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Abstract

River channels store large volumes of water globally, critically impacting ecological and biogeochemical processes. Despite the

importance of river channel storage, there is not yet an observational constraint on this quantity. We introduce a 26-year

record of entirely remotely sensed volumetric channel water storage (CWS) change on 26 major world rivers. We find mainstem

volumetric CWS climatology amplitude (CA) represents an appreciable amount of basin-wide terrestrial water storage variability

(median 2.78%, range 0.04-12.54% across world rivers), despite mainstem rivers themselves represent an average of just 0.2% of

basin area. We find that two global river routing schemes coupled with land surface models reasonably approximate CA (within

±50%) in only 11.5 % (CaMa-Flood) and 30.7 % (HyMap) of rivers considered. These findings demonstrate volumetric CWS

is a useful quantity for assessing global hydrological model performance, and for advancing understanding of spatial patterns

in global hydrology.
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Key Points:

• We introduce a 26-year record of entirely remotely sensed volumetric chan-
nel water storage anomaly.

• Storage climatology amplitude represents (0.04-12.54%) terrestrial water
storage variability but just 0.2% of basin area.

• This new quantity can be used to analyze river spatial storage patterns in
a way that was previously impossible.

Abstract

River channels store large volumes of water globally, critically impacting ecolog-
ical and biogeochemical processes. Despite the importance of river channel stor-
age, there is not yet an observational constraint on this quantity. We introduce
a 26-year record of entirely remotely sensed volumetric channel water storage
(CWS) change on 26 major world rivers. We find mainstem volumetric CWS
climatology amplitude (CA) represents an appreciable amount of basin-wide
terrestrial water storage variability (median 2.78%, range 0.04-12.54% across
world rivers), despite mainstem rivers themselves represent an average of just
0.2% of basin area. We find that two global river routing schemes coupled
with land surface models reasonably approximate CA (within ±50%) in only
11.5 % (CaMa-Flood) and 30.7 % (HyMap) of rivers considered. These findings
demonstrate volumetric CWS is a useful quantity for assessing global hydrolog-
ical model performance, and for advancing understanding of spatial patterns in
global hydrology.

Plain Language Summary

Rivers are a critical part of global hydrology, but until now the variation in how
much water rivers store has not been observed directly on the global scale. We
created a 26 year record of this quantity across 26 of the world’s largest rivers.
We found that the storage variation in river main channels can represent up
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to 12.54% of the total water variation estimates in a river basin despite only
representing 0.2% of the total surface area. We also find that current methods to
estimate this quantity through modeling (global river routing schemes coupled
with land surface models) are only representing this quantity within 50% of
our estimated value on between 11.5 % (CaMa-Flood) and 30.7 % (HyMap) of
the rivers we studied. This demonstrates that this new quantity has value in
assessing model performance and advancing the way we think about how rivers
function as water storage vessels.

1 Introduction

While spaceborne sensors have revolutionized our understanding of global hy-
drology, some terms in the global water cycle remain poorly observed (Let-
tenmaier et al., 2015). Spaceborne sensors provide information about global
processes that cannot be achieved with in situ measurements alone (Famiglietti
et al., 2015). Despite their scientific potential, remote sensing measurements are
thus subject to important limitations. For example, the Gravity Recovery And
Climate Experiment (GRACE; Tapley et al., 2004, 2019) and GRACE Follow-
On satellite missions have provided invaluable estimates of global water storage
variability (Rodell et al., 2018) by estimating the total terrestrial water stor-
age (TWS) anomaly, but do not provide information on individual hydrologic
storage components such as soil moisture, snow, ground and surface water.

