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Abstract

The formation of fluvial dunes has been usually investigated assuming an infinite availability of the mobile sediment. Field

observations and laboratory experiments nevertheless indicate that the volume of sediment available for transport affects their

morphology. Here we undertake a stability analysis showing the formation of small amplitude sand dunes in steady currents

accounting for the effects of sediment starvation on their formative mechanisms and compare it against laboratory experiments

and an application of a fully numerical commercial model of finite amplitude dunes, thus enabling an improved understanding

of the genesis of starved fluvial dunes. Both small and finite amplitude dunes are shown to be affected by sediment starvation.

As their growth progressively exposes a motionless substratum, both models predict the lengthening of starved dunes with

increasing irregularity in their spacing. These findings conform with the outcome of physical experiments performed in a

laboratory flume and existing measurements of starved fluvial dunes in the field.
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Abstract10

The formation of fluvial dunes has been usually investigated assuming an infinite availability of11

the mobile sediment. Field observations and laboratory experiments nevertheless indicate that12

the volume of sediment available for transport affects their morphology. Here we undertake a13

stability analysis showing the formation of sand dunes in steady currents accounting for the14

effects of sediment starvation on their formative mechanisms and compare it against laboratory15

experiments and an application of a fully numerical commercial model of finite amplitude dunes,16

thus enabling an improved understanding of the genesis of starved fluvial dunes. Both small17

and finite amplitude dunes are shown to be affected by sediment starvation. As their growth18

progressively exposes a motionless substratum, both models predict the lengthening of starved19

dunes with increasing irregularity in their spacing. These findings conform with the outcome20

of physical experiments performed earlier in a laboratory flume and existing measurements of21

starved fluvial dunes in the field.22

Plain Language Summary23

The formation of fluvial dunes has been usually investigated assuming an infinite availability of24

the sediment that can be entrained by the streaming flow. Field observations and laboratory25

experiments nevertheless indicate that the volume of sediment available for transport affects26

their morphology. Here we present a theoretical model of the formation of small amplitude sand27

dunes in steady currents accounting for the effects that the lack of sediment has on their formative28

mechanisms and compare it against laboratory experiments and an application of a numerical29

commercial model, thus enabling an improved understanding of the genesis of fluvial dunes in30

sediment starved environments. Both models predict similar characteristics of starved dunes,31

describing their lengthening with increasing irregularity in their spacing as their growth pro-32

gressively exposes a motionless substratum. These findings agree with the results of laboratory33

experiments and existing measurements of starved fluvial dunes in the field.34
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1 Introduction35

River beds are seldom flat and those that contain sand generally exhibit a fascinating variety36

of bedforms, ranging from small-scale transverse ripples to large-scale longitudinal bars (Allen,37

1968). Whenever the shear induced by water flowing over granular surfaces exceeds its threshold38

value for sediment motion, sediment particles begin to move and then sediment patterns might39

appear as a result of instability of the erodible river bed (Seminara, 2010). The flow of water and40

sediment produce these bedforms, which, in turn, profoundly influence water levels and sediment41

transport locally affecting mass and momentum transfer. In particular, transverse bedforms42

typically grow perpendicular to the main direction of the river stream and thus their presence is43

a primary source of flow roughness and a major factor in determining water levels (Engelund and44

Fredsoe, 1982). For practical purposes, the effect that these bedforms have on the hydrodynamics45

can be modelled as a hydraulic roughness of appropriate size. As such, unravelling the processes46

underlying their morphology is a subject of great concern to river engineering.47

Fluvial dunes are one dimensional bedforms periodic in the longitudinal direction. They ex-48

hibit asymmetric profiles with fairly regular crests migrating invariably down-stream (Guy et al.,49

1966). Their typical crest-to-crest distances scale with the local water depth and their appear-50

ance is associated with subcritical flows in the Froude sense (Colombini, 2004). Because of their51

significance in formulating depth-discharge relations for river flows and predictor formulae for52

sediment transport, fluvial dunes received extensive attention from engineers and geomorpholo-53

gists.54

Many field observations and laboratory measurements indicate that sediment patterns com-55

monly observed where large amounts of mobile sediment are available, i.e., alluvial bedforms,56

differ from those formed where mobile sediment is scarce, i.e., starved bedforms. Hereinafter we57

will refer to the latter conditions as sediment starvation. In fluvial environments sediment star-58

vation is common. As channel slopes decrease, rivers typically exhibit abrupt transitions from59

gravel to sandy bottoms. In these transitional settings, seasonal and perennial streams subject60

to periods of low flow or discharge waves undergo a transient degradation until they are fully61

armoured (Parker et al., 1982). Then the natural formation of such armoured layer inhibits the62

entrainment of finer sediment from the bed, eventually resulting in sediment starvation. Whereby63

the armoured bed is developed and finer material continues to be supplied to the water flow,64

starved dunes may appear.65

Recent advances in the physical modelling of fluvial starved bedforms revealed the effects66

of sediment starvation on bedform development. By means of a very simple phenomenological67

experiment, Venditti et al. (2017) described a definable sequence of starved bedforms emerging in68

steady currents depending on the supply of sediment. As the sediment supply from upstream in-69

creases, a gradual transition occurs starting from longitudinal sand ribbons to three-dimensional70

barchans that eventually coalesce onto amorphous sandy mounds ultimately leading to the gen-71

eration of two-dimensional trasverse dunes (Kleinhans et al., 2002). However, still unclear is72
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how the lack of sediment affects the morphology of the resultant starved dunes. Only a few73

observations are available (Carling et al., 2000a; Kleinhans et al., 2002; Venditti et al., 2019) and74

measurements do not indicate a clear evolution in time. Same difficulty arises when modelling75

the problem in the flume. The laboratory experiments of Tuijnder et al. (2009) show dune di-76

mensions that progressively decrease as the volume of the finer mobile sediment decreases and77

the immobile coarser underlayer is exposed. In contrast, the experimental data of Porcile et al.78

(2020) describe starved dunes attaining longer wavelengths than their alluvial counterparts for79

the same values of the hydrodynamic and morphodynamic parameters.80

A first theoretical, process-based approach to the study of sand dune formation was proposed81

by Kennedy (1969), who introduced the idea that fluvial dunes can be the result of a free82

instability of a uniform steady flow over an alluvial bed. In the following decades, several83

researchers investigated the formation of dunes and ripples by means of a linear stability analysis84

