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Abstract

Surface meteorological conditions in the midlatitudes are embedded within and affected by synoptic-scale systems, including the

movement and persistence of air masses (AMs). Changes in the frequencies of different AMs over the past several decades could

potentially have large effects on ecosystems: each organism is exposed to the synergistic effects of the entire suite of atmospheric

variables acting upon it – an inherently multivariate environment – which is best captured using AMs. Utilizing a global-scale

AM classification system and a global network of tree-ring widths, we investigate how variation in AM frequency impacts tree

growth at over 900 locations. We find that AM frequencies are well-correlated with tree growth, especially in the 12-month

period from July in the year prior to growth through June in the year of growth. The most important AMs are Dry-Warm

and Humid-Cool AMs, which exhibit average correlations of ρ=-0.4 and ρ=+0.4 with global tree growth, respectively, among

commonly sampled tree species, with correlations at some sites exceeding ρ=+/-0.8 in some seasons. Compared to empirical

models based solely on temperature and precipitation, modeling using only AM frequencies proved superior at nearly 60% of the

sites and for over 80% of the well-sampled (n[?]10) species. These results should provide a foundation for using AMs to improve

forecasts of tree growth, tree stress and wildfire potential. Long-term reconstructions of AM frequencies back several centuries

may also be feasible using tree-ring data, which will help contextualize and temporally extend multivariate perspectives of

climate change that utilize such air masses.
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KEY POINTS: 19 

• Global tree-ring widths are significantly related to variability in synoptic-scale air 20 

mass frequency in the year preceding growth 21 

• The most important air masses are dry, dry-warm, and humid-cool air masses, 22 

especially in relatively hot locations 23 

• At about 60% of sites and for 83% of well-sampled species, air mass models 24 

outperform models based on temperature and precipitation alone 25 

 26 

  27 



 28 

ABSTRACT: 29 

Surface meteorological conditions in the midlatitudes are embedded within and affected by 30 

synoptic-scale systems, including the movement and persistence of air masses (AMs). 31 

Changes in the frequencies of different AMs over the past several decades could potentially 32 

have large effects on ecosystems: each organism is exposed to the synergistic effects of the 33 

entire suite of atmospheric variables acting upon it – an inherently multivariate environment 34 

– which is best captured using AMs. Utilizing a global-scale AM classification system and a 35 

global network of tree-ring widths, we investigate how variation in AM frequency impacts 36 

tree growth at over 900 locations. We find that AM frequencies are well-correlated with tree 37 

growth, especially in the 12-month period from July in the year prior to growth through June 38 

in the year of growth. The most important AMs are Dry-Warm and Humid-Cool AMs, which 39 

exhibit average correlations of ρ=-0.4 and ρ=+0.4 with global tree growth, respectively, 40 

among commonly sampled tree species, with correlations at some sites exceeding ρ=+/-0.8 41 

in some seasons. Compared to empirical models based solely on temperature and 42 

precipitation, modeling using only AM frequencies proved superior at nearly 60% of the sites 43 

and for over 80% of the well-sampled (n≥10) species. These results should provide a 44 

foundation for using AMs to improve forecasts of tree growth, tree stress and wildfire 45 

potential. Long-term reconstructions of AM frequencies back several centuries may also be 46 

feasible using tree-ring data, which will help contextualize and temporally extend 47 

multivariate perspectives of climate change that utilize such air masses. 48 

 49 

 50 

PLAIN LANGUAGE SUMMARY: 51 

Tree-ring widths depend on the weather a particular tree experiences, and are a direct 52 

indicator of tree growth and tree health. Most often, the relationship between tree rings and 53 

weather are described using temperature, precipitation, or drought indices. However, a tree 54 

is exposed not just to temperature and/or precipitation alone, but to all weather elements 55 

acting together, which can be defined using air masses (AMs). In this research, we explore 56 

how AMs impact tree growth at over 900 locations around the world. We find that tree-ring 57 

widths are significantly related to the frequency of certain AMs, especially Dry and Warm air 58 

masses and Humid and Cool air masses. Further, we find that air masses often affect tree 59 

growth more than temperature and precipitation alone, up to a year prior to when the tree 60 

ring grew. Air mass information could therefore aid in forecasting tree/forest health and in 61 

predicting wildfire potential.  62 

 63 

KEYWORDS: synoptic climatology, climate variability, climate change, tree rings, 64 

dendroclimatology, ecological forecasting 65 
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1. INTRODUCTION AND BACKGROUND 68 

