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Abstract

Vegetation is a major control on dust emission because it extracts momentum from the wind and shelters the soil surface,

protecting dry and loose material from erosion by winds. Many traditional dust emission models (TEMs) assume that the

Earth’s land surface is devoid of vegetation, adjust dust emission using a vegetation cover complement, and calibrate the

magnitude of modelled emissions to atmospheric dust. We compare this approach with a novel albedo-based dust emission

model (AEM) which calibrates Earth’s land surface normalised shadow (1-albedo) to shelter depending on wind speed, to

represent aerodynamic roughness spatio-temporal variation. Existing datasets of satellite observed dust emission from point

sources (DPS) and dust optical depth (DOD) show little spatial relation and DOD frequency exceeds DPS frequency by up

to two orders of magnitude. Relative to DPS frequency, both dust emission models showed strong relations, but over-estimate

dust emission frequency, suitable for calibration to observed dust emission. Our results show that TEMs over-estimate large

dust emission over vast vegetated areas and produce considerable false change in dust emission, relative to the AEM. It is

difficult to avoid the conclusion, raised by other literature, that calibrating dust cycle models to atmospheric dust has hidden

for more than two decades, these TEM modelling weaknesses and its poor performance. The AEM overcomes these weaknesses

and improves performance without masks or vegetation cover. Considerable potential exists for Earth System Models driven

by prognostic albedo, to reveal new insights of aerosol effects on, and responses to, contemporary and environmental change
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Key points (up to three <140 characters each point)

• Tuning dust models to atmospheric dust hides dust emission
model weaknesses including over-estimates and false change in
vegetated areas

• New shadow-shelter model calibrated to observed dust emission
circumvents unrealistic model assumptions

• Two orders of magnitude difference between atmospheric dust
and observed dust emission without significant relation
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Abstract (250 / 250 words)

Vegetation is a major control on dust emission because it extracts momentum
from the wind and shelters the soil surface, protecting dry and loose material
from erosion by winds. Many traditional dust emission models (TEMs) assume
that the Earth’s land surface is devoid of vegetation, adjust dust emission using
a vegetation cover complement, and calibrate the magnitude of modelled emis-
sions to atmospheric dust. We compare this approach with a novel albedo-based
dust emission model (AEM) which calibrates Earth’s land surface normalised
shadow (1-albedo) to shelter depending on wind speed, to represent aerodynamic
roughness spatio-temporal variation. Existing datasets of satellite observed dust
emission from point sources (DPS) and dust optical depth (DOD) show little
spatial relation and DOD frequency exceeds DPS frequency by up to two orders
of magnitude. Relative to DPS frequency, both dust emission models showed
strong relations, but over-estimate dust emission frequency, suitable for calibra-
tion to observed dust emission. Our results show that TEMs over-estimate large
dust emission over vast vegetated areas and produce considerable false change
in dust emission, relative to the AEM. It is difficult to avoid the conclusion,
raised by other literature, that calibrating dust cycle models to atmospheric
dust has hidden for more than two decades, these TEM modelling weaknesses
and its poor performance. The AEM overcomes these weaknesses and improves
performance without masks or vegetation cover. Considerable potential exists
for Earth System Models driven by prognostic albedo, to reveal new insights of
aerosol effects on, and responses to, contemporary and environmental change
projections.

Plain Language Summary (155/200 words)

Mineral dust influences Earth’s systems, and understanding its impacts relies
on numerical models which include large uncertainties. We compared measure-
ments of dust optical depth (DOD) frequency and satellite observed dust emis-
sion frequency from point sources (DPS) across North America. We found up
to two orders of magnitude difference between DOD and DPS frequency with-
out statistically significant relations. Compared with DPS frequency, we found
a traditional dust emission model (TEM) and an albedo-based dust emission
model (AEM) over-estimated dust emission frequency by up to one order of
magnitude with statistically significant relations. Relative to the AEM, TEMs
incompletely formulate wind friction, over-estimate large dust emission over vast
vegetated areas and produce considerable false change in dust emission. Tun-
ing dust cycle models to dust in the atmosphere has hidden, for more than
two decades, these TEM weaknesses with implications for our understanding of
Earth’s systems. Considerable potential exists for AEM with prognostic albedo
in Earth System Models.

Keywords: Dust emission; aerodynamic sheltering; vegetation; drag partition;
albedo; MODIS
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1 Introduction
Mineral dust is central to many of Earth’s systems (Shao, Wyrwoll et al. 2011).
For example, dust can warm or cool regional climate, depending on the absorp-
tion and spectral properties of dust and background characteristics (Sokolik and
Toon 1999). These radiative effects depend on the volume of emitted dust and
the mineral composition of atmospheric plumes which differs over geographical
source areas, because particle size distribution and mineralogy vary spatially and
temporally (Kok, Ridley et al. 2017). Consequently, assessments of dust radia-
tive effects rely on numerical models that simulate the emission, atmospheric
transport, and deposition of the dust cycle (Mahowald, Kloster et al. 2010).
Comparison with atmospheric dust observations indicate that global dust cycle
models include large uncertainties in simulated dust magnitude and geochemical
properties (Huneeus, Schulz et al. 2011). For example, global climate models
used in the Fifth Assessment Report of the IPCC failed to reproduce observed
North African dust emission over the second half of the 20th century challenging
the validity of 21st century dust-climate projections (Evan, Flamant et al. 2014).
It is common for dust models to be evaluated against dust optical depth and
tuned to fit the observations from North Africa (p. 7809) (Huneeus, Schulz et
al. 2011). However, this methodology does not enable an evaluation of the sep-
arate components of the dust cycle. Here, we are concerned that this evaluation
approach has hidden weaknesses in the dust emission phase, that parameteri-
sations which attempt to improve dust emission are being falsely rejected, and
consequently the approach to model development has become biased towards
parsimony rather than attempting to achieve a balance with fidelity of dust
emission processes (Raupach and Lu 2004).

Dust emission models (Joussaume 1990, Marticorena and Bergametti 1995,
Shao, Raupach et al. 1996) were developed more than two decades ago and
their underpinning basis of sediment transport (Wolman and Miller 1960) has
not changed. The magnitude of sediment transport is adjusted by the frequency
of occurrence based on the wind momentum exceeding a critical sediment en-
trainment threshold (Wolman and Miller 1960) causing highly dynamic, non-
linear responses over space and time (Raupach and Lu 2004). When dust emis-
sion models were developed there were few continuously varying global datasets
available and simplifying assumptions were made. The soil surface wind friction
velocity to drive sediment transport (in the presence of large typically vegetation
canopy roughness) was not available and instead the above canopy wind friction
velocity was used. The partition between those drag forces used aerodynamic
roughness lengths which were not available everywhere and therefore were set
static over time and fixed over space (Zender, Bian et al. 2003). Varying with
wind speed, drag was shown to be equivalent to shelter (Raupach 1992) and
the drag partition was related to lateral cover with the caution that it only
represented two dimensions (Raupach, Gillette et al. 1993). For implementa-
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tion in dust emission modelling, workers assumed that dryland aerodynamic
roughness, including non-photosynthetic vegetation, was approximated by lat-
eral cover from photosynthetic vegetation indices (VIs) readily available from
satellite remote sensing (Evans, Ginoux et al. 2016). These later approaches us-
ing VIs also assumed that the sheltering effect of the drag was restricted only to
that ‘green’ canopy area and that shelter did not vary with wind speed. Whilst
dust emission models were being developed in these ways, it was assumed that
the sediment entrainment was at the grain scale, static over time and a function
of dry, loose and erodible spherical particle diameters discretised across sizes
(Shao and Lu 2000) so that soil texture data (typically aggregated over depth)
could be used. Similarly, the models assumed the soil surface had an infinite
supply of dry, loose erodible sediment, despite soil surfaces, particularly in dry-
lands, being sealed / crusted and / or with loose sediment occurring sporadically
over space and intermittently over time.

These dust emission model assumptions represent the parsimony of implemen-
tation, more than the fidelity of the dust emission processes. Furthermore, by
adjusting the magnitude of the dust model estimates to dust in the atmosphere,
there is no possibility of compensating for any errors in the frequency and ge-
ography of dust emission e.g., global seasonality. It is therefore difficult to
have confidence that the dust emission modelling adequately represents the ge-
ographical distribution of dust emission magnitude and frequency, particularly
given the last two rather critical assumptions about sediment entrainment and
sediment supply. This lack of confidence very likely explains the dearth of publi-
cations on dust emission model outcomes per se (not dust cycle model outcomes).
Given the considerable advances in dust emission modelling over the last two
decades, it is important to enable dust emission model outcomes which requires
tackling the assumptions about sediment entrainment and sediment supply and
the way in which dust emission models are evaluated. It is timely that a new
dust emission frequency point source (DPS) database is available and has been
used with the albedo-based dust emission model (AEM) to circumvent the as-
sumptions about sediment entrainment and sediment supply (Hennen, Chappell
et al. 2021). We follow that established approach and evaluate dust emission
modelling against DPS in addition to the frequency of atmospheric dust optical
depth (DOD). Given that we are investigating the evolved nature of traditional
dust emission models (TEMs), and that many of its components are highly in-
teractive, it is unreasonable to disaggregate the model components and / or
make a superficial comparison of any one single component. Instead, we have
produced an exemplar which represents TEMs in the view of experienced mod-
ellers contributing to this study. We compare that exemplar TEM with the
AEM which attempts to overcome the issues related to the soil surface wind
friction velocity in the sediment transport equation, and to redress the balance
towards the fidelity of process representation (Raupach and Lu 2004).
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2 Methods and Data
2.1 Dust emission modelling
2.1.1 Exemplar traditional sediment transport

