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Abstract

Tocochromanols (vitamin E) are an essential part of the human diet. Plant products including maize grain are the major

dietary source of tocochromanols; therefore, breeding maize with higher vitamin content (biofortification) could improve human

nutrition. Incorporating exotic germplasm in maize breeding for trait improvement including biofortification is a promising

approach and an important research topic. However, information about genomic prediction of exotic-derived lines using available

training data from adapted germplasm is limited. In this study, genomic prediction was systematically investigated for nine

tocochromanol traits within both an adapted (Ames Diversity Panel) and an exotic-derived (BGEM) maize population. While

prediction accuracies up to 0.79 were achieved using gBLUP when predicting within each population, genomic prediction of

BGEM based on an Ames Diversity Panel training set resulted in low prediction accuracies. Optimal training population (OTP)

design methods FURS, MaxCD, and PAM were adapted for inbreds and, along with the methods CDmean and PEVmean, often

improved prediction accuracies compared to random training sets of the same size. When applied to the combined population,

OPT designs enabled successful prediction of the rest of the exotic-derived population. Our findings highlight the importance of

leveraging genotype data in training set design to efficiently incorporate new exotic germplasm into a plant breeding program.
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Core ideas  1 

- Maize grain contains tocochromanols, essential micronutrients in the human diet as 2 

vitamin E  3 

- Genomic prediction of tocochromanols can enhance breeding for biofortification 4 

- Exotic germplasm can enhance genetic diversity but is challenging to predict 5 

- Prediction accuracy is modest within populations, but can be low across populations 6 

- Optimal training population design facilitates prediction of tocochromanols 7 
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ABSTRACT 27 

 Tocochromanols (vitamin E) are an essential part of the human diet. Plant products 28 

including maize grain are the major dietary source of tocochromanols; therefore, breeding maize 29 

with higher vitamin content (biofortification) could improve human nutrition. Incorporating 30 

exotic germplasm in maize breeding for trait improvement including biofortification is a 31 

promising approach and an important research topic. However, information about genomic 32 

prediction of exotic-derived lines using available training data from adapted germplasm is 33 

limited. In this study, genomic prediction was systematically investigated for nine 34 

tocochromanol traits within both an adapted (Ames Diversity Panel) and an exotic-derived 35 

(BGEM) maize population. While prediction accuracies up to 0.79 were achieved using gBLUP 36 

when predicting within each population, genomic prediction of BGEM based on an Ames 37 

Diversity Panel training set resulted in low prediction accuracies. Optimal training population 38 

(OTP) design methods FURS, MaxCD, and PAM were adapted for inbreds and, along with the 39 

methods CDmean and PEVmean, often improved prediction accuracies compared to random 40 

training sets of the same size. When applied to the combined population, OPT designs enabled 41 

successful prediction of the rest of the exotic-derived population. Our findings highlight the 42 

importance of leveraging genotype data in training set design to efficiently incorporate new 43 

exotic germplasm into a plant breeding program.  44 



1. INTRODUCTION  45 

Vitamin E is an essential nutrient in the human diet. The term vitamin E collectively refers to 46 

a total of eight different fat-soluble molecules, called tocochromanols. The more common and 47 

dietarily active group of tocochromanols are the tocopherols, which have a saturated tail, 48 

followed by the tocotrienols, which have a tail containing three unconjugated double bonds. 49 

Based on the degree and position of methylation, both tocopherols and tocotrienols are divided 50 

into α, β, γ, and δ species, with α-tocopherol (αT) having the most and δ-tocotrienol (δT3) having 51 

the least vitamin E activity (DellaPenna & Mène-Saffrané, 2011; Lipka et al., 2013). 52 

This vitamin is critical for maintaining the integrity of cell membranes and enabling healthy 53 

erythrocyte and nervous function, as well as providing important antioxidant activity. While 54 

clinical vitamin E deficiency is rare today, 79% of individuals in a global survey had below the 55 

recommended desirable blood serum levels for this vitamin, potentially resulting in chronic 56 

health consequences including increased risk of Alzheimer’s and cardiovascular disease (Péter et 57 

al., 2015). Because tocochromanols can only be synthesized by plants and other photosynthetic 58 

organisms, plant products are the major dietary source of vitamin E (DellaPenna & Mène-59 

Saffrané, 2011). These include the staple crop maize (Chander, Guo, Yang, Yan, et al., 2008), 60 

raising the possibility of improving human nutrition by breeding maize with higher vitamin 61 

content. This approach is a type of biofortification, a process that aims to increase the 62 

bioavailable micronutrient content of food crops (Rosell, 2016). Previous work has shown 63 

substantial genetic variation for tocochromanol content exists in maize (Chander, Guo, Yang, 64 

Yan, et al., 2008; Chander, Guo, Yang, Zhang, et al., 2008; Diepenbrock et al., 2017; Li et al., 65 

2012; Lipka et al., 2013; Shutu et al., 2012; Weber, 1987; Wong, Lambert, Tadmor, & 66 

Rocheford, 2003), providing the necessary foundation for biofortification.  67 



The previously studied maize germplasm represents a small subset of global maize diversity, 68 

raising the possibility of identifying additional favorable alleles within exotic maize. The 69 

Germplasm Enhancement of Maize (GEM) project is an important source of exotic germplasm 70 

adapted to long day environments and has released a collection of doubled haploid (DH) lines 71 

known as the BGEM panel. The two recurrent parents of this population represent the two major 72 

heterotic pools commonly used in maize breeding, with PHZ51 representing the non-Stiff-Stalk 73 

(NSS) group and PHB47 the Stiff-Stalk (SS) group, while the exotic parents include accessions 74 

from Argentina, Bolivia, Brazil, Chile, Colombia, Cuba, Ecuador, Guatemala, Martinique, 75 

