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Abstract

Increasing coastal inundation risk in a warming climate will require accurate and reliable seasonal forecasts of sea level anomalies

at fine spatial scale. In this study, we explore statistical downscaling of monthly hindcasts from six current seasonal prediction

systems to provide high resolution prediction of sea level anomalies along the North American coast, including at several tide

gauge stations. This involves applying a seasonally-invariant downscaling operator, constructing by linearly regressing high-

resolution (1/12º) ocean reanalysis data against its coarse-grained (1º) counterpart, to each hindcast ensemble member for

the period 1982-2011. The resulting high resolution coastal hindcasts are significantly more skillful than the original hindcasts

interpolated onto the high resolution grid. Most of this improvement occurs during summer and fall, without impacting the

seasonality of skill noted in previous studies. Analysis of the downscaling operator reveals that it boosts skill by amplifying the

most predictable pattern while damping the less predictable pattern.
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Key Points:6

• Sea level prediction from relatively coarse operational forecasts can be enhanced7

to finer coastal scales using statistical downscaling8

• Downscaling can be determined by multivariate linear regression trained from high-9

resolution reanalysis and its coarse-grained counterpart10

• This downscaling method significantly improves skill compared to bilinearly in-11

terpolated hindcasts at several US tide gauge locations12
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Abstract13

Increasing coastal inundation risk in a warming climate will require accurate and reli-14

able seasonal forecasts of sea level anomalies at fine spatial scale. In this study, we ex-15

plore statistical downscaling of monthly hindcasts from six current seasonal prediction16

systems to provide high resolution prediction of sea level anomalies along the North Amer-17

ican coast, including at several tide gauge stations. This involves applying a seasonally-18

invariant downscaling operator, constructing by linearly regressing high-resolution (1/12◦)19

ocean reanalysis data against its coarse-grained (1◦) counterpart, to each hindcast en-20

semble member for the period 1982-2011. The resulting high resolution coastal hindcasts21

are significantly more skillful than the original hindcasts interpolated onto the high res-22

olution grid. Most of this improvement occurs during summer and fall, without impact-23

ing the seasonality of skill noted in previous studies. Analysis of the downscaling oper-24

ator reveals that it boosts skill by amplifying the most predictable pattern while damp-25

ing the less predictable pattern.26

Plain Language Summary27

The typical resolution of current seasonal climate forecast systems is too coarse to28

meet the needs for coastal ocean management and services including sea level forecast29

along U.S. coasts. This is becoming an increasingly important need as sea levels rise in30

a warming climate. To provide such information, we developed an efficient way to make31

predictions of sea level on much smaller spatial scales, on the order of 10 km. We tested32

our approach by using past forecasts (“hindcasts”) from existing climate forecast sys-33

tems using the observed statistical relationship between sea level variations on scales of34

100-1000 km and finer-scale coastal ocean observations. Our statistical approach improves35

the hindcast skill by which it projects and amplifies some of the predictable large basin-36

scale signals to coastal ocean fine structures.37

1 Introduction38

Sea level rise has increased the frequency, severity, and duration of coastal flood-39

ing in the past few decades (Sweet et al., 2014; Wdowinski et al., 2016; Ezer & Atkin-40

son, 2014; Moftakhari et al., 2015). These changes can impact coastal communities through41

groundwater inundation (Rotzoll & Fletcher, 2013), beach erosion (Anderson et al., 2015)42

and storm-drain backflow and damage to the infrastructure (Habel et al., 2020). Coastal43

flooding frequency, due both to accelerated sea level rise (Sallenger et al., 2012; Nerem44

et al., 2018) and increasing sea level variability under climate change (Widlansky et al.,45

2020), is projected to steadily increase (Dahl et al., 2017; Kruel, 2016; Kriebel et al., 2015;46

Thompson et al., 2021; Wdowinski et al., 2016) and double by 2050 (Vitousek et al., 2017).47

This increasing risk to coastal infrastructure necessitates more accurate and reliable pre-48

diction of high-water level events months and seasons in advance.49

Previous studies have demonstrated that dynamical seasonal forecasting systems50

can forecast sea level variation in the open ocean and at some coastal locations (Miles51

et al., 2014; McIntosh et al., 2015; Widlansky et al., 2017; Long et al., 2021), but in gen-52

eral prediction for coastal regions remains challenging. First, by definition the coasts are53

the numerical boundary of the ocean model and require special treatment in the numer-54

ical integration. Second, the spatial resolution of the current generation of forecast sys-55

tems is too coarse to fully resolve the topography and fine-scale dynamics near the coasts.56