Vegetation attenuates dust emission by extracting momentum from the wind
and sheltering a portion of the downstream soil. By reducing wind speeds (𝑈)
at the soil surface, vegetation makes it more difficult to overcome the entrain-
ment threshold for initiation of streamwise sediment flux (hereafter entrainment
threshold) and consequent emission of dust particles by saltation bombardment
and abrasion. Notably, the influence of vegetation sheltering is wind speed de-
pendent (aerodynamic roughness) and both aerodynamic drag and partitioning
of wind friction velocity between roughness elements and the soil, respond non-
linearly to changes in wind speed. Calculation of the stream-wise sediment flux
density Q (g m-1 s-1) on a smooth soil for a given particle size fraction (d) on
the particle size distribution (i) requires the above canopy wind friction velocity
𝑢∗ (m s-1) influenced by all scales of roughness at the Earth’s surface, the air
density �a (g m-3), the acceleration due to gravity g (m s-2), a dimensionless
fitting parameter C and the bare, smooth (no roughness elements) entrainment
threshold of sediment flux 𝑢∗𝑡𝑠(d) (m s-1) (Kawamura 1951). The original equa-
tion is typically rewritten in the dust modelling literature with the typographic
correction and reformulated ratios (White 1979) which require a cubic term:

𝑄(𝑑) = 𝐶 𝜌𝑎
𝑔 𝑢3

∗ (1 − 𝑢2
∗𝑡𝑠(𝑑)
𝑢2∗

) (1 + 𝑢∗𝑡𝑠(𝑑)
𝑢∗

) {𝑢∗ > 𝑢∗𝑡𝑠(𝑑)
0 . (Eq. 1)

In ESMs or reanalysis wind field models over large areas (large pixels), with
horizontal resolutions that are typically on the order of >50 km, modelled wind
speed at 10 m (U10) is used to calculate the available above canopy 𝑢∗. In
recognition that vegetation exerts drag on the wind, 𝑢∗ must then be parti-
tioned between the dryland roughness elements (typically vegetation), and that
available for driving flux at the soil surface (𝑢𝑠∗). The 𝑢∗𝑡𝑠 is adjusted by a
soil moisture function 𝐻(𝑤) e.g., (Fécan, Marticorena et al. 1998) and 𝑅 = 𝑢𝑠∗

𝑢∗
(Raupach, Gillette et al. 1993) the wind friction velocity ratio representing
the roughness-induced drag partition (Marshall 1971). The 𝑢𝑠∗ is required for
sediment flux equations where 𝑢𝑠∗� 𝑢∗ and Q (Eq. 1) is modified (Darmenova,
Sokolik et al. 2009) in the exemplar TEM:

𝑄TEM = 𝐶 𝜌𝑎
𝑔 𝑢3

∗ (1 − (𝑢∗𝑡𝑠𝐻(𝑤)/𝑅)2

𝑢2∗
) (1 + 𝑢∗𝑡𝑠𝐻(𝑤)/𝑅

𝑢∗
) {𝑢∗ > 𝑢∗𝑡𝑠𝐻(𝑤)/𝑅

0 . (Eq.

2)

In the absence of being able to estimate directly 𝑢𝑠∗, the 𝑢∗𝑡𝑠 is divided by R
for the model implementation to account for the drag partition making use of
𝑢∗ (Webb, Chappell et al. 2020). Following this approach, this form (Eq. 2)
is incomplete because 𝑢3

∗ should be multiplied by R before it is cubed (Webb,
Chappell et al. 2020). There is also little recognition of the uncertainty due to
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the inconsistency in model implementation scales. The entrainment threshold
(𝑢∗𝑡𝑠) is calculated at the grain scale as a function of grain diameter, density and
inter-particle cohesion (Shao, Raupach et al. 1996). However, the above canopy
𝑢∗ is for an area when measured using a wind velocity profile or when using
modelled data. This approach requires 𝑢∗𝑡𝑠 to be represented over the same
area, which it is not. The arising substantive issues for TEMs are therefore that
the incomplete form of QTEM (Eq. 2) has been widely adopted in TEMs in
which large area estimates of wind speed are typically used, the correct values
of R are not known (for every pixel and every time step), and 𝑢∗𝑡𝑠 is not scaled
correctly and therefore incompatible with areal estimates of wind speed and
wind friction.

One of the common approaches to modelling dust emission in ESMs uses globally
constant values of aerodynamic roughness length (z0) (Woodward 2001, Tegen,
Harrison et al. 2002, Zender, Bian et al. 2003). Here, we focus on the impact
for large scale TEMs and our exemplar TEM uses the incomplete formulation
for QTEM (Eq. 2) with fixed aerodynamic roughness length for the landscape
z0=100 µm and the soil z0s = 33.3 µm, which fixes R(z0)�0.91 (see Eq. 13
in Supplement), assumes that the Earth’s land surface is static over time and
devoid of vegetation roughness. An adjustment of the dust emission (not the
sediment transport) is applied using a vegetation cover function E (described
below in section 2.1.3). The emission in the ESMs is then ultimately ‘tuned’
down to match observed atmospheric dust (Zender, Bian et al. 2003). Here, we
do not apply this global tuning.

A second, more recent approach uses satellite remote sensing to provide spatially
heterogeneous estimates of z0 only for arid and semi-arid regions, and fixed over
time (Greeley, Blumberg et al. 1997, Roujean, Tanré et al. 1997, Marticorena,
Chazette et al. 2004, Prigent, Tegen et al. 2005, Prigent, Jiménez et al. 2012).
With this second approach it is still challenging to estimate R. We do not apply
this approach to out exemplar TEM. In practice, some models use geographically
preferential dust sources that limit the magnitude of dust emission (Ginoux,
Chin et al. 2001, Woodward 2001, Tegen, Harrison et al. 2002, Zender, Bian
et al. 2003, Mahowald, Kloster et al. 2010, Evans, Ginoux et al. 2016). In our
exemplar TEM we do not use this approach to make clear in our results the
cause of differing dust emission magnitude and frequency.

2.1.2 Albedo-based sediment transport

In our albedo-based dust emission model (AEM), the spatio-temporal variation
in 𝑢𝑠∗ is simulated using the concept that aerodynamic sheltering of vegeta-
tion is proportional to its shadow (1-albedo) (Chappell, Van Pelt et al. 2010,
Chappell and Webb 2016). This albedo-based approximation of the drag par-
tition was investigated and tested to provide an area-weighted value, shown to
be scale invariant (Chappell, Webb et al. 2018, Chappell, Webb et al. 2019,
Ziegler, Webb et al. 2020). This approach enables direct calculation of 𝑢𝑠∗ given
measurements of albedo from satellites, and enables the complete formulation
for sediment flux and dust emission

6



𝑄AEM = 𝐶 𝜌𝑎
𝑔 𝑢3

𝑠∗ (1 − (𝑢∗𝑡𝑠𝐻(𝑤))2

𝑢2𝑠∗
) (1 + 𝑢∗𝑡𝑠(𝑑)𝐻(𝑤)

𝑢𝑠∗
) {𝑢𝑠∗ > 𝑢∗𝑡𝑠(𝑑)𝐻(𝑤)

0 . (Eq.

3)

This AEM does not require R, z0 or z0s and thereby has three primary pa-
rameters less than the exemplar TEM, and removes the associated sources of
uncertainty. Instead, the 𝑢𝑠∗ is obtained directly from 𝜔ns, the normalised and
rescaled areal shadow (1-albedo) which describes the area-weighted land sur-
face aerodynamic structure (partitioned between above canopy and soil surface)
independent of waveband, making it highly suitable for the inclusion of dry-
land non-photosynthetic material. This approach enables an albedo-based dust
emission model (AEM; see Eq. 16-19 in Supplement for full description of the
implementation) (Chappell, Van Pelt et al. 2010, Chappell and Webb 2016,
Chappell, Webb et al. 2018, Ziegler, Webb et al. 2020)
𝑢𝑠∗
𝑈ℎ

= 0.0311 (exp −𝜔ns
1.131

0.016 ) + 0.007. (Eq. 4)

The 𝑢𝑠∗
𝑈ℎ

is a coupled parameter which describes how the soil surface wind friction
velocity is dependent on the wind speed at a given height (h) where that height
would be ideally at freestream.

Notably, this approach retains the long-established entrainment threshold 𝑢∗𝑡𝑠
which at the grain-scale is inconsistent with the new area-weighted albedo-based
approach. The threshold value at the grain-scale is very unlikely to represent
the value over a large area (e.g., 500 m pixel) and is probably much smaller
than an areal estimate. Consequently, modelled dust emission is expected to be
over-estimated. However, this component of the modelling is beyond the scope
of this study.

2.1.3 Dust emission modelling

The vertical dust mass flux (F; g m-2 s-1) may be calculated from Q using
physically-based schemes (Shao, Raupach et al. 1996, Kok, Albani et al. 2014).
One of the common approaches in regional and global applications, and that
used here for the exemplar TEM and AEM, F is calculated as an empirical
function of Q (Marticorena and Bergametti 1995):

𝐹 = 𝐸𝑀(𝑑)𝑄(𝑑)10(0.134clay%−6.0). (Eq. 5)

The dust emission parameterisation considers the emission flux to be driven
by saltation bombardment, with the intensity proportional to Q, and the soil’s
clay content (clay% typically <2 µm fraction of soil particles at the soil). The
mass fraction of clay particles in the parent soil was allowed to vary over space,
but was fixed over time. We used the latest, reliable spatially varying layer of
particle size (Dai, Shangguan et al. 2019) and restricted clay% to a value of
20% consistent with previous work showing reasonable results when applied in
regional models (Woodward 2001).

