Observed Changes in Interannual Precipitation Variability in the United States

Ryan D. $Harp^1$ and Daniel E Horton²

 $^1 \mathrm{Institute}$ for Sustainability and Energy at Northwestern; Northwestern University $^2 \mathrm{Northwestern}$ University

June 23, 2023

Abstract

Characterizing changes in precipitation patterns over time is critical for hydrologically-dependent fields like water resource management and agriculture. Here, we explore observed trends in interannual precipitation variability using a suite of metrics that describe changes in precipitation over time. We analyze daily *in-situ* Global Historical Climatology Network precipitation data from 1970 to present over seventeen internally consistent sub-national United States domains using a regional Mann-Kendall trend test. We find robustly increasing trends in annual mean precipitation and wet day frequency for most of the central and eastern U.S., but decreasing trends in the western U.S. Importantly, we identify widespread significant trends in interannual precipitation variability, with increasing variability in the southeast, decreasing variability in the far west, and mixed signals in the Rocky Mountains and north-central U.S. Our results provide important context for water resource managers and a new observational standard for climate model performance assessments.

1	Observed Changes in Interannual Precipitation Variability in the United
2	States
3	Ryan D. Harp ^{1, 2} , Daniel E. Horton ^{1, 2}
4	
5	¹ Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL
6	² Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL
7	
8	
9	Ryan D. Harp is currently affiliated with the Cooperative Programs for the Advancement of
10	Earth System Science, University Corporation for Atmospheric Research, Boulder, CO, and the
11	Global Systems Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO.
12	
13	
14	Revisions submitted to Geophysical Research Letters
15	14 June, 2023
16	
17	
18	
19	
20	
21	

22	Key Points
23	• We find widespread robust changes in two measures of interannual precipitation
24	variability across the United States
25	• We detect increases (decreases) in annual mean precipitation and wet day frequency
26	across the eastern (western) United States
27	• We explore the interaction of changes in precipitation frequency and wet day
28	precipitation intensity on interannual variability
29	
30	
31	Abstract
32	
33	Characterizing changes in precipitation patterns over time is critical for hydrologically-
34	dependent fields like water resource management and agriculture. Here, we explore observed
35	trends in interannual precipitation variability using a suite of metrics that describe changes in
36	precipitation over time. We analyze daily in-situ Global Historical Climatology Network
37	precipitation data from 1970 to present over seventeen internally consistent sub-national United
38	States domains using a regional Mann-Kendall trend test. We find robustly increasing trends in
39	annual mean precipitation and wet day frequency for most of the central and eastern U.S., but
40	decreasing trends in the western U.S. Importantly, we identify widespread significant trends in
41	interannual precipitation variability, with increasing variability in the southeast, decreasing
42	variability in the far west, and mixed signals in the Rocky Mountains and north-central U.S. Our

- results provide important context for water resource managers and a new observationalstandard for climate model performance assessments.
- 45
- 46
- 47 Plain Language Summary
- 48

49 While many studies have examined how annual precipitation totals and precipitation frequency 50 have changed, few examine the variability, or consistency, of year-over-year precipitation. We 51 test for these trends in daily observations across seventeen regions within the U.S. We find 52 changes in yearly precipitation variability for most regions, though results in the central U.S. are 53 mixed. We also identify rising average annual precipitation and precipitation frequency for the 54 central and eastern U.S. and falling average annual precipitation and frequency for the western 55 U.S. Our results are important for agriculture and water resource management and can be 56 compared against historical climate model simulations to determine how well they reproduce 57 observations. 58 59 60 61 Keywords 62 precipitation, interannual variability, precipitation variability, GHCN, NEON, NCA 63 64

65 Introduction

67	Precipitation patterns are shifting globally due to climate change (Douville et al., 2021). These
68	changes are broadly driven by increased moisture availability due to rising temperatures (i.e.,
69	the Clausius-Clapeyron relationship) and shifts in atmospheric circulation patterns (e.g.,
70	poleward expansion of the Hadley cell; Polade et al., 2014), and are constrained by Earth's
71	energy budget (Pendergrass and Hartmann, 2014). Observationally-based historical studies and
72	model-based future projections of precipitation commonly characterize changes in metrics like
73	annual mean, wet day frequency, and measures of extremes. However, determining changes in
74	the temporal variability of precipitation is important to inform a number of societally-impactful
75	hydrological fields.
76	Interannual variability of precipitation describes the degree of consistency in year-over-
77	year precipitation totals: higher variability equates to greater irregularity of annual totals about
78	the annual mean, which brings challenges to fields dependent on water resources. For example,
79	greater precipitation variability reduces crop yields (Shortridge, 2019; Rowhani et al., 2011) and
80	decreases a grazing area's ability to support livestock (Sloat et al., 2018). Hydrologically, shifts
81	in interannual precipitation variability are altering the effectiveness of hydroelectric dams (Qin
82	et al., 2020; Boadi & Owusu, 2019), impacting water quality via increased agricultural runoff
83	(Loecke et al., 2017), and may also be driving increased variability in Laurentian Great Lake
84	water levels (Gronewold et al., 2021). Despite the importance of interannual variability,
85	summary assessments like the U.S. National Climate Assessment (NCA) have not yet included
86	characterizations of its recent changes, instead focusing on mean and extreme precipitation

87 (Easterling et al., 2017). Here, to better describe historical changes in the year-over-year 88 distribution of precipitation across the U.S., we examine shifts in observed interannual 89 precipitation variability, as well as annual mean precipitation and wet day frequency – two 90 metrics useful for understanding observed changes in interannual precipitation variability. 91 92 *How is interannual precipitation variability projected to change?* 93 Global climate models project that interannual precipitation variability will increase with rising 94 greenhouse gas concentrations (Boer, 2009; Polade et al., 2014; Berg and Hall, 2015). Increases in 95 the interannual variability of precipitation of $\sim 4\%/K$ are projected globally, with $\sim 5\%/K$ 96 projected over land (Pendergrass et al., 2017; Wood et al., 2021; Chou and Lan, 2012), though 97 some projections estimate smaller increases (He et al., 2018). He et al. (2018) explain that the 98 drivers of projected changes in interannual precipitation variability vary spatially; the increase 99 of mean state specific humidity leads to an increase in variability over areas of climatological 100 ascent. Conversely, variability increases in areas of climatological descent are primarily driven 101 by changes in mean state precipitation. Good et al. (2016) further tie interannual precipitation 102 variability to wet season length, rainfall event intensity, and variability in interstorm wait times. 103 A number of studies have used global climate models to project changes in interannual 104 precipitation variability over the U.S. Wood et al. (2021) and Polade (2014) both noted a slight, 105 but widespread, increase in interannual variability over the U.S. by 2100 under the RCP8.5 106 emissions scenario. Similarly, Chou and Lan (2012) and Pendergrass et al. (2017) project 107 increased interannual variability over the U.S. midwest, northeast, and northwest using A1B 108 and RCP8.5 emissions scenarios, respectively. Regionally, Berg and Hall (2015) and Swain et al.

(2018) find increasing variability for California across multiple metrics using a suite of RCP8.5-driven CMIP5 models.