(Engelund, 1970; Reynolds, 1976; Richards, 1980; Colombini, 2004; Colombini and Stocchino,85

2011). An extensive review of the linear stability analyses of alluvial bed forms can be found in86

Colombini and Stocchino (2012).87

All these theoretical investigations consider an infinite availability of mobile sediment and88

thus they are invalid in the case of sediment starvation. Blondeaux et al. (2016) and Porcile et al.89

(2017) investigated the effects of sediment starvation on the formation of sea-wave ripples and90

tidal dunes, respectively. They simulated the formation of small-amplitude starved bedforms in91

oscillatory currents by means of an idealised model based on a stability analysis. Here a similar92

theory is developed for steady currents, which can be considered as an extension of the linear93

stability analysis of Colombini (2004) including the effect of sediment starvation. Our main94

hypothesis is that when a motionless substratum is exposed by the formation of dunes, the lack95

of sand affects the sediment transport, and, in turn, the dune morphology. By following the96

modelling procedure outlined in Blondeaux et al. (2016), this hypothesis is formulated through97

numerical means.98

We apply this model to the formation of laboratory-scale sand dunes by assuming hydrody-99

namic and sediment transport parameters in line with flume experiments previously performed at100

the University of Genoa (Porcile et al., 2020). Model results describe the lengthening of starved101

dunes with an increasing irregularity in their spacing as their growth progressively exposes the102

unerodible substratum.103

Secondly, we dropped the limiting assumption of small dune amplitudes with respect to the104

local water depth, which is implicit in the linearization process, by performing a fully numerical105

modelling of finite-amplitude starved dunes. We developed an application of the commercial106

model Delft3D capable of describing the formation of sand dunes in steady currents while ac-107

counting for sediment starvation. Analogously to the small-amplitude dune model, the presence108

of a motionless substratum is included that can lead to sediment starvation depending on ini-109

tial sediment availability and forcing conditions. Numerical results confirm the findings of the110

linearized solution, thus suggesting that the lack of sediment available for transport dictates the111
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dimensions of fluvial dunes, potentially affecting the frictional force they exert on the overlying112

flow.113

This paper is organised as follows. Section 2 is devoted to a brief description of the ex-114

perimental measurements of Porcile et al. (2020) that we used to provide controlled empirical115

fundations for the development of process-based idealised models of the genesis of sand-starved116

dunes in steady currents. In section 3.1 we formulate a stability analysis of sandy beds forced by117

steady currents considering a limited availability of mobile sediment. In section 3.2 we introduce118

a fully numerical model of the formation of finite-amplitude starved dunes. Section 4 present the119

results of our modelling exercises. Then, these results are thoroughly compared with previous120

laboratory measurements and field observations in section 5. Conclusions are drawn in section121

6.122

2 Background: Flume experiments by Porcile et al. (2020)123

Porcile et al. (2020) described experimental measurements of the formation of starved dunes car-124

ried out in a laboratory flume at the University of Genoa. These flume experiments were designed125

to provide further data on the effects of sediment starvation on the formation of fluvial dunes and126

to compare results of the present numerical investigation with laboratory measurements. Three127

sets of experiments were performed by fixing all the hydrodynamic and morphodynamic param-128

eters, except the thickness of the layer of sediment initially available for transport. The duration129

of the experiments was also kept constant. Well-sorted sand characterised by a mean grain size130

d∗s = 1.12 mm was glued on the bottom of the flume, thus creating a rough bed. Before water131

was pumped through the flume, the same sand was spread on the rough fixed bottom, generating132

a sand layer with an initial uniform thickness ∆∗, that can be varied per experiment. This setup133

allowed us to investigate the effects of sediment starvation alone by progressively decreasing the134

thickness of the initial sand layer (see Porcile et al. (2020) for additional details on the apparatus135

and experimental procedure).136

The bed elevation recorded at the end of the experiments along the centerline of the flume137

shows that well-defined sand dunes emerged from a uniform sand layer independently on the138

initial sediment availability (Figure 1). When the emerging bedforms were not high enough to139

expose the unerodable bottom of the flume, bed profiles of alluvial dunes were observed (Figure140

1-top). Average wavelengths of these alluvial dunes were approximately the same during all the141

experiments, showing triangular shapes with gentle stoss sides and steep lee sides. As soon as142

the growth of the dunes led to the exposure of the flume bottom, regularly spaced transverse143

dunes were replaced by bump-shaped starved bedforms with steep stoss and lee sides separated144

by flat troughs (Figure 1-middle and 1-bottom).145

Crest-to-crest distances of starved dunes markedly increased when starting off with a thinner146

initial sand layer. An increasing irregularity associated to a decreasing thickness of the initial147

sand layer was also observed. In some cases, the strongest sediment starvation resulted in the148
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Figure 1: Laboratory measurements of Porcile et al. (2020). Left panels: final bottom config-
urations measured along the centerline of the flume for decreasing values of the initial uniform
thicknesses of the sand layer ∆∗ = 2 cm (top), ∆∗ = 1 cm (middle) and ∆∗ = 0.5 cm (bottom).
Forcing flow direction is from left to right. Thin black lines represent the bed elevations, thick
black lines show the rigid bottom of the flume while thick grey lines show the initial level of
the sand layer. Right panels: Spectra of the final bottom configurations. The amplitude of the
Fourier components is plotted versus the streamwise harmonic.
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Figure 2: Sketch of the hydrodynamic modelling showing the sloping streamwise x∗-axis, the
almost vertical y∗-axis pointing upwards, the local water depth D∗ and the reference level R∗.