The proportion of emitted dust in the atmosphere M for a given particle size
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fraction (d) is dependent on the particle size distribution. We calculated the
relative particle size surface area (Marticorena and Bergametti 1995) (M). The
vegetation cover function E was originally defined (Marticorena and Bergametti
1995) as the ratio of bare exposed surface area to total surface area when viewed
from directly above (at nadir). It is used to adjust linearly the amount of dust
emission by the bare soil fraction. However, sheltering is non-linear since it de-
pends on the mutual sheltering of the roughness (typically vegetation) structure,
configuration and wind speed (Chappell, Van Pelt et al. 2010). Theoretically, R
in the equations above already accounts for the soil area which is exposed to the
wind friction velocity relative to that sheltered by upwind roughness elements.
Therefore, E is theoretically redundant in the exemplar TEM (Webb, Chappell
et al. 2020). Nevertheless, it has become acceptable to assume E=1-Av where
Av is the area covered by roughness elements, typically vegetation. This E is
used in some ESMs so that leaf area index (LAI) or satellite ‘greenness’ observa-
tions e.g., vegetation indices (VIs) can be used as a surrogate of the land surface
fraction occupied by green vegetation (Zender, Bian et al. 2003, Evans, Ginoux
et al. 2016, Galloza, Webb et al. 2018, Sellar, Jones et al. 2019). After the
sediment flux is calculated, only then is E used to adjust dust emission using
the area covered by green vegetation. This planform area covered by vegetation
is much smaller than the additional sheltered area downwind of the vegetation
(Chappell, Van Pelt et al. 2010). In addition, E does not represent ‘brown’
roughness caused by dormant or dead vegetation not readily evident in VIs, or
non-erodible stone covered surfaces without sediment in dryland regions where
most sediment flux and dust emission occurs. Model representation without
aerodynamic sheltering is crude and the use of E is unnecessary and increases
parameter uncertainty; it is a prime example of emphasising parsimony in model
implementation. When TEMs using LAI or VIs are applied in dust-climate
ESMs the parameterization is assumed adequate for climate projections.

The albedo-based (not restricted to MODIS products) scheme for sediment flux
and dust emission (AEM; Eqs. 3, 4 & 5) represents the drag partition physics
without pre-tuning to a fixed land surface condition i.e., R, z0 or z0s and also
without the need for E. Thereby, the AEM removes these additional sources of
uncertainty.

2.2 Dust emission frequency point sources (DPS) and dust
optical depth (DOD) frequency
Commonly, aerosol optical depth (AOD) from ground-based or large area Earth
observation (EO) data are typically used to evaluate the performance and / or
calibrate dust emission model simulations (Meng, Martin et al. 2021). This
approach assumes that: i) dust in the atmosphere represents the dust emis-
sion process, and ii) the spatial variation in magnitude and frequency of dust
emission in the model is correct. However, we know a priori that dust in the
atmosphere is only partially related to dust emission because dust concentration
is controlled by dust emission magnitude and frequency which varies over space
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and time, by residence time of dust near the surface which itself is dependent on
wind speed, and on dust deposition in the dust source region, a size dependent
process. To understand the extent to which AOD estimates the spatial variation
in dust emission magnitude and frequency we calculated the probability of dust
occurrence modelled by the dust optical depth (DOD>0.2) using the criteria
established previously (Ginoux, Prospero et al. 2012). We note the stated lim-
itations of DOD to be largely restricted to bright land surfaces in the visible
wavebands which implies reduced performance over areas where vegetation is
present. We demonstrated below (Supplement S4) that there is little impact
of the chosen threshold on the results presented here. To calculate DOD, we
used wavebands available from monthly Moderate Resolution Imaging Spectro-
radiometer (MODIS; MOD08 M3 V6.1 Deep Blue L2 Aerosol Product) at a 1°
pixel resolution (Platnick 2015). The DOD was retrieved from those pixels in
which dust emission was observed from point sources (DPS) in space and time
throughout 2001-2016. All available MODIS DOD data were used.

We described in the previous section how simplifying assumptions are made in
TEMs about the dynamics of vegetation sheltering. We also provided a the-
oretical basis for TEMs formulation to be incorrect. The correct magnitude
and frequency of dust emission per unit area depends on the correct probability
that sediment flux occurs causing dust emission, which itself depends on the
correct 𝑢∗𝑡𝑠𝐻(𝑤) (and the correct R in the exemplar TEM). However, most
dust emission schemes using 𝑢∗𝑡𝑠 assume that the soil is smooth and covered
with an infinite supply of loose erodible material which when mobilised causes
dust emission in proportion to the clay content. This (energy limited) assump-
tion is rarely justified in dust source regions where (i) the soil is rough due to
soil aggregates, rocks or gravels, (ii) sealed with biogeochemical crusts, or (iii)
loose sediment is simply unavailable (Galloza, Webb et al. 2018). Here, we cir-
cumvent these assumptions following an established approach by observing dust
emission frequency at dust emission sources (see Supplement S5) during satel-
lite observations (Hennen, Chappell et al. 2021). We improve the constraints
on dust emission model evaluation by calibrating the dust emission magnitude
according to modelled emissions during those observed occurrences.

We define dichotomous satellite observed dust emission point source (DPS) data
and its probability of occurrence P(DPS>0) as a first order approximation of
the probability of sediment flux P(Q>0) leading to the proportion of dust (F)
emission P(F>0) at those locations (Hennen, Chappell et al. 2021). The iden-
tification of DPS data is a highly time-consuming and labour-intensive activity.
Consequently, there are few (published) studies relative to the large number of
global dust source regions. Here, we collate DPS data from several previous
studies in North America (Baddock, Gill et al. 2011, Lee, Baddock et al. 2012,
Kandakji, Gill et al. 2020). Those studies identify the point source of dust
emissions in New Mexico and Texas between 2001-2016, 2001-2009 and in 2001-
2009 in the Chihuahuan Desert and New Mexico, collating a single dataset of
DPS data from North America. DPS observations were identified using MODIS
data with visible to thermal infrared wavebands (0.4–14.4mm; Figure 1a, see
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Supplement S5). Modelled (AEM and exemplar TEM) and observed frequen-
cies are aggregated by a 1°x1° grid matrix, normalizing the results to the lowest
resolution data (MODIS DOD) (Fig.1). This aggregation is performed to tackle
the incompatibility of the different scales (Gotway and Young 2002). At the
point scale there is considerable unexplained variance which is likely related
to the DPS data location uncertainty of around ±2 km (Kandakji, Gill et al.
2020) due to the phase difference between timing of dust emission and avail-
ability of the imagery. The unexplained variance and incompatible scales is
well-established in the geostatistical literature (Gotway and Young 2002). We
reduced the unexplained spatial variance by aggregating the DPS data. For
each grid box location, the observed frequency is calculated as the number of
DPS observations per year during observation period (2001 – 2016). The AEM
and exemplar TEM modelled dust emission frequency describes F>0 at DPS
locations in each grid box per year during the same period. DOD modelled
frequency describes DOD>0.2 in each grid pixel per year for the same period.

Figure 1. Location and publication source (Baddock, Gill et al. 2011, Lee,
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Baddock et al. 2012, Kandakji, Gill et al. 2020) inventory in New Mexico,
Texas, Arizona, Colorado, Kansas, Oklahoma and Northern Mexico between
2001-2016 (Kandakji), 2001-2009 (Lee) and in 2001-2009 in the Chihuahuan
Desert and New Mexico (Baddock) using satellite observed dust emission point
sources (DPS) set against a background of average wind friction velocity (𝑢∗/𝑈ℎ)
derived from MODIS albedo (500 m).

At the locations and across the different studies durations of those DPS data,
we calculated the AEM and exemplar TEM dust emission. We compared the
model estimates during DPS observed occurrence with modelled dust emission
determined by the exemplar TEM and AEM. Similarly, during those same DPS
observed occurrence we compared the model estimates of dust in the atmosphere
approximated using DOD. For all of those model estimates of dust frequency
(DOD, exemplar TEM, and AEM), separately we fitted log-linear regression
models which produced regression model parameter coefficients, R2 correlation
and the square root of the sum of squared difference (SSE) between DPS and
model predictions to form the RMSE=√SSE/(N-df) where N number of data are
adjusted by the degrees of freedom (df =number of independent dust emission
model parameters).

2.3 Large scale dust emission modelling, mapping spatial
variation and change detection
We used contemporary (2001-2020) Earth observation data including spatially
and temporally varying wind speeds (at 10 m), soil moisture (0-7 cm) and soil
temperature (to represent frozen ground which inhibits sediment flux) from
the latest ERA5-Land data (Muñoz Sabater 2019) (hourly; 0.1°). The use of
these data does not imply priority over any other data. We recognize that
there are different qualities to different model data as evident in their wind
fields (Fan, Liu et al. 2021). Where applicable, we used the same data in
both the exemplar TEM and AEM to consider the relative differences. We
used the exemplar TEM (Eqs. 1 & 5) with R(z0, z0s)�0.91 fixed over space
and static over time. Following the current practice, we calculated 𝑢∗ from
the modeled 10 m wind velocity using the logarithmic layer profile theory and
aeolian roughness length (Darmenova, Sokolik et al. 2009) (details are provided
in the Supplement). We allowed soil moisture to vary and only in the exemplar
TEM used MODIS Normalised Difference Vegetation Index (NDVI) data to
calculate the bare soil fraction E. For comparison, we used the AEM (Eqs. 3,
4 & 5) with soil wind friction velocity 𝑢𝑠∗/𝑈ℎ obtained directly from MODIS
albedo (MCD43A3; Collection 6) varying daily, every 500 m pixel across the
study area. MODIS is aboard polar-orbiting satellites which cause incomplete
coverage. However, the variation in roughness at the daily scale is so small that
we were able to smooth the available data to improve the coverage. Soil clay
content was represented with a digital soil texture map (Dai, Shangguan et al.
2019) and used in both models (see Methods and Supplement S4).

All data were available from the catalogue of the Google Earth Engine (GEE)
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(Gorelick, Hancher et al. 2017) which then required no downloading and refor-
matting. We used the Java script coding environment to calculate daily dust
emission (kg m-2 y-1). Given the availability of DPS validation data at sites in
south-western USA, we restricted the mapping to North America including dust
source regions bordering the USA. Testing the code and visualising the results
for smaller time periods across the study area was almost instantaneous in the
GEE. Data processing at 500 m and daily resolution between 2001-2020 across
North America took typically less than 12 hours. These data were exported
from the GEE for the calibration / validation in a Python coding environment
and images (TIF) from the GEE were also exported for manipulation and pre-
sentation using ArcGIS Pro.