111 Despite numerous model projections of interannual precipitation variability change, 112 there remains a dearth of observation-based analyses on the topic. Recently, Zhang et al. (2021) 113 conducted a western U.S.-focused study that identified increases in precipitation variability 114 using *in-situ* observations from 1976-2019, however, their investigation was regionally limited 115 and quantified trends in only one precipitation variability metric, the coefficient of variation. 116 We are aware of no other regional or whole U.S.-focused observational precipitation variability 117 analyses. To address this deficiency in observational studies and produce an observational 118 standard for model studies, we explore changes in interannual variability and relevant 119 precipitation metrics throughout the U.S. using a full complement of *in-situ* measurements. 120 121 122 Methods 123 124 To characterize interannual precipitation variability in the U.S., we use daily *in-situ* station data 125 from the Global Historical Climatology Network Daily (GHCN-D). The National Centers for 126 Environmental Information (NCEI) curate the GHCN-D database, which includes the most 127 complete collection of U.S. daily data available (Menne et al., 2012). GHCN-D observations have 128 a sensitivity of 0.1 mm and are subjected to a sequence of quality control tests (Durre et al., 129 2010). To identify station observations with sufficient length and completeness for trend

analysis, we require station records to consist of 90% or more complete station-years to qualify,

131	where a complete station-year must contain 90% or more of all possible daily records. This
132	filtered our set of available U.S. stations from 63,571 to 2,542 (using a 1970 start year); domain
133	summary statistics of station availability are shown in Table S1. To overcome some of the
134	limitations of individual station statistics, such as internal variability (e.g., Fischer et al., 2013),
135	we center our analysis on regional trends by using domains determined by the National
136	Ecological Observatory Network (NEON). These twenty domains were created to possess
137	internally homogeneous climates but remain distinct across-domains, as determined by a multi-
138	variable analysis using nine climate variables (Keller et al., 2008; Schimel et al., 2011). As labeled
139	in Figure 1a, we use the seventeen domains that lay predominantly within the contiguous
140	United States. We also perform our analysis for U.S. NCA regions (Easterling et al., 2017) with
141	results included within the Supporting Information.
142	We employ regional Mann-Kendall trend tests to identify trends in precipitation at the
143	NEON-domain level. Mann-Kendall trend tests are nonparametric, rank-based tests which
144	determine if a trend exists in data regardless of underlying distribution (Mann, 1945; Kendall,
145	1975). They are suitable for detecting robust trends in hydrological time series (Hamed, 2008)
146	and commonly used in studies assessing trends of precipitation over time (e.g., Zhang et al.,
147	2021; Roque-Malo and Kumar, 2017). The regional Mann-Kendall trend test determines if a
148	trend is present within a collection of time series by combining individual test statistics and
149	examining the consistency in trend direction across station-specific Mann-Kendall trend tests;
150	further description of the regional Mann-Kendall test can be found in Helsel and Frans, 2006.
151	We apply the Trend-Free Pre-Whitened Mann-Kendall trend test (Yue et al., 2002) to account for

152 lag-one autocorrelation present within the investigated data. We use the Theil-Sen slope153 estimator to determine the slope of identified trends (Sen, 1968; Theil, 1950).

154 We focus our analysis on four precipitation metrics: changes in interannual precipitation 155 variability, interannual coefficient of variation (a.k.a., relative interannual variability), annual 156 mean precipitation, and annual wet day frequency, where a wet day is defined as a station-day 157 observing 1 mm or more of precipitation (a threshold common in precipitation analyses; e.g., 158 Giorgi et al., 2019). Collectively, these four variables either directly characterize interannual 159 variability, or provide crucial information to explain shifts in interannual variability. 160 Here, we define interannual variability as the standard deviation in annual precipitation 161 totals over a moving 11-year window. We use an 11-year window to limit the influence of 162 modes of interannual climate variability (e.g., ENSO), though a sensitivity analysis reveals 163 generally stable results for five to fifteen-year moving windows (Table S2-S3). We similarly 164 determine the coefficient of variation by dividing the aforementioned standard deviation by the 165 mean annual precipitation over the concurrent 11-year moving window. Though not 166 statistically independent, the coefficient of variation is often used as a measure of precipitation 167 variability as it removes the effect of a changing mean state on precipitation variability (e.g., 168 Giorgi et al., 2019). For example, a rise in annual mean precipitation can lead to a corresponding 169 rise in interannual variability as a higher baseline of annual precipitation results in greater 170 fluctuations around the baseline, even if the variations are proportionally the same. This 171 dependency is accounted for by the coefficient of variation. For ease of understanding, we will 172 henceforth refer to the coefficient of variation as the relative interannual variability.

173	In addition to performing a sensitivity analysis on the moving window width, we
174	analyzed the stability of precipitation trends across time periods by incrementally performing
175	calculations using starting dates every ten years from 1920 through 1980. We present findings
176	using a 1970 starting date as it provides a balance of widespread station availability and length
177	of observation record, but highlight discrepancies we identify within the sensitivity analysis in
178	the discussion section. The full results of the sensitivity analysis are presented in the Supporting
179	Information (Tables S2-S7).
180	
181	
182	Results
183	
184	To properly contextualize changes in interannual variability, we must first assess changes in
185	annual mean precipitation and precipitation frequency over our domain. We find statistically
186	significant (p < 0.05) increases in annual mean precipitation for the majority of domains east of
187	the Rocky Mountains. These increases range from 3.3-22.7 mm/decade (0.3-2.7%/decade), with
188	larger increases for a subset of central and eastern domains ranging from 12.3-22.7 mm/decade
189	(1.4-2.7%/decade; Figures 1a and 2, Tables S9-S10). We identify statistically significant negative
190	trends in annual mean precipitation over the western U.S. between -14.9 to -4.7 mm/decade (-5.8
191	to -1.4%/decade), with annual mean precipitation increasing only in the Pacific Northwest (13.4
192	mm/decade, 0.9%/decade). Spatial patterns in annual wet day frequency changes largely mirror
193	changes in annual mean precipitation, with some additional non-significant domains (Figure
194	1b). We observe statistically significant increases in wet day frequency for northern domains

195 east of the Rocky Mountains, and statistically significant decreases for most western domains, 196 as well as the Southern Plains and Southeast domains. Changes in wet day frequency range 197 from -2.0 to 0.8 wet days/decade (-6.3 to 0.7%/decade), with the greatest increases generally 198 located in the most northern and southern domains (Figures 1b and 2, Tables S9-S10). 199 Given robust trends in observed annual precipitation, it is important to determine 200 whether such changes were equally distributed over time, or if precipitation variability has 201 changed. Here, we identify statistically significant trends in both the interannual variability and 202 relative interannual variability of precipitation for most domains (Figures 1c-d, 2, Tables S9-203 S10). Changes in interannual variability range from -10.6 to 19.9 mm/decade (-4.4 to 204 9.5%/decade), with changes not reaching statistical significance for five domains, predominantly 205 in the north central U.S. Generally, interannual variability is decreasing in the western U.S. and 206 increasing in the south central and northeastern U.S. (Figure 1c). We observe broadly similar 207 spatial patterns in trends of relative interannual variability, although five domains switch from 208 significant to non-significant trends or vice versa. The direction of change in the Desert 209 Southwest domain switched from significantly negative to significantly positive (Figures 1c-d, 210 2); we explore this discrepancy in the discussion section. Collectively, trends in relative 211 interannual variability range from -3.0 to 9.6%/decade with statistically significant changes 212 occurring in all but one domain (Northeast). Results for U.S. NCA regions reveal similar spatial 213 patterns and can be found in the Supporting Information (Figures S1-S2, Tables S11-S12).