Variability in mid-latitude surface weather is largely controlled by the ridges and troughs 69 

embedded in the hemispheric-scale circulation of the polar front jet stream, and the 70 

movement and persistence of accompanying synoptic-scale air masses (AMs). Significant 71 

trends in AM frequencies have occurred over the last several decades (Lee, 2020a; Petrou et 72 

al. 2022), with general increases in warm-type AMs at the expense of cold-type AMs (Lee & 73 

Sheridan, 2018). However, the instrumental and reanalysis record of atmospheric 74 

circulation and near-surface weather (on which AM classifications depend) generally cover 75 

only the past half-century, and recent trends in AM frequencies must still be contextualized 76 

within a multi-century climate history. Variability in AM frequencies at different time scales 77 

can also have wide-ranging impacts on various systems (e.g. Hondula et al., 2012, Lee 2015a; 78 

Labosier et al., 2015). However, their collective effects on the growth and productivity of 79 

ecological systems remain largely unknown. While most bioclimatological research 80 

examines univariate relationships between individual meteorological variables (especially 81 

temperature and precipitation) and ecological systems of interest, using air masses as the 82 

unit of analysis captures the wholistic, “multivariate environment” to which an organism is 83 

exposed. That is, temperature and/or precipitation do not act in isolation upon an organism 84 

(or ecosystem), but rather each individual is exposed to the synergistic effects of the entire 85 

suite of atmospheric components acting upon it, which are well captured by AM frequencies. 86 

 87 

Tree rings provide the means both to evaluate the impact of climate on forest growth and 88 

productivity (“climate response,” e.g., Dannenberg et al., 2019, 2020; Kannenberg et al., 89 

2019a; Peltier et al., 2018; Williams et al., 2013) and, given that many tree species can live 90 

for hundreds or even thousands of years, to reconstruct past climates (“climate 91 

reconstruction,” e.g., Cook et al., 1999, 2015; Wilson et al., 2016; Wise, 2010, 2016). While 92 

much of this work has focused on either temperature or precipitation/drought, recent work 93 

in “synoptic dendroclimatology” (Hirschboeck et al., 1996) examines growth responses to 94 

synoptic-scale atmospheric circulation (Dannenberg & Wise, 2017; Hudson et al., 2019) and 95 

reconstructs those circulation patterns in the pre-instrumental period (Trouet et al., 2018; 96 

Wise & Dannenberg, 2014, 2017). While some studies have examined connections between 97 

synoptic-scale air masses and tree growth at regional scales (Schultz and Neuwirth, 2012; 98 

Seim et al., 2017; Senkbeil et al., 2007; Woodhouse & Kay, 1990), recent developments in air 99 

mass classification systems and further development of the global tree-ring database now 100 

allow global-scale assessment of the impacts of AM frequencies (and their lagged effects) on 101 

tree growth across many species and regions. Hence, a bioclimatological investigation 102 

relating tree rings and AM variability could yield not only new information on how AMs 103 

impact ecological systems but could also lay the groundwork for reconstructing past AM 104 

frequencies, allowing the comparison of recent trends in AM frequencies to pre-instrumental 105 

variability. 106 

 107 

Here, we use tree-ring width records from over 900 sites (spanning over 140 species from 108 

36 distinct genera) to examine the influence of seasonal AM frequencies on global tree 109 

growth. Specifically, we use correlation analysis to determine the magnitude and direction 110 

of the relationship between tree growth and the frequencies of 11 air masses in eight seasons 111 

– the four seasons in the year of growth, and the four seasons in the year prior to growth. 112 



Additionally, we use machine learning to examine the potential for using seasonal AM 113 

frequencies to predict tree growth at global scales, comparing the predictive power to that 114 

achieved with similar models based on temperature and precipitation, which are more 115 

commonly-used for modeling tree-ring width (e.g., Anchukaitis et al., 2020; Dannenberg, 116 

2021; Tolwinski-Ward et al., 2011, 2013). By establishing empirical relationships between 117 

tree growth and AM frequency, we aim to lay the groundwork for future research geared 118 

both towards forecasting tree growth prior to the start of the growing season and towards 119 

reconstruction of long-term historical AM frequencies, thereby extending recent research 120 

examining AM changes over the past several decades to a multi-century context. 121 

 122 

 123 

2. DATA AND METHODS 124 

 125 

2.1. Tree-ring data 126 

We obtained global annual measurements of tree-ring width (TRW), along with site 127 

metadata, from the International Tree Ring Data Bank (ITRDB) for a total of 4349 sites. To 128 

the extent possible, we identified and corrected errors or gaps in the metadata (e.g., 129 

incorrectly formatted geographic coordinates or species codes). Using the dplR package 130 

(Bunn, 2008) in the R statistical computing environment (R Core Team, 2021), we detrended 131 

each individual TRW series using a smoothing spline 2/3 the length of the series (Cook & 132 