This issue could be addressed by employing much finer grid spacing in the global fore-57

cast models, but the resulting computational burden and model output storage require-58

ments would be considerable, especially given the need for multiple ensemble members.59

Alternatively, through the use of downscaling techniques (Pielke Sr & Wilby, 2012;60

Castro et al., 2005), regional forecast output with higher resolution than that of the orig-61
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inal coarse-grained forecast system can be obtained either dynamically, using regional62

numerical models with higher resolution but in a limited domain, or statistically, by find-63

ing a statistical relationship between coarse-grained and fine-scale data. Dynamical down-64

scaling can potentially benefit from the resolved dynamics (other than parameterized pro-65

cesses) and topography in the regional model compared to coupled GCMs (M. A. Alexan-66

der et al., 2020; Shin & Alexander, 2020). Yet, it still requires substantial computational67

and storage resources. Statistical downscaling, on the other hand, usually provide com-68

parable results without the need for lengthy numerical integration and is often used as69

a benchmark against which dynamic downscaling is evaluated (Goubanova et al., 2011).70

This study aims to develop a high resolution forecast of coastal sea level anoma-71

lies from the existing seasonal forecast product using a simple regression-based statis-72

tical downscaling method, whose results can serve as a benchmark for evaluation of fu-73

ture development of more advanced statistical and dynamical downscaling methods. This74

paper is organized as follows. Section 2 introduces the observational and reanalysis data75

and model hindcast dataset used in this study. Section 3 describes the details of the regression-76

based downscaling procedure. The validation of the downscaling technique and the skill77

of the downscaled hindcasts are presented in Section 4. Section 5 includes the conclu-78

sion.79

2 Data description80

To assess the skill of the statistical downscaling, we use monthly observations of81

sea level from coastal tide gauges, sea surface height (SSH) fields from reanalysis and cou-82

pled climate model hindcast products.83

2.1 Tide Gauge Observation84

Six tide gauge stations (black dots in Fig. 1: San Diego, San Francisco, South Beach,85

Virginia Key, Charleston and Atlantic City) are chosen to represent typical coastal lo-86

cations in the United States. Tide gauge observations usually have long time coverage87

and are fairly consistent with other observations such as Satellite Altimetry (Long et al.,88

2021).89

2.2 GLORYS Reanalysis90

GLORYS Ocean Reanalysis Version 12v1 (hereafter GLORYS; Jean-Michel et al.,91

2021, and references therein) is a global eddy-resolving ocean and sea ice reanalysis, car-92

ried out by the Copernicus Marine Environment Monitoring Service (CMEMS), which93

provides monthly ocean fields in 1/12◦ horizontal resolution and 50 vertical levels, and94

covers the period from 1993 to present. The reanalysis system assimilates along-track95

satellite derived sea level anomalies, satellite derived sea surface temperature, and in situ96

temperature and salinity vertical profiles , but not tide gauge data. However, extensive97

comparison shows that the SSH output from GLORYS is highly correlated with tide gauge98

observation along the U.S. coastlines (Amaya et al., 2022, and Fig. S1).99

2.3 Hindcasts100

We downscaled hindcasts from six current generation seasonal forecast systems (Ta-101

ble S1), developed by different operational centers around the world, using models with102

different resolution, assimilation and parameterization schemes (Merryfield et al., 2013;103

Kirtman et al., 2014; Saha et al., 2014; Zhang et al., 2007). Hindcast ensembles of SSH104

from each of these models, initialized at each calendar month from 1982 to 2011 with105

lead time up to 12 months, were used in this study. We defined the lead-1 month as the106

same month during which the model forecast is initialized. For example, if the forecast107
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was initialized on January 1st, then the monthly averaged forecast for January was the108

lead-1 month forecast (other studies might call it lead-0 or lead-0.5 month), February109

is the lead-2 month forecast, and so on. To remove the mean bias (model drift) in the110

hindcasts, we removed the initial time and lead-time dependent climatology determined111

separately for each model, which is a common practice for seasonal forecasts that are ini-112

tialized with full field variables (Smith et al., 2013; Vannitsem et al., 2018).113