Figure 1: Domain Trends in Various Precipitation Metrics. (a) Map of changes in annual mean

216 precipitation for each NEON domain within the contiguous U.S. Red-blue fill indicates domain-level

trends in annual precipitation in mm/decade (dark grey borders). Hatching indicates domain trend is zero

218 or does not reach statistical significance. (b) Same as (a) but for annual wet day frequency and units of

days/decade. (*c*) *Same as* (*a*) *but for interannual precipitation variability with purple-green fill and units*

*of mm/decade. (d) Same as (c) but for relative interannual precipitation variability and units of decade*¹.

223 Figure 2: Domain Trends in Annual Precipitation Metrics. Trends in annual mean precipitation (dark

224 *blue), annual wet day frequency (light blue), interannual precipitation variability (dark green), and*

225	relative interannual precipitation variability (light green) for each domain. Trends are normalized against
226	the mean value within each domain to produce trends in percent change/decade. Non-filled circles
227	indicate non-significant domain-trends ($p > 0.05$). Note that outlying trends in both metrics of
228	interannual variability for the Central and Southern Plains, as well as annual mean precipitation and
229	annual wet day frequency in the Desert Southwest, are not displayed.
230	
231	
232	Discussion
233	
234	Broadly, our analysis of precipitation trends in the United States reveals increasing interannual
235	variability for the south-central and eastern U.S., decreasing interannual variability for the
236	Pacific coast, and mixed trends in the north-central and Rocky Mountain portions of the U.S.,
237	depending on the variability metric of interest. These changes are side-by-side with generally
238	rising annual mean precipitation and wet day frequency over the central and eastern United
239	States, and generally falling trends in the western United States.
240	One result of particular interest is the finding that in the Desert Southwest interannual
241	variability <i>decreased</i> but relative interannual variability <i>increased</i> at a statistically significant
242	level. In addition, the magnitude of trends in variability differed across metrics by one percent
243	or more for ten domains. We explain this between-metric discrepancy with an examination of
244	the components which influence interannual variability.
245	`Together, changes in frequency and daily precipitation intensity drive changes in
246	interannual and relative interannual precipitation variability. We demonstrate the interplay

247	between these four metrics with the theoretical example in Figure 3, which depicts the
248	differential and combined effects of: a 10% increase in precipitation frequency (Figure 3a-c), a
249	10% increase in wet day intensity (Figure 3d-f), and both simultaneously (Figure 3g-i). In these
250	examples, when intensity increases, it does so uniformly across the underlying precipitation
251	distribution (i.e., not driven solely by intensity increases in extreme events).
252	

Responses of Annual Precipitation and Interannual Variability of Precipitation to Changes in Wet Day Frequency and Intensity

254 Figure 3: Responses of Annual Precipitation Totals and Interannual Variability of Precipitation to
255 Changes in Wet Day Frequency and Intensity. (a) Initial probability distribution function (light grey) of

256	annual precipitation totals based on Great Lakes domain precipitation intensity distribution. Projected
257	probability distribution function (blue) after incorporating 10% increase in wet day frequency. (b) Same
258	as (a) but for interannual variability of precipitation. (c) Same as (a) but for relative interannual
259	variability of precipitation. (d-f) Same as (a-c) but projected probability distribution function incorporates
260	a 10% increase in mean wet day intensity while the standard deviation of precipitation intensity
261	distribution remains the same. (g-i) Same as (a-c) but projected distribution function incorporates a 10%
262	increase in both wet day frequency and mean wet day intensity.
263	

264 Holding intensity constant, an increase solely in wet day frequency leads to an increase 265 in interannual variability but a *decrease* in relative interannual variability (Figures 3b-c). As 266 would be expected, an increase in wet day frequency produces an increase in annual 267 precipitation totals (Figure 3a). This rise in mean state leads to a corresponding proportional 268 increase in interannual variability as larger annual totals provide a greater baseline for 269 interannual fluctuations. However, after accounting for the shift in baseline, *relative* interannual 270 variability decreases. As wet day frequency rises, the contribution of extreme events toward 271 annual totals is reduced, along with the likelihood that a given year of precipitation will be 272 unduly influenced by extreme outlier events. Consequently, year-over-year annual precipitation 273 totals become more consistent with more frequent precipitation. This scenario can be seen in 274 reverse for the Desert Southwest domain: interannual variability decreases and relative 275 interannual variability increases despite no shift in underlying precipitation intensities for the 276 Desert Southwest (Harp and Horton, 2022).

277 The impacts of shifts in wet day precipitation intensity on the two metrics of interannual 278 variability are more nuanced. Generally, increases in mean wet day precipitation intensity will 279 lead to increases in interannual variability, however, the standard deviation of the underlying 280 wet day precipitation intensity distribution has critical impacts on relative interannual 281 variability. For example, if the standard deviation of wet day precipitation intensity does not 282 change, then an increase in the mean wet day precipitation intensity leads to negligible impacts 283 on relative interannual variability (Figure 3f). This is the case for the observed changes over the 284 Northeast domain. Here, both wet day frequency and intensity increase (Harp and Horton, 285 2022), leading to a 2.4% rise in interannual variability but a negligible change in relative 286 interannual variability. Stepping back, an increase in the standard deviation of wet day 287 intensity leads to an increase in relative interannual variability and vice versa. These intricacies 288 are illustrated in Figures S3-S4: Figure S3 shows an increase in standard deviation driven by 289 changes at high intensities and Figure S4 shows an increase in standard deviation driven by 290 changes at lower-to-moderate intensities. Ultimately, changing interannual variability is a 291 byproduct of changes in wet day frequency and the underlying precipitation intensity 292 distribution – both the change in mean and standard deviation of the intensity distribution are 293 important - which can combine to produce differential impacts on interannual variability and 294 relative interannual variability.

A second potential path toward changes in interannual precipitation variability involves shifting of relevant modes of climate variability themselves. This is the case in the broader southeastern U.S. where we find increasing interannual variability in both metrics; a shift which has previously been linked to changes in the intensity and location of the western ridge of the

299 North Atlantic Subtropical High (a.k.a. the Bermuda High; Cherchi et al., 2018; Li et al., 2010; 300 Bishop et al., 2019). More specifically, this change in regional climate dynamics in part explains 301 how the Central and Southern Plains have the most substantial changes in both interannual 302 variability (6.2% and 9.5%, respectively) and relative interannual variability (6.1% and 9.6%, 303 respectively) despite modest shifts in annual precipitation and wet day frequency. An 304 additional factor driving these regional changes is a strengthening of the underlying 305 precipitation intensity distribution, with increases in mean wet day intensity of 4.6% and 8%, 306 respectively (Harp and Horton, 2022). We also highlight results for the broader southwestern 307 U.S. (Pacific Southwest, Desert Southwest, Southern Rockies and Colorado Plateau, and Great 308 Basin NEON domains), portions of which have recently experienced the greatest soil moisture 309 deficit in over 1,000 years (Williams et al., 2022). Over the past ~50 years, we find decreasing 310 trends in annual mean precipitation, wet day frequency, and interannual precipitation 311 variability, with mixed trends in relative interannual precipitation variability over this region 312 (Figure 1). Underlying drivers of both observed and projected future changes in precipitation in 313 this region remain an area of active investigation, with a cohesive picture yet to emerge (e.g., 314 Seager et al. 2015; Swain et al., 2018).