Mexico, Paraguay, Peru, and Venezuela (Vanous et al., 2018). 76 

Genomic prediction, in which statistical models trained on genotyped and phenotyped 77 

individuals (the training set) are used to predict phenotypes of other individuals that have only 78 

been genotyped (the validation set) by leveraging shared genetic information, is critical to 79 

modern plant breeding (Crossa et al., 2017). Genomic prediction enables breeders to save both 80 

the time and money that would otherwise be required to phenotype all lines of interest and has 81 

been applied to molecular (Yu et al., 2020), agronomic (Dzievit, Guo, Li, & Yu, 2021), and 82 

nutritional (Owens et al., 2014) traits in maize. Notably, genomic prediction has been 83 

successfully applied to maize grain tocochromanol traits within a diverse panel of sweet corn 84 

(Baseggio et al., 2019; Hershberger et al., 2022).  85 

Many methods for genomic prediction have been created, each of which has its own 86 

assumptions about trait architecture that may make it more or less suitable for a particular 87 

situation (Habier, Fernando, Kizilkaya, & Garrick, 2011; Wang et al., 2018). However, genomic 88 

prediction’s requirement of shared genetic information means that a training set should ideally 89 

cover the potential genetic space of the validation set. When the training and validation sets are 90 



not closely related, as in the case of predicting exotic-derived from adapted germplasm, 91 

differences in alleles present in the populations and their linkage disequilibrium with markers 92 

will lead to extrapolation. This extrapolation of the genomic prediction model beyond the genetic 93 

space in which it was trained may result in reduced prediction accuracy (Crossa et al., 2017; 94 

Dzievit et al., 2021; Yu et al., 2016). 95 

Optimal training population (OTP) design aims to improve genomic prediction accuracy by 96 

identifying an OTP of a given size that best covers the available genetic space. Some methods 97 

can take into account the genetic information of the proposed validation set to identify a training 98 

set best suited to its prediction, potentially improving prediction accuracies across populations 99 

(Akdemir, 2018; Akdemir, Sanchez, & Jannink, 2015). These methods use a genetic algorithm to 100 

identify a training set that minimizes mean prediction error variance (PEVmean) or maximizes 101 

mean coefficient of determination (CDmean) in the validation set (Akdemir, 2018; Akdemir et 102 

al., 2015). PEVmean has previously been used to improve accuracy when predicting tropical 103 

maize from publicly available training data (Pinho Morais et al., 2020). Based on data mining 104 

techniques and genetic design, three new OTP methods were developed and examined for hybrid 105 

performance prediction: fast and unique representative subset selection (FURS), maximization of 106 

connectedness and diversity (MaxCD), and partitioning around medoids (PAM) (Guo et al., 107 

2019). FURS is based on graphic network analysis. In this method, representative nodes from a 108 

graph derived from the genetic correlation matrix are selected as the training set. MaxCD is a 109 

method based on the population’s mating scheme, selecting a set of hybrids with non-110 

overlapping parents followed by additional hybrids from pairs of inbreds most distantly related 111 

to one another. Finally, PAM is based on a clustering algorithm in which the individuals are 112 

grouped into the desired number of clusters using their genetic covariance matrix; then, the 113 



medoid of each cluster forms the training set (Guo et al., 2019). The methods FURS, MaxCD, 114 

and PAM have not previously been examined in inbreds. 115 

While it is desirable to incorporate exotic germplasm in breeding and specifically 116 

biofortification efforts, doing so is a challenge. In a breeding program, phenotyping the entire 117 

selection population would be expensive in both time and money, particularly for vitamin traits 118 

measured by high-performance liquid chromatography (HPLC), while genomic prediction using 119 

models established with existing data from the adapted germplasm would require extrapolation. 120 

Therefore, we investigated this dilemma through a systematic examination of genomic prediction 121 

of grain tocochromanol traits in both the Ames Diversity Panel (AP, a diverse panel of adapted 122 

inbreds) and BGEM (a panel of exotic-derived DH lines) (Fig. 1) (Dzievit et al., 2021; Gianola, 123 

2021; Yu et al., 2016). In this study, we first demonstrated the accuracy of genomic prediction 124 

for nine grain tocochromanol traits within AP and BGEM individually and the challenge of using 125 

adapted inbreds in AP to predict exotic-derived lines in BGEM. Next, we validated the OTP 126 

design methods FURS, MaxCD, and PAM in inbreds and compared with PEVmean and 127 

CDmean. Finally, we applied the OTP design methods to the combined AP-BGEM data to 128 

identify training sets that could generate accurate predictions of tocochromanols for the exotic-129 

derived germplasm.  130 

2. MATERIALS AND METHODS 131 

2.1 Experimental Material 132 

Experimental materials were from the Ames Diversity Panel (AP) and BGEM populations. 133 

AP consists of 2,815 diverse maize inbreds sampled from breeding programs around the world 134 

(Romay et al., 2013). BGEM consists of 252 DH lines created by crossing 54 exotic maize 135 

accessions representing 52 exotic maize races with the temperate-adapted expired Plant Variety 136 



Protection (ExPVP) lines PHZ51 and/or PHB47 to create F1 plants. Each F1 was backcrossed to 137 

its ExPVP parent, producing 71 unique BC1F1 populations, which were crossed to a haploid 138 

inducer to create haploid plants. These haploid plants were self-pollinated to create the 252 139 