At the sites and days when dust was observed using dust emission point sources
(DPS) we compared it with the dust emission produced by the exemplar TEM,
AEM and dust in the atmosphere using DOD. For the year 2020 and the main
dust emission months of March-May (MAM) in North America, we analysed
the spatial variation of the main controlling variables (wind and aerodynamic
roughness) and dust emission produced by the exemplar TEM and AEM. The
dust emission of both models was restricted to wind speeds between 8.5-9.5 m s-1

to emphasise the difference in the modelling approaches, which would otherwise
be hidden by taking the average for all wind speeds. Finally, we also map the
difference in driving variables during MAM for the year 2001 compared with
the year 2020. The dust emission on dust days is similarly compared to obtain
the mean difference. That mean difference is then tested for significance using
the minimum detectable change (MDC) framework (Woodward 1992, Webb,
Chappell et al. 2019) and the results are displayed. The minimum detectable
change (MDC) was established using critical values for false acceptance and false
rejection (𝛼 = 0.05; 𝛽 = 0.05, respectively) and the change in dust emission
which did not exceed the MDC, was set to 0 (not detectable=white). Details of
how the MDC was calculated are described in the Supplement.

3 Results
3.1. The impact of incorrect formulation and fixed drag
partition (R) on dust emission modelling
We simulated dust emission separately for a smooth and rough surface with
wind speed varying between 0-12.5 m s-1 (Figure 2a). The exemplar TEM dust
emission is shown with a fixed aerodynamic roughness length for the landscape
scale z0=100 µm and the soil scale z0s = 33.3 µm following several previous
studies e.g., (Zender, Bian et al. 2003), which fixes R(z0)�0.91 and assumes
that the Earth’s land surface is devoid of vegetation roughness and static over
time. With E=1, dust emission is unadjusted and increases along the upper
(large dashed) curve as wind speed increases. When the land surface is partially
covered in vegetation it becomes rough and E=0.5, all other conditions remain
the same. In this case, dust emission increases as wind speed increases but
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at a consistently reduced rate (solid curve). The open square is the exemplar
TEM at 8 m s-1 and the filled square is the exemplar TEM at 9.2 m s-1. The
implication is that the same amount of dust emission is produced for a range
of wind speeds regardless of whether the land surface is smooth or rough (from
open square to filled square).

In contrast, the albedo-based dust emission model (AEM) for the smooth situa-
tion (𝑢𝑠∗/𝑈ℎ=0.035; dotted line) produces larger dust emission than the exem-
plar TEM for the same 8 m s-1 wind speed (open triangle; Figure 2a). In a
rough situation (𝑢𝑠∗/𝑈ℎ=0.022) dust emission declines along the same curve to
almost zero. Despite a larger wind speed of 9.2 m s-1 (closed triangle), the rough
surface causes the surface wind friction velocity to decrease, barely exceeding the
entrainment threshold, and consequently dust emission is considerably reduced.
The implication is that the increase in roughness is sufficient to overcome the
increase in wind speed and causes dust emission to be much smaller. The inter-
play between wind speed and roughness influences surface wind friction velocity
which is essential for accurate and precise dust emission estimates.
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Figure 2. Dust emission (kg m-2 y-1) simulations shown with varying soil wind
friction velocity (a) and with varying soil wind friction velocity (b) normalised
by wind speed at 10 m height (𝑈10) using fixed entrainment threshold 𝑢∗𝑡𝑠=0.2
m s-1, clay=10%, soil moisture function H(w)=1 and the bare soil function E
depending on the roughness. The exemplar TEM was implemented (Eqs. 2 & 5)
with fixed aerodynamic roughness length (z0) and consequently fixed R(z0)�0.91.
The albedo-based dust emission was implemented (Eq. 3, 4 & 5) as described
in the main text with details in the Supplement.

These findings are expected based on the theory described above in the Methods
section. The exemplar TEM is driven by wind speed attenuated by aerodynamic
roughness which is fixed over space and static over time, and dust emission is sub-
sequently reduced by a bare soil fraction (E based on vegetation cover). Conse-
quently, wherever and whenever wind speed exceeds the entrainment threshold,
the exemplar TEM will produce sediment flux and dust emission. To illustrate
this point, Figure 2b shows change in dust emission with change in soil sur-
face wind friction velocity normalized by wind speed (𝑢𝑠∗/𝑈ℎ). In other words,
Figure 2b shows how dust emission changes as roughness changes in either
space and / or time for the exemplar TEM and AEM. Since the influence of
wind speed is removed on the x-axis, exemplar TEM produces no change for
a given wind speed of e.g., 10 m s-1. The cause of change in the TEM at 10
m s-1 (solid red line) is due solely to the value of E varying. Since E is not
aerodynamic (does not change with wind speed), dust emission does not change
except when E changes. Under a scenario with the wind speed reduced from
10 m s-1 to 8 m s-1, the exemplar TEM F increases monotonically but at a
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reduced rate; that rate does not change with roughness (𝑢𝑠∗/𝑈ℎ). Similarly,
when the wind speed increases from 10 m s-1 to 12 m s-1, the exemplar TEM F
increases monotonically at an increased rate, and does not change with rough-
ness (𝑢𝑠∗/𝑈ℎ). In contrast, for the wind speed of 10 m s-1, the AEM produced
a greater reduction in dust emission than the exemplar TEM for the greatest
decrease in 𝑢𝑠∗/𝑈ℎ (the largest increase in roughness; Figure 2b). With the
greatest increase in 𝑢𝑠∗/𝑈ℎ (the largest decrease in roughness) the AEM pro-
duced a larger increase in dust emission than the exemplar TEM. When wind
speed is consistently reduced to 8 m s-1, the change in dust is smaller than that
at 10 m s-1. Notably, there is no change in dust emission between a change of
-0.01<𝑢𝑠∗/𝑈ℎ>0.01 (Figure 2b). When wind speed is consistently increased to
12 m s-1, the change in dust emission produced by the AEM is large, continuous
and evident as 𝑢𝑠∗/𝑈ℎ changes.

The results of these simulations illustrate how the exemplar TEM does not
adequately represent vegetation sheltering dynamics and that E merely adjusts
the magnitude, not the onset of dust emission. In contrast, the AEM provides a
direct estimate of 𝑢𝑠∗, which modifies dust emission as roughness and / or wind
speed changes. Since this direct estimate of 𝑢𝑠∗ is available from albedo, from
ground measurements, monitored from satellite remote sensing, or modelled
prognostically in ESMs, it is available over space and / or time without the
need for R or the bare soil fraction E, thereby reducing uncertainty in the
model parameterisation.

3.2 Modelled and observed dust emission frequency at DPS
locations.
We reproduced DOD>0.2 probability at previously identified DPS locations
across areas of southwestern North America to compare with their observed
frequency (Figure 3). The probability of DOD showed little resemblance to
DPS, with a distinctly different spatial pattern and considerably greater prob-
ability in some areas. Peak DOD occurred across the USA / Mexico border
in the Chihuahuan Desert, while DPS peaked over the Southern High Plains
in eastern New Mexico and western Texas. DOD probability increases in areas
of reduced vegetation roughness (Figure 1) as difficulties in measuring atmo-
spheric dust over dark surfaces (e.g., vegetation), limit the DOD data to only
the most arid regions. In areas where the data are comparable (e.g., northern
Chihuahuan Desert (108°-104°W, 29°-32°N), DOD probability is (at least) an
order of magnitude greater than DPS.
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Figure 3. Comparison between the probability of observed dust emission point
sources (DPS > 0) observations (a) and MODIS (b) dust optical depth (DOD
> 0.2) during the period of DPS observation (2001-2016). All available MODIS
DOD data were used.

We compared estimated dust emission frequency (AEM and exemplar TEM
models with F>0 or DOD>0.2) with observed DPS frequency (in days per
year) at each DPS grid box (see in Figure 1). For each model comparison,
the observed DPS frequency remained the same, with differences in the model
described on the x axis (Figure 4). At most grid boxes, modelled frequency ex-
ceeds observation. Both AEM and exemplar TEM over-estimate dust emission
frequency with RMSE (Log10) = 0.6 and 0.76 (4 and 5.8 day per year) respec-
tively, relative to the 1:1 line (Figure 4). Nevertheless, across all grid box data,
the relation between DOD and DPS was very large exceeding DPS frequency by
nearly 2 orders of magnitude, with RMSE (Log10) = 2.09 (123 days per year),
considerably larger than the relation between DPS and the dust models. Least
squares log-linear regression models were fitted to all models, with AEM and ex-
emplar TEM frequencies showing statistically significant correlation with DPS
observed frequency, producing a regression slope of 0.74 (AEM), 0.76 (TEM),
and R2 = 0.8 (P<<.001). The DOD frequency did not show a statistically
significant correlation with DPS observed frequency, with a regression slope of
-0.12 and R2 = 0.02, P.35.
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Figure 4 Modelled and observed frequency at known North American satellite
observed dust emission point sources (DPS), identified in satellite observations
(Baddock, Gill et al. 2011, Lee, Baddock et al. 2012, Kandakji, Gill et al. 2020).
For each point, the y axis represents the observed number of DPS observations
(per grid box) per year during different observation phases of the DPS datasets
within the observation time period (2001 – 2016). For AEM and exemplar TEM,
the x-axis describes the number of modelled observations (F>0) at DPS loca-
tions in each grid box per year during the same time period (x-axis). For DOD,
the x-axis describes the frequency that DOD>0.2 per year for the same period.
The least squares logarithm regression of modelled against DPS observations
produced the model parameter coefficients, R2 correlation and the square root
of the mean squared difference between DPS, and model predictions (RMSE)
adjusted by the degrees of freedom (df) using the number of model parameters
(df = 9 for AEM; df=12 for TEM; df=6 for DOD).