Surface water storage (SWS) in natural and artificial reservoirs, floodplains,
wetlands and river channels is critical to human society and ecosystems, but
complete compartmentalization of surface water storage from remote sensing
measurements has remained elusive (Döll et al., 2012; Oki & Kanae, 2006).
Estimates of the magnitude of SWS compared to total storage have been derived
from global hydrologic models but vary widely: between 0 and 70% in Kim et
al. (2009) as compared with a maximum of 27% from Getirana et al. (2017).
Techniques to estimate SWS by subtracting other storage terms from GRACE
TWS (e.g., Llovel et al., 2010; Swenson et al., 2008; Syed et al., 2008) are
challenging because current estimates suggest that SWS contributes <10% of
overall TWS variability on average (Getirana et al., 2017). Remote sensing
estimates have shed light on storage change in major world floodplains (Papa et
al., 2013; 2015), and on storage in global lakes and reservoirs (Gao et al., 2012;
Tortini et al., 2020), but a comprehensive, observation-based quantification of
storage change in rivers has not been previously presented. Storage change in
rivers can be estimated directly from width and surface height measurements
and can improve our understanding of global hydrologic model accuracy, and of
the global water cycle.

The global estimates of river storage presented in this paper let us quantify river
SWS using a measurement based approach, providing new ability to constrain
global storage dynamics. There are multiple long-term water surface elevation
(Calmant et al., 2008; Coss et al., 2020; Tourian et al., 2016) and river surface
water extent and width (Allen & Pavelsky, 2018; Huang et al., 2012; Yamazaki
et al., 2015) datasets, including validated accuracy. Change in river storage can
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be estimated directly from water surface elevation (WSE) and river width, as
is routinely done with lake storage (Gao et al., 2012). While it is essentially
impossible to directly validate CWS at the scale in our dataset, the uncertainty
can be easily estimated based on the accuracy of WSE and width.

Here, we present the first published data product of volumetric river channel
water storage anomaly (volumetric CWS) over 26 of the world’s largest rivers
using remotely sensed river WSEs and widths in the Global River Radar Al-
timetry Time Series 1 Kilometer Daily (GRRATS1kd, Coss et al., 2019a). We
compute volumetric CWS directly from observations, and include analytical un-
certainty estimates, allowing independent comparison with estimates based on
hydrological modeling. In the context of volumetric CWS we define “anomaly”
as the difference between a value at a particular time, and some reference time,
t (e.g. the first date in our dataset). Storage change is the time derivative of
storage, and can be calculated from the time derivative of the storage anomaly.
GRACE TWS is also either a storage anomaly or storage change estimate; in this
paper we use “TWS” to refer to storage anomaly. We use the new GRRATS1kd
dataset to address three questions: 1) How large are storage variations within
river mainstems compared to basin storage variations estimated by GRACE?
We hypothesize that rivers are frequently hotspots of water storage variability,
a part of watersheds where much greater water storage change tends to occur
than elsewhere, since major rivers typically exhibit seasonal water level variation
measuring several meters, while GRACE TWS seasonal changes are usually <
500 mm across the entire basin (Felfelani et al., 2017; Humphrey & Gudmunds-
son, 2019). 2) What controls spatial patterns of storage variations in rivers? We
hypothesize that patterns in storage variations will be controlled by river width
and changes in drainage area at the location of tributary junctions. 3) How
do estimates of river storage variations compare to modeled values? CWS can
diagnose limitations in the meteorological forcing data, and provided input for
assimilating measurement-based CWS (Emery et al., 2018; Getirana, Kumar,
et al., 2017; Yamazaki et al., 2011). This is to our knowledge the first time
modeled estimates of CWS have been evaluated using CWS values derived from
measurements, and we expect the comparison to shed light on possible areas for
models to improve. It is our hope that this this work can help to lay the ground
work for further study of global surface water storage, as our ability to measure
these is rapidly improving with each new satellite mission.