appearance of three-dimensional barchan dunes. The lengthening of starved bedforms is also149

shown by the Fourier spectra of the bottom profiles (Figure 1 right panels), which provide a150

measure of the increasing spacing of starved dunes and allow for a rough estimation of their151

average wavelength. Streamwise profiles of alluvial dunes were characterised by peak harmonic152

components corresponding to approximately 0.5 m average wavelength. The spectra of starved153

dunes show that the peak harmonic component shifts towards lower frequencies as the initial154

availability of sediment decreases, confirming their marked lengthening.155

3 Methods156

Here we describe both the quasi-linear model (subsection 3.1), whereby a linear flow model157

provides the stress field, a predictor relationship computes the associated sediment transport158

and the Exner equation is integrated numerically including the effect due to sediment starvation,159

and the fully nonlinear Delft3D model (subsection 3.2).160

For both models, the flow of an incompressible fluid in a wide straight channel is considered161

and the Reynolds averaged Navier Stokes (RANS) equations on a vertical plane (2DV) together162

with the 1D form of the Exner equation are used to describe the hydrodynamics and the bed163

evolution, respectively.164

3.1 Quasi-linear model165

By adopting the so-called quasi-steady approximation, whereby the flow is assumed to adapt166

instantaneously to variations of the bed elevation, the solution of the morphodynamic problem167

can be split in two parts: i) the solution of the steady flow equations above a fixed periodic bed,168

which provides the flow response to a given bed perturbation in terms of the stress acting on the169

bed; ii) the solution of the Exner equation, which provides the evolution of the bed perturbation170
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in terms of propagation and amplification. An algebraic empirical relationship provides the link171

between these two steps, relating the local value of the net sediment transport to the local value172

of the stress acting on the bed.173

In the quasi-linear model, at any given time, the spatially periodic bed topography is de-174

composed in a finite number of harmonics. Moreover, the amplitudes of the bed harmonics are175

assumed to remain small enough for the linear approximation to hold, so that the flow field is176

expressed as the superposition of the (linear) flow response to each of the bed harmonics. The177

bed stress distribution provided by the hydrodynamic module is then fed to the morphodynamic178

module, where the stress field is converted in a sediment discharge distribution. If part of the179

motionless substratum is exposed, a suitable numerical procedure is then employed, which cor-180

rects the sediment transport rate to account for the local unavailability of erodible sediment.181

Finally, the new bed topography is evaluated by means of a numerical integration of the Exner182

equation.183

3.1.1 Hydrodynamic module184

The formulation of the hydrodynamic module follows closely the one adopted by Colombini185

(2004) and by Colombini & Stocchino (2005, 2008), which is briefly summarized in the following.186

The interested reader is referred to the above works for the details of the flow model.187

A steady, turbulent free-surface flow is considered in the domain sketched in Figure 2, whereby188

the streamwise x∗-axis is sloping with slope S ≡ tan(β) and the almost vertical y∗-axis points189

upwards (hereinafter an asterisk denotes dimensional quantities). The free-surface is represented190

by the curve y∗ = R∗+D∗, where D∗ is the local water depth and R∗ indicates the reference level,191

i.e., the average level at which conventionally the mean logarithmic velocity profile vanishes. This192

level represents the interface between the fluid flow and the river bed and depends primarily on193

the bottom roughness.194

The triplet composed by the (constant) fluid density ρ∗ and by the uniform flow depth D∗
0195

and shear velocity u∗τ0 is used for nondimensionalization.196

Neglecting the viscous stresses, the steady, dimensionless 2DV RANS and continuity equa-197

tions read198

U
∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
+
SC2

Fr2 +
∂Txx
∂x

+
∂Txy
∂y

, (1)

199

U
∂V

∂x
+ V

∂V

∂y
= −∂P

∂y
− C2

Fr2 +
∂Txy
∂x

+
∂Tyy
∂y

, (2)

200
∂U

∂x
+
∂V

∂y
= 0 , (3)

where P is the ensemble-averaged pressure and (U, V ) are the ensemble-averaged velocity com-201

ponents in the x and y directions, respectively. Moreover, Tij are the dimensionless Reynolds202
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stresses203

T =

[
Txx Txy

Tyx Tyy

]
=

 2νT
∂U
∂x νT

(
∂U
∂y + ∂V

∂x

)
νT

(
∂U
∂y + ∂V

∂x

)
2νT

∂V
∂y

 , (4)

and νT is the dimensionless turbulent eddy viscosity.204

Two parameters are generated by the nondimensionalization procedure, namely the Froude205

number Fr = U∗
0 /
√
g∗D∗

0 and the conductance coefficient C = U∗
0 /uτ0, where U∗

0 is the area206

velocity of the base uniform flow and g∗ is the gravitational acceleration. These two parameters207

are related to one another by the uniform-flow law, yielding:208

u∗τ0 =
U∗

0

C
=
√
g∗D∗

0S ⇒ C =
U∗

0

u∗τ0

' Fr√
S
. (5)

Furthermore, the coordinate transformation209

ξ = x , η =
y −R(x)

D(x)
, (6)

is introduced, which maps the flow domain of Figure 2 into a rectangular domain.210

The turbulent eddy viscosity νT is expressed in terms of an algebraic mixing length L as211

νT =
1

D

∂U

∂η
L(η)2 , L(η) = κD(η + ηR)(1− η)1/2 , ηR =

2.5ds
30

, (7)

where ηR is the roughness height, which is assumed to be proportional to the non dimensional212

roughness and, ultimately, to the dimensionless sediment diameter ds.213

The problem is then closed by an appropriate set of boundary conditions. In particular, at214

the reference level the velocity components vanish according to the no-slip condition215

U = 0 , V = 0 at η = 0 , (8)

whereas at the free surface, the kinematic boundary condition reads216

−U
(
∂R

∂x
+
∂D

∂x

)
+ V = 0 at η = 1 . (9)

and the dynamic boundary condition yields217

TN = 0 , TT = 0 at η = 1 , (10)

where TN and TT represent the normal and tangential components of the stress acting on a218

surface at constant η, respectively. Finally, periodic boundary conditions are enforced at the219

upstream and downstream sides of the domain.220
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3.1.2 Perturbation method221

Assuming that the height of the dunes is much smaller than the local water depth, the flow field222

can be evaluated by means of a perturbation approach. As far as the formation of regularly223

spaced dunes is concerned, it is also possible to assume the periodicity of the bottom geometry.224

The sandy bed can then be expressed as superposition of different spatial components. Of note,225

with the goal of extending the analysis to starved dunes, the number of spatial components226

should be large enough to properly describe those transition regions where the exposition of227

the unerodible substratum occurs. Presently, the following normal-mode representation for the228

perturbed variables is adopted229

F (ξ, η) = F0(η) + εF1(ξ, η) = F0(η) + εf(η)eiαξ + c.c., (11)

where ε is a small parameter and α denotes the longitudinal dimensionless wavenumber of the230

perturbation.231

Substituting the above splitting into the system of equations (1)-(3) and boundary conditions232

(8)-(10) and collecting terms at the same order of magnitude in ε, a set of ordinary differential233

equations is derived at O(ε). The resulting two-points boundary value problem is eventually234

solved by means of a shooting method. In particular, the flow response to a perturbation of the235

bed of amplitude r can be determined in terms of the shear stress ttb evaluated at the saltation236

level ηB, which represents the interface between the flowing fluid and the saltation layer, i.e., the237

thin bottom layer were bedload transport takes place (Colombini, 2004). Moreover, the saltation238

level is assumed parallel to the reference level at a distance equal to the bedload layer thickness239