315

316 *Comparison with earlier literature*

Our results on changes in observed annual mean precipitation largely mirror earlier
findings from the fourth National Climate Assessment (Easterling et al., 2017) with subtle
differences over the south-central and northwestern U.S. Additionally, we find similar trends in
wet day frequency as earlier *in-situ*, station-based observational studies such as Pal et al. (2013),

321 though there is a discrepancy in findings over the mountain west and a central band across the 322 eastern U.S. Despite a similar observation-driven and interannual variability-focused 323 methodology, we identify differences between our findings and those of Zhang et al. (2021), 324 which looked at a subset of our domain of interest (the western U.S.). Specifically, within the 325 overlapping domains in our studies, we find statistically significant changes in relative 326 interannual variability for all domains, while Zhang et al. find statistically significant changes in 327 just three domains. The signs of the identified trends for these three domains do, however, 328 agree with our results. We similarly find significant results across more domains for annual 329 mean precipitation and wet day frequency than Zhang et al., though the signs of trends nearly 330 perfectly overlap across all three precipitation metrics. These discrepancies may be a byproduct 331 of methodological decisions. For example, despite also using GHCN-D data, Zhang et al. focus 332 their analysis on the period from 1976-2019 and use a shorter moving window (five years) for 333 calculation of relative interannual variability, though our sensitivity analysis did not reveal 334 strong window width dependency (Tables S2-S7).

335 While an imperfect comparison, we also compare our results of observed interannual 336 variability with a suite of studies using high emission scenario model projections to determine if 337 trends emerging in historical observations mirror future estimates. Our findings of increasing 338 interannual variability of precipitation in the midwest and northeast match those of Chou and 339 Lan (2012) and Pendergrass et al. (2017), though we disagree over the sign of change in the 340 northwest U.S. Both Chou and Lan (2012) and Pendergrass et al. (2017) attribute rising 341 interannual precipitation variability to greater moisture availability connected with increasing 342 temperatures. The spatial patterns in interannual variability shifts we identify also differ from

343 the generally uniform nationwide-increases projected by Wood et al. (2021) and Polade (2014), 344 particularly in the western U.S. Similarly, our findings of falling interannual variability in 345 California disagree with modeled increases presented in Berg and Hall (2015) and Swain et al. 346 (2018), though neither study predicts an emergence of signal until the mid-21st century. Lastly, 347 it should be noted that while our study examines changes in interannual variability over a 348 period of rapidly increasing greenhouse gas concentrations and subsequent climate impacts, 349 unlike the above studies, we do not explicitly examine the effects of climate change on 350 interannual variability.

351

352 Limitations and Sensitivity Analysis Implications

353 There are potential limitations of our study, beginning with an underlying assumption 354 that stations within NEON domains are sufficiently homogeneous. While NEON domains were 355 created to possess internally consistent climates, within-domain variability may exist and 356 inconsistent station availability may influence domain-level findings. The quantity of qualifying 357 stations also varies between domains and can impact the reliability of results; this is especially 358 true for the Atlantic Neotropical domain with only six qualifying stations. Our sensitivity 359 analysis revealed two domain clusters with start year-dependent results, in agreement with 360 Kunkel (2003), which describes the importance of length of record for analysis, and notes that 361 shorter time series may exhibit different trends than those from a greater length of record for 362 the same location. First, the direction of relative interannual variability trends switches over 363 four central domains between a 1950 and 1960 start date. Similarly, results for the western U.S. 364 show a distinct shift in precipitation trends between a 1950 or earlier start date and a 1960 or

365	1970 start date. This shift occurs in trends for all metrics and across at least half of the western
366	NEON domains (Tables S2-S6). Thus, while we have focused on results using a 1970 start date
367	and 11-year moving window, we note that this combination should not be considered definitive
368	and as such include results of analyses based on a 1950 start date in the Supporting Information
369	(Figures S5-S8, Tables S13-S16). We used the Trend-Free Pre-Whitened Mann-Kendall test for
370	this analysis. While this limits the effects of short-term autocorrelation, it does not address
371	longer-term persistence caused by decadal or multi-decadal climate variability, such as the
372	Pacific Decadal Oscillation, which may influence our findings (Kumar et al., 2013; Su et al.,
373	2013).
374	Finally, we emphasize that although we examine trends in precipitation through a
375	period of time of increasing greenhouse gas emissions and resultant climate impacts, we do not
376	attempt to formally attribute changes to anthropogenic forcings. Indeed, attribution with
377	observations alone ranges from challenging to impossible (NASEM, 2016). Observed records
378	undersample the full distribution of potential underlying climatic states and may contain
379	statistically significant but anthropogenically unforced trends (Lehner & Deser, 2023). To avoid
380	such pitfalls and increase confidence, attribution analyses using single or even multi-model
381	initial condition perturbation ensembles are recommended (Diffenbaugh et al., 2020; Deser et
382	al., 2020).
383	
384	Conclusion

We use curated daily *in-situ* precipitation measurements from the GHCN to examinedomain-level trends in annual precipitation metrics, with a focus on interannual variability. We

387	identify rises in annual mean precipitation in the central and eastern U.S. and declines in the
388	western U.S. Trends in wet day frequency broadly mirror those of annual mean precipitation.
389	We also reveal significant trends in interannual precipitation variability and relative
390	precipitation variability across the U.S., though with some differences in within-domain trends
391	depending on the variability metric of interest. Broadly, we find an increase in precipitation
392	variability across both metrics for the southeastern U.S., a decrease along the west coast, and
393	mixed signals in the central U.S. These findings have important implications for understanding
394	the impact of changing precipitation variability on agriculture and water resource planning.
395	The full complement of our results can be compared against historical climate model projections
396	to inform climate model analyses across the full spectrum of precipitation metrics. Finally, we
397	recommend that future studies carefully consider how interannual precipitation variability is
398	characterized (i.e., interannual variability vs relative interannual variability) and any
399	subsequent implications.
400	
401	
402	
403	Acknowledgements
404	We first thank the NCEI for publicly sharing the GHCN-D dataset. We also express our
405	gratitude for support from both the Ubben Program for Carbon and Climate Science at
406	Northwestern University via a postdoctoral fellowship to Ryan D. Harp, and for the resources
407	provided for the Quest high performance computing facility at Northwestern University.
408	Finally, we thank two anonymous reviewers for their careful reviews and thoughtful feedback.