2 Methods and Datasets

GRRATS1kd is a one kilometer, one day resolution interpolated dataset span-
ning 26 of the world’s largest rivers (Coss et al., 2019a); a list of the rivers
is given in Table 1. GRRATS1kd comprises satellite altimetry measurements
of river WSE interpolated to 1 km daily resolution, and volumetric CWS esti-
mates computed from interpolated WSE and width. The virtual station data
GRRATS (Coss et al., 2019b), is further described in (Coss et al., 2020). In
this section, we briefly describe the datasets and major steps used to compute
volumetric CWS.
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The primary inputs to GRRATS1kd are measurements of river WSE at the
intersection of radar altimeter ground tracks and rivers, or virtual stations (VS)
(GRRATS, described by (Coss et al., 2020)), and river width measurements
obtained using RivWidthCloud, a Landsat processing algorithm for measuring
river width based on Google Earth Engine (Yang et al., 2019).

We analyzed data from two global SWS datasets. Both the Hydrological Model-
ing and Analysis Platform (Getirana et al., 2012; Getirana, Peters-Lidard, et al.,
2017) and the Catchment-based Macro-scale Floodplain model (Yamazaki et al.,
2011; 2014) are river routing schemes capable of simulating river and floodplain
dynamics. Because it is not possible to validate CWS in our study, the inclusion
of uncertainty is critical. Our uncertainty calculations are described in depth in
(S2).

Below, we present three separate analyses of climatologies constructed from
our data. Note that though this requires crossing confluences, their complexi-
ties have a minimal impact on storage change at this scale. First we compare
with GRACE long-term average TWS climatology from the Center for Space Re-
search at the University of Texas at Austin ( http://www2.csr.utexas.edu/grace).
See (S1) for details. For each basin, we create a 26 year volumetric CWS cli-
matology summed over the length of the river (Figure 2B). We then find the
amplitude of volumetric CWS climatology . Some analyses below present CA
normalized by basin drainage area (i.e. we divide the CA value by the basin
drainage area); we refer to this quantity as channel water storage (CWS) follow-
ing the definition for GRACE TWS, CWS is presented with units of mm, and
is comparable to GRACE.

Figure 1 for example, shows the Mississippi CA of 7.51 km3 while the drainage
area is 3,244,506 km2. Dividing CA by drainage area results in a CWS of
~2.3mm.

In our discussion of the relationship of CWS to GRACE we reference mean
slope data from (Coss et al., 2019b, 2020) and calculate an aridity index from
net radiation from Clouds and the Earth’s Radiant Energy System (CERES;
Loeb et al., 2018; Wielicki et al., 1996) and Global Precipitation Climatology
Project (GPCP; Adler et al., 2003).

Second, we relate CA, mean river width, and basin area at 1km resolution and
test if different basin area groups have different CA/width relationships. To
compare CA regimes, we relate our CA data to basin drainage area from Frasson
et al., (2019) testing group regression lines for having statistically different slopes
(S1). Third, we compare with global models by scaling the GRRATS1kd data
up to the model grid resolution (1 or 0.1 degrees), by summing all our 1 km
volumetric CWS data points that fall within each model grid cell. We then
examine two criteria: 1) The CA for all cells overlapping our coverage channel;
2) Correlation coefficient of each model cell, with the average estimated CA from
those estimated sections that fell within the cell. A more in depth description
of methods is available in supplemental material (S1).
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3 Results and Discussion

3.1 Uncertainty propagation

As direct validation of CWS is impossible, we have calculated uncertainty esti-
mates for our volumetric CWS time series and the resulting climatologies. Mean
volumetric CWS time series uncertainty ranges from 0.15 km3 to 7.78 km3 (on
the Zambezi and Amazon rivers, respectively) with a median value 1.48 km3.
The mean volumetric CWS climatology uncertainty ranges from 0.03 km3 to
1.54km3 (on the Zambezi and Amazon rivers, respectively) with a median 0.3
km3. Additionally, we calculated the maximum impact of uncertainty on CA
and report it here as a ratio of uncertainty: CA. This value is calculated as
the absolute difference between the maximum and minimum climatology within
the uncertainty range, divided by the state CA. This value ranged from 0.09-2
(median 0.18). Four rivers had uncertainty that could account for >70% varia-
tion in CA (the Columbia, Parana, Sao Francisco, and Zambezi). While small
CAs (<1km3) might contribute to this high uncertainty in height: width fits
used to generate changes in cross sectional area for times without data is the
most likely. Input data (particularly widths) were limited in those basins. Just
1 river had uncertainty: CA of 2 (Sao Francisco) meaning some model results
that were 2x greater than our CA estimates could be realistic. We find that
the difference between model outputs and our estimates typically exceeds the
disparity between our CWS estimates and their uncertainty.