ηB − ηR = lBds =

{
1 + aB

(
TTR − TTC

TTC

)mB
}
ds. (12)

where TTR and TTC are the shear stress evaluated at the reference level and its critical threshold240

for incipient motion. The empirical parameters aB, mB have been set equal to 1.42 and 0.64,241

respectively (Colombini and Stocchino, 2008).242

As expected from a linear, normal-mode analysis, we eventually obtain:243

ttb = tt(ηB) = r t̂tb (13)

where t̂tb only depends on the wavenumber α and on the flow parameters Fr and C (see Colombini244

(2004) for the details of the above procedure).245

3.1.3 Morphodynamic module246

In the present formulation, suspended sediment transport is neglected and only bed-load trans-247

port is considered, i.e., sliding, rolling and saltating grain particles. Such an assumption seems248

reasonable since sand dunes are more likely to appear in sub-critical flows (Fredsøe, 1974), the249

9



bottom shear stress generated by which do not usually produce large suspension of sediment. A250

common and useful approach to the quantification of bedload transport is to empirically relate251

the volumetric sediment transport rate per unit width q∗S with the difference between the bottom252

shear stress T ∗
TB and the critical threshold value for incipient motion T ∗

TC . A large number of253

empirical relations have been derived using flume data from many laboratory experiments, and254

these share the structure255
q∗S√

(s− 1)g∗d∗3
s

= Φ(ΘB,ΘC) , (14)

where s = ρ∗s/ρ
∗ is the relative density of the sediment, Φ is the dimensionless bed-load transport256

rate and ΘB is the Shields parameter built upon the bed shear stress at level B. More precisely,257

we have:258

ΘB =
T ∗
TB

g∗ρ∗(s− 1)d∗s
= TTBΘR0 , ΘR0 =

S

(s− 1)ds
, (15)

where ΘR0 is the Shields parameter evaluated at the reference level for the base uniform flow.259

Among the commonly adopted bed-load transport predictors is the Fernandez Luque and260

Van Beek (1976) formula, which reads261

Φ = 5.7 (ΘB −ΘC)3/2 if ΘB > ΘC ,Φ = 0 if ΘB ' ΘC . (16)

This predictor relation is presently employed as it appears to contain the main physical ingredi-262

ents controlling the process of sediment transport for values of the Shields parameter close to its263

threshold. Furthermore, the bed material tested in the experiments, on which the above relation264

is based, included different grain sizes ranging from sand to gravel.265

Since the problem under consideration accounts for the presence of bottom perturbations, the266

bed is not flat and the stabilising effect of gravity, which opposes uphill motion and favours down-267

hill motion, is considered by correcting the threshold Shields stress ΘC (Fredsøe and Deigaard,268

1992)269

ΘC = ΘCH

[
1−

(
S − ∂B

∂ξ

)
1

µd

]
, with ΘCH = 0.038 , (17)

where ΘCH is the value for vanishing slope and µd is a dynamic friction coefficient, which has been270

set equal to one half of the Coulomb coefficient µc following the recommendations by Fredsøe and271

Deigaard (1992). Moreover, µc = tan(Ψ) and Ψ represents the angle of repose of the sediment.272

For natural sediments, the angle of repose Ψ ranges between 30◦ and 50◦ resulting in friction273

coefficient µc ranging between 0.58 and 1.2. In this study we have employed µc = 1.0.274

Finally, the development of small-amplitude bottom perturbations can be estimated by the275

sediment continuity equation, which states that the positive (negative) divergence of the sediment276

transport rate is locally balanced by the decrease (increase) of the bottom elevation277

∂R

∂T
= −∂Φ

∂ξ
, T =

t∗
√

(s− 1)g∗d∗3
s

D∗2
0 (1− p)

, (18)
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where T is a slow morphodynamic time coordinate.278

3.1.4 Linearization279

Under the hypothesis of small amplitude bed perturbations, the algebraic relationships (15-17)280

can be linearized, providing the linear response of the flow to a given bed perturbation in terms281

of the equilibrium (at capacity) sediment discharge.282

In particular, we expand the bedload discharge Φ, the Shields parameter ΘB and its critical283

value ΘC as in (11)284

Φ(ξ) = Φ0 + εφeiαξ + c.c. , (19)
285

ΘB(ξ) = ΘB0 + εθbe
iαξ + c.c. = ΘR0

[
1− ηB + εttbe

iαξ + c.c.
]
, (20)

286

ΘC(ξ) = ΘC0 + εθce
iαξ + c.c. = ΘCH

[
1− S

µd
+ εiα

1

µd
reiαξ + c.c.

]
. (21)

At the leading order in ε, we eventually obtain287

φ =

(
∂Φ

∂ΘB

)
0

(θb − θc) =

(
∂Φ

∂ΘB

)
0

(
ΘR0t̂tb −ΘCH

iα

µd

)
r = φ̂r (22)

where, as for (13), the complex quantity φ̂ only depends on the wavenumber α and on the flow288

and the sediment parameters for the base state.289

Let us now consider the case of infinite availability of sediment, which corresponds to a290

motionless unerodible substratum low enough for not being exposed by the erosive action of the291

flow. In this case, with the additional hypothesis of small amplitude of the bed perturbation, the292

Exner continuity equation (18) can be linearized and the classic normal mode stability analysis293

is recovered. To this end, the reference level R is expanded as294

R(ξ, T ) = R0 + εR1(ξ, T ) = R0 + εr(T )eiαξ + c.c. (23)

and substituted in (18) to obtain the dispersion relationship295

1

r

dr

dT
= −iαφ

r
= −iαφ̂ ⇒ r(T ) = e−iαφ̂T = eΩT e−iαωT , (24)

where φ̂ represents the complex wavespeed of the perturbation and296

ω = Re
(
φ̂
)
, Ω = αIm

(
φ̂
)
, (25)

are the celerity and growth rate of the bed perturbation, respectively.297

An exponential dependence of the solution on time emerges, as expected in a linear stability298
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analysis. The growth rate is found to be299

Ω = α2ΘR0

(
∂Φ

∂ΘB

)
0

(
Im
(
t̂tb
)