410

411	Open Research and Availability Statement
412	The NCEI hosts publicly available GHCN-D data at https://www.ncei.noaa.gov/products/land-
413	based-station/global-historical-climatology-network-daily. Code developed by the authors to
414	conduct the data analysis and visualization within this study is available are publicly available
415	and preserved at doi:/10.5281/zenodo.8065611 and developed openly at
416	https://github.com/ryandharp/Observed Changes in Interannual Precipitation Variability in
417	the United States.
418	
419	
420	References
421	
422	Berg, N., & Hall, A. (2015). Increased interannual precipitation extremes over California under
423	climate change. Journal of Climate, 28(16), 6324-6334.
424	
425	Bishop, D. A., Williams, A. P., & Seager, R. (2019). Increased fall precipitation in the
426	southeastern United States driven by higher-intensity, frontal precipitation. Geophysical
427	Research Letters, 46(14), 8300-8309.
428	
429	Boadi, S. A., & Owusu, K. (2019). Impact of climate change and variability on hydropower in

430 Ghana. African Geographical Review, 38(1), 19-31.

- Boer, G. J. (2009). Changes in interannual variability and decadal potential predictability underglobal warming. Journal of Climate, 22(11), 3098-3109.
- 434
- 435 Cherchi, A., Ambrizzi, T., Behera, S., Freitas, A. C. V., Morioka, Y., & Zhou, T. (2018). The
- response of subtropical highs to climate change. Current Climate Change Reports, *4*, 371-382.
- 438 Chou, C., & Lan, C. W. (2012). Changes in the annual range of precipitation under global
- 439 warming. Journal of Climate, 25(1), 222-235.
- 440
- 441 Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A.,
- 442 Frankignoul, C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon,
- 443 K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., & Ting, M. (2020). Insights from
- 444 Earth system model initial-condition large ensembles and future prospects. Nature Climate
- 445 Change, 10(4), 277-286.
- 446
- 447 Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R.,
- 448 Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney, J.,
- 449 & Zolina, O. (2021): Water Cycle Changes. In Climate Change 2021: The Physical Science Basis.
- 450 Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental
- 451 Panel on Climate Change.
- 452

453	Diffenbaugh, N. S., Singh, D., Mankin, J. S., Horton, D. E., Swain, D. L., Touma, D., Charland,
454	A., Liu, Y., Haugen, M., Tsiang, M., & Rajaratnam, B. (2017). Quantifying the influence of global
455	warming on unprecedented extreme climate events. Proceedings of the National Academy of
456	Sciences, 114(19), 4881-4886.
457	
458	Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., & Vose, R. S. (2010). Comprehensive
459	automated quality assurance of daily surface observations. Journal of Applied Meteorology and
460	Climatology, 49(8), 1615-1633.
461	
462	Easterling, D. R., Kunkel, K. E., Arnold, J. R., Knutson, T., LeGrande, A. N., Leung, L. R., Vose,
463	R. S., Waliser, D. E., & Wehner, M. F. (2017): Precipitation change in the United States. In:
464	Climate Science Special Report: Fourth National Climate Assessment, Volume I.
465	
466	Fischer, E. M., Beyerle, U., & Knutti, R. (2013). Robust spatially aggregated projections of
467	climate extremes. Nature Climate Change, 3(12), 1033-1038.
468	
469	Giorgi, F., Raffaele, F., & Coppola, E. (2019). The response of precipitation characteristics to
470	global warming from climate projections. Earth System Dynamics, 10(1), 73-89.
471	
472	Good, S. P., Guan, K., & Caylor, K. K. (2016). Global patterns of the contributions of storm
473	frequency, intensity, and seasonality to interannual variability of precipitation. Journal of
474	Climate, 29(1), 3-15.

476	Gronewold, A. D., Do, H. X., Mei, Y., & Stow, C. A. (2021). A tug-of-war within the hydrologic
477	cycle of a continental freshwater basin. Geophysical Research Letters, 48(4), e2020GL090374.
478	
479	Hamed, K. H. (2008). Trend detection in hydrologic data: the Mann–Kendall trend test under
480	the scaling hypothesis. Journal of hydrology, 349(3-4), 350-363.
481	
482	Harp, R. D., & Horton, D. E. (2022). Observed Changes in Daily Precipitation Intensity in the
483	United States. Geophysical Research Letters, 49(19), e2022GL099955.
484	
485	He, C., Wang, Y., & Li, T. (2019). Weakened impact of the developing El Niño on tropical Indian
486	Ocean climate variability under global warming. Journal of Climate, 32(21), 7265-7279.
487	
488	Helsel, D. R., & Frans, L. M. (2006). Regional Kendall test for trend. Environmental science &
489	technology, 40(13), 4066-4073.
490	
491	Keller, M., Schimel, D. S., Hargrove, W. W., & Hoffman, F. M. (2008). A continental strategy for
492	the National Ecological Observatory Network. The Ecological Society of America: 282-284.
493	
494	Kendall, M. G. (1948). Rank correlation methods.
495	

496	Kumar, S., Merwade, V., Kinter III, J. L., & Niyogi, D. (2013). Evaluation of temperature and
497	precipitation trends and long-term persistence in CMIP5 twentieth-century climate simulations.
498	Journal of Climate, 26(12), 4168-4185.
499	
500	Kunkel, K. E., Easterling, D. R., Redmond, K., & Hubbard, K. (2003). Temporal variations of

501 extreme precipitation events in the United States: 1895–2000. Geophysical research letters, 502 30(17).

503

504 Lehner, F., & Deser, C. (2023). Origin, importance, and predictive limits of internal climate

505 variability. Environmental Research: Climate.

506

- 507 Li, W., Li, L., Fu, R., Deng, Y., & Wang, H. (2011). Changes to the North Atlantic subtropical
- 508 high and its role in the intensification of summer rainfall variability in the southeastern United

509 States. Journal of Climate, 24(5), 1499-1506.

510

- 511 Loecke, T. D., Burgin, A. J., Riveros-Iregui, D. A., Ward, A. S., Thomas, S. A., Davis, C. A., &
- 512 Clair, M. A. S. (2017). Weather whiplash in agricultural regions drives deterioration of water
- 513 quality. Biogeochemistry, 133(1), 7-15.

- 515 Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric 516 society, 245-259.
- 517

518	Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An overview of the
519	global historical climatology network-daily database. Journal of atmospheric and oceanic
520	technology, 29(7), 897-910.
521	
522	National Academies of Sciences, Engineering, and Medicine. (2016). Attribution of extreme
523	weather events in the context of climate change. National Academies Press.
524	
525	Pal, I., Anderson, B. T., Salvucci, G. D., & Gianotti, D. J. (2013). Shifting seasonality and
526	increasing frequency of precipitation in wet and dry seasons across the US. Geophysical
527	Research Letters, 40(15), 4030-4035.
528	
529	Pendergrass, A. G., & Hartmann, D. L. (2014). The atmospheric energy constraint on global-
530	mean precipitation change. Journal of climate, 27(2), 757-768.
531	
532	Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., & Sanderson, B. M. (2017). Precipitation
533	variability increases in a warmer climate. Scientific reports, 7(1), 1-9.
534	

- 535 Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A., & Dettinger, M. D. (2014). The key role
- 536 of dry days in changing regional climate and precipitation regimes. Scientific reports, 4(1), 1-8.