3.2 The magnitude of main stem CWS as it relates to GRACE TWS

CWS ranges from 0.1 mm to 21.5 mm (on the Zambezi and Ayeyarwada rivers,
respectively), with a mean value of 5.61 mm (Figure 2) on the 26 study rivers. As
expected, the largest values are primarily from tropical basins. Table 1 shows
the ratio of CWS compared with GRACE TWS (CWS:TWS ratio hereafter)
climatology data constructed from Save et al. (2016) for each of the study
river basins. Note that for GRACE comparison the Ganges and Brahmaputra
basins have been combined. CWS:TWS ratio ranges from 0.04% to 12.53%
(on the Zambezi and Uruguay Rivers respectively), with an average of 3.44 %
of GRACE basin TWS. Surprisingly CWS contributes several percent of basin
storage variability on average, despite mainstems representing an average of just
0.2% of total basin area (Table 1). This analysis highlights rivers as storage
hotspots, parts of major drainage basins where an oversized fraction of storage
variation takes place.

CWS: TWS varies over two orders of magnitude on Study Rivers, evincing
tremendous diversity across global basins in rivers’ role in overall basin stor-
age. As the mainstem combines both upstream hydrologic processes and river
hydraulics, we explored the role of basin aridity index (long-term average po-
tential evaporation to precipitation; see (McMahon et al., 2013)) and mainstem
slope in the CWS:TWS. We hypothesized that basins with high AI would have a
lower total runoff, and a lower CWS: TWS ratio, and that basins with low slope
would have slower flow velocities, longer channel residence times, and larger
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CWS: TWS ratios. Ultimately we found that the percentage of the basin mea-
sured (not slope or AI) does have some impact on CWS: TWS ratio (R2 = 0.58),
but this finding heavily impacted by an outlier (R2 = 0.24, without Uruguay).
It unclear what factors drive this variability though CWS coverage area is a
factor. A more in depth analysis of this work is available in the supplement
(TS4,FS1:3).

3.3 volumetric CWS climatology amplitude regimes

While we might expect volumetric CWS climatology amplitude (CA) to in-
crease monotonically with distance downstream, this was frequently not the
case (Rodríguez-Iturbe et al., 1992). We sometimes see the opposite (Congo,
Figure 2) , and most frequently find that CA hotspots occur in a variety of
locations on the mainstem of a river (Amazon, Mississippi). Controls on spatial
patterns of CA in rivers are diverse and complex. The Amazon, for example,
has large flood plain lakes that suppress surface elevation variation (Bonnet et
al., 2008). In an effort to quantify this phenomenon, we compare the relation-
ship between CA and mean channel width, and basin drainage area at 1 km
resolution for 19 of the rivers for which drainage area data are available from
Frasson et al. (2019). Generally, as width increases, the CA increases as well
(Figure 3). This is not a uniformly applicable principle, however. Relative Am-
plitude (e.g. Figure 1a) does not increase uniformly in all rivers as they widen
downstream. This means consideration of variation in space is critical for un-
derstanding individual rivers’ volumetric CWS signature. However, most rivers
show distinct relationships that can be explained by drainage area. Because of
the river sections being analyzed, only 15 of the 19 rivers can be subdivided
into 2 or more distinguishable (drainage area difference > 10%) groups. For
these 15 rivers, all but 2 show the expected relationship between CA, mean
width, and drainage area (Amur and Brahmaputra) where the slope of the CA
: width relationship changes significantly with drainage area. Full results are
available in supplemental material (Figure S4 and Table S3). For the Amur and
Brahmaputra rivers, the slope change is not statistically significant (magnitude
of Z<2). Despite large variation in local storage magnitudes at the 1km scale,
the general trend of changing CA, mean width, and drainage area holds at the
river scale.