Peters, 1981), after which we developed standard site-level chronologies using Tukey’s 133 

biweight robust mean of all detrended series at that site. Of the original 4349 tree-ring 134 

records in the database, only those that had end-dates between 2005 and 2020 (to maximize 135 

overlap with the short instrumental/AM record) and valid geographic coordinates were 136 

selected for further evaluation, leaving 939 sites (Figure 1). For each site, we also obtained 137 

monthly mean temperature and precipitation, along with mean annual temperature (MAT) 138 

and precipitation (MAP), from the nearest grid cell of the ~4 km TerraClimate dataset 139 

(Abatzoglou et al., 2018). 140 

 141 

2.2. Air mass classification 142 

We used version two of the Gridded Weather Typing Classification system (GWTC2) first 143 

developed by Lee (2015b) and upgraded by Lee (2020b). The GWTC2 was chosen over other 144 

air mass classification systems due to its availability in the fairly rural locations from which 145 

tree-ring data largely come, and its global scope. The GWTC uses gridded reanalysis (at 0.5° 146 

x 0.5° spatial resolution) and model initialization data from the U.S. National Oceanic and 147 

Atmospheric Administration’s Climate Forecast System (CFS) to identify daily-scale, near-148 

surface air masses (also known as “weather types”) for about 260,000 locations across the 149 

globe, 1979-present. Air masses are defined using 3-hourly (8-times daily) values of 2-m 150 

temperature, 2-m dew point, sea-level pressure, 10-m wind speed and wind direction 151 

[derived from zonal (u) and meridional (v) wind components] and total column cloud cover 152 

percentages. Through a multi-stage process (described in detail in Lee, 2015b; 2020b), the 153 

GWTC2 classifies every day at every location into one of 11 different air masses (Figure 2). 154 

The 9 ‘core’ GWTC air masses partition temperature and humidity into 3 categories each; 155 

from concurrently humid and cool (HC) weather to concurrently dry and warm (DW) 156 

weather on one diagonal axis, and from concurrently humid and warm (HW) to concurrently 157 



dry and cool (DC) weather on the opposite axis. Since not every day fits into a single 158 

designated category, there are also two ‘transitional’ air masses – cold front passage (CFP) 159 

and warm front passage (WFP) – that identify days on which the weather could more aptly 160 

be defined as changing from one air mass to another, much like what would be experienced 161 

during frontal passages. These air masses are both seasonally and geographically relative, 162 

meaning that, for example, a HW day can/does occur in January in Greenland because HW 163 

simply indicates that relative to that specific time of year and specific location (i.e. relative 164 

to all Januaries in Greenland) that day was warmer and more humid than normal. In the 165 

center of the 9 core air masses (in Figure 2) is the Seasonal (S) AM, which indicates a ‘typical’ 166 

weather day for a location/season and makes up ~30% of all days at most locations. The 167 

entire GWTC2 dataset is publicly and freely available, updated monthly, and provides real-168 

time 60-day forecasts (at https://www.personal.kent.edu/~cclee/gwtc2global.html).  169 

 170 

2.3. Statistical analysis 171 

For each of the 939 retained tree-ring sites, the nearest land-based coordinate of the GWTC2 172 

dataset was selected as its matched AM data. The TRW data and matched AM data were then 173 

trimmed to match overlapping years. For example, if the TRW data went from 1832 to 2012, 174 

it was trimmed to 1979 to 2012 to match the GWTC data that starts in 1979. Daily 175 

frequencies of each AM at that location were then summed by calendar quarter/season (JFM, 176 

AMJ, JAS, OND). These seasonal AM frequency counts were the basis of all analyses.  177 

 178 

To examine each individual AM’s relationship to tree-ring width, we used Spearman-rank 179 

correlation analysis (ρ). These correlations were computed for each of the 11 air mass 180 

frequency counts for each of the 4 seasons of the year corresponding to the year of tree 181 

growth (Year0) and for the year prior to growth (Year -1; i.e. how well the prior-year’s AM 182 

frequencies in each of the 4 quarters correlated with the following year’s TRW), thus yielding 183 

a total of n=88 (11 air masses x 4 seasons x 2 years) correlations computed for each of the 184 

939 retained tree-ring records.  185 

 186 

To quantify variability in tree-ring width explained by all AMs collectively, we trained 187 

cascade-forward artificial neural network (ANN) models for each of the 939 records. These 188 

ANNs were trained to learn annual TRW based upon the standardized summed counts of 189 

each AM occurrence in the 12-month period between July of Year -1, and June of Year0 190 