3.3 Modelling dust emission change over space and time
The mean 𝑢∗/𝑈ℎ and full range of U10 for the year 2020 are shown (Figure
5a & b). For consistency with Figure 2, the mean dust emission is shown
for selected wind speeds (𝑈ℎ = 8.5 – 9.5 m s-1) from both AEM and exemplar
TEM (Figure 5c & 5d). The spatial distribution of mean dust emission var-
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ied between AEM and exemplar TEM in both magnitude and spatial extent.
According to AEM, large dust emissions (0.05 – 0.12 kg m-2 y-1) occurred in
discrete areas across the Southern High Plains (104.5°W, 33.5°N), northern Chi-
huahuan Desert (107.5°W, 32°N), southwest Colorado Plateau (110.5°W, 35°N),
and the Great Divide Basin within the Wyoming Basin (108.5°W, 42°N). These
areas correspond with small 𝑢∗/𝑈ℎ, and large wind speed. TEM dust emission
occurred with similar magnitude but over a larger area, including large parts
of New Mexico and Wyoming, while also extending through the Great Plains
in northwest Texas, Oklahoma, Colorado, and Nebraska (Figure 5d). This
pattern of dust emission matches closely the distribution of mean wind speed
(Figure 5b) as predicted from Figure 2.
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Figure 5. Mean conditions for North America during the year 2020 for peak
dust season months March-May, including (a) above canopy wind friction ve-
locity normalised by wind speed (𝑢∗/𝑈ℎ), (b) wind speed (at 10 m height), and
modelled dust emission with (c; AEM) and without (d; exemplar TEM) vary-
ing aerodynamic roughness. The dust emission displayed is for wind speeds re-
stricted to between 8.5-9.5 m s-1 (for comparison with Figure 2). The daily maxi-
mum wind speed, described in hourly data from ERA5-Land (Source: ECMWF)
are used in both models.

Differences in mean dust emission during peak dust season (MAM) for years
2001 and 2020 greater than the minimum detectable change (MDC) significance
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(P<0.05), were produced for both exemplar TEM and AEM (Figure 6c and
6d). These were compared to total mean difference in 𝑢∗/𝑈ℎ and U10 during
the same periods (Figure 6a and 6b). Comparing the change between the
two periods, changed 𝑢∗/𝑈ℎ across North America producing a range +/- 0.01,
with the greatest reduction (< -0.01) associated with decreased roughness in
Canada, very likely caused by changes in snow coverage. Note that snow is
removed from 𝑢∗/𝑈ℎ when calculating dust emission. South of the USA/Canada
border, roughness reduced (-0.01) across large areas of Montana, the Wyoming
Basin, and eastern parts of the Great Plains (Colorado, Kansas, and Nebraska).
Further reductions in 𝑢∗/𝑈ℎ (-0.01 to -0.005) occurred in discrete areas of the
Southern High Plains, and northern Chihuahuan Desert. The greatest increase
in 𝑢∗/𝑈ℎ (> 0.01) occurred across the American Mid-West, including Minnesota,
Iowa, and South Dakota. In dusty areas (Figure 5), the greatest increase in
𝑢∗/𝑈ℎ (0.005 to 0.01) occurred as discrete locations within the Chihuahuan
and Sonoran Desert, the Great Basin (Nevada), and the southern extent of the
Southern High Plains (eastern New Mexico and western Texas). Mean changed
U10 produced a range +/- 1.6 m s-1, with the largest increase (>1.6 m s-1) across
southwest USA, including the Great Basin, Mojave and Sonoran Deserts and
the Colorado Plateau. Mean U10 reduced (<-0.8 m s-1) in the Mid-West states
of Wisconsin and Illinois.

Between 2001 and 2020, significant change in dust emission (F) comparing AEM
and exemplar TEM varied across the range ±2 kg m-2 y-1. The AEM produced
a significant decrease in F (-1 to -2 kg m-2 y-1) from several areas, including the
Southern High Plains (eastern New Mexico and western Texas), the Colorado
Plateau, and the Sonoran Desert (Figure 6c). The AEM showed a significant
increase in F from the Wyoming Basin, and discrete locations in Montana, and
western areas of the Great Plains (west Colorado, Nebraska). In contrast, where
no change in the AEM was detected, the exemplar TEM produced a significant
decrease of F during the 2020 period across large areas of the Great Plains (up
to -2 kg m-2 y-1), the arid southwest (-1 to -2 kg m-2 y-1), including the Mojave,
Sonoran, and Chihuahuan Deserts, and the Mid-West (-1 to -2 kg m-2 y-1). The
exemplar TEM F increased significantly across the Wyoming Basin (up to 2 kg
m-2 y-1), the Great Basin and northern Mexico (Figure 6d).
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Figure 6. Difference maps between the year 2001 and the year 2020 for the peak
dust season months March-May and only dust days (not all days), showing total
difference in (a) mean wind friction velocity normalised by wind speed (𝑢∗/𝑈ℎ)
and (b) wind speed (U10). Minimal detectable change in dust emission with
significance (P > 0.05) with AEM varying aerodynamic roughness (c) and with
exemplar TEM z0 fixed and static over time (d). Wind data is from ERA5-
Land (Source: ECMWF). See Supplement for details on the calculation of the
minimum detectable change.
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4 Discussion
4.1 Overcoming dust emission model weaknesses using the
albedo-based approach
Dust emission modelling has struggled to replicate observed dust emission mag-
nitude and frequency, indicating an inability to adequately represent soil wind
friction velocities (Evan, Flamant et al. 2014). Many of the TEMs assume
homogenous bare ground, before using the complement of vegetation cover to
reduce emission. Using satellite observed dust emission point sources (DPS;
Figure 1) we have shown the exemplar TEM overestimates dust emission fre-
quency by nearly an order of magnitude (RMSE = 0.76 using log10) (Figure 4).
Using albedo to describe variability in aerodynamic roughness through changes
in vegetation structure, the AEM performs theoretically better (Fig. 2) at
correctly estimating the probability of 𝑢𝑠∗ exceeding the entrainment thresh-
old, and subsequent changes in dust emission timing and magnitude. When
compared to observed DPS (Figure 4), AEM performs only moderately better
than the exemplar TEM, still over-estimating dust emission frequency by 0.6
orders of magnitude (RMSE = 0.6 using log10). However, the AEM is not tuned
using z0m, z0s, R or E and the monitored normalised shadow is calibrated to
wind tunnel 𝑢∗/𝑈ℎ. In contrast, the exemplar TEM is tuned using selected val-
ues of z0m and z0s for use in R which are fixed over space and static over time
and then dust emission is adjusted by E. Furthermore, most DPS used here are
from predominantly barren and windy environments, with mean 𝑢∗/𝑈ℎ = 0.069
and mean U10 = 6.9 m s-1, reducing the potential influence of dynamic vege-
tation. Nevertheless, the over-estimation of modelled dust emission relative to
the observed frequency, occurs because of one or more of the factors described
in Table 1. Those factors are classified to propose future research priorities
based on the results and conclusions reached in this study, and based on our
understanding of the process that have arisen during our investigation of the
results.

Table 1. Assessment of the factors causing over-estimation of dust emission
frequency, their likely impact on dust emission modelling and suggested priority
for research investment.

Factors causing over-estimated dust emission frequency Assessment of impact on dust emission modelling Research priority
Modelled 𝑢∗𝑡𝑠 at the grain scale is very likely to be much smaller in value than that of 𝑢∗𝑡𝑠 at 500 m (MODIS albedo). The 𝑢∗𝑡𝑠 is also assumed fixed over space and static over time. The generalized problem is that 𝑢∗𝑡𝑠 is not upscaled for use with 𝑢𝑠∗, and the scale of wind speed data (see below). The scale difference is very likely causing 𝑢∗𝑡𝑠 to be too small relative to 𝑢𝑠∗ causing 𝑢∗𝑡𝑠 to be exceeded too frequently and hence over-estimating dust emission. High
Dust emission modelling assumes an infinite supply of dry, loose erodible material is available once 𝑢∗𝑡𝑠 has been exceeded. Under this assumption, the amount of dust emission which occurs when 𝑢∗𝑡𝑠 is exceeded is over-estimated where sediment is unavailable and / or restricted by rocks and biogeochemical soil crusts. Notably, its impact on dust emission modelling has been tied to 𝑢∗𝑡𝑠 since the earliest considerations of magnitude and frequency (Wolman and Miller 1960) because sediment supply is difficult to quantify and sediment flux equations assume steady-state saltation. High
Modelled wind speed may be too large. Scale-invariant albedo-based approach (Ziegler, Webb et al. 2020) operating over large grid boxes should eradicate scale differences. Wind speed may be too large despite the considerable modelling effort on reproducing realistic wind fields. Tied to the evaluation of wind speed magnitude for dust emission is the discrepancy between scales of wind speed e.g., ERA5-Land 0.1° pixels and the scale of dust emission modelling e.g., MODIS 500 m pixels. Medium
The DPS are derived from polar-orbiting satellite observations, which may not accurately and completely identify the sources and frequency of all dust emissions. However, these data provide the best available observed dust emission database. The grid-boxes approach used here overcomes concerns about precision in the location of dust points. Inevitably, there is a scale dependency to the frequency of occurrence that needs to be quantified. Small magnitude, high frequency dust emissions may not be included in the observed dust emissions at point source (DPS). Medium
The wind tunnel data used in the albedo-based drag partition calibration may not represent the complete range of conditions and flexibility in the vegetation (deforming to change shape). This research hypothesis queries how generalizable is the calibration between albedo and 𝑢𝑠∗, which is established as being precise (RMSE=0.003 m s-1). Variability in the drag coefficients of vegetation and other roughness elements may differ from the calibration, producing variability in the drag partition that needs to be further explored. Medium

Here, we use the latest version of ERA5-Land wind (at 10 m height) data at a
reasonably fine (0.1°) resolution. It is evident that U10 is over-estimated in some
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regions (Fan, Liu et al. 2021). However, there appears to be no systematic bias
that would lead to the over-estimation of dust emission frequency. The grain
scale of 𝑢∗𝑡𝑠 is evidently incompatible with areal dust emission modelling and
this factor appears to be the most likely cause of the over-estimated model dust
emission frequency and should be a priority for future work. Without resolving
the scale of 𝑢∗𝑡𝑠 it is not possible to determine the impact of the assumed infinite
supply of loose erodible material (Table 1). It is very likely that these two
factors explain the first-order differences between the DPS frequency and the
dust emission model frequency. There remains uncertainty over the use of DPS
frequency. However, by comparison with dust in the atmosphere represented
by DOD, the use of DPS frequency is up to two orders of magnitude smaller.
There is a small, perhaps smaller-order likelihood that the original calibration
of the albedo-based approach is not representative and universal, despite recent
support for the approach (Ziegler, Webb et al. 2020).