3 Statistical Downscaling114

We explore determining the downscaling relationship by relating an observational115

fine-scale dataset to a coarse-grained version of itself. The resulting relationship, when116

applied to the bias-corrected hindcasts, then yields downscaled hindcasts. In such prac-117

tices, it is common that the predictor domain is different from the predictand domain118

(Goubanova et al., 2011), and the former is usually larger than the latter to capture the119

large scale variations. We set the predictor as the coarse-grained SSH anomalies deter-120

mined by regridding the GLORYS reanalysis onto the climate model hindcast resolution121

(1◦×1◦) using an areal conservative method, so that the downscaling operator derived122

from the observational datasets can be directly used to downscale the coupled model hind-123

casts. The predictand is set as the SSH anomalies from the GLORYS reanalysis on its124

original grid. Here, the anomalies were defined as departures from the monthly clima-125

tology for the years 1993-2018.126

3.1 Domain for Predictor and Predictand127

To identify a relevant geographic domain for the predictor, the coarse-grained SSH128

anomalies were regressed onto each of the tide gauge observed sea level anomalies (Fig.129

1). For the West Coast (Fig. 1a, b and c), coastal sea level variability is tightly confined130

to a narrow region along the coastline, dominated by coastally-trapped Kelvin Waves131

(Allen, 1975) whose source can be traced back to the Tropics (Meyers et al., 1998). The132

sea level variability at San Diego (Fig. 1a) is associated more strongly with coastal SSH133

signals and less with the open basin SSH pattern, as opposed to farther up the coast in134

South Beach (Fig. 1c) where the situation is reversed. Hence, to capture the large-scale135

pattern associated with coastal variability for all three representative tide gauges, the136

predictor domain for the West Coast was chosen be all ocean points between 20N to 70N137

and 150W to 110W.138

The dynamics of coastal variability for the East Coast are different from those of139

the West Coast. Along the southeast US coast (Fig. 1d and e), sea level variability is140

associated with the western boundary current (i.e., the Gulf Stream) and its extension.141

The weakly positive regression along the Gulf of Mexico indicates that part of the sig-142

nal is from coastally-trapped waves propagating from the southeast US coast to the Gulf143

of Mexico (Pasquet et al., 2013; Ezer, 2016). In contrast, sea level variability near the144

northeast coast (Fig. 1f) appears mostly influenced by local processes. The predictor do-145

main for the East Coast was therefore bounded between 20N to 50N and 90W to 60W.146

The West Coast predictand domain was set to be the area within 200km of the coast-147

line and within the larger predictor domain, while for the East Coast we adopt the South-148

east and Northeast US Continental Shelf Large Marine Ecosystem regions (L. M. Alexan-149

der, 1993). We have tested different reasonable choices for the predictor and predictand150

domains, and our results are not sensitive to these choices.151

3.2 Downscaling procedure152

The key element of statistical downscaling is to find a statistical relationship be-153

tween the predictors and the predictands of interest (e.g. Goubanova et al., 2011, and154

many references therein). A multiple linear regression (MLR) in EOF space was used155
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to determined the statistical relationship between the coarse-grained and fine-scale SSH156

anomalies. The SSH anomalies were further truncated via EOF analysis to minimize the157

sampling uncertainty and thus reduce the effective degree of freedom (i.e. dimensional-158

ity) of limited observation records. Here we used predictor/predictand truncation of 34159

/10 EOFs for the West Coast, and 40/5 EOFs for the East Coast, respectively. Those160

truncation was chosen via extensive 10-fold cross-validation, where 90% of the data was161

used to determine the operator, which was then used to downscale the remaining 10%;162

this process was cycled through ten times, for each possible permutation of predictor/predictand163

truncation pairs (see details in Supplementary Text S1 and Fig. S2).164

Then, the downscaling procedure via MLR becomes:165

y = Bx+ ϵ (1)

where x and y are vectors representing the principal component (PC) time series of pre-166

dictor and predictand, respectively, B is the multivariate regression coefficient (i.e. down-167

scaling operator) matrix and ϵ is the regression error. In order to account for spatial het-168