(which was shown to be the key time period relating to TRWs from the correlation analysis 191 

described above). These standardized summed counts were then subjected to principal 192 

components analysis (PCA) to remove collinearity, with the principal component (PC) scores 193 

then standardized prior to entry into the ANN model (AM-ANN models).  194 

 195 

Multiple ANN model-architectures were trialed using various numbers of retained PC scores 196 

(from 1 to 11 – the max number of AMs, and thus, PCs), and anywhere from 1 to 15 neurons, 197 

which add complexity to the ANN. Using methods similar to those described in Lee et al., 198 

(2017), ANNs were trained using Levenberg-Marquardt backpropagation, and validated 199 

internally using an early-stopping technique to prevent overfitting. An ensemble approach 200 

was used to quantify generalizability, whereby 50 models were trained (for each trialed 201 

model architecture), each with a different randomized training (70% of the dataset), internal 202 

validation (15% of the dataset, used for early stopping), and testing (another 15% of the 203 

https://www.personal.kent.edu/~cclee/gwtc2global.html


dataset) partitioning of the data. In the results below, we quantify model skill using R2 values 204 

computed using the ensemble mean of the 50 different testing portions of the data – 205 

considered completely independent from the training/early-stopping of the model and thus, 206 

the best measure for generalizability.  207 

 208 

In order to compare the efficacy of AM-based modeling with more-traditional 209 

dendroclimatological methods that often use temperature and precipitation, this entire 210 

process was repeated using standardized mean temperature and standardized summed 211 

precipitation data (from TerraClimate) over the same 12-month period (T&P-ANN models). 212 

Due to there only being 2 variables, no PCA was necessary for the ANN-T&P models, and a 213 

maximum of 2 input variables were entered into the model-architecture trials.   214 

 215 

To quantify the importance of each individual AM in the multivariate model, we used 216 

Garson’s method (Garson, 1991) for interpreting the input weights of ANNs. The Garson 217 

algorithm was run separately for each of the 50 member ANNs for a site and then averaged 218 

across the 50 models. The resulting output describes the importance of each individual input 219 

to the ANN; since the inputs were actually PC scores rather than raw AM counts, the averaged 220 

output was multiplied by the loadings/coefficients from the PCA described above (i.e. the 221 

PCA computed prior to ANN modeling). The resulting products of this multiplication were 222 

then ranked (1 to 11) at each location, yielding an estimate of how much weight an AM had 223 

in the ANN model ensemble at that site. We then average these ranks across all locations to 224 

get an estimate of the multivariate importance of different AMs in driving tree growth.  225 

 226 

3. RESULTS AND DISCUSSION 227 

While all 11 air masses were significantly correlated to TRW of at least one site, across all 228 

records, the Dry-Warm (DW), Dry (D), Warm (W) and Humid-Cool (HC) air masses were the 229 

most strongly and most frequently significantly (α=0.05) correlated to TRW, especially 230 

during seasons starting from the previous summer (i.e. JAS at Year -1) through the spring of 231 

the growth year (AMJ at Year 0; Table 1). For example, for Douglas-fir (PSME; n=111 sites), 232 

the most abundant tree species in the ITRDB, the median correlation between HC frequency 233 

and annual width was ρ = +0.2 to ρ = +0.3 for each of the aforementioned seasons, and close 234 

to ρ=-0.2 to ρ =-0.3 for DW frequency (Table 2). Of the 12 most abundant species in the 235 

dataset (those with at least 20 sites), European Beech (FASY, n=24) had the highest averaged 236 

correlation to AM frequencies, with ρ=-0.4 for DW air masses and ρ=+0.4 for HC air masses 237 

in the summer prior to growth (Table 3). Across all records in the database, the Humid (H) 238 

and Cool (C) air masses also played relatively large roles in these seasons, while transitional 239 

AMs (CFP and WFP), DC, and HW were not significantly correlated with TRW at most sites. 240 

The single most ‘important’ season (irrespective of the individual AMs) in determining TRW 241 

was generally spring in the growth year (i.e. AMJ at Year 0), suggesting some potential for 242 

using spring synoptic conditions to forecast growth for the year.  243 

 244 

As an indicator of the ubiquity of AM-TRW relationships, every site (n=939) had at least one 245 

AM in one season with an absolute correlation of |ρ| > 0.3, and over 99% (934 of 939) of 246 

locations had at least one statistically significant (α=0.05) relationship to an AM in at least 247 

one season. Moreover, each of the 11 air masses had at least one site with an absolute 248 



correlation of |ρ| ≥ 0.5, with many exhibiting least |ρ| > 0.6, and some as high as |ρ| > 0.8. 249 

Using a similar air mass classification (the Spatial Synoptic Classification; Sheridan, 2002), 250 