Beyond the observed dust emission point sources, vegetation roughness appears
influential, constraining dust emission greater than 0.1 kg m-2 y-1 to areas where
𝑢∗/𝑈ℎ is no greater than 0.06, even during periods of peak (8.5 – 9.5 m s-1) wind
speed. In contrast, the exemplar TEM predicts dust emission >0.1 kg m-2 y-1

in areas where 𝑢∗/𝑈ℎ is greater than 0.075, including large areas of the Great
Plains. This difference is emphasized in parts of western Oklahoma (99.5°W,
35.5°N), where mean 𝑢∗/𝑈ℎ > 0.08 prevent dust emission from the AEM, despite
a mean U10 > 7 m s-1. However, in those areas TEM dust emission exceeds
0.2 kg m-2 y-1. These contrasting estimates emphasise TEM dependency on
variability in U10, due to the use of 𝑢3

∗ and the inability of R(z0) fixed over
space and time to correctly attenuate wind speeds by aerodynamic roughness.
This limitation creates two main issues, 1) a requirement for post-process tuning,
which limits the model’s ability to predict dust without a priori information; 2)
large scale uncertainty driven by a large spatial and temporal variability in U10.

4.2 Overcoming dust emission model tuning to dust in the
atmosphere
Inconsistency in modelled dust emission from areas unlikely to produce dust,
has previously been filtered out by utilizing a preferential dust source map (Gi-
noux, Prospero et al. 2012). The probability of dust emission is pre-defined
by the topographic setting, constraining emission to drainage basins (Zender,
Newman et al. 2003). These pre-defined conditions limit the ability to simulate
the spatio-temporal dynamics of dust emission in these areas, as well as omit-
ting most small dust sources in other areas of the basin (Urban, Goldstein et
al. 2018). Furthermore, modelled dust emission frequency is typically several
orders of magnitude greater than observation, creating the need for calibration
when integrated into ESMs. Currently, a global observed dust emission archive
does not exist, thus calibration of dust cycle models is achieved against observed
dust in the atmosphere (e.g., DOD). However, we have shown that DOD poorly
represents observed dust emission frequency by nearly two orders of magnitude,
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with no spatial correlation in frequency variability. Previous studies have sug-
gested that this inconsistency is due to the spatial bias between time of emission
and downwind observation in sun-synchronous daily observations (Schepanski,
Tegen et al. 2012). Whilst explaining perhaps some of the variability evident in
our results, that inconsistency also illustrates the fundamental problem of cal-
ibrating dust emission to dust in the atmosphere. Using extant DPS (Hennen,
Chappell et al. 2021), our results demonstrate that DOD is limited to areas
with highly reflective surfaces e.g., creating a bias over northern areas of the
Chihuahuan Desert. The DOD hotspots for the period 2001-2016 were located
upwind of the DPS locations. These findings severely undermine the efficacy of
dust emission model calibration to DOD, especially where dust emission occurs
in relatively discrete areas surrounded by more densely vegetated areas such as
in North America. Over-estimation of dust emission in these environments very
likely alters the magnitude and frequency of the global dust distribution, which
currently considers continental-scale barren environments (e.g., North Africa)
as persistently predominant source of global dust (Engelstaedter, Tegen et al.
2006).

Our comparison of dust emission between two time periods emphasizes a pre-
viously unrealised impact of varying aerodynamic roughness in the temporal
variability of dust emission magnitude. Through the calculation of dynamic
𝑢𝑠∗, the AEM constrains dust emission to relatively small areas, restricting sig-
nificant variability between time steps to only dust producing areas (e.g., the
arid southwest and semi-arid parts of the Great Plains; Figure 6c). In con-
trast, the exemplar TEM’s dependency on U10 variability shown here, produces
significant changes in dust emission over vast vegetated areas, including those
which are unlikely to produce dust (e.g., temperate areas of the Great Plains
and the grasslands of northern Mexico; Figure 6d).

4.3 Implications of model weaknesses for dust emission
modelling
This study has demonstrated that dust emission modelling can be considerably
improved by utilising a calibrated drag partition with the AEM. It contrasts with
the exemplar TEM by avoiding tuning to bare (devoid of vegetation) conditions
z0 and z0s to produce R�0.91 which over-estimates sediment transport and then
dust emission before adjustment by E. The TEMs were developed more than
two decades ago when dynamic data inputs were less available. Many global
dust emission studies still use static inputs, such as selective vegetation cover
thresholds and bare soil fraction in global dust emission modelling (Albani, Ma-
howald et al. 2014). Preferences for which regions emit or how much vegetation
to allow before dust emission ceases, have contributed to the inability to detect
model weaknesses (Zender, Bian et al. 2003). The ad hoc delineation of source
regions and / or tuning to dust in the atmosphere, constrains dust emission to
areas with large concentrations of dust in the atmosphere (Huneeus, Schulz et al.
2011). However, there may be regional differences in magnitude and frequency
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of dust emission, wind speed and particle size controlling dust residence times.
Furthermore, contemporary atmospheric dust loads do not enable unbiased re-
construction of past trends or to project future shifts in the location or strength
of emissions (Mahowald, Kloster et al. 2010). There is also a great risk that
the major scientific advances made in developing dust emission schemes (Marti-
corena and Bergametti 1995, Shao, Raupach et al. 1996) and newly developed
data / parameterizations (Prigent, Jiménez et al. 2012) are being overlooked
by an over-reliance on parsimonious assumptions about dust source location
and erodibility to implement dust emission models. Model tuning in its various
guises, makes it hard to routinely evaluate the dust emission implementation.
We suggest that it is essential to ensure that dust emission modelling is ex-
plicitly balanced between the fidelity of the dust emission scheme (processes)
and the parsimony of its implementation (parameterization) (Raupach and Lu
2004). As new parameterization schemes are developed and new data sources
become available, the aeolian research community will benefit from being open
to critical re-evaluations to ensure that model development balance and avoid
model weaknesses enduring.

Our exemplar TEM, in common with many dust emission models, uses 𝑢3
∗ to

calculate the magnitude of sediment transport, and predicted unreasonably large
dust emission particularly in vegetated regions, because 𝑢∗ should be multiplied
by R before being cubed and hence is over-estimating 𝑢𝑠∗ (Webb, Chappell
et al. 2020). Although our exemplar TEM dust emission is adjusted by the
bare soil fraction E, we have shown that this is theoretically redundant and is
compensating for non-dynamic R�0.91. If dust modelling is concerned primarily
with parsimony, our results demonstrate that in the exemplar TEM, E should
be removed from the dust function (Eq. 5) and should replace R in the sediment
transport equation (Eq. 2). This small change would make explicit R�E; the
partition of wind speed dependent drag is approximated by static vegetation
cover excluding sheltering. It would make a considerable reduction to sediment
transport and rectify the over-estimation of dust in vegetated areas. However,
it will send dust emission modelling further along a path of parsimony using
convenient vegetation indices, dubious in contemporary changing drylands, and
unknown in climate projections.

Despite its multiple parameters, the exemplar TEM operates like other dust
emission models explicitly controlled only by wind speed at some height Uf and
threshold of Uft (Ginoux, Chin et al. 2001) (e.g., GOCART). In our study,
we did not include these dust emission models based on wind threshold. How-
ever, given their similarity with the exemplar TEM, our results suggest that
both of these model types are inadequate for representing dust emission across
Earth’s dynamic vegetated drylands and over time. Consequently, these model
weaknesses identified here most likely explain why, on monthly time scales, the
relation between surface wind speed and TEMs could be linearized, and why
differences between CMIP5 models appear to be due solely to wind field biases
(Evan, Flamant et al. 2016). Perhaps most significantly, our results explain to
a large extent, how / why the use of exemplar TEM lack validity in 21st century
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dust emission projections (Evan, Flamant et al. 2014).