BGEM lines (Vanous et al., 2018). 140 

In 2015 and 2017, 1,815 maize inbreds from AP that are adapted to the U.S. Corn Belt (able 141 

to flower and set seed in Iowa) were grown in Boone, Iowa in a randomized augmented block 142 

design. In 2018, a subset of 1,023 of these inbreds were again grown in Boone, Iowa in a 143 

randomized augmented block design. Based on this data, the AP lines grown in 2015 and 2017 144 

but not 2018 were designated the AP training set, while remaining AP lines (grown in 2015, 145 

2017, and 2018) were designated the AP validation set. This enabled prediction of the validation 146 

set in the same environment as the training set (2015 and 2017) as well as in a different 147 

environment (2018). A single replication of 225 and 224 BGEM lines were grown in 2016 and 148 

2018, respectively, in Ames, Iowa, for a total of 236 distinct BGEM lines. The two recurrent 149 

parents of the BGEM population (PHZ51 and PHB47) were also grown in both of those years. 150 

2.2 Phenotype data  151 

Each year, mature grain was harvested and tocochromanol traits were measured in the 152 

ground kernels by HPLC and fluorometry as previously described (Lipka et al., 2013). Six 153 

tocochromanol traits were measured as μg/g of dry seed: α-tocopherol (αT), δ-tocopherol (δT), γ-154 

tocopherol (γT), α-tocotrienol (αT3), δ-tocotrienol (δT3), and γ-tocotrienol (γT3). From these, 155 

three additional traits were calculated: total tocopherols (αT + δT + γT, denoted ΣT), total 156 

tocotrienols (αT3 + δT3 + γT3, denoted ΣT3), and total tocochromanols (ΣT + ΣT3, denoted 157 

ΣTT3).  158 



Mature grain was successfully harvested and measured for tocochromanol traits from 215 159 

and 202 of the BGEM lines grown in 2016 and 2018, respectively, as well as the two recurrent 160 

parents. After excluding sweet corn and popcorn lines, which have unique kernel structures that 161 

distort metabolite measurements, 1,444 AP lines were measured in 2015, 1,436 in 2017, and 888 162 

in 2018. Phenotypic data was processed separately for each of four data sets (2015 and 2017 AP 163 

training set, 2015 and 2017 AP validation set, 2018 AP validation set, and 2016 and 2018 164 

BGEM). For each tocochromanol trait, best linear unbiased estimates (BLUEs) were calculated 165 

by fitting the following mixed linear model was fit using the lme4 package in R: 166 

Yijklmn = genotypei + checki + yearj + group × yearij+ genotype × yearij + tier(year)jk + pass(tier × 167 

year)jkl + range(tier × year)jkm + plate(year)jn + εijklmn
  168 

In this model, Yijklmn is a single phenotypic observation; genotypei is the fixed effect of 169 

the ith genotype, set to zero for check genotypes; checki is the fixed effect of the check, set to 170 

zero when the ith genotype is not a check; yearj is the random effect of the jth year; group is an 171 

indicator variable indicating whether the ith genotype is check or non-check; group × yearij is the 172 

random interaction term between the group of the ith genotype and the jth year; tier(year)jk is the 173 

random effect of the kth tier within the jth year; pass(tier × year)jkl and range(tier × year)jkm are the 174 

random effects of the lth pass (field column) and the mth range (field row), respectively, within 175 

the kth field tier within the jth year; plate(year)jn is the random effect of the nth HPLC autosampler 176 

plate used for tocochromanol measurements in the jth year; and εijklmn is the residual term, 177 

assumed to be normally distributed with mean of 0 and variance of σε
2.  178 

Studentized residuals were calculated using these models, and one round of outlier 179 

removal was conducted with a Bonferroni-corrected 0.05 threshold. After removing these 180 



outliers, the models were fitted again to calculate BLUEs, which were used in subsequent 181 

analyses (Table S1). 182 

2.3 Genotype data 183 

For AP, imputed genotyping by sequencing (GBS) data were obtained from Panzea (file 184 

name ZeaGBSv27_publicSamples_imputedV5_AGPv4-181023.vcf). For accessions with more 185 

than one entry in this data set, pairwise identity-by-state (IBS) was calculated. If mean IBS 186 

within a given accession was less than 95%, that accession was dropped. For the remaining 187 

repeated accessions, a consensus sequence was generated for each accession using a custom R 188 

script. This GBS data was then filtered as described in (Wu et al., 2022), leaving 257,995 total 189 

SNPs for further analyses.  190 

For BGEM, GBS data containing 370,630 SNPs was used (Vanous et al., 2018). These 191 

unimputed data contained only biallelic SNPs, and were in AGPv2 coordinates, so they were first 192 

uplifted to v4 coordinates. The GBS data were filtered to exclude SNPs with missing data rates 193 

above 80% or minor allele frequency below 0.5%, then imputed in Beagle 5.0 using default 194 

settings and no map. Finally, SNPs with minor allele frequency below 1% were excluded, 195 

leaving 164,530 total SNPs for further analyses. 196 

After filtering, 257,995 and 164,530 SNPs were present in the AP and BGEM genotype 197 

data, respectively, and were used for within-population predictions. Of these, 68,444 SNPs were 198 

present in both data sets, and were used for cross-population predictions. Lines with phenotype 199 

data but no genotype data were removed from the analysis, creating a final data set of 607 lines 200 

in the AP testing set, 855 in the AP validation set, and 201 in BGEM. 201 



2.4 Genomic prediction 202 

Genomic prediction was conducted using eight methods: gBLUP, sBLUP, and cBLUP 203 

(Wang et al., 2018) implemented in GAPIT (Wang & Zhang, 2020); and BayesA, BayesB 204 

(Meuwissen, Hayes, & Goddard, 2001), BayesC (Kizilkaya, Fernando, & Garrick, 2010), 205 

Bayesian Ridge Regression (BRR) (Meuwissen et al., 2001), and Bayesian Lasso (BL) (de los 206 