Senkbeil et al. (2007) found similar correlations with a hot and dry air mass (significantly 251 

negative) and a humid and mild air mass (significantly positive) and tree rings along the Gulf 252 

coast of the United States.  253 

 254 

Since individual AM frequency in a season will, by definition, be cross-correlated with the 255 

other AM frequencies to some degree (i.e. as one AM increases in seasonal frequency, 256 

another AM must simultaneously decrease), the multivariate perspective of the ANN models 257 

are also necessary to interpret predictability of TRW from AM frequencies. Overall, GWTC2 258 

air masses explained a substantial amount of variability in global TRW data (mean = 28%, 259 

range 7% to 78%), including explaining at least 40% of the annual growth variability in TRW 260 

at 156 of 939 sites (Table 4), and over 60% of the variability at 22 of those sites. For one 261 

record – a Douglas-fir in Arizona, USA – the AM-only model explained 78% of TRW variability 262 

in this dry location.  263 

 264 

The AM-based ANN models often explained more variability than T&P-ANN models (Table 265 

4; Figure 3). Of the 939 sites, the R2 of the AM-only ANN model was better than that of the 266 

T&P-ANN model in 59% of the individual records, and was better for 62% of the 144 different 267 

species represented in the dataset. In fact, for the 24 tree species that had at least 10 268 

individual records in the dataset, the average R2 of the AM-only ANN models was superior to 269 

that of the T&P-ANN models for 20 (83%) of them. However, generally the AM-ANN and 270 

T&P-ANN models performed best at the same locations, especially in the southwestern US. 271 

These results are comparable to semiempirical temperature- and precipitation-based tree-272 

ring models that explained, on average, ~40% of the variance in TRW in dry ecoregions and 273 

<20% of the variance in moist ecoregions in the United States (Dannenberg, 2021). The AM-274 

ANN models were markedly better than the T&P-ANN models in Alaska and northwestern 275 

Canada, along with many of the sites in Asia.  276 

 277 

For each AM, the variable importance from the ANN models mostly revealed quite similar 278 

results as those found in the univariate correlation analysis. The largest difference was the 279 

relatively high importance of the Dry-Cool (DC) AM in the ANN model: while it was the ninth 280 

most-often significantly correlated AM in the univariate analysis, it rose to first in 281 

importance of the 11 AMs in the ANN models (Table 5). Also noteworthy is the slight 282 

decreased importance of DW – falling from first to fourth-most important AM in the 283 

multivariate analysis. The Warm AM also had less importance in the multivariate models 284 

compared to the univariate analysis, dropping from third to sixth in importance. These 285 

differences indicate that when included in a multivariate model, the DW and W air masses 286 

are likely providing some duplicate information that is already captured by the other AMs, 287 

decreasing their importance relative to the less-strongly cross-correlated AMs that contain 288 

more unique information. Indeed, when examining frequency correlations between the core 289 

AMs (not shown), the DW and W air masses are the most strongly correlated to the frequency 290 

of other AMs, while DC is the second least correlated to the other core-AMs.  291 

 292 

The way a particular AM relates to tree growth is somewhat dependent on mean annual 293 

temperature (MAT) of the site (Table 6, Figures 4-5). There is a direct positive association 294 



between MAT and the importance of the HC, Cool, and to a lesser extent, Humid AMs: the 295 

warmer the MAT of the site, the more important the frequency of these three AMs. By 296 

contrast, there is a large inverse relationship between mean temperature and the DW, Warm, 297 

and Dry AMs, meaning that the warmer the site is, the more inverse the relationship between 298 

these AM frequencies and tree growth. Mean annual precipitation was less important overall 299 

than MAT in this regard: only the Warm (positive) and the HC (negative) in AMJ Year0 have 300 

a correlation with MAP greater than ρ = +/-0.2. When correlating R2 values from the ANN 301 

models with MAT and MAP, the ability of the GWTC2 on the whole to explain TRW variability 302 

(using ANN models) was also significantly related to MAT of the site (ρ=0.09; p=0.008), but 303 

was not significantly related to MAP. This said, the difference between R2 for AM-ANNs and 304 

T&P-ANNs was significantly directly related to MAP (ρ=0.1; p<0.001), indicating that the AM-305 

ANNs generally performed slightly better than T&P-ANNs in wetter sites (Figure 6). 306 

 307 

 308 

4. SUMMARY AND CONCLUSIONS 309 

This research presents an initial examination of the ability of multivariate surface air masses 310 

to impact tree growth. To our knowledge no such prior analysis has explored this 311 

relationship at a global scale, and certainly not with the GWTC2. We found strong 312 

relationships between annual tree-ring widths and the frequencies of different air masses, 313 

with these relationships being strongest during the 12-month period beginning in July of the 314 

prior year and ending in June of the year of growth. These relationships were sufficiently 315 

strong that empirical models based solely on AM frequencies outperformed temperature- 316 

and precipitation-based models (which are more commonly used for tree-ring modeling) at 317 

about 60% of sites and for about 60% of species. Among the 11 air masses, the Dry-Warm 318 