erogeneity, the MLR is performed between two spatially varying fields, so that B has nonzero169

off-diagonal elements. Moreover, EOF truncations for the predictor and predictand are170

different, so B need not be square. Once the regression coefficient matrix B is determined171

by minimizing the cross-validated regression error, we use it to downscale the hindcast172

in geographical space (Ym):173

Ym = ΦBΨ⊺Xm

where Φ and Ψ are the empirical orthogonal functions corresponding to the PC time se-174

ries in y and x respectively.175

3.3 Testing downscaling against interpolation176

The statistical downscaling approach infers the forecast on a fine-scale grid from177

the forecast on a coarse grid by relating observed large-scale variations to fine-scale vari-178

ations. We hypothesize that this approach is superior to instead filling in the fine grid179

using an interpolation technique, which uses information from the nearby grid points alone,180

but not from the large-scale patterns. In order to justify the statistical downscaling, we181

compared our downscaled hindcasts with a simple extrapolation/interpolation method182

to delineate local (interpolation via nearby coastal points) versus remote (basin to coastal183

scale) influences. To this end, we created an interpolated hindcast dataset: we fill the184

grid points on continents (i.e. extrapolation) by solving a Poisson’s equation on a coarse185

1◦×1◦ grid, and then use bilinear interpolation to find the values on the GLORYS ocean186

grid.187

4 Results188

4.1 Regression Validation189

We first show how well the downscaling operators can reproduce the observed finescale190

coastal SSH anomalies. Figure 2 shows that the downscaled SSH anomalies are gener-191

ally highly accurate within the West Coast domain (Fig. 2a), with the correlation be-192

tween the downscaled SSH anomalies and the original GLORYS data above 0.9 for most193

locations. These correlations are reduced away from the coast, especially around 40N,194

regions with strong mesoscale eddy activity (Stammer, 1997) where our multivariate lin-195

ear regression technique might have difficulty capturing the relationship between coarse-196

grained and fine-scale variability. Downscaled SSH anomalies are also highly correlated197

with GLORYS in the East Coast domain (Fig. 2b). However, the correlation is higher198
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along the Southeast than the Northeast continental shelf, suggesting that the sea level199

variability in the former is associated with large scale SSH variations while the latter is200

more influenced by local processes, which is also consistent with the regression maps in201

Fig. 1. Overall, the linear regression captured the relationship between the coarse-grained202

and fine-scale SSH anomalies with reasonable accuracy for both coastal regions, despite203

their differing dynamics.204

4.2 Forecast Skill205

The patterns of skill of both downscaled and interpolated multi-model ensemble206

mean hindcasts are generally similar (Fig. 3a and b). For the West Coast, the highest207

skill is realized along the southwest coast, which could be attributed to coastally-trapped208

Kelvin Waves. Low skill is found in the offshore region around 40N and in the Gulf of209

Alaska. Downscaling generally improved upon interpolated forecast skill, significantly210

so along the midlatitude coasts and in the Gulf of Alaska region (Fig. 3c). The SVD anal-211

ysis of the downscaling operator (Fig. S6) shows that this improvement is primarily due212

to one single-signed coarse-grained pattern along the coast that is amplified by the down-213

scaling. For the East Coast, where overall skill is notably lower than for the West Coast,214

downscaling still improved skill in a few areas, notably along the Northeast continental215

shelf and in a Southeast continental shelf region away from the coastline. Again, much216

of this improvement is dominated by one single-signed coastal pattern (Fig. S7). The217

effectiveness of the statistical downscaling method varies across the models (Fig. S7 to218

S12), with much more downscaling improvement for the CanCM3 and CanCM4 than the219

other models.220

Figure 4 shows the skill of hindcasts verified against tide gauge observations. Since221

tide gauge data are not assimilated into GLORYS, they provide an independent verifi-222

cation of our technique. For San Diego and San Francisco, statistically downscaled hind-223

casts had significantly improved skill compared to interpolated hindcasts for almost all224

lead times. There is no significant difference in the skill between downscaling and inter-225

polation for South Beach except at lead-1 month. For the three stations on the East Coast226

(Fig. 4d, e and f), downscaled forecasts are significantly more skillful than interpolated227

forecasts for most lead times.228

SSH forecast skill has strong seasonality (Long et al., 2021) that is typically a func-229

tion of the verification month (Shin & Newman, 2021). Figure 5 show the skill for each230

target month and lead time for San Diego and Charleston (other stations are shown in231