538	Qin, P., Xu, H., Liu, M., Du, L., Xiao, C., Liu, L., & Tarroja, B. (2020). Climate change impacts on					
539	Three Gorges Reservoir impoundment and hydropower generation. Journal of Hydrology, 580,					
540	123922.					
541						
542	Roque-Malo, S., & Kumar, P. (2017). Patterns of change in high frequency precipitation					
543	variability over North America. Scientific reports, 7(1), 1-12.					
544						
545	Rowhani, P., Lobell, D. B., Linderman, M., & Ramankutty, N. (2011). Climate variability and					
546	crop production in Tanzania. Agricultural and forest meteorology, 151(4), 449-460.					
547						
548	Schimel, D. (2011). The era of continental-scale ecology. Frontiers in Ecology and the					
549	Environment, 9(6), 311-311.					
550						
551	Seager, R., Hoerling, M., Schubert, S., Wang, H., Lyon, B., Kumar, A., Nakamura, J., &					
552	Henderson, N. (2015). Causes of the 2011–14 California drought. Journal of Climate, 28(18),					
553	6997-7024.					

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the
American statistical association, 63(324), 1379-1389.

557

558 Shortridge, J. (2019). Observed trends in daily rainfall variability result in more severe climate

559 change impacts to agriculture. Climatic Change, 157(3), 429-444.

561	Sloat, L. L., Gerber, J. S., Samberg, L. H., Smith, W. K., Herrero, M., Ferreira, L. G., & West, P.
562	C. (2018). Increasing importance of precipitation variability on global livestock grazing lands.
563	Nature Climate Change, 8(3), 214-218.
564	
565	Su, L., Miao, C., Kong, D., Duan, Q., Lei, X., Hou, Q., & Li, H. (2018). Long-term trends in global
566	river flow and the causal relationships between river flow and ocean signals. Journal of
567	hydrology, 563, 818-833.
568	
569	Swain, D. L., Langenbrunner, B., Neelin, J. D., & Hall, A. (2018). Increasing precipitation
570	volatility in twenty-first-century California. Nature Climate Change, 8(5), 427-433.
571	
572	Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis.
573	Indagationes mathematicae, 12(85), 173.
574	
575	Williams, A. P., Cook, B. I., & Smerdon, J. E. (2022). Rapid intensification of the emerging
576	southwestern North American megadrought in 2020–2021. Nature Climate Change, 12(3), 232-
577	234.
578	
579	Wood, R. R., Lehner, F., Pendergrass, A. G., & Schlunegger, S. (2021). Changes in precipitation
580	variability across time scales in multiple global climate model large ensembles. Environmental
581	Research Letters, 16(8), 084022.

583 Yue, S., & Wang, C. Y. (2002). Applicability of prewhitening to eliminate the influence of serial
584 correlation on the Mann-Kendall test. Water resources research, 38(6), 4-1.

585

- 586 Zhang, F., Biederman, J. A., Dannenberg, M. P., Yan, D., Reed, S. C., & Smith, W. K. (2021). Five
- 587 decades of observed daily precipitation reveal longer and more variable drought events across
- 588 much of the western United States. Geophysical Research Letters, 48(7), e2020GL092293.

Supporting Information for Observed Changes in Interannual

Precipitation Variability in the United States

Ryan D. Harp, Daniel E. Horton

Revisions submitted to Geophysical Research Letters

14 June, 2023

Sensitivity Analysis

To explore the potential dependency of observed trends on methodological choices, we performed sensitivity analyses of the moving window width and the start date. Our findings are largely consistent regardless of the width of the moving window – analyzed at 5, 7, 9, 11, 13, and 15 years – when holding the start date constant at 1950. The direction of trend in either interannual variability or relative interannual variability flips for only three domains (Prairie Peninsula, interannual variability; Northeast and Southern Plains, relative interannual variability; Tables S2-S3).

Our findings on start year sensitivity – analyzed every ten years from 1920 to 1980 and holding window width constant at 11 years – are more varied with a clear east-west dichotomy. In the eastern U.S., trends in annual mean precipitation are consistent for all domains and the direction of trend in wet day frequency is start date dependent for just three domains (Ozarks Complex and the Central and Southern Plains). Metrics of interannual variability are relatively consistent as well, though there is increased variation in start date dependency across domains. As noted in the discussion section in the main text, the only consistent spatiotemporal pattern in the eastern U.S. is a change in the direction of interannual variability trends over the three Plains domains and the Ozarks Complex between a 1950 and 1960 start date. Similarly, results for the western U.S. show a distinct shift in precipitation trends between a 1950 or earlier start date and a 1960 or 1970 start date. This shift occurs in trends for all metrics and across at least half of the western NEON domains (Tables S4-S7). Trend differences in starting date have a number of potential causes: differential station availability, multi-decadal climate variability, and record length, that can impact the emergence of trends. Further work is necessary to provide attribution for these differences.

	1920	1930	1940	1950	1960	1970	1980
Northeast	54	87	126	157	182	195	202
Mid-Atlantic	53	77	107	156	166	170	172
Southeast	41	48	72	96	110	114	132
Atlantic Neotropical	2	2	5	7	7	6	7
Great Lakes	70	87	112	155	165	166	167
Prairie Peninsula	177	201	264	351	366	375	384
Appalachians and C.P.	49	69	94	123	149	153	163
Ozarks Complex	96	117	169	204	227	236	237
Northern Plains	80	106	135	186	206	208	226
Central Plains	75	94	123	169	175	173	174
Southern Plains	57	61	88	133	146	158	164
Northern Rockies	15	20	29	43	47	48	180
Southern Rockies and C.P.	34	46	71	104	117	123	236
Desert Southwest	12	23	37	58	65	61	62
Great Basin	31	48	68	92	103	112	247
Pacific Northwest	28	40	55	72	83	92	149
Pacific Southwest	28	49	71	102	105	101	118
Tundra	3	3	4	4	4	4	4
Taiga	4	5	8	15	13	13	19

Pacific Tropical	8	7	14	32	37	34	35
Total	917	1190	1652	2259	2473	2542	3078

Table S1: Number of Qualifying Stations for Sensitivity Analysis Start Dates. Number of qualifyingstations (90% or more observation availability for 90% or more of possible station-years).
	Five	Seven	Nine	Eleven	Thirteen	Fifteen
Northeast	0.4	0.5	0.5	0.5	0.4	0.3
Mid-Atlantic	1.1	1.0	0.9	0.9	0.8	0.8
Southeast	-0.3	-0.2	-0.1	-0.1	-0.1	0.0
Atlantic Neotropical	-2.1	-2.2	-2.2	-2.1	-2.1	-2.1
Great Lakes	-0.2	-0.1	-0.1	-0.1	-0.1	0.0
Prairie Peninsula	-0.1	0.0	0.1	0.1	0.1	0.1
Appalachians and C.P.	0.7	0.8	0.8	0.8	0.8	0.8
Ozarks Complex	0.3	0.1	0.2	0.2	0.2	0.2
Northern Plains	0.2	0.2	0.2	0.2	0.2	0.2
Central Plains	0.0	-0.1	0.0	0.0	0.0	-0.1
Southern Plains	0.4	0.2	0.3	0.3	0.4	0.4
Northern Rockies	0.0	0.0	0.0	0.0	0.0	0.0
Southern Rockies and C.P.	0.0	-0.1	-0.1	-0.1	-0.1	-0.1
Desert Southwest	0.1	0.1	0.1	0.2	0.2	0.2
Great Basin	0.3	0.3	0.3	0.3	0.3	0.3
Pacific Northwest	0.7	0.9	1.1	1.1	1.2	1.2
Pacific Southwest	0.6	0.7	0.6	0.7	0.6	0.6

Table S2: Moving Window Width Sensitivity Analysis of Interannual Variability of Precipitation.Trends in interannual precipitation variability are shown for each NEON domain across six start dates(every two years from five to fifteen) in mm/year for a 1950 start date. Purple fill and text indicates

statistically significant positive trends (p < 0.05). Green fill and text indicates statistically significant negative trends. White fill indicates lack of statistically significant trend. Bold borders highlight domains whose trends changed sign across start dates. To highlight spatial clustering of sensitivity analysis results, domains grouped above the dashed line are east of the Rocky Mountains and vice versa.