(DW) AM in the year of growth was the most strongly and frequently correlated with TRW 319 

in the univariate analysis, and on average was the third-most important of the AMs in the 320 

multivariate models. The Humid-Cool, Warm, and Dry AMs also played important roles at 321 

many sites, while the Dry-Cool AM added unique information into the multivariate models 322 

and was the most important AM on average using the AM-ANN models.  323 

 324 

While this research demonstrates significant potential for prediction of growth based on 325 

synoptic-scale climate, and while the tree-ring record does represent multiple climate 326 

regions across the globe, the vast majority of sites come primarily from North America 327 

(especially the US) and (to a lesser degree) Europe and parts of Asia, with only a handful of 328 

locations in the tropics and the Southern Hemisphere. Due to the temporal limits of the 329 

GWTC2 dataset, this research was also limited to a fairly short time-span (1979-2020 or 330 

shorter, depending on the length of the tree-ring record at each site), especially relative to 331 

the life cycle of many tree species. Further, while some species/sites show strong 332 

relationships to AM frequencies, there is still considerable variability in these relationships 333 

from site to site. Therefore, it should not be assumed that the entire range of environmental 334 

conditions across all individual members of a species is representatively sampled here. 335 

Relative to their global abundance, the ITRDB tends to oversample old, coniferous trees in 336 

climatically-extreme environments to maximize their utility for climate reconstruction 337 

(Klesse et al., 2018; Zhao et al., 2018), and it is therefore likely that the sites used in this 338 

analysis are not fully representative of global forest ecosystems. 339 



 340 

Despite these limitations, this research shows that not only is tree growth impacted by 341 

multivariate, synoptic-scale atmospheric conditions, but moreover, for many species and 342 

locations, multivariate air masses are better indicators of tree growth than local temperature 343 

and precipitation alone. There has been a keen interest recently in ecological forecasting 344 

(Dietze et al., 2018; Luo et al., 2011) and the impacts of antecedent abiotic factors on plant 345 

stress (Dannenberg et al., 2019, 2020; Dannenberg & Wise, 2016; Earles et al., 2018; Jiao et 346 

al., 2022; Kannenberg et al., 2019b; Ogle et al., 2014; Peltier et al., 2018). In particular, 347 

knowing the potential for tree growth or tree stress in the upcoming months based upon the 348 

conditions up to 12 months prior could aid in forecasts for wildfire vulnerability and 349 

widespread tree mortality. This research suggests that, compared to just using recent 350 

temperature and precipitation records, air masses offer the potential to improve such 351 

predictions. Moreover, the TRW/AM relationship could work in both directions: the 352 

centuries-long proxy records stored in tree rings may allow long-term reconstructions of air 353 

masses back several hundred years. Such reconstructions would allow quantification and 354 

contextualization of recent trends in AM frequencies (e.g., Lee, 2020a; Lee & Sheridan, 2018; 355 

Petrou et al. 2022) that are not achievable from instrumental records alone. 356 

 357 
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 561 

TABLES 562 

 563 

 564 

Table 1. Percentage of the n=939 retained TRW records that had significant (α=0.05) rank-565 

correlations between TRW and air masses (columns) for each season (rows). Darker reds depict 566 

higher percentages.  567 

% Sig RHO HC H HW C S W DC D DW CFP WFP 

YEAR 
-1 

JFM 6% 6% 4% 8% 7% 8% 6% 8% 9% 5% 5% 

AMJ 8% 9% 5% 8% 7% 8% 5% 13% 12% 6% 4% 

JAS 19% 12% 8% 11% 6% 17% 6% 14% 21% 7% 5% 

OND 12% 12% 7% 12% 5% 9% 6% 10% 14% 6% 5% 

YEAR 
0 

JFM 12% 13% 7% 12% 11% 14% 8% 15% 16% 6% 7% 

AMJ 19% 17% 7% 19% 10% 19% 6% 17% 23% 6% 5% 

JAS 7% 10% 8% 7% 8% 12% 9% 13% 17% 5% 7% 

OND 9% 5% 6% 7% 4% 6% 5% 5% 7% 6% 6% 

 568 

 569 

 570 

 571 

Table 2. Mean spearman rank correlation (ρ) between AMs (columns) and TRW for each 572 

season (rows) for the n=111 retained records of Douglas-Fir (PSME). Darker blues depict 573 

stronger negative correlations, darker reds depict stronger positive correlations.  574 