Campos et al., 2009) implemented in BGLR (Pérez & de los Campos, 2014). 207 

The available data enabled the following prediction scenarios (Fig. 1A):  208 

I. AP CV: Ten-fold cross-validation (CV) within the AP training set. 209 

II. BGEM CV: Ten-fold CV within BGEM. 210 

III. AP, common environment: The AP training set used to predict the AP validation set 211 

grown in the same environment (2015 and 2017). 212 

IV. AP, new environment: The AP training set used to predict the AP validation set 213 

genotypes grown in a different environment (2018). 214 

V. AP predicting BGEM in new environment: The AP training set used to predict 215 

BGEM grown in a different environment. 216 

These prediction scenarios include within-population predictions both in a common 217 

environment (Scenarios I-III) and across different environments (Scenario IV) as well as the 218 

more challenging across-population prediction in a different environment (Scenario V). 219 

Prediction accuracy was calculated as the correlation between the observed and predicted values. 220 

2.5 Principal components analysis 221 

Principal components (PCs) were calculated using the prcomp function in R (version 222 

4.0.3) (R Core Team 2020) using the overlapping 68,444 SNPs found in both BGEM and AP. 223 

First, genotype data for the 201 BGEM lines and the AP training set were used to calculate PCs 224 



(Fig. 2A). Additionally, PCs were calculated using only the AP training set lines, then the 225 

BGEM lines were projected onto these coordinates using the R function predict (Fig. 2B). 226 

2.6 Optimal training population design 227 

Optimal training populations were examined in five scenarios (Fig. 1B):  228 

A. AP OTP: OTP design used to identify a subset of the AP training set; this subset used to 229 

predict the remainder of the AP training set. 230 

B. BGEM OTP: OTP design used to identify a subset of BGEM; this subset used to predict 231 

the remainder of BGEM. 232 

C. AP and BGEM predicting AP validation set (2015 and 2017): OTP design used to 233 

identify a subset of the combined AP training set and BGEM data; this subset used to 234 

predict the AP validation set grown in 2015 and 2017. 235 

D. AP and BGEM predicting AP validation set (2018): OTP design used to identify a subset 236 

of the combined AP training set and BGEM data; this subset used to predict the AP 237 

validation set grown in 2018. 238 

E. AP and BGEM predicting remaining BGEM using OTP: OTP design used to identify a 239 

subset of the combined AP training set and BGEM data; this subset used to predict 240 

remaining BGEM. 241 

Five methods were used: PEVmean and CDmean (Akdemir et al., 2015) implemented in 242 

STPGA (Akdemir, 2018); and MaxCD, PAM, and FURs (Guo et al., 2019). For PEVmean and 243 

CDmean, the function GenAlgForSubsetSelctionNoTest was used. Except for the PAM method 244 

which produces a single unique training population in the case of inbreds, OTP methods were 245 

replicated 50 times to create 50 distinct training populations for each prediction scenario. For 246 



each method, OTPs consisting of 2.5%, 5%, 10%, and 15% of the full training set were 247 

identified. The range of 2.5%-15% of the training set was chosen based on Guo et al. (2019). 248 

While PEVmean and CDmean were developed for use in inbreds, the other three methods 249 

were developed for hybrids and so had to be adapted for this purpose (Fig. S1). For the MaxCD 250 

method, a Euclidean distance matrix was calculated from the training set kinship, which was then 251 

used to draw a hierarchical tree. The desired number of inbreds were then chosen, evenly spaced, 252 

from the lowest level of this tree. For each replicate, the tree was shuffled. To enable multiple 253 

replicates for the FURS method, this method was updated to randomly select among equally-254 

good candidates, defined as genotypes with an equal number of connections within the graphic 255 

network, when identifying additional genotypes to add to the training set. Finally, the PAM 256 

method was able to be applied to inbreds without modification, but is the only OTP method 257 

discussed here that produces a unique solution in the case of inbreds. The prediction accuracies 258 

when using these OTPs for gBLUP genomic prediction were compared with accuracies from 259 

random training sets of the same size. 260 

3. RESULTS 261 

3.1 PREDICTION WITHIN POPULATIONS 262 

3.1.1 Prediction within the Ames Diversity Panel 263 

In all three within-population prediction scenarios in AP (Scenarios I, III, and IV, Fig. 264 

1A), prediction accuracy was respectable across all nine traits for seven of the eight genomic 265 

prediction methods (Fig. 3, S2-S4). Excluding sBLUP, prediction accuracies ranged from a 266 

minimum of 0.33 for the Scenario IV prediction of δT3 by BayesA to a maximum of 0.65 for the 267 

Scenario IV prediction of αT by BayesB (Fig. S4). The method sBLUP was a notable exception, 268 

with consistently lower prediction accuracies than other methods in all cases. Otherwise, 269 



prediction accuracies were remarkably consistent for each trait across genomic prediction 270 

methods. Prediction accuracies were also largely consistent across the cross-validation (Scenario 271 

I), within-environment (Scenario III), and across-environment (Scenario IV) prediction scenarios 272 

for each trait (Fig. 3, S2-S4). 273 

3.1.2 Prediction within BGEM 274 

 Ten-fold cross-validation within BGEM (Scenario II) achieved mean prediction accuracy 275 

ranging from 0.41 for ΣTT3 predicted by BL to 0.79 for δT predicted by BL or BRR (Fig. S5). 276 

Again, sBLUP was a notable outlier with significantly lower prediction accuracies than other 277 

methods for all traits. For most traits and prediction methods, prediction accuracies were 278 

significantly higher in BGEM CV (Scenario II) than in AP CV (Scenario I) (Fig. 3); for example, 279 

when excluding sBLUP, the trait with the highest prediction accuracies in BGEM CV was δT, 280 

with mean prediction accuracies of 0.78-0.79 (Fig. S5), as compared to 0.44-0.47 in AP CV (Fig. 281 