	Five	Seven	Nine	Eleven	Thirteen	Fifteen
Northeast	0.0001	0.0001	0.0001	0.0000	0.0000	-0.0001
Mid-Atlantic	0.0008	0.0008	0.0007	0.0007	0.0007	0.0007
Southeast	-0.0004	-0.0003	-0.0002	-0.0002	-0.0002	-0.0001
Atlantic Neotropical	-0.0016	-0.0017	-0.0017	-0.0016	-0.0016	-0.0016
Great Lakes	-0.0005	-0.0005	-0.0004	-0.0004	-0.0004	-0.0004
Prairie Peninsula	-0.0006	-0.0006	-0.0005	-0.0004	-0.0004	-0.0004
Appalachians and C.P.	0.0004	0.0004	0.0005	0.0005	0.0005	0.0005
Ozarks Complex	-0.0002	-0.0003	-0.0002	-0.0002	-0.0002	-0.0002
Northern Plains	-0.0001	-0.0001	0.0000	0.0000	0.0000	0.0000
Central Plains	-0.0005	-0.0005	-0.0004	-0.0004	-0.0005	-0.0005
Southern Plains	-0.0001	-0.0002	-0.0001	0.0000	0.0001	0.0001
Northern Rockies	-0.0002	-0.0001	-0.0001	0.0000	0.0000	0.0000
Southern Rockies and C.P.	-0.0005	-0.0007	-0.0006	-0.0006	-0.0006	-0.0006
Desert Southwest	-0.0002	0.0000	0.0002	0.0004	0.0004	0.0005
Great Basin	0.0008	0.0008	0.0010	0.0010	0.0010	0.0010
Pacific Northwest	0.0007	0.0008	0.0009	0.0010	0.0010	0.0011
Pacific Southwest	0.0011	0.0014	0.0014	0.0014	0.0014	0.0014

Table S3: Moving Window Width Sensitivity Analysis of Relative Interannual Variability of

Precipitation. Trends in relative interannual precipitation variability are shown for each NEON domain across six start dates (every two years from five to fifteen) in 1/year for a 1950 start date. Purple fill and text indicates statistically significant positive trends (p < 0.05). Green fill and text indicates statistically significant negative trends. White fill indicates lack of statistically significant trend. Bold borders highlight domains whose trends changed sign across start dates.

	1920	1930	1940	1950	1960	1970	1980
Northeast	1.43	1.75	1.97	2.86	2.78	2.08	4.42
Mid-Atlantic	0.31	0.11	0.28	0.33	0.81	0.33	2.40
Southeast	0.18	0.08	0.22	0.52	-0.08	-1.12	-1.96
Atlantic Neotropical	0.07	0.46	1.13	1.93	1.35	2.93	0.66
Great Lakes	1.30	1.26	1.30	1.80	1.03	1.23	1.80
Prairie Peninsula	1.46	1.57	1.70	2.20	1.56	2.27	2.82
Appalachians and C.P.	1.3	1.31	1.06	1.53	1.67	1.76	4.77
Ozarks Complex	1.22	1.36	1.27	1.87	1.06	0.73	0.29
Northern Plains	0.87	0.79	0.85	1.02	0.86	1.25	1.49
Central Plains	0.70	0.76	0.60	0.55	0.42	0.34	-0.96
Southern Plains	0.87	0.93	1.61	0.94	0.37	0.37	-3.79

Northern Rockies	0.27	0.20	0.11	-0.10	-0.31	-0.61	1.10
Southern Rockies and							
C.P.	0.17	0.19	0.50	0.51	-0.13	-0.49	-1.13
Desert Southwest	0.18	0.25	0.58	0.17	-0.54	-1.55	-1.80
Great Basin	0.40	0.21	0.12	0.07	-0.09	-0.47	0.88
Pacific Northwest	0.38	0.18	-1.08	-0.73	-0.13	1.34	5.48

Pacific Southwest	0.16	-0.39	0.34	-0.15	-0.81	-1.49	-0.61				
Table S4: Start Date Sensitivity Analysis of Annual Mean Precipitation. Trends in annual mean											
precipitation are shown f	or each NEC	ON domain	across sevei	n start dates	5 (every ten	years from	1920 to				
1980) in mm/year. Blue J	1980) in mm/year. Blue fill and text indicates statistically significant positive trends ($p < 0.05$). Red fill										
and text indicates statist	ically signifi	icant negati	ve trends. V	Vhite fill ind	licates lack	of statistica	lly				
significant trend. Bold bo	orders highli	ight domain	s whose trei	nds changed	l sign acros	s start dates	. То				
highlight spatial clusterin	ng of sensiti	vity analysi	s results, do	omains groi	iped above i	the dashed la	ine are east				
of the Rocky Mountains	and vice ver	sa.									

	1920	1930	1940	1950	1960	1970	1980
Northeast	0.06	0.07	0.05	0.08	0.08	0.08	0.20
Mid-Atlantic	0.00	0.00	-0.03	0.00	0.00	0.00	0.13
Southeast	-0.05	-0.07	-0.08	-0.09	-0.13	-0.17	-0.20
Atlantic Neotropical	0.09	0.15	0.13	0.10	0.07	0.09	0.18
Great Lakes	0.09	0.08	0.08	0.10	0.00	0.04	0.11
Prairie Peninsula	0.08	0.07	0.08	0.09	0.00	0.00	0.08
Appalachians and C.P.	0.00	0.03	0.00	0.00	0.00	0.00	0.22
Ozarks Complex	0.02	0.00	0.00	0.00	-0.03	-0.05	-0.13
Northern Plains	0.07	0.06	0.05	0.06	0.03	0.04	0.11
Central Plains	0.04	0.02	0.00	0.00	0.00	0.00	-0.13
Southern Plains	0.00	0.02	0.03	0.00	-0.07	-0.11	-0.29

Northern Rockies	0.04	0.00	0.00	-0.03	-0.04	-0.09	0.39
Southern Rockies and							
C.P.	0.05	0.04	0.07	0.04	-0.03	-0.10	-0.12
Desert Southwest	0.00	0.00	0.05	0.00	-0.08	-0.20	-0.25
Great Basin	0.06	0.02	0.00	0.00	-0.02	-0.06	0.10
Pacific Northwest	0.07	0.05	-0.03	-0.04	0.00	0.00	0.20

Pacific Southwest	0.00	-0.03	0.00	0.00	-0.05	-0.08	-0.07			
Table S5: Start Date Sensitivity Analysis of Annual Wet Day Frequency. Trends in annual wet day										
frequency are shown for e	each NEON	domain acr	oss seven si	tart dates (e	very ten yei	ars from 192	20 to 1980)			
in days/year. Blue fill and text indicates statistically significant positive trends ($p < 0.05$). Red fill and										
text indicates statistically	y significant	e negative tr	ends. White	e fill indicat	es lack of st	atistically s	ignificant			
trend. Bold borders highl	trend. Bold borders highlight domains whose trends changed sign across start dates. To highlight spatial									
clustering of sensitivity analysis results, domains grouped above the dashed line are east of the Rocky										
Mountains and vice vers	а.									