Mean Rho HC H HW C S W DC D DW CFP WFP 

YEAR 
-1 

JFM 0.04 0.03 0.04 0.07 -0.02 -0.03 0.09 -0.08 -0.05 -0.01 0.02 

AMJ 0.15 0.19 0.02 -0.01 0.12 -0.07 -0.06 -0.18 -0.15 -0.10 0.03 

JAS 0.29 0.07 -0.07 0.22 0.08 -0.25 0.06 -0.14 -0.31 0.04 -0.01 

OND 0.28 0.27 0.03 0.21 0.06 -0.21 -0.07 -0.22 -0.26 -0.05 -0.02 

YEAR 
0 

JFM 0.20 0.17 0.09 0.16 0.07 -0.12 -0.06 -0.20 -0.20 -0.08 -0.05 

AMJ 0.31 0.22 -0.08 0.21 0.15 -0.29 0.00 -0.21 -0.32 0.02 0.04 

JAS 0.05 0.03 -0.06 0.11 0.11 -0.16 0.07 0.00 -0.22 0.03 -0.01 

OND 0.07 0.08 0.05 0.08 0.01 -0.09 -0.02 -0.11 -0.08 -0.02 -0.05 

 575 

 576 

 577 

 578 

 579 



 580 

Table 3. Same as Table 2, except for the n=24 retained records of European Beech (FASY). 581 

Mean Rho HC H HW C S W DC D DW CFP WFP 

YEAR 
-1 

JFM 0.16 -0.25 -0.05 0.14 -0.11 -0.17 0.15 -0.03 -0.05 -0.01 0.04 

AMJ 0.12 0.09 0.16 0.00 -0.03 -0.08 0.00 -0.14 -0.13 -0.01 0.07 

JAS 0.41 0.31 -0.04 0.32 0.10 -0.34 0.04 -0.36 -0.44 -0.11 0.08 

OND 0.03 -0.08 0.04 0.00 0.12 -0.04 -0.06 -0.21 -0.19 -0.03 0.09 

YEAR 
0 

JFM 0.09 -0.07 -0.11 0.01 0.02 -0.06 0.15 -0.06 -0.06 0.20 -0.05 

AMJ 0.08 0.24 0.21 0.07 0.09 -0.18 -0.04 -0.18 -0.28 0.01 0.06 

JAS 0.13 0.21 0.06 -0.12 0.05 -0.06 -0.06 -0.28 -0.17 0.02 0.01 

OND -0.02 -0.06 0.07 -0.02 -0.07 0.11 0.07 -0.12 -0.03 -0.04 0.01 

 582 

 583 

Table 4. Left: the mean percent of TRW variability explained (R2) by the AM-only ANN model 584 

(AM) and the temperature and precipitation (T&P) ANN model for the 12 tree species with at 585 

least 20 retained records in the database. Right: the count (out of n=939) of individual records 586 

with explained variability (R2) above different thresholds for the AM and T&P ANN models. 587 

Species n AM T&P 

'PSME' 111 36% 35% 

'PCGL' 57 26% 25% 

'PIPO' 48 32% 33% 

'PISY' 38 26% 21% 

'PCAB' 33 27% 20% 

'TSME' 25 29% 20% 

'FASY' 24 33% 30% 

'LADE' 24 29% 21% 

'LASI' 23 24% 20% 

'PCMA' 22 23% 17% 

'QUMA' 22 27% 25% 

'CHTH' 21 23% 18% 

 588 

 589 

 590 

 591 

 592 

 593 

R2> AM T&P 

30% 355 305 

40% 156 152 

50% 57 50 

60% 22 10 

70% 4 1 



 594 

Table 5. Estimated rank of importance of each AM in the AM-ANN models (ANN) versus the 595 

univariate correlation models (CORR; 1=most important of the 11 AMs).  596 

 RANK 

AM ANN CORR 

HC 3 4 

H 5 5 

HW 9 8 

C 8 6 

S 7 7 

W 6 3 

DC 1 9 

D 2 2 

DW 4 1 

CFP 10 10 

WFP 11 11 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

  607 



 608 

Table 6. Top: the spatial Spearman rank correlation (n=939) between mean annual 609 

temperature (MAT) of a site and the Spearman rank correlation between TRW and AM 610 

frequencies at that site. Bottom: the same, except for mean annual precipitation (MAP) of each 611 