S2). 282 

3.2 PREDICTION ACROSS POPULATIONS 283 

To examine the challenge of predicting novel, exotic-derived germplasm from adapted 284 

germplasm, the AP training set was used to predict BGEM (Scenario V) (Fig. 3). For a few traits, 285 

similar prediction accuracies were observed to those from within-population prediction 286 

scenarios; for example, prediction accuracy of 0.67 was achieved for δT using gBLUP in 287 

Scenario V, which is comparable to the accuracy values of 0.46 and 0.79 observed for this trait in 288 

Scenarios I and II, respectively (Fig. 3). For most traits, though, prediction accuracies were very 289 

erratic across methods and poor overall, including many negative accuracies. The sBLUP 290 

method was no longer the consistently worst method and in fact was the best method for one trait 291 



(αT3) (Fig. S6). In general, there was no consistently best or worst genomic prediction method, 292 

in part because no single method was able to provide positive prediction accuracies for all traits. 293 

This poor prediction accuracy likely reflects the genetic distance between the two 294 

populations and the resulting extrapolation of the genomic prediction model when predicting 295 

across populations. In PCs based on the combined data of the AP training set and BGEM, clear 296 

separation was visible between AP and BGEM, as well as between BGEM lines with the PHB47 297 

parent and those with the PHZ51 parent (Fig. 2A). When the BGEM lines were projected onto 298 

PCs based only on AP training set genotypes, all BGEM lines were clustered around (0,0), 299 

indicating that the observed genetic diversity in AP used to construct these PCs did not well 300 

reflect that found in BGEM (Fig. 2B).  301 

Because results from different prediction methods are generally consistent (with the 302 

exception of sBLUP), the rest of this paper focuses on gBLUP genomic prediction because of its 303 

superior computational speed (Wang et al., 2018) rather than running all eight prediction 304 

methods. 305 

Including PCs in genomic prediction models to account for population structure may 306 

improve prediction across populations (Dadousis, Veerkamp, Heringstad, Pszczola, & Calus, 307 

2014); therefore, PCs were added to the gBLUP model used in Scenario V. We found that 308 

including PCs in the genomic prediction models, does have the potential to improve prediction 309 

accuracies (Fig. S7). However, this potential would only be usable if an appropriate number of 310 

PCs could be identified without using validation set phenotypes. Three methods were used to 311 

select the number of PCs to include: identifying the elbow in the scree plot (Cattell, 1966), a 312 

BIC-based model selection implemented in GAPIT (Wang & Zhang, 2020), and identifying the 313 

number of PCs that minimizes the mean square error (MSE) of predictions within the training set 314 



using ten-fold cross validation (Dadousis et al., 2014). However, these methods provided 315 

inconsistent results (Table S2). Overall, no single method consistently identified the best-316 

performing model, and for three traits (αT, γT3, ΣT3), all models returned negative prediction 317 

accuracies (Table S2, Fig. S7).  318 

3.3 OPTIMAL TRAINING POPULATION DESIGN 319 

3.3.1 Optimal training population validation 320 

A small, optimally-selected training population was sufficient to achieve prediction 321 

accuracy comparable to ten-fold cross-validation within a given population in both AP (Scenario 322 

A) and BGEM (Scenario B) (Fig. S8, S9) using gBLUP. In fact, some traits and training set 323 

design methods reached the same or better mean accuracy compared to the corresponding CV 324 

while requiring only a fraction of the phenotyping effort. For example, prediction accuracy for 325 

γT was even higher when predicted by 10% of BGEM selected by PAM (0.68, Scenario B) than 326 

in BGEM CV (0.65, Scenario II) (Fig. S5, S9). Notably, the PAM-selected training set provided 327 

the best (or tied for best) prediction accuracy in 52 out of 72 cases examined and was second-328 

best (or tied for second) in an additional 13 cases. It was significantly better than the random 329 

training set in all cases in Scenario B and in all but one case (δT predicted by 15%) in Scenario 330 

A, although the relative advantage of PAM over the random training set tended to decrease as the 331 

size of the chosen training population increased. 332 

3.3.2 Optimal training population for prediction across populations 333 

Because some traits (e.g., αT3) had extremely low and even negative prediction 334 

accuracies when predicting across populations, even after adding PCs to control for population 335 

structure or using OTP within the AP training set to predict BGEM (Fig. S10), it seems likely 336 

that BGEM has genetic diversity for these traits that is not present in AP and therefore cannot be 337 



predicted using AP alone. This was also supported by the PCA, as all BGEM lines clustered 338 

around zero when projected onto PCs calculated based on AP data (Fig 2B), but formed distinct 339 

clusters when BGEM genetic data were included in PC construction (Fig. 2A). Therefore, it is 340 

logical to create a training population including both AP and BGEM lines, but to use OTP design 341 

to decrease total phenotyping investment. 342 

Doing so enabled successful prediction of the remaining BGEM lines for all traits 343 

(Scenario E) (Fig. 4, Fig. S11). Even difficult traits like αT and αT3 had good prediction 344 

accuracies using only 2.5% of the combined AP training set and BGEM data as a training 345 

population. Again, PAM gave consistently good results, providing the best mean prediction 346 

accuracy in 21 out of the 36 cases and second best in seven cases; however, it is worth noting 347 

that as the training population size increased, the relative advantage of PAM over random 348 

selection decreased. In fact, in nine cases, PAM did not perform significantly better than random. 349 