α
− ΘCH

ΘR0µd

)
, (26)

which clearly shows how the emergence of small-amplitude dunes is related to a balance between300

the destabilising effect due to the steady current, represented by the shear stress at the bed-load301

level, and the stabilising effect due to the gravity, represented by the dynamic friction coefficient.302

Thus the study of the dispersion relationship allows growing modes with positive growth rate303

to be identified in the parameter space and, among those, the fastest growing one. Finally, an304

estimate of the wavelength of the emerging dunes can be predicted by assuming that this most305

unstable mode prevails on the others during the short-term morphodynamic evolution of the306

sandy bed.307

3.1.5 Modification to account for sediment starvation308

When a motionless substratum is exposed by the formation of sand dunes, the lack of sediment309

affects its transport, and, in turn, the pattern morphology. The exposure of the motionless310

substratum locally prevents the entrainment of sediment, leading to sediment starvation. The311

sediment transport formula (16) quantifying the bed-load sediment transport cannot be applied312

in the case of sediment starvation unless a suitable numerical procedure is introduced capable of313

account for the local lack of mobile sediment.314

Where sand is available, the sediment transport depends only on the bed shear stress. If the315

shear decreases (increases) in the flow direction, the sediment transport rate can be predicted316

by the predictor formula and some deposition (erosion) occurs according to the continuity of the317

sediment phase. Differently, where a motionless substratum is locally exposed, the amount of318

sediment in motion might be smaller than the local transport capacity. In particular, the value319

of the sediment transport rate Φ(x∗) depends not only on the value of the shear stress ΘB(x∗)320

but also on its spatial derivative. On the one hand, if the shear stress increases in the direction of321

the flow, the sediment transport rate remains constant since the flow cannot entrain additional322

mobile sediment since it is not available. On the other hand, if the shear stress decreases in323

the direction of the flow, two different scenarios are possible depending on the upstream value324

of the sediment transport rate. If the upstream value of the sediment transport rate is smaller325

than the local value predicted by the predictor formula ΦP (x∗) the local sediment transport rate326

should be assumed equal to its upstream value. This can occur due to the upstream exposure327

of the motionless substratum. Otherwise, the sediment transport rate can be predicted by the328

predictor formula and some deposition of sediment over the exposed substratum should occur.329

dΦ

dx∗

∣∣∣∣
+

= 0 if
dΘB

dx∗

∣∣∣∣
x∗
> 0 , (27)
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330
dΦ

dx∗

∣∣∣∣
+

= 0 if
ΘB

dx∗

∣∣∣∣
x∗
< 0 and Φ(x∗) < ΦP (x∗) , (28)

331

Φ(x∗) = ΦP (x∗) if
ΘB

dx∗

∣∣∣∣
x∗
< 0 and Φ(x∗) > ΦP (x∗) . (29)

These simple rules (27)-(29) introduce strong nonlinearities and the time development of the332

bottom configuration can be obtained only by numerical means. The present model integrates333

in time and space the dimensionless sediment continuity equation. The time advancement of334

(18) is solved by means of a Runge-Kutta second order approach, while the spatial derivatives335

are replaced by their second order finite difference approximations. A computational domain336

of length L∗
d along the horizontal axis x∗ is considered and periodic boundary conditions are337

applied at its ends. The dimensionless length of the computational domain Ld = L∗
d/D

∗
0 and338

the thickness of the initial sand layer ∆ = ∆∗/D∗
0 are free geometrical parameters. The value339

of Ld should be large enough to assume its influence on the time development of the bottom340

configuration to be negligible and to properly represent the formation of the fastest growing341

mode predicted by the linear stability analysis. Since the time development of the entire range342

of unstable modes has to be described with sufficient accuracy, the spatial discretization should343

be accurate enough to represent the smaller wavelength of the unstable modes predicted by the344

linear stability analysis with a suitable number of computational points.345

In those transition regions between the motionless substratum and the erodible bed, small-346

scale spurious oscillations arise as a result of the Gibbs’ effect associated with the discontinuity347

in the bed slope. In its numerical time-stepping, the model forces the bed elevation to never drop348

below the substratum’s level by applying a filtering procedure removing the small-scale spurious349

oscillations. The results of preliminary simulations repeated halving grid size, time step and350

domain length indicate that the chosen couple of values does not affect the time development of351

the bottom configuration.352

3.2 Fully nonlinear model353

3.2.1 General model description354

The finite-amplitude evolution of fluvial dunes in sediment scarce environments is modelled in the355

numerical shallow water model Delft3D (Lesser et al., 2004). Analogous to the small-amplitude356

model, the hydrodynamic equations (here in terms of vertical σ-coordinates) consist of the 2DV357

Navier Stokes equations, a continuity equation and a turbulence closure model, supplemented358

by appropriate boundary conditions. In contrast to the small-amplitude model, turbulence is359

modelled by means of the kT − εT turbulence model, in which both the turbulent kinetic energy360

per unit volume kT and the dissipation rate per unit volume εT are computed. Both the bed361

load and the suspended load are included in the model, and bed evolution is computed by the362

Exner equation. For an overview of the relevant 2DV model equations, see e.g. Damveld et al.363
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Figure 3: Results of the quasi-linear model in the case of an unlimited sediment supply. Left
panel: growth rate plotted in shades of grey for a value of the conductance coefficient C = 15.
Thick black lines represent the curves of vanishing growth rate, dashed white lines represent the
curves of vanishing celerity, white line represent fastest growing modes. The marks indicate the
experimental measurements of Guy et al. (1966): circles, dunes; triangles , antidunes. Right
panel: growth curve for a value of the Froude number Fr = 0.5 whose maximum identifies the
fastest growing mode.