Fig. S4). San Diego has higher skill for hindcasts verifying during the cold season than232

for those verifying during the warm season, particularly for October through February,233

consistent with a predictable signal due to ENSO-forced coastally-trapped Kelvin Waves234

(Amaya et al., 2022). West coast sea level variability is also smaller in warm than in cold235

months. The skill of interpolated forecasts has similar seasonality. However, the season-236

ality of the skill is different than that of the skill difference. For example, statistical down-237

scaling improves San Diego hindcast skill during both October-December and April-June.238

San Francisco and South Beach show similar seasonality of skill and skill difference as239

San Diego. In contrast, higher skill for the east coast stations is found for hindcasts ver-240

ifying during late summer and early autumn, for both downscaling and interpolation,241

which is also when the most significant downscaling skill improvement is found (Fig. 5242

and S2). It is also interesting that the downscaling leads to minimal skill improvement,243

or even a minor degradation of skill, during some winter months for most of the stations244

examined here.245

5 Conclusion246

In this study, we demonstrated a statistical downscaling procedure for the seasonal247

forecast of SSH anomalies for US coasts. The downscaling operator obtained by regress-248
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ing fine-scale SSH anomalies onto coarse-grained SSH anomalies can be applied to model249

forecasts to generate a high resolution product. We showed that our statistical down-250

scaling technique can implicitly retrieve some of the skill existing in the fine-scale vari-251

ation. This skill improvement would not have been obtained if we had only interpolated252

the model output to a fine-scale grid, because the fine-scale variabilty is not resolved in253

the coarse-grained model grid. Indeed, this downscaling technique significantly improved254

the hindcast skill of SSH anomalies for the US coasts compared to bilinearly interpolated255

hindcasts. When comparing the downscaled hindcast to the selected six tide gauge ob-256

servations, we found that the downscaled hindcast improved skill for five stations at most257

lead times. While the downscaling did not alter the seasonality of the skill, the skill im-258

provement has different seasonality, for reasons that remain to be explained. One pos-259

sibility is that the downscaling was assumed to be independent of the seasonal cycle, so260

potential improvement might be expected if seasonal variation in the statistical relation-261

ship is included.262

In this study, we have not aimed to “correct” the hindcasts for model error, apart263

from removing the mean bias. That is, when the reanalysis-derived downscaling oper-264

ator is applied to the model hindcasts it is assumed that the model space is largely sim-265

ilar to that of the reanalysis. Of course, in reality these models generate different vari-266

ability than observations or reanalysis, and their hindcasts may evolve in a different state267

space than nature (e.g., Ding et al., 2018), which may be why some model hindcasts are268

more improved than others by the downscaling. Applying a downscaling relationship de-269

termined entirely from observations to coarse-grained forecasts might therefore provide270

less high resolution skill than a downscaling trained on the forecasts themselves, which271

provides a focus for future work.272
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Figure 1. Regression maps of SSH anomalies from coarsened GLORYS reanalysis (1x1 grid

spacing) onto each tide gauge observed sea level anomalies. The unit is centimeter. The name

of each tide gauge is shown on the top of each panel. The black dots indicate the locations of

the tide gauges. The blue line in panel (a) and (d) indicate the domain used in the MLR for

predictand.
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Figure 2. Temporal correlation coefficient between the SSH anomalies from GLORYS and the

regression predicted SSH anomalies for (a) West Coast and (b) East Coast.
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Figure 3. Anomaly correlation for Lead-7 month of (a,d) the downscaled hindcast and (b,e)

the interpolated hindcast, verified against SSH anomaly from GLORYS reanalysis; (c,f) are the

correlation difference between downscaling and interpolation; the hatching indicates the difference

is not statistically significant at 0.1 level.
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Figure 4. Anomaly correlation of the downscaled (red) and interpolated (blue) hindcast,

verified against the tide gauge observation. The solid lines are the anomaly correlation of the

respective ensemble mean of 6 models, and the shading indicates the skill range of all 6 models.