Not all training set selection methods performed comparably; for example, FURS performed 350 

poorly in several traits, notably ΣTT3.  351 

Additionally, to verify that the combined OTPs could predict both populations, they were 352 

also used to predict the AP validation set in 2015 and 2017 (Scenario C, Fig. S12) and in 2018 353 

(Scenario D, Fig. S13). While the OTPs did not predict the AP validation set as well as did the 354 

full AP training set, prediction accuracies up to 0.41 were achieved. Again, PAM was the best 355 

OTP method in most cases, and OTP design generally provided a greater advantage over random 356 

design in smaller training population sizes. 357 

4. DISCUSSION 358 

 As expected, genomic prediction for tocochromanol traits achieved generally high 359 

accuracies within both the BGEM and the AP population (Scenarios I-IV). In addition, 360 



prediction accuracies with AP for a given trait across CV, common environment, and different 361 

environment prediction scenarios (Scenarios I, III, and IV) were consistent (Fig. S2-S4). The 362 

consistent accuracies across the common and different environment prediction scenarios could 363 

indicate that tocochromanol content is a relatively stable trait, or alternatively that the 364 

environments studied were too similar in important factors for noticeable genotype by 365 

environment interaction to occur. The consistency across all three prediction scenarios indicates 366 

that the AP training set contains a good representation of the diversity present in AP for these 367 

traits. Together, this suggests that tocochromanol content is well-suited to improvement by 368 

genomic selection within a population, facilitating biofortification. 369 

The widespread application of genomic prediction in crop breeding has prompted the 370 

development of many different prediction models (e.g., (Kizilkaya et al., 2010; Meuwissen et al., 371 

2001; Wang et al., 2018). Because these different methods make different assumptions about the 372 

true genetic architecture of a trait, they are expected to have different prediction accuracies 373 

depending on how closely those assumptions correspond to the reality for a given trait. For 374 

example, the sBLUP method is best suited for prediction of simple traits controlled by few genes 375 

(Wang et al., 2018). The poor relative performance of sBLUP in the tocochromanol traits 376 

analyzed in this study may suggest that the true genetic architecture of these traits in AP and 377 

BGEM is more complex. This is supported by existing literature, as 52 QTLs have previously 378 

been reported for tocochromanol content in maize grain (Diepenbrock et al., 2017). Barring 379 

mismatches between the assumptions of the genomic prediction model and the true genetic 380 

architecture, any modern genomic prediction model will typically produce similarly good results 381 

(e.g., (Calus et al., 2014; Daetwyler, Calus, Pong-Wong, de los Campos, & Hickey, 2013). 382 

Therefore, when selecting a genomic prediction method from among several with assumptions 383 



that fit a given situation, computational efficiency and ease of implementation may become the 384 

decisive factor. 385 

 However, prediction accuracies drop substantially with all methods when predicting 386 

across populations (Fig. 3, Fig. S6). Despite previous principal coordinate analyses grouping 387 

GEM lines between ExPVP and tropical lines, suggesting some shared genetics between Corn 388 

Belt and exotic lines (Romay et al., 2013), as well as generally overlapping phenotypic ranges 389 

for tocochromanol traits (Table S1), PCA of BGEM and AP in this study indicated that these two 390 

populations had different patterns of genetic diversity (Fig. 2). This leads to extrapolation when 391 

using genomic prediction across these populations. While some traits (e.g., ΣT) achieved 392 

comparable prediction accuracy across populations as within populations, most traits had 393 

substantially poorer and even negative (e.g., αT, γT3) prediction accuracies when predicting 394 

across populations (Fig. 3, S6). Incorporating PCs in the model to improve genomic prediction 395 

accuracy in the presence of population structure has been suggested and has been successful in 396 

some cases (Azevedo et al., 2017; Dadousis et al., 2014) but not all (Lyra et al., 2018). This did 397 

improve prediction accuracies in some traits, notably αT3 when using PCs based on the 398 

combined AP and BGEM data (Fig. S7). However, the available methods of selecting PCs a 399 

priori for inclusion in the model often provide very different recommendations and resulting 400 

prediction accuracies, and in fact rarely select the model with the highest prediction accuracy 401 

(Table S2).  402 

 Optimal training population design improved or maintained prediction accuracy while 403 

reducing required investment in phenotyping. The training population design methods used in 404 

this analysis were developed for use in diverse panels of inbreds (PEVmean and CDmean) 405 

(Akdemir et al., 2015) or in hybrids (MaxCD, FURS, and PAM) (Guo et al., 2019). Here, all 406 



methods were validated in BC DHs for the first time in Scenario B, and MaxCD, FURS, and 407 

PAM were validated in diverse inbreds for the first time in Scenario A. While PEVmean and 408 

CDmean could be directly applied to the BGEM and AP data using existing R functions 409 

(Akdemir, 2018), MaxCD, FURS, and PAM methods were adapted for use in non-hybrids. 410 

Compared to CV, OTP reached comparable or occasionally even better prediction accuracy 411 

when predicting within both AP and BGEM while requiring only a fraction of the phenotyping 412 

effort. PAM performed well in both Scenario A and B validation and has the advantage of 413 

recommending a single optimal training population, providing a clear recommendation of which 414 

individuals to phenotype to form the training population. Notably, the relative advantage of 415 

optimal training population design over random selection was greatest in small training 416 

population sizes, as seen in previous literature (Pinho Morais et al., 2020). 417 

 Optimal training population design also performed well in across population prediction. 418 