(2020).364

3.2.2 Model domain, boundary conditions and parameter choices365

The horizontal length of the domain is 60 m long and has a uniform grid spacing of 2.5 cm. In366

the vertical direction the grid consists of 30 σ-layers, with a small thickness (0.25% of the local367

water depth D∗) near the bed, gradually increasing in the upward direction. At the upstream368

lateral boundary a logarithmic velocity profile with a constant discharge of 0.03 m3/s is specified,369

whereas at the downstream lateral boundary the water level is kept constant throughout the370

simulations at a level of 12 cm. These values lead to a Froude number Fr = 0.51, similar to those371

characterising the flume experiments. The vanishing of the stress tensor was imposed at the free372

surface. The area of interest is situated in the second half of the domain to ensure that possible373

upstream boundary disturbances do not migrate into the domain and influence the results. The374

hydrodynamic time step is set equal to 0.15 seconds and a spin-up time of 10 minutes is made375

during which no bed level changes are allowed. Finally, the roughness of the bed is specified376

through a roughness length z0 of 1 mm, which is equal to the sediment diameter. Note that the377

bed roughness does not change when the bare substrate is exposed, which is in fact in line with378

the experimental setup, where sediment was glued to the bottom of the flume (Porcile et al.,379

2020).380
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4 Results381

Generally, comparing theoretical results of stability analyses with laboratory measurements is382

difficult. Since the flume width is usually of the same order of the flow depth, the side walls383

affect the bottom shear stress. If the bottom is rougher than the side walls, as in the experiments384

by Porcile et al. (2020), the distribution of the shear along the wetted perimeter of the channel385

is nonuniform. As such, experimental outcome cannot be expected to correspond to theoretical386

findings based on the assumption of a wide open-channel flow, unless a correction for the shear387

stress at the side walls is made. An equivalent, uniform open-channel flow characterising the flume388

experiments can be evaluated by the side-wall correction (Vanoni and Brooks, 1957). Partitioning389

the flume cross-section into a hydraulically rough and a smooth sub-regions corresponding to the390

bottom and the side walls, respectively, and solving iteratively a system of implicit equations391

including the water continuity, the Keulegan equations for smooth and rough flow regimes and392

the Rouse equation, the side-wall correction determines a uniform, wide open-channel flow, which393

is related to the uniform flow realised in the narrow flume. Then, it is possible to evaluate its394

principal unknowns of interest. Particularly useful for a comparison with the linear stability395

analysis is the equivalent Froude number and the representative conductance coefficient. It is396

worth nothing that the Froude numbers characterising the equivalent open-channel flows related397

to the individual experiments turn out to be larger than their measured values. This experimental398

post-process is crucial to generalise the results of lab-scale flows by defining global dimensionless399

quantities of interest which are independent of the flume width. As such, the side-wall correction400

allows for comparing the experimental results with the modelling of small-amplitude dunes.401

4.1 Quasi-linear model results402

The investigation of the dispersion relationship (23) allows possible instability regions to be403

isolated in the parameter space. Among the free parameters of the stability-based model, there404

are the unperturbed flow depth D∗
0 and the uniform mean grain size of the sediment d∗s, which405

determine the conductance coefficient characterising the unperturbed steady stream. In order406

to compare the laboratory observations with the average wavelength of small-amplitude alluvial407

dunes predicted by the stability analysis, the value of the mean grain size was set equal to that408

of the well-sorted sediment used in the experiments. The unperturbed mean water depth was set409

equal to the uniform depth of the wide open channel flow evaluated by the side-wall correction.410

Then, the values of the conductance coefficient and the Froude number can be easily evaluated411

(C = 15,Fr = 0.5) for the unperturbed flow.412

Varying the Froude number, it is possible to compute the growth rate ωI as well as the value413

of ωR which determines the perturbation celerity as function of the dimensionless wavenumber414

α (see Figure 3). Positive values of the growth rate represent the growth of small-amplitude415

perturbations, thus indicating instability. On the other hand, the value of ωR determines the416

perturbations’ celerity, positive (negative) values indicating downstream (upstream) migration.417
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In left panel of Figure 3 the broken white lines represent vanishing values of the migration418

rate. Below the lower broken line the celerity of the growing modes is positive (i.e. downstream419

migration, alluvial dunes). The growing modes lying above this line has negative celerity (i.e.420

upstream migration, alluvial antidunes). The good agreement between the identified regions421

of instability and the experimental dataset of Guy et al. (1966) later śide-wall corrected’ by422

Colombini (2004) prove the reliability of the stability analysis. Our experimental data fall within423

the appropriate region of instability corresponding to some of the smaller (wavelengths) dunes424

observed by Guy et al. (1966).425

From the previous plot in the left panel of Figure 3, it is possible to extrapolate the growth426

curve shown in the right panel of Figure 3 by considering the value of the Froude number of the427

experiments. Hence, the fastest growing mode can be selected among the range of the predicted428

perturbations. Assuming that this mode prevails over the short-term morphodynamic evolution429

of the sandy bed, the wavelength of the small-amplitude dunes can be predicted. For the chosen430

set of parameters the stability analysis predicts the appearance of bottom perturbations charac-431

terised by a wavenumber α = 0.6, which corresponds to a value of the dimensional wavelength432

slightly smaller than λ∗ = 1 m. This value is of the same order of the wavelengths of the alluvial433

dunes observed during the experiments, though an overestimation is present.434

To test whether the model can provide a reliable description of the genesis of small-amplitude435

starved dunes as observed during the flume experiments, a series of simulations is performed436

computing the time development of an initial random bottom waviness forced by a uniform437

steady current by fixing the hydrodynamic and morphodynamic parameters and varying only438

the supply of sediment. Analogously to the experimental investigation, the sediment supply is439

decreased by decreasing the thickness ∆ of the initial sand layer through which dunes can develop.440

Figure 4 shows the bottom configurations at the beginning (grey lines) and at the end (black441

lines) of each numerical simulation. The values of the Froude number and the conductance442

coefficient are kept constant during all the numerical simulations and equal to those of the443

experiments evaluated by means of the side-wall correction. The dimensionless length Ld of the444

computational domain is equal to 100 and the dimensionless thickness of the initial sand layer445

is progressively decreased starting from ∆ = 0.2 down to ∆ = 0.05. Since the experiments are446

characterized by a dimensional mean water depth D∗
0 = 0.1 m, the value of ∆∗ ranges from 2447

cm to 0.5 cm and the dimensional length of the computational domain is about 10 metres. Each448

numerical simulation is made considering a dimensionless simulation time that is of the same449

order of magnitude as that of the experiment duration. At the beginning of the first simulation450

(Figure 4, panel A) the bottom is characterised by a random perturbation of small amplitude.451

Then, the computed bottom profile shows a rapid decay of the perturbation components of very452

small wavelengths and only the unstable modes predicted by the stability analysis survive. Then,453

for long time, the growth of the fastest growing mode gives rise to periodic bedforms (dunes).454

The growth of dunes is exponential and for ∆ = 0.2, the appearance of the bottom forms does455

not bare the motionless substratum. At the end of the simulation, ten clearly defined dunes can456
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be easily identified through the computational domain with an average dimensional wavelength457

equal to ten. Different results are obtained in the second and third simulations (see panels B458

and C of 4). These results correspond to a dimensionless initial sand layer thickness equal to459