site.  612 

 MAT HC H HW C S W DC D DW CFP WFP 

YEAR 
-1 

JFM 0.15 -0.07 -0.02 0.24 -0.07 -0.07 0.08 -0.08 -0.22 0.10 0.04 

AMJ 0.04 -0.03 -0.01 0.13 0.08 -0.15 0.02 -0.16 -0.12 0.06 0.04 

JAS -0.07 -0.10 -0.06 0.13 -0.02 -0.03 0.07 0.06 0.00 0.04 -0.01 

OND 0.16 0.16 0.01 0.23 0.07 -0.22 0.00 -0.26 -0.31 0.09 -0.03 

YEAR 
0 

JFM 0.20 0.19 0.07 0.17 0.11 -0.08 -0.16 -0.29 -0.21 -0.02 -0.07 

AMJ 0.24 0.07 -0.12 0.36 0.15 -0.27 0.11 -0.15 -0.36 0.10 0.14 

JAS 0.16 0.10 -0.11 0.23 0.13 -0.22 0.16 -0.10 -0.29 0.12 0.02 

OND 0.02 0.11 0.05 0.09 -0.03 -0.03 0.03 -0.16 -0.12 0.08 -0.16 

 613 

MAP HC H HW C S W DC D DW CFP WFP 

YEAR 
-1 

JFM 0.03 -0.07 0.04 0.11 -0.06 0.02 0.00 -0.02 -0.11 0.09 0.06 

AMJ -0.13 -0.13 -0.03 0.03 -0.01 0.05 0.01 0.00 0.06 0.14 0.09 

JAS -0.18 -0.08 0.00 -0.06 -0.07 0.12 -0.01 0.14 0.13 0.01 0.06 

OND -0.20 -0.09 -0.05 -0.12 0.04 0.07 0.01 0.09 0.07 0.06 -0.05 

YEAR 
0 

JFM -0.17 -0.02 -0.01 -0.12 -0.06 0.21 -0.05 -0.01 0.18 0.07 -0.09 

AMJ -0.21 -0.19 0.03 -0.11 -0.07 0.22 -0.01 0.18 0.08 0.03 0.02 

JAS -0.12 0.11 0.01 -0.04 -0.12 0.12 -0.08 0.02 0.04 0.00 0.03 

OND -0.05 -0.05 -0.06 0.04 -0.12 0.09 0.05 -0.02 0.00 0.13 -0.02 

 614 

 615 

 616 

  617 



 618 

 619 

FIGURES 620 

 621 

 622 

 623 
Figure 1. (a) Distribution of the 939 tree-ring sites used in this study, from the International 624 

Tree Ring Data Bank (ITRDB). Colors indicate the genus sampled at each site, with total 625 

proportions belonging to each genus shown in the pie chart. [PI: Pinus, PC: Picea, PS: 626 

Pseudotsuga, QU: Quercus, LA: Larix, TS: Tsuga, AB: Abies, JU: Juniperus, CH: Chamaecyparis, 627 

FA: Fagus] (b) Histogram of the number of sites belonging to the 35 most common species 628 

represented in the dataset (species with 5 or fewer sites are not shown), with colors 629 

corresponding to the genera shown in (a). Full names and numbers of sites for each species 630 

are shown in Supplementary Table S#. (c) Mean annual temperature (MAT) and 631 

precipitation (MAP) of the tree-ring sites from TerraClimate, with precipitation on a log scale 632 

and colors corresponding to the genera shown in (a). 633 

 634 

 635 

 636 



 637 
Figure 2 – The GWTC2 air masses. 638 

 639 

  640 



 641 

 642 

 643 
Figure 3. Mapped ANN model performance. R-squared (R2) values for the ANN models 644 

trained on AMs only (top), the T&P-ANN (middle), and the difference between the two model 645 

types (bottom; increasingly red colors indicate the AM-ANN is better than the T&P-ANN 646 

model, increasingly blue colors indicate the T&P-ANNs are better than the AM-ANNs).  647 



 
Figure 4. Average correlation of each AM with TRW at each tree-ring site. Each average correlation is the mean Spearman’s rho 
(ρ) across the n=8 seasons in Year0 and Year-1 (i.e. the average of one of the columns in Table 2). 
  



 

 
Figure 5. Relationships between MAP, MAT, and average correlation (ρ) between TRW and each AM. Red-to-blue coloring of the 
markers indicate the averaged correlation (across the n=8 seasons for Year0 and Year-1 of each AM), relative to mean annual 
temperature (MAT; x-axis) and mean annual precipitation (MAP, y-axis – log-scale) for each site. 



 
Figure 6. Difference in performance of AM-only ANN models vs. T&P-ANN models, by MAP (y-axis, log-scale) and MAT (x-axis) 
of each site. Colors represent the difference in R2 values of the models, with positive values (reds) indicating better model 
performance of the AM-only ANN model. 