3.4 Model Comparisons

While comparison of GRRATS1kd with HyMAP and CaMa-flood reveals promis-
ing similarity between model and estimate data on some rivers (Figure 4),
HyMAP and CaMa-flood reasonably approximate CA in 30.7% and 11.5% of
the rivers respectively. We define “reasonable” as having a climatology ampli-
tude within ±50% (Wrzesien et al., 2017). We show the cumulative distribution
function of these amplitude comparisons for all rivers in Figure 4D (amplitude
ratios<4) to provide a more comprehensive view of these data. With few excep-
tions, model and our estimates are generally in phase; Figure 4c is an exception.
To assess the capabilities of the models to represent spatial patterns in CA, we
also compared the Spatial normalized CA, that is the spatial series of our es-
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timates and modeled climatology amplitude, after gridding GRRATS1kd onto
the model grid. Generally, we found that the models represent the seasonal
amplitude better than spatial patterns. At the grid cell level, we compared sea-
sonal amplitude from the models and our estimates. For CaMa-flood we find
that 65% of rivers (42% statistically significant) have an average cell correla-
tion >0 (15.3% >0.5), with a maximum value of 0.9. HyMAP results show
65.4% of rivers (11.5% statistically significant) with an average cell correlation
>0 (15% >0.5), with a maximum value of 0.91. Overall, these results demon-
strate that while models often represent the magnitude of this signal well, they
often misrepresent the location of the water. Variation in scaling and model
precipitation inputs could contribute many of the differences we see between
the models and our estimate values. When we looked at the modeled volumet-
ric CWS components (width and height variation) in greater depth we found
that the standard deviation of height often exceeds our estimates (median value
of 70.3% and 99.6% of cells in HyMap and CaMa-Flood respectively). Details
can be found in supplemental material (table S3). It is possible that overesti-
mation of height variation and simplified width variation heavily impact where
this variation happens in the models.

5 Conclusions

Here we use a new remote sensing dataset (volumetric CWS) to explore the role
of major world rivers in the global water cycle. We find that rivers are storage
hotspots, parts of major drainage basins with exceptionally large fractions of
total storage variation. Specifically, by comparing our dataset with GRACE,
we showed that the mainstem river accounted for a highly variable percentage
(0.04%-12.54%) of TWS variation within the basin, for study rivers. We hypoth-
esize an array of complex factors, including basin hydrology and river hydraulics,
govern the ratio of river to TWS change among basins; our preliminary results
show that basin-averaged aridity index and river slope do not explain these
variations, though coverage area is an important factor (24% correlation).

We find that within-river spatial patterns in channel water storage climatology
anomaly are highly complex, and do not simply increase monotonically with dis-
tance downstream as we hypothesized. Frequently the opposite pattern emerges,
though highly variable patterns in CWS are most common. We find that the
width and channel water storage climatology relationship generally changes with
flow accumulation (expected behavior), though two study rivers did not show
this. Third, we find study models capture the amplitude of river storage vari-
ations more successfully than they represent river water storage spatially. We
find HyMap and CaMa-Flood represent CWS climatology amplitude reasonably
(±50%) in only 30.7% and 11.5% of rivers considered respectively. We also find
that HyMap and CaMa-Flood cells significantly correlate spatially with our esti-
mate data on just 42% and 11.5% of rivers respectively. We did not diagnose the
cause of these discrepancies but hypothesize that anthropogenic management
(not simulated) play an important role. Future work should explore assimi-
lation of channel water storage into such models, as well as integration with
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existing datasets measuring floodplains and reservoirs. Such work is even more
important given recent and future datasets that represent improved height and
inundated area measurements from sensors such as Planet, Sentinel -2, Landsat
8+9 and the upcoming SWOT mission (Boshuizen et al., 2014; Drusch et al.,
2012; Fu et al., 2009; Markham et al., 2019; Roy et al., 2014). As Durand et
al., (2021) suggests, the ever growing constellation of remote sensing platforms
brings us closer and close to being able to quantify surface water processes glob-
ally and a multisensor data, multidisciplinary approach is an important aspect
for progress in the field of global hydrology.
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Figure 1.