The red circles indicate that the difference of the anomaly correlation between downscaling and

interpolation is statistically significant at that lead time at 0.1 level.
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Figure 5. The Anomaly Correlation of the ensemble mean of downscaling (left column) and

interpolation (middle column) of the hindcast, verified against the tide gauge observation at

San Diego and Charleston, for each lead time and target month; the right column shows the

correlation difference of downscaling and interpolation of the hindcast (downscaling minus in-

terpolation). The black dot indicates the correlation or correlation difference is not statistically

significant at that lead time and target month at 0.1 level.
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Text S1: Optimal Truncation 

Since we built the linear regression in EOF space, we examined its sensitivity to 
the number of EOFs retained for each field in the regression, evaluating how EOF 
truncation impacted the downscaling operator’s ability to reproduce the fine-scale 
GLORYS data from the coarse-grained GLORYS data. The downscaling was calculated 
using a 10-fold cross-validation, where 90% of the data was used to determine the 
operator, which was then used to downscale the remaining 10%; this process was cycled 
through ten times. As a metric of the goodness of fit for the resulting downscaled data, 
we computed the correlation between the downscaled fine-scale SSH anomalies and the 
original fine-scale SSH anomalies, evaluated along both time and spatial dimensions. Fig. 
S2a and d show this metric as a function of both predictor and predictand EOF 
truncation. For the West Coast, the best fit occurred with 34 /10 EOFs retained for the 
predictor/predictand. Additional EOFs eventually degrades the accuracy of the 
downscaling. For the East Coast, the best fit occurred for predictor/predictand truncation 
of 40/5 EOFs. 

 

Text S2: SVD of the downscaling operator 

What the downscaling operator (regression matrix) does is mapping the predictor 
space to the predictand space. SVD (singular vector decomposition) of the downscaling 
operator will help us better understand what modes in the predictor and predictand 
spaces contribute most to the downscaling. 

 The SVD of the downscaling operator is done as follows: 

𝐲 = 𝐁𝐱 
𝐁 = 𝐔𝚺𝐕𝐓 
𝐲 = 𝐔𝚺𝐕𝐓𝐱 

The column vectors in U constitute an orthonormal basis that spans the space of y, and 
the column vectors in V span the space of x. 𝚺 is a diagonal matrix and its diagonal values 
are the singular values of the SVD of B. In principle, the downscaling operator projects the 
predictor x onto each of the singular vector in V, then weights the projection by 
corresponding singular value, and finally multiplies by the singular vector in U. The relative 
magnitude of the singular vectors in V and the singular vector in U weighted by 
corresponding singular values indicates the pattern that has been amplified or damped in 
the downscaling process.  

The dominant three singular vector pairs for each downscaling operator are shown 
in Fig. S4-5. Note that the relative magnitude difference between the left and right singular 
vectors indicates whether this specific structure was amplified or damped by the 
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downscaling operator. For the west coast, the first singular vector pair (top row in Fig. S5) 
shows a pattern with the same sign all along the coast that is amplified by the downscaling, 
and likewise dominates the downscaling skill improvement (see Fig. S6). The second 
singular vector pairs is a dipole-like pattern also confined to the coast, amplified primarily 
in the Southwest coast. These patterns presumably represent effects of different phases of 
coastal Kelvin waves. The third singular vector pair has large magnitude off the coast, but 
the downscaling operator slight damps the pattern along the coast especially at the coast. 
The first and second singular pairs for the east coast are similar to that of the west coast, 
with the first one being a coherent structure and the second one being a dipole-like 
structure (Fig. S5).  Note that the changing sign of the anomalies when moving from the 
coast to the offshore region indicates the influence of the strength of the boundary current 
on the coastal sea level variability through geostrophic balance. 

 In addition, to assess the importance of each singular vector pair in the 
downscaling, we reconstructed the downscaling operator B using different SV truncations. 
Then the different downscaling operator B was used to downscale the hindcast and the 
skill of the downscaled hindcast are accessed. 