5 Conclusion
Improving climate change projections requires dust models that are sensitive
to and accurately represent dust emission responses to changing environmental
conditions (wind speed, precipitation, evapotranspiration), land use and land
cover dynamics. The exemplar TEM was shown here to over-estimate dust
magnitude, frequency and extent and lacks the aerodynamics in dust emission
of the albedo-based approach. However, the exemplar TEM performs similarly
to the AEM because the bare soil fraction E is doing the job of the static
drag partition R, but in the wrong place in the equations. If dust modelling is
concerned solely with parsimony, our results demonstrate that in the exemplar
TEM, E should be removed from the dust function and should replace R in the
sediment transport equation. This would make explicit E�R and accelerate dust
emission modelling along a path of using convenient contemporary vegetation
indices, dubious in drylands and unknown in projections. However, we discour-
age that temptation, and instead encourage dust emission modelling to tip the
balance back towards the fidelity of the process by embracing land surface struc-
ture and adopting an energy-based approach. The albedo-based approach can
be used across timeframes and because it is areal and albedo scales linearly the
approach cuts across scales. Aerodynamics can be retrieved from accurate and
precise albedo from ground measurements using net radiometers, from various
airborne and satellite platforms most notably MODIS, or prognostic estimates
used in ESMs. The availability of prognostic albedo provides the opportunity for
the albedo-based approach to be readily adopted in energy-driven Earth System
Models (ESMs) more suitable for climate projections. We recognise that there is
some work to be done to couple prognostic albedo between components in some
ESMs. However, that work has the additional benefits of improving consistency
within an ESM and reducing uncertainty and independent tuning of the com-
ponents. Coupling the albedo-based approach to ESMs is expected to reduce
uncertainty in dust emission and transform dust-climate change projections.
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Supplement
S1 Implementation of exemplar traditional dust emission
scheme (TEM)
When the dust emission scheme (Marticorena and Bergametti 1995) is imple-
mented (Eq. 2 and 4), the wind friction velocity (𝑢∗) is assumed to be above
canopy. We set c=1, the air density was fixed for simplicity (𝜌𝑎=1230 g m-3).
The acceleration due to gravity was also fixed (g=9.81 m s-2). Following the
current practice, we calculated 𝑢∗ from the modeled 10 m wind velocity using
the logarithmic layer profile theory and aeolian roughness length (Darmenova,
Sokolik et al. 2009) following the Monin-Obukhov similarity theory:

𝑢∗ = 𝑘𝑈𝑓
ln( 𝑍𝑈

𝑍0 )+𝜑𝑚
, (Eq. 6)

where 𝜑𝑚 is the stability function accounting for a deviation of the wind profile
from the logarithmic, von Kármán’s constant (k=0.4) and 𝑍𝑈=10 m the height
at which the freestream wind speed U10 estimates were provided. We assumed
the wind profile is logarithmic with neutral buoyancy (𝜑𝑚 = 0) and used mod-
elled wind speed (10 m) data from the ECMWF ERA5-Land (Muñoz Sabater
2019) (hourly; 0.1°).

Estimates of the aerodynamic roughness length (z0) were fixed over time and
fixed over space. The threshold of sediment flux (𝑢∗𝑡) is a common approach to
representing only an energy-limited process by calculating it as:
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𝑢∗𝑡 (𝑑, 𝑤, 𝑍0, 𝑍0𝑠) = 𝑢∗𝑡𝑠(𝑑)𝐻(𝑤)
𝑅(𝑍0,𝑍0𝑠) , (Eq. 7)

where the entrainment threshold 𝑢∗𝑡𝑠(d) for a given size fraction d, is modified
by functions including the drag partition R(z0, z0s) and the moisture content
H(w). The 𝑢∗𝑡𝑠 of a given d (mm):

𝑢∗𝑡𝑠(𝑑) =

⎧{{
⎨{{⎩

0.129𝐾

(1.928Re0.092 − 1)0.5

0.129𝐾(1 − 0.0858)𝑒−0.0617(𝑅𝑒−10)

, 0.03<Re�10

or Re>10, (Eq. 8)

𝑅𝑒 = aD𝑥 + 𝑏; 𝑎 =
1331cm−𝑥; 𝑏 = 0.38; 𝑥 = 1.56, (Eq. 9)

𝐾 = ( 𝜌𝑝gd
𝜌𝑎

)
0.5

(1 + 0.006
𝜌𝑝𝑔𝑑2.5 )

0.5
, (Eq. 10)

includes pa=1230 g m3 fixed air density, pp=2650 g m3 fixed particle density,
g=9.81 m s-2 acceleration due to gravity (Marticorena and Bergametti 1995).
The dimensionless function H (Fécan, Marticorena et al. 1998) was developed
using wind tunnel experiments to account for gravimetric surface soil moisture
content w (kg3 kg-3) using the difference between the potential w’ based on clay
content and near surface w:

𝐻(𝑤) = √1 + (1.21 (𝑤 − 𝑤′)0.68) (Eq. 11)

where

𝑤′ = 0.0014%𝑐𝑙𝑎𝑦2 + 0.17%𝑐𝑙𝑎𝑦 , (Eq. 12)

and clay is the finest fraction (expressed as a percentage) of the soil and typically
less than 2 µm.

A discussion of the use of this parameterization in dust emission schemes is
included elsewhere (Zender, Bian et al. 2003, Xi and Sokolik 2015). We make
use of the ERA5-Land volumetric soil moisture data (0-7 cm of soil layer; hourly;
0.1°). To convert from volumetric soil moisture to the required gravimetric soil
moisture we divided by the soil bulk density. We assumed that the gravimetric
moisture of the uppermost soil layer was 20% of the 7 cm soil layer (Edwards,
Schmutz et al. 2013). The soil bulk density and clay, silt and sand soil texture
are from ISRIC (Hengl, Mendes de Jesus et al. 2017) and are fixed over time
(250 m).

The R(z0, z0s) is valid for small wakes (z0 < 1 cm), and to parameterize solid
obstacles only (Marticorena and Bergametti 1995). This poses a problem in
applying this approach to partially vegetated surfaces such as mixed grasslands,
shrublands, and other vegetation mosaics (Darmenova, Sokolik et al. 2009).
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Applying different parameterizations for surfaces with similar roughness values
could result in a significant discrepancy in the estimated drag partition (Dar-
menova, Sokolik et al. 2009). To reduce the impact of this discontinuity on
R(z0, z0s), a modification is used (MacKinnon, Clow et al. 2004) because it
includes a wider range of land surface types

𝑅 (𝑍0, 𝑍0𝑠) = 1 − ln( 𝑍0
𝑍0𝑠 )

ln[0.7( 12255𝑐𝑚
𝑍0𝑠 )

0.8
]

. (Eq.

13)

In the absence of regional and global spatio-temporal dynamics of R and aero-
dynamic roughness length (z0) data to calculate 𝑢∗ from U10, two approaches
for representing surface roughness have been developed in regional and global
dust emission modelling over the last two decades. One of the older, common
approaches uses globally constant values of z0, fixed over time (Ginoux, Chin et
al. 2001, Woodward 2001, Tegen, Harrison et al. 2002, Zender, Bian et al. 2003,
Mahowald, Kloster et al. 2010). Fixed aerodynamic roughness length for the
landscape z0=100 µm and the soil z0s = 33.3 µm, fixes R(z0)�0.91 which implies
that the Earth’s land surface is devoid of vegetation roughness, and static over
time. With R(z0) fixed, R(𝑧0)𝑢∗ = 𝑢𝑠∗ is assumed which tends to maximise dust
emission. We recognize that the use of a constant value for z0s smooths out the
heterogeneity of dust sources. We also know that it is recommended to use a
z0s�1/30 of the coarse mode mass median diameter of the undisturbed soil size
distribution instead of setting it to a fixed constant (which assumes that the
coarse population of an undisturbed soil is equivalent to the coarse population
of the soil texture (Darmenova, Sokolik et al. 2009). Nevertheless, we fixed
z0s to ensure that results were consistent with previous work (Woodward 2001,
Tegen, Harrison et al. 2002, Zender, Bian et al. 2003).

A second approach is to use spatially heterogeneous estimates for arid and semi-
arid regions (Prigent, Jiménez et al. 2012). That work follows continued efforts
to use active and passive reflectance obtained from satellite remote sensing to
characterize aerodynamic roughness (Marticorena, Kardous et al. 2006). Al-
though this approach provides an observation-based approximation of z0, it
remains challenging to estimate R to approximate 𝑢𝑠∗ necessary to complete
the sediment flux equation.

To implement vertical dust emission, we used the standard approach of intro-
ducing additional terms to Eq. 5 which are explained below:

𝐹 = 𝐴𝑛𝐴𝑓𝐸𝑀𝑖(𝑑)𝑄𝑖(𝑑)10(0.134clay%−6.0) .
(Eq. 14)

Notably, no global tuning is applied to either the exemplar TEM or the AEM.
Also in both models, the mass fraction of clay particles in the parent soil was
allowed to vary over space but was fixed over time. We used the latest, reli-
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able spatially varying layer of particle size (Dai, Shangguan et al. 2019) and
restricted clay% to a maximum value of 20% consistent with previous work
showing reasonable results when applied in regional models (Woodward 2001).
The proportion of emitted dust in the atmosphere M for a given particle size
fraction (d) is dependent on the particle size distribution. We calculated the
relative particle size surface area (Marticorena and Bergametti 1995) (M). The
parameter E was defined in the main text assuming E=1-Av so that vegetation
indices can be used (Shao, Raupach et al. 1996). To conform with that practice,
we calculated

𝐴𝑣 = −22.5 + 150𝑁𝐷𝑉 𝐼 (Eq. 15)

from global daily NDVI from MODIS (MOD09GA Collection 6 from Terra at
500 m pixel resolution).

When the soil is covered by snow it is unable to provide any dust emission.
In this situation it is most effective to use a mask which determines whether
snow is present or absent (𝐴𝑛). The coverage of snow in a given pixel is an
areal quantity and therefore ranges between 0-1. Consequently, we applied the
MODIS Normalised Difference Snow Index (Hall 2016) (MOD10A1 from Terra,
daily at 500 m). Similarly, if the soil is bare but frozen it is unable to release
sediment almost regardless of how much wind energy is applied. In this situation
it is most effective to use a mask which determines whether the soil is frozen or
not (Af). We used soil temperature available in ERA5-Land and set a threshold
of 273.15 K above which sediment flux can occur.