0.1 and 0.05, respectively. Progressively decreasing the amount of the sediment available for460

transport, the motionless substratum is exposed by the growth of the dunes, leading to sediment461

starvation. Starved dunes show increasing crest-to-crest distances as the degree of sediment462

starvation increases. Their general lengthening and the increasing irregularity of their profile is463

evident.464

The panels on the right-hand side of Figure 4 show one-dimensional spectra of the final465

bottom profiles computed by the stability-based model. The modulus of the complex amplitude466

of each harmonic component of the Fourier transform of the bottom elevation is presented.467

These spectra reveal whether a dominant wavelength can be identified or whether the bottom468

configuration is the result of a superposition of many different components. By comparing the469

harmonic content of each computed bed profile, it is seen that the peak harmonic component470

shifts towards lower frequencies as the thickness of the initial sand layer decreases.471

4.2 Fully nonlinear model results472

Next, we repeat our numerical experiments with the finite-amplitude model. Again, the only473

parameter which is varied is the initial sediment thickness. Figure 5 (left-hand panels) show474

the initial and final bottom configurations of the simulations. For the sediment abundant case475

(panel a), asymmetrically-shaped dunes develop, with an average crest-to-crest distance slightly476

larger than λ∗ = 1m. Similar to the small-amplitude result, this value is of the same order as477

that observed during the experiments. Panels (c) and (e) of Figure 5 show a decreasing number478

of dunes as a result of the decreasing sediment availability. In contrast to the small-amplitude479

result, the wave height and spacing of the patterns become more regular over time, especially480

in the sediment scarce case. This is a good indication that the bottom configuration is close to481

their equilibrium state. Another effect which can be observed towards the end of the simulations482

is the decrease of asymmetry of the (isolated) bedforms, which are characterized by a shorter483

stoss side.484

Similar to the results of the small-amplitude simulations, the right-hand panels of Figure485

5 show the moduli of the Fourier components. Also in this case, it can be observed that the486

peak shifts towards the lower wavenumbers as the sediment thickness decreases. However, this487

observation is less apparent than in the former case. Due to asymmetrical shape of the patterns,488

the harmonic signal is composed of a much broader spectrum, such that no particular peak489

stands out.490
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Figure 4: Results of the quasi-linear model in the case of a limited sediment supply. Left
panels: Time development of an initial random bottom waviness for the values of dimensionless
parameters C = 15 and Fr = 0.5 and decreasing values of initial uniform thicknesses of the
sand layer. Thin black lines represent the final bottom configurations computed by the model,
thick black lines show the motionless bottom while thin grey lines show the initial random
waviness. Right panels: Spectra of the final bottom configurations. The amplitude of the
Fourier components is plotted versus the streamwise harmonic.
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Figure 5: Results of the fully nonlinear Delft3d model in the case of a limited sediment supply.
Left panels: Time development of an initial random bottom waviness decreasing values of initial
uniform thicknesses of the sand layer. Thin black lines represent the final bottom configurations
computed by the model, thick black lines show the motionless bottom while thin grey lines show
the initial random waviness. Right panels: Spectra of the final bottom configurations. The
amplitude of the Fourier components is plotted versus the streamwise harmonic.
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5 Discussion491

The idealised process-based models described in the previous sections provide support for the492

experimental findings of Porcile et al. (2020). Particularly, the models reproduce the same493

observed effects of sediment starvation on the genesis of sand dunes in steady currents when494

an unerodable bottom is exposed by the growth of the bedforms. Both a stability analysis495

based on the numerical simulation of small amplitude perturbations of the bottom configuration496

and a fully numerical commercial code able to simulate the time development of finite amplitude497

bedforms predict the lengthening of sediment starved dunes as their growth progressively exposes498

the motionless substratum, with increasing irregularity of their morphology and spacing. Despite499

the overestimation of alluvial dune wavelength obtained by using these two different approaches,500

both models are able to reproduce the lengthening of the starved dunes as observed in a laboratory501

flume (Figure 6).502

The key findings of our modelling study also agree with existing field measurements of starved503

fluvial dunes. Kleinhans et al. (2002) described the observations and measurements of several504

type of bedforms in the gravel-bed river Allier (Moulis, France) over a period of low flow during505

which the river bed was fully armoured. Sand wave fields of fine sand (ds ' 0 ÷ 5 mm), the area of506

Figure 6: Comparisons of modelling outcomes with experimental measurements of the length-
ening of starved dunes. Values of starved dune crest-to-crest distances are normalised by the
wavelength of alluvial dunes observed for the same hydrodynamic and morphodynamic parame-
ters and then plotted versus the thickness ∆∗ of the sand layer initially available for transport.
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which ranges from few squared metres to few hundreds of metres, were found to migrate over the507

armour layer (85% gravel, ds ' 18 mm) as a result of bank erosion and detachment of sand from508

meander pools. These sand waves provided a spatially varying supply of mobile sediment for the509

formation of bedforms in equal hydrodynamic conditions and sediment parameters. Regularly510

spaced transverse dunes appeared in the inner part of these sand deposits, where the thickness511

of the sand coverage attains its maximum value. Then, these bedforms gradually changed in512

both the upstream and the downstream directions resulting into amorphous bedforms with more513

sinuous crests. At the front and rear edge of each sand wave field, the armour layer was fully514

exposed and amorphous dunes concurrently with sand ribbons were observed. Analogously to515

our model results, the field observations of Kleinhans et al. (2002) suggest that the main factor516

in determining the geometric characteristics of the emerging bedforms is the thickness of the517

layer of sediment available for transport. The gradual transition from regular alluvial dunes to518

irregular starved dunes is the same as that observed in the present study.519

Similar starved patterns were observed by Carling et al. (2000b) in a supply limited reach of520

the river Rhine (Mainz, Germany). Carling et al. (2000b) report the presence well sorted medium521

sand (ds ≡ 0:9 mm) in the form of different morphological patterns migrating over gravel lags522

mainly composed of pebbles and cobbles (ds ' 10 mm). Two distinct populations of bedforms523

were identified: two-dimensional small dunes (λ ' 1÷5 m) with relatively straight crest, which524

were roughly transverse to the primary flow direction, and three-dimensional large dunes (λ '525