 The skills of the downscaled hindcast using different truncation of the singular 
vectors (SVs) in Fig. S4-5 are shown in Fig. S6. For the west coast, the first SV pair is the 
most important while the skill is gradually improved by adding more SV pairs in the 
downscaling operator, with the exception for San Francisco. For the Virginia Key and 
Charleston, only the first pair of the SVs matters for the skill, and the skill degrades if 
adding more SVs in the downscaling operator. For Atlantic City, adding more SVs slightly 
improves the skill, but it is presumably due to the trend component in the dataset (not 
shown). 
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Fig. S1 The sea level anomalies for (a) Virginia Key, (b) Charleston and (c) Atlantic 
City, from GLORYS (blue) and tide gauge observation (red). The correlation 
coefficient between tide gauge observation and GLORYS for each station is 
shown on top of each panel. The nearest grid point in the GLORYS grids to each 
the tide gauge location is used. The unit is centimeter. 

 



 
 
 
 

5 
 

 
 

Figure S2. Space and time aggregated correlation coefficient between the SSH 
anomalies from GLORYS reanalysis and the observational downscaled SSH anomalies for 
(a,b,c) West Coast and (d,e,f) East Coast.  (a,d)  show the correlation coefficient as a 
function of the EOF truncation for predictor and predictand; and (b,c,e,f) show the 
correlation coefficient as a function of the EOF truncation for the predictor (predictand) 
with the predictand (predictor) fixed. 
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Figure S3. The Anomaly Correlation of the ensemble mean of downscaling (left column) 
and interpolation (middle column) of the hindcast, verified against the tide gauge 
observation at San Francisco, South Beach, Virginia Key and Atlantic City, for each lead 
time and target month; the right column shows the AC difference of downscaling and 
interpolation of the hindcast (downscaling minus interpolation). The black dot indicates 
the correlation or correlation difference is not statistically significant at 0.1 level at that 
lead time and target month. 
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Fig. S4 The first three singular vector pairs from SVD of the regression matrix of the 
downscaling for the West Coast. Left column corresponds to the singular vectors related 
to predictor, and right column corresponds to the singular vectors related to predictor. 
The right column was weighted by the corresponding singular values so that the relative 
magnitude change from left column to right column represents the amplification from 
the regression matrix. The regression matrix is in EOF space, and the singular vector are 
reconstructed using the respective EOF patterns from reanalysis. The units of the singular 
vectors are arbitrary.  
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Fig. S5 Same as Figure S5 but for the East Coast. 
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Fig. S6 The anomaly correlation between the downscaled hindcast (solid lines) or 
interpolated hindcast (dash lines) and the tide gauge observation for three tide gauge 
stations at (a) west coast and (b) east coast. The downscaled hindcast is constructed 
using different truncation of the singular vectors in the SVD of the regression matrix (see 
details in Text S1). 
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Fig. S7 Anomaly correlation for Lead-7 month of (a,d) the downscaled hindcast and (b,e) 
the interpolated hindcast from CanCM3, verified against SSH anomaly from GLORYS 
reanalysis; (c,f) are the correlation difference between downscaling and interpolation. 
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Fig. S8 Same as Fig S7 but for CanCM4 model. 
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Fig. S9 Same as Fig. S7 but for CCSM4-UM model. 
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Fig. S10 Same as Fig. S7 but for CFSv2 model. 
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Fig. S11 Same as Fig. S7 but for GFDL model. 
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Fig. S12 Same as Fig. S7 but for ACCESS-S2 model. 
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Table S1. Description of the 6 retrospective forecast systems used in this study. For each 
model system, the corresponding organization, ensemble size, maximum lead (months), 

nominal horizontal resolution of the ocean component (degrees), and a reference are 
indicated. 
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Table 1. Description of the 6 retrospective forecast systems used in this study. For each model system, the corresponding organization, ensemble size, maximum

lead (months), nominal horizontal resolution of the ocean component (degrees), and a reference are indicated.

Model Organization Ensemble size Lead times Resolution Reference

(1) ACCESS-S2 Australian Bureau of Meteorology 12 1-9 0.25�

(2) CanCM3 Canadian Meteorological Centre 10 1-12 1� Merryfield et al. (2013)
(3) CanCM4 Canadian Meteorological Centre 10 1-12 1� Merryfield et al. (2013)
(4) CCSM4-UM University of Miami 10 1-12 1� Kirtman et al. (2014)
(5) CFSv2 National Centers for Environmental Prediction 24 (28) 1-10 0.5� Saha et al. (2014)
(6) GFDL CM2.1 Geophysical Fluid Dynamics Laboratory 10 1-12 1� Zhang et al. (2007)
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