When using only AP lines in the training set, prediction accuracies were similar overall whether 419 

using an optimal training population (Fig. S10) or the full AP training set (Fig S6), despite OTP 420 

using a much smaller training population and therefore requiring much less resources for 421 

phenotyping. However, these still included very poor and even negative accuracies. Instead, 422 

creating an optimally selected training set from the combined adapted and exotic-derived 423 

populations provided a solution to improve prediction accuracy while minimizing additional 424 

phenotyping effort required compared to a random approach. Using PAM to identify an OTP 425 

consisting of only 2.5% of the combined AP training set and BGEM data (Scenario E) enabled 426 

notably improved prediction accuracies of 0.25-0.78 when predicting the remaining BGEM lines 427 

(Fig. 4, S11). This OTP was not limited to predicting BGEM. It was able to predict both 428 

component populations, as shown by prediction accuracies up to 0.41 when used to predict the 429 



AP validation set (Scenarios C-D, Fig. S12, S13). Of course, this approach does require the 430 

growing and phenotyping of some members of the new population. However, in the case of 431 

exploiting novel, exotic germplasm, this small additional investment is worthwhile as it results in 432 

a significant increase in prediction accuracy by avoiding extrapolation. 433 

 The diverse germplasm available from gene banks and exotic-derived panels such as the 434 

BGEM panel studied here are a critical resource for breeders, especially as they continue to 435 

improve both yield and nutritional content in the face of rapid changes in climate coupled with 436 

increasing global population (Dyer, López-Feldman, Yúnez-Naude, & Taylor, 2014; McLean-437 

Rodríguez, Costich, Camacho-Villa, Pè, & Dell’Acqua, 2021; Vanous et al., 2018; Yu et al., 438 

2016). Notably, exotic donor lines have already been used to increase provitamin A in maize 439 

grain (Menkir, Rocheford, Maziya-Dixon, & Tanumihardjo, 2015). Genomic prediction has been 440 

recommended as an approach to turbocharge gene banks, enabling assessment and utilization of 441 

these genetic resources (Yu et al., 2016). OTP design methods will facilitate this process, 442 

enabling the initial design of the training set and efficient updates of existing training sets as 443 

additional diverse germplasm is genotyped. 444 

5. CONCLUSION AND PERSPECTIVES 445 

Genomic prediction is a critical tool in crop breeding, enabling rapid prediction and 446 

selection of new germplasm. It relies on shared genetic information between the training and 447 

testing set, but in the case of a new exotic-derived validation set, this assumption may not be 448 

justified for all traits, limiting the utility of genomic prediction in exotic germplasm. However, 449 

incorporating exotic germplasm can bring new diversity and potentially beneficial alleles into the 450 

breeding program, creating a dilemma. In this study, we investigated this dilemma and found that 451 



OTP design using only 2.5% of the combined adapted and exotic germplasm sets enabled 452 

acceptable prediction accuracy in the rest of the exotic-derived population.  453 

Therefore, when incorporating a new exotic population into a breeding program or 454 

genomic prediction model, we recommend using PAM or a similar optimal training population 455 

design method to identify an optimal subset of the combined adapted and exotic lines to 456 

phenotype. This combined training population will facilitate the combination of both populations 457 

into a single breeding program, enabling prediction of members of both populations. The training 458 

population can be made larger or smaller depending on available phenotyping resources and will 459 

enable genomic prediction without extrapolation. This approach will facilitate utilization of 460 

exotic germplasm in maize breeding projects including vitamin E biofortification.  461 
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Figure 1. Overview of genomic prediction scenarios. (A) Five prediction scenarios: I. AP CV; II. 
BGEM CV; III. AP, common environment; IV. AP, new environment; V. AP predicting BGEM 
in new environment. (B) Five Optimal Training Population (OTP) design scenarios: A. AP OTP; 
B. BGEM OTP; C. AP and BGEM predicting AP validation set (2015 and 2017); D. AP and 
BGEM predicting AP validation set (2018); E. AP and BGEM predicting remaining BGEM. In 
both panels, the area of each circle is approximately proportional to the number of lines included; 
filled circles represent members of the population phenotyped in this study. Arrows show 
predictions; circular arrows denote ten-fold cross-validation. Arrow fill denotes the amount of 
information shared between training and validation set; black fill denotes the case with the most 
shared data (common environment, within population), grey fill the moderate case (new 
environment, within population), white fill the least shared data (new environment, across 
populations), and blue/green gradient fill the case in which members of the training set vary in 
the amount of information they share with the validation set (Scenarios C-E ).  



 

Figure 2. Genetic relationship shown with the first two principal components (PCs). (A) Clear 
separation is visible between the Ames Diversity Panel (AP, orange) and BGEM (blue) lines 
when using PCs calculated from the combined genotype data of the AP training set and BGEM. 
Additionally, PC1 clearly separates the BGEM lines by recurrent parent (subgroup, denoted by 
shape). The two recurrent parents of BGEM, present in AP, cluster with their respective 
subgroups of BGEM. (B) The BGEM lines cluster at (0,0) on PCs calculated from the genotype 
data of the AP training set alone. 

  



 

Figure 3. Genomic prediction accuracies. Prediction accuracies for all five genomic prediction 
scenarios (I-V) using gBLUP. For cross-validation scenarios (I and II), ten replicates were 
conducted; error bars show standard error.  

  



 

Figure 4. Prediction accuracy of PAM vs. random selection in Scenario E. The Optimal Training 
Population (OTP) design method PAM as well as random selection were used to select training 
sets of a given proportion (x axis) of the combined data of the AP training set and BGEM, which 
were then used to predict the remaining BGEM lines using gBLUP. Error bars show standard 
error for prediction accuracy based on 50 replicates.  



 

Figure S1. Schematic representations of Optimal Training Population (OTP) design algorithms. 
Red indicates inbreds chosen for the training population using MaxCD (maximization of 
connectedness and diversity), PAM (partitioning around medoids), and FURS (fast and unique 
representative subset selection). Two other OTP design methods, CDmean and PEVmean, are 
difficult to visualize due to their iterative nature of search procedure. 