S2 New parameterization of us∗ by relating shelter to
shadow (AEM)
To implement Eq. 1, we assume that 𝑢∗ is the above canopy wind friction veloc-
ity. We use a new albedo-based implementation of the sediment flux equation
which avoids 𝑢𝑠∗=𝑢∗R and therefore does not use 𝑢∗, R or the aerodynamic
roughness length of vegetation (z0) or that of the soil (z0s). Instead we used a
robust direct estimation (Chappell and Webb 2016) for 𝑢𝑠∗
𝑢𝑠∗
𝑈𝑓

= 0.0311 (exp −𝜔ns
1.131

0.016 ) + 0.007, (Eq. 16)

where 𝜔ns is the normalised and rescaled albedo (𝜔) translated and scaled (𝜔𝑛)
from a MODIS (500 m resolution; 𝜔𝑛min=0, 𝜔𝑛max=35) for a given illumination
zenith angle (�=0°) to that of the calibration data (a=0.0001 to b=0.1) using
the following rescaling equation (Chappell and Webb 2016):

𝜔ns = (𝑎−𝑏)(𝜔𝑛(𝜃)−𝜔𝑛(𝜃)max)
(𝜔𝑛(𝜃)min−𝜔𝑛(𝜃)max) + 𝑏 . (Eq. 17)

When using different sources of albedo (e.g., ground-based) with differ-
ent resolutions the value of 𝜔𝑛max will need to change as shown else-
where (Ziegler, Webb et al. 2020). Shadow is the complement of albedo
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1 − 𝜔dir(0∘, 𝜆) and its spectral influences due to e.g., soil
moisture, mineralogy and soil organic carbon, were removed by normalizing
(Chappell, Webb et al. 2018) with the directional reflectance viewed and

illuminated at nadir 𝜌(0∘, 𝜆) :

𝜔𝑛 = 1−𝜔dir(0∘, 𝜆)
𝜌(0∘, 𝜆) = 1−𝜔dir(0∘)

𝜌(0∘) . (Eq. 18)

This was implemented by making use of the available MODIS black sky albedo
(Schaaf 2015) to estimate 𝜔𝑛, and the shadow is normalized by dividing it by
the MODIS isotropic parameter fiso (MCD43A1 Collection 6, daily at 500 m)
to remove the spectral influences:

𝜔𝑛(0∘) = 1−𝜔dir(0∘, 𝜆)
𝑓iso(𝜆) = 1−𝜔dir(0∘)

𝑓iso
. (Eq. 19)

The fiso is a MODIS parameter that contains information on spectral composi-
tion as distinct from structural information (Chappell, Webb et al. 2018). In
theory, the structural information is waveband independent (Chappell, Webb et
al. 2018). The normalization of MODIS data using this parameter and that of
MODIS Nadir BRDF-Adjusted Reflectance (NBAR) is sufficiently similar to re-
move the spectral content for all bands examined (Chappell, Webb et al. 2018).
In practice, we calculated 𝜔𝑛 using MODIS band 1 (620-670 nm). This struc-
tural approach is therefore highly suited to drylands where vegetation indices
perform poorly due to non-photosynthetic vegetation.

To calculate the vertical dust emission, we followed the same approach as above
(Eq. 14) except for E, which was not used. This new implementation provides a
highly dynamic representation of the soil wind friction velocity. To this model,
we applied no tuning.

S3 Minimum detectable change framework
This approach, well-established for environmental resource monitoring (De Grui-
jter 2006, Chappell, Li et al. 2015, Webb, Chappell et al. 2019), aims to es-
tablish the mean difference ( ̂𝑑2,1 ) of estimated means ̂𝑧(𝑡1) and ̂𝑧(𝑡2) between
events t1 and t2 by
̂𝑑2,1 = ̂𝑧 (𝑡2) − ̂𝑧 (𝑡1). (Eq. 20)

The locations are pixels which are assumed fixed in space and are revisited over
time. This static synchronous pattern implies that in estimating the sampling
variance of the change, a possible temporal correlation between the estimated
means ̂𝑧(𝑡1) and ̂𝑧(𝑡2) must be taken into account. The true sampling variance
equals

𝑉 ( ̂𝑑2,1) = 𝑉 ( ̂𝑧 (𝑡2)) + 𝑉 ( ̂𝑧 (𝑡1)) − 2𝜌( ̂𝑧 (𝑡2) , ̂𝑧 (𝑡2)), (Eq. 21)
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where 𝜌 is the temporal correlation between the two estimated means. As 𝜌
increases, the sampling variance of change gets smaller.

Our target quantity ̂𝑑2,1 is greater than zero and statistically significant and
defined as (Woodward 1992):

𝐻0 ∶ ̂𝑧 (𝑡1) = ̂𝑧 (𝑡2),
𝐻1 ∶ ̂𝑧 (𝑡1) = ̂𝑧 (𝑡2) + 𝜃 (𝜃 ≠ 0). (Eq. 22)

The alternative hypothesis H1 is the adjustment due to 𝜃 = ̂𝑑2,1 which between
sampling periods t1 and t2 is the net result of change in the property of inter-
est during an intervening time. The uncertainty due to reaching an incorrect
conclusion is the minimum detectable change (MDC) which is related to the
probability of the errors on the conclusion. In general, the smaller the MDC,
the larger the required sample size for a given probability of false acceptance
error (De Gruijter 2006).

Our 𝐻0 ∶ ̂𝑑2,1 = 0 is that the average difference in our property of interest has
stayed the same over time. The alternative hypothesis H1: ̂𝑑2,1 ≠ 0 is that
the average difference in our property of interest has changed over time. In
statistical hypothesis testing two types of errors may be made. We may reject
H0 and conclude that there is a positive effect when in reality there is no effect
(false rejection; type-I error). We assigned a probability denoted � to this type
of error and decide on a value of 5% based on the implications of making a
false rejection. The alternative error is that we may accept H0 and conclude
that there is no effect, when in reality there is a positive effect (false acceptance;
type-II error, 𝛽). The probability 1 − 𝛽 is referred to as the power of the test
and is used as a quality measure with a value set at 5%. First the critical
value is calculated for the mean beyond which H0 is rejected. The power is
the probability that one correctly concludes that there is a positive effect, that
̂𝑑2,1 ≠ 0. The power of the test depends on ̂𝑑2,1 i.e., the greater ̂𝑑2,1, the larger

the power.

A two-tailed test (for change without direction) statistic is commonly based on
the t-test (Woodward 1992):

(𝑋1−𝛼 + 𝑋1−𝛽)2 = 𝑑̂
2
2,1

𝑉 (𝑧̂(𝑡1))
𝑁1 + 𝑉 (𝑧̂(𝑡2))

𝑁2

, (Eq. 23)

where X is a standard normal distribution. Re-arranging to give an expression
for ̂𝑑2,1, that is the difference between means which it is possible to detect with
the specified power (and size) of test or more usefully, the smallest difference
detectable with at least the given power

̂𝑑2,1 = (𝑋1−𝛼 + 𝑋1−𝛽) ( 𝑉 (𝑧̂(𝑡1))
𝑁1

+ 𝑉 (𝑧̂(𝑡2))
𝑁2

)
0.5

. (Eq. 24)
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This last equation is our estimate of the difference in means and our MDC for
a given set of conditions which were applied to our properties of interest.

S4 Comparison of DOD at various flagging thresholds
To determine the sensitivity of frequency of occurrence maps, MODIS DOD are
observed at multiple thresholds, including DOD>0, DOD>0.1, DOD>0.2, and
DOD>0.25 (Figure A1). Frequencies were observed daily at 1° resolution for
areas where a minimum of one DPS observation was made (grid areas in Fig-
ure A1), consistent with the methodology in Section 3.2. These results show
minimal difference in P(DOD>threshold) along the USA and Mexico border.
At lower thresholds (threshold smaller than 0.2), small differences occur further
north and east, where frequency of occurrence increases. Notably, where no
threshold is applied (Figure A1a), dust occurrence increases in the northern
areas of the figure. This type of threshold is not applied in the DOD literature
because it is vulnerable to erroneous observations due to atmospheric and sur-
face conditions that would otherwise be screened out with the application of a
threshold.
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Figure A1. Comparison between the probability of MODIS dust optical depth
(DOD>T) where T=0 (a), T=0.1 (b), T=0.2 (c) and T=0.25 (d) during the
study period 2001-2016. All available MODIS DOD data were used.

S5 Dust emission point source observations (DPS) data
Satellite observed dust emission frequency point source (DPS) data include the
location and moment of dust emission events from three dust emission obser-
vation studies in the semi-arid southwest of North America. For each study,
satellite-derived earth observation (EO) data were acquired at regular inter-
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vals and subjectively inspected by an operator to identify the presence of dust
plume(s). Using true colour images, the operators were able to visually identify
the point(s) where a dust plume originated and to digitize each of these loca-
tions as a dust emission point source (DPS) (Fig. A2). Each of these studies
used Moderate-resolution Imaging spectroradiometer (MODIS) multispectral
imagery, which offers twice daily (daylight) imagery of the Earth’s surface from
two (Aqua and Terra) NASA satellites. These passive optical sensors provide a
maximum spatial resolution of 250 m (level 1), recording surface reflectance in
36 individual spectral bands ranging from 0.4 µm (near ultraviolet) to 14.4 µm
(TIR) (NASA). Their sun-synchronous orbits permit repeat observations at the
same mean solar time, with Terra and Aqua spacecraft crossing the equator at
10:30 am and 1:30 pm (local time) respectively.
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Figure A2: An observed example of dust point source (DPS) identification from
MODIS true colour imagery in northern Texas on February 24 2007. Source
(Kandakji et al., 2020).

The presence of meteorological cloud or dust emission from sources upwind may
prevent observation of the source of emission in a single image. The 250 m
spatial resolution offered by MODIS data provides enough detail, to allow the
observer to detect individual plume shapes, partially mitigating this overlapping
effect (Baddock et al., 2011). During these limiting scenarios, subjective inter-
pretation improves upon non-dynamic automated retrieval algorithms, which
are required to work in all surface and atmospheric conditions (Schepanski,
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Tegen et al. 2012). The shape recognition and decision-making ability of hu-
man observation currently exceeds those of automated approaches, alleviating
many limitations and preventing false positives observations. For each of these
studies, criteria are specified for legitimate observation, including i) observation
must take place during an emission event, where the deflation surface is clearly
identifiable at the head of emission plume; and ii) the distinct dust source must
not be obscured by either meteorological clouds or upwind dust emission plumes.
As such, these data represent the cutting-edge of dust emission observations in
North America, allowing spatial verification of genuine emission events.
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