

v · dt·

L ·
√

f/N

Let’s define Dp the characteristic time scale of the propagation:

Dp =
L ·

√

f/N

v

Dp reflects the time it takes for convective systems to cross the domain. It tends towards

+∞ if convective systems do not propagate.

Therefore,

P (Un−1|Cn) =
dt

D
+ (1−

dt

D
) ·

dt

Dp

=
dt

Deff

where

Deff = D ·
1

1 + (D − dt)/Dp
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Deff represents an effective life duration, which is reduced compared to D in case of

propagation.

We thus find exactly the same expressions for P (Un−1|Cn) as given in equation ??,

except that D is replaced by Deff .

Text S2: Supplementary calculations for the analytical model: Case of con-

vective systems restricted on a fraction of the domain

In previous studies, the fraction of the domain that was far from any cloud and

that never experiences convection was considered a determinant factor in controlling the

domain-mean RH (Romps, 2021). To check whether this is the case in our analytical

model, we consider the case of N convective systems as in section ??, but we assume

that they can never appear in a fraction g of the domain that is forbidden to them (fig

S1b). The probability P (Un−1|Cn) is unchanged since it does not matter where clouds are

located in the domain.

Videos V1: Videos of precipitable water maps during the 6 simulations

1. Cb: PWmap Cb grads.avi

2. Cb+: PWmap Cb m60hPad grads.avi

3. TC: PWmap cyclone grads.avi

4. TC+: PWmap cyclone m60hPad grads.avi

5. SL: PWmap LdG grads.avi

6. SL+: PWmap LdG m60hPad grads.avi

Video V2: Video illustrating the importance of cloud intermittence on the

relative humidity

rh video son.mp4
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and appears somewhere else
cloud dissipates

(b) N cylindric clouds with forbidden area(a) N square propagating clouds

(1− f) · (1− g)

l

L

v · dt

g

f/N

f/N

f/N
f/N

f/N

Figure S1. (a) N convective systems with a square shape and life duration D propagate

across a domain with propagation speed v. (b) N convective systems with a cylindrical

shape and life duration D dissipate and appear randomly across the domain, except in a

fraction g of the domain that is forbidden to them (red)
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