Figure 1. Mississippi volumetric CWS time series. Panel A is the complete
record, while panel B shows constructed climatology (volumetric CWS climatol-
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ogy). In both panels, uncertainty is shown with blue error bars. The Mississippi
climatology amplitude (CA) is 7.51 km3 while the drainage area is 3,244,506 km2.
Dividing CA by drainage area results in a CWS of ~2.3mm.

Figure 2.

Figure 2. CWS (basin normalized CA in mm) shown in greyscale. Individual
1km CA segment data shown in blue-yellow color scale rescaled between zero and
1 (following formula S1) to highlight where rivers store their water. Every 100th
point shown.

Figure 3.
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Figure 3. 1 km section CA (as seen in Figure 2 river lines) and mean width
plots for the Amur (A), and Congo (B) basins. Data is plotted by drainage
area and fit with a least squares regression line per catchment regime. Data is
grouped by large increases in in flow accumulation to avoid comparison across
large tributaries. We then re-assimilated any divisions that did not achieve a
change in basin drainage area>10 %.

Figure 4.
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Figure 4 Storage change climatology plots for the Uruguay (A), Mississippi (B),
and Indus (C) Rivers. HyMAP data is shown in solid blue, CaMa-flood is shown
in dashed blue, and volumetric CWS climatology is shown in in black, and its
uncertainty is plotted in light blue. Panel D shows the CDF of amplitude ratio
comparisons from both models (amplitude ratios<4).

Table 1.

Table 1 Percentage of GRACE TWS estimated in mainstem CWS, basin
drainage areas, CWS coverage area, inundated area from GRWL, and CA
regime change.

River %
GRACE
TWS

Basin
drainage
area
(km2)

CWS
coverage
area
(km2)

GRWL
inun-
dated
area
(km2)

1km CA/
Width
slope
change
with
drainage
area

Amazon ,888,268 ,702 ,673 Yes
Amur ,101,598 ,808 ,194 no
Ayeyarwada ,438 ,449 ,199 Yes
Columbia ,035 ,543 Yes
Congo ,689,187 ,362 ,813 Yes
Ganges-
Brahmaputra

,792,035 ,293 ,160 no

Indus ,062 ,330 -
Kolyma ,254 ,928 ,150 -
Lena ,467,695 ,507 ,836 -
Mackenzie ,805,884 ,559 ,749 -
Mekong ,231 ,244 ,197 Yes
Mississippi ,244,506 ,709 ,002 Yes
Niger ,115,246 ,019 -
Ob ,929,051 ,757 ,176 -
Orinoco ,352 ,899 ,537 Yes
Parana ,639,954 ,096 ,843 Yes
SaoFrancisco ,842 ,132 ,088 Yes
St
Lawrence

,055,756 ,531 ,606 -

Tocantins ,445 ,000 ,914 -
Uruguay ,786 ,872 ,183 Yes
Volga ,410,756 ,787 ,857 -
Yangtze ,908,837 ,460 ,550 Yes
Yenisei ,518,211 ,305 ,558 -
Yukon ,373,188 ,067 ,687 -
Zambezi ,373,188 ,186 No
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