20 ÷ 50 m) with either amorphous or barchanoid planforms. Carling et al. (2000b) described526

in detail two large isolated dunes preceded by smaller starved dunes with crest-to-crest distance527

approximately equal to 2 m. These smaller dunes were found to migrate over the stoss side of the528

larger bedforms while decreasing in length (λ ≤ 1 m). Further downstream they appear to have529

generally grown in dimensions (λ ≥ 2 m) across the gentle stoss side of the parent dune up to the530

crestal region, where their transition to upper-stage plane bed was observed. Proceeding further531

downstream, the smaller dunes often reformed increasing in length migrating over the intervening532

gravel lags. All that being said, these field observations seem to indicate that sediment starvation533

manifests itself by forming static isolated large dunes as well as by affecting the dimensions of534

migrating small dunes. Particularly, the lengthening of the small dunes as they migrate from the535

gentle lee side of isolated barchan dunes to the gravel lags is consistent with the lengthening of536

the starved dunes predicted by our models.537

Conversely, flume experiments designed to study the effects of sediment starvation on dune538

growth have led to contradictory results. The experiments of Kleinhans et al. (2002) and Venditti539

et al. (2019) identified a sequence of emerging bedforms in steady currents and the profile of these540

bedforms was observed to depend on the sediment available for transport. Differently with the541

experiments we used for our model validation, they provided sediment from upstream, observing542

the gradual growth of different kind of bedforms. As the sediment supply increased, Kleinhans543

et al. (2002) found a transition from sand ribbons to irregular sandy mounds and finally two-544

dimensional trasverse dunes. Despite a clear indication on the dimensions of starved dunes545
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with respect their alluvial counterparts was not provided, their findings seem qualitatively in546

agreement with our modelling results.547

Differently, the experiments of Tuijnder et al. (2009) show dune geometries that progressively548

decrease in size as the availability of mobile sediment decreases and the immobile coarser un-549

derlayer is bared by the growth of the dunes. Among the several possible explanations to the550

contradiction between these observations and our results (see Porcile et al., 2020 for an extensive551

discussion), we believe the difference in the sediment and the associated skin roughness to be552

crucial. Tuijnder et al. (2009) employed two different grain sizes for the immobile substrate and553

the mobile layer. The coarser grain size of the substrate was selected to be immobile under the554

action of the forcing flow. As a consequence, the exposition of the substrate led not only to sedi-555

ment starvation, but also to a discontinuity in skin bottom roughness. Conversely, our numerical556

modelling and the experiments used for its validation assume a substrate roughness which is557

the same as the skin roughness representing the one single grain size available for transport.558

Both models used in this study would require additional developments to include the effects of559

nonlinearities due to discontinuities in the bottom roughness.560

Furthermore, a striking difference between both approaches is the predicted dune shape.561

It can be seen that the linearised model predicts purely sinusiodal shapes, whereas the fully562

nonlinear model predicts non-sinusoidal, asymmetric shapes. Comparing this bottom profile563

with the triangular-shaped dunes observed in the laboratory experiments, this clearly confirms564

the general idea that strong nonlinearities imply asymmetric dunes.565

Less information is available in the literature on the effect that sediment starvation has on566

the migration of bedforms. The experimental measurements reproduced by our modelling results567

cannot reveal useful information on starved dunes migration as they were conducted without re-568

circulation of the sediment and thus limited in time (the experiments lasted only 30 minutes.569

Thus, future experimental and modelling studies are required to properly investigate the effects570

that the lack of mobile sediment has on bedform migration. Finally, in order to place this work571

within a broader field of research, the (2DV) hydrodynamic model could be straightforwardly ex-572

tended in the third direction. There is a body of work that shows that eolian dune size and spacing573

is the result of finite-amplitude interactions and how these interactions can cause the lengthing of574

desert barchan dunes (Hersen et al., 2004; Worman et al., 2013; Khosronejad and Sotiropoulos,575

2017). However, an extension of the present modelling to account for three-dimensional effects576

could be used for discussing subaqueous barchan dunes as a prominent example of dunes in a577

sediment-limited environment, rather than necessarily reflecting only finite-amplitude interac-578

tions. Moreover, the fully nonlinear Delft3D model is currently also used to study sediment579

starvation in tidal sand waves (Damveld et al., 2021). Hopefully, the flow module of the model580

could also be extended to study the atmospheric boundary layer making the present stability581

analysis able to investigate the effects of sediment starvation on the morphology of eolian sandy582

patterns.583

22



6 Conclusions584

In this study two different process-based modelling techniques have been applied to investigate585

the genesis of fluvial dunes in case of sediment starvation. Previous laboratory experiments of586

Porcile et al. (2020) have been used to provide controlled empirical fundations for the development587

of process-based idealised models able to reproduce the effects that sediment starvation has on588

the growth of these bedforms. An hypothesis has been formulated which states that the lack of589

sand affects sediment transport and, in turn, bedform pattern, when a motionless substratum590

is exposed by the formation of fluvial dunes. This hypothesis has then been tested by means591

of numerical simulations in the framework of the stability analysis of a sandy bottom forced by592

steady currents as well as the fully numerical modelling of its time development.593

Generally, the laboratory measurements indicate that the exposition of the rigid bottom594

strongly affects the characteristics of the emerging dunes, whose spacing increases and become595

more irregular with a decreasing initial sediment availability. In line with these experimental596

findings, simulations of the short-term time-development of small-amplitude dunes performed by597

means of the stability-based model predict starved dunes with longer crest-to-crest distances than598

those of alluvial dunes for the same values of hydrodynamic and morphodynamic parameters.599

Finally, similar modelling outcome has been obtained by the finite-amplitude model confirming600

the lengthening of starved fluvial dunes. Differently from the stability analysis, this fully numer-601

ical model is able to reproduce final bottom configurations whose profile is even closer to that602

observed during laboratory experiments, as it accounts for nonlinear effects other than sediment603

starvation. This paves the way to the modelling of field-scale starved dunes and to potentially604

deal with the long-term dynamics of these patterns to describe their equilibrium geometry and605

migration. Also, an extension of our modelling exercise would allow to include further nonlin-606

ear mechanisms that have been neglected so far, such as those associated with gravity, bottom607

roughness, sediment sorting and three-dimensional flow and sediment transport.608

7 Data Availability Statement609

Datasets for this research are included in the following paper (and its supplementary information610

files): Porcile, G., Blondeaux, P. and Colombini, M. 2020. Starved versus alluvial river bedforms:611

an experimental investigation, Earth Surface Processes and Landforms, vol. 45 (5), pp. 1229-612

1239, https://doi.org/10.1002/esp.4800.613
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