  

Figure S2. Genomic prediction Scenario I results. Genomic prediction accuracies using eight methods to predict nine traits. Ten 
replicates of ten-fold cross-validation were conducted; error bars show standard error.  



 

Figure S3. Genomic prediction Scenario III results. Genomic prediction accuracies using eight methods to predict nine traits. 



 

Figure S4. Genomic prediction Scenario IV results. Genomic prediction accuracies using eight methods to predict nine traits. 



  

Figure S5. Genomic prediction Scenario II results. Genomic prediction accuracies using eight methods to predict nine traits. Ten 
replicates of ten-fold cross-validation were conducted; error bars show standard error.  



 

Figure S6. Genomic prediction Scenario V results. Genomic prediction accuracies using eight methods to predict nine traits. 



 

Figure S7. Prediction accuracy incorporating principal components in Scenario V. The prediction accuracy (y axis) achieved in 
Scenario V by a gBLUP model including a given number of principal components (PCs, x axis) is shown for each trait (panel labels). 
Results are shown for PCs calculated from the combined genotype data from AP and BGEM (denoted A, see Fig. 2A) and from the 
AP genotype data only (denoted B, see Fig. 2B), shown in blue and orange, respectively.  



 

Figure S8. OTP Scenario A results. Five different OTP design methods as well as random selection were used to select training sets of 
a given size (x axis) from the original Ames Diversity Panel (AP) training set, which was then used to predict the remaining AP 
training set lines. Error bars show standard error for prediction accuracy based on 50 replicates.



Figure S9. OTP Scenario B results. Five different OTP design methods as well as random selection were used to select training sets of 
a given size (x axis) from the available BGEM data, which was then used to predict the remaining BGEM lines. Error bars show 
standard error for prediction accuracy based on 50 replicates.   



  

Figure S10. Five different OTP design methods as well as random selection were used to select training sets of a given size (x axis) 
from the AP full training set data, which was then used to predict the BGEM lines. Error bars show standard error for prediction 
accuracy based on 50 replicates.   



  

 
Figure S11. OTP Scenario E results. Five different OTP design methods as well as random selection were used to select training sets 
of a given proportion (x axis) of the combined AP full training set and BGEM data, which was then used to predict the remaining 
BGEM lines. Error bars show standard error of prediction accuracy based on 50 replicates.  



 

Figure S12. OTP Scenario C results. Five different OTP design methods as well as random selection were used to select training sets 
of a given proportion (x axis) of the combined AP full training set and BGEM data, which was then used to predict the AP validation 
set grown in 2015 and 2017. Error bars show standard error for prediction accuracy based on 50 replicates.  



 
Figure S13. OTP Scenario D results. Five different OTP design methods as well as random selection were used to select training sets 
of a given proportion (x axis) of the combined AP full training set and BGEM data, which was then used to predict the AP validation 
set grown in 2018. Error bars show standard error for prediction accuracy based on 50 replicates.  



Table S1: Phenotypic summary. Mean, standard deviation, minimum, and maximum BLUE 
values in μg per gram of dry seed for tocochromanol traits in the Ames Diversity Panel Training 
Set (AP) and BGEM.   

Population Trait Mean Standard 
Deviation Minimum Maximum 

AP αT 5.90 4.69 -1.77 41.36 

BGEM αT 7.12 4.39 0.24 21.57 

AP αT3 7.88 3.11 0.88 21.60 

BGEM αT3 9.19 2.93 1.33 17.20 

AP δT 1.73 1.52 -0.21 9.67 

BGEM δT 2.02 2.01 -0.65 10.81 

AP δT3 0.88 0.82 0.01 6.64 

BGEM δT3 1.17 0.67 0.09 3.64 

AP γT 41.26 20.19 1.14 115.83 

BGEM γT 41.90 16.83 6.41 84.52 

AP γT3 17.04 11.28 0.48 62.16 

BGEM γT3 17.11 6.13 3.21 36.83 

AP ΣT 49.12 21.92 5.39 135.01 

BGEM ΣT 51.05 16.47 14.55 100.96 

AP ΣT3 25.94 12.55 3.88 72.45 

BGEM ΣT3 27.36 7.57 11.62 49.90 

AP ΣTT3 75.44 26.77 19.00 170.52 

BGEM ΣTT3 78.57 17.43 26.73 130.98 

 

  



Table S2: Optimal number of principal components (PCs) selected for inclusion in the gBLUP 
model for prediction of BGEM using the AP subset as a training set. Based on the scree plot, 0 to 
7 PCs were considered for inclusion in the model. Results are shown for PCs calculated from the 
combined genotype data from AP and BGEM (denoted A, see Fig. 2A) and from the AP 
genotype data only (denoted B, see Fig. 2B). Three methods were used: identifying the elbow in 
the scree plot (denoted Scree plot) (Cattell, 1966), a BIC-based model selection implemented in 
GAPIT (denoted BIC) (Wang & Zhang, 2020), and identifying the number of PCs that 
minimizes the mean square error (MSE) of predictions within the training set using ten-fold cross 
validation (denoted MSE) (Dadousis et al., 2014). For GAPIT, the model-selection procedure 
was run separately for each trait but the same result was found for all traits.  

Method Trait Optimal # PCs 
(A)  

Optimal # PCs 
(B)  

Scree plot All  5 7 
BIC All 0 0 
MSE αT 0 0 
MSE αT3 0 0 
MSE δT 0 0 
MSE δT3 0 0 
MSE γT 3 1 
MSE γT3 0 1 
MSE ΣT  3 2 
MSE ΣT3 1 1 
MSE ΣTT3  3 6 
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