	1920	1930	1940	1950	1960	1970	1980
Northeast	0.23	0.28	0.35	0.45	0.34	0.40	0.47
Mid-Atlantic	0.11	0.39	0.71	0.87	0.80	0.89	1.40
Southeast	-0.04	-0.13	-0.29	-0.08	0.62	0.82	0.92
Atlantic Neotropical	-0.83	-1.19	-2.19	-2.12	-1.09	0.16	-1.68
Great Lakes	0.01	0.00	-0.08	-0.05	0.11	0.00	-0.22
Prairie Peninsula	0.32	0.22	0.12	0.06	0.12	-0.02	-0.37
Appalachians and C.P.	0.19	0.41	0.62	0.82	0.97	0.64	0.52
Ozarks Complex	0.22	0.11	0.01	0.17	0.50	0.21	1.82
Northern Plains	0.18	0.17	0.24	0.22	0.25	0.01	0.41
Central Plains	-0.20	-0.26	-0.15	-0.04	0.30	0.75	1.17
Southern Plains	0.27	0.10	0.15	0.35	1.41	1.99	2.31

Northern Rockies	0.08	0.12	0.18	0.01	-0.11	-0.32	-1.07
Southern Rockies and							
C.P.	-0.12	-0.14	-0.06	-0.10	0.02	0.04	-0.22
Desert Southwest	0.11	0.09	0.22	0.18	0.04	-0.41	-0.48
Great Basin	0.07	0.09	0.20	0.32	0.20	-0.09	-0.54
Pacific Northwest	-0.03	0.07	0.24	1.12	0.75	-0.24	-2.19

Pacific Southwest	0.37	0.28	0.57	0.66	0.07	-1.06	-0.96

Table S6: Start Date Sensitivity Analysis of Interannual Variability of Precipitation. Trends in interannual precipitation variability are shown for each NEON domain across seven start dates (every ten years from 1920 to 1980) in mm/year using an 11-year moving window width. Purple fill and text indicates statistically significant positive trends (p < 0.05). Green fill and text indicates statistically significant negative trends. White fill indicates lack of statistically significant trend. Bold borders highlight domains whose trends changed sign across start dates. To highlight spatial clustering of sensitivity analysis results, domains grouped above the dashed line are east of the Rocky Mountains and vice versa.

	1920	1930	1940	1950	1960	1970	1980
Northeast	-0.00001	-0.00002	0.00001	0.00001	-0.00010	-0.00001	-0.00015
Mid-Atlantic	0.00006	0.00032	0.00057	0.00070	0.00065	0.00073	0.00101
Southeast	-0.00007	-0.00013	-0.00031	-0.00017	0.00048	0.00075	0.00090
Atlantic Neotropical	-0.00056	-0.00082	-0.00165	-0.00163	-0.00100	-0.00039	-0.00138
Great Lakes	-0.00026	-0.00025	-0.00035	-0.00038	-0.00014	-0.00022	-0.00060
Prairie Peninsula	0.00001	-0.00016	-0.00030	-0.00043	-0.00030	-0.00047	-0.00090
Appalachians and C.P.	-0.00004	0.00015	0.00035	0.00047	0.00062	0.00035	-0.00001
Ozarks Complex	-0.00003	-0.00015	-0.00027	-0.00022	0.00022	0.00013	0.00148
Northern Plains	-0.00003	-0.00002	0.00012	-0.00003	0.00012	-0.00062	0.00021
Central Plains	-0.00071	-0.00086	-0.00057	-0.00042	0.00031	0.00146	0.00271
Southern Plains	0.00009	-0.00020	-0.00035	0.00003	0.00158	0.00245	0.00348

Northern Rockies	0.00001	0.00017	0.00033	-0.00004	-0.00016	-0.00066	-0.00163
Southern Rockies and							
C.P.	-0.00046	-0.00063	-0.00053	-0.00059	0.00004	0.00057	0.00031
Desert Southwest	0.00014	-0.00010	0.00000	0.00039	0.00098	0.00080	0.00102
Great Basin	-0.00011	0.00008	0.00050	0.00095	0.00079	-0.00003	-0.00106
Pacific Northwest	-0.00008	0.00003	0.00027	0.00099	0.00068	-0.00021	-0.00170

0.00140 0.00067 Pacific Southwest 0.00065 0.00097 0.00068 -0.00084 -0.00068 Table S7: Start Date Sensitivity Analysis of Relative Interannual Variability of Precipitation. Trends in relative interannual precipitation variability are shown for each NEON domain across seven start dates (every ten years from 1920 to 1980) in 1/year using an 11-year moving window width. Purple fill and text indicates statistically significant positive trends (p < 0.05). Green fill and text indicates statistically significant negative trends. White fill indicates lack of statistically significant trend. Bold borders highlight domains whose trends changed sign across start dates. To highlight spatial clustering of sensitivity analysis results, domains grouped above the dashed line are east of the Rocky Mountains and vice versa.

Table S8: Number of Qualifying Stations for NCA Regions for 1950 and 1970. Number of qualifying stations (90% or more observation availability for 90% or more of possible station-years).

			Interannual	Relative Interannual
	Annual Mean	Annual Wet Day	Variability of	Variability of
	Precipitation	Frequency	Precipitation	Precipitation
	(mm/decade)	(days/decade)	(mm/decade)	(decade ⁻¹)
Northeast	20.8	0.8	4.0	-0.0001
Mid Atlantic	3.3	0.0	8.9	0.0073
Southeast	-11.2	-1.7	8.2	0.0075
Atlantic Neotropical	29.3	0.9	1.6	-0.0039
Great Lakes	12.3	0.4	0.0	-0.0022
Prairie Peninsula	22.7	0.0	-0.2	-0.0047
Appalachians and Cumberland				
Plateau	17.6	0.0	6.4	0.0035
Ozarks Complex	7.3	-0.5	2.1	0.0013
Northern Plains	12.5	0.4	0.1	-0.0062
Central Plains	3.4	0.0	7.5	0.0146
Southern Plains	3.7	-1.1	19.9	0.0245
Northern Rockies	-6.1	-0.9	-3.2	-0.0066
Southern Rockies and Colorado				
Plateau	-4.9	-1.0	0.4	0.0057
Desert Southwest	-15.5	-2.0	-4.1	0.0080

Great Basin	-4.7	-0.6	-0.9	-0.0003
Pacific Northwest	13.4	0.0	-2.4	-0.0021
Pacific Southwest	-14.9	-0.8	-10.6	-0.0084
Tundra	20.9	3.2	-0.4	-0.0168
Taiga	5.4	0.0	-1.3	-0.0049
Pacific Tropical	2.0	-0.6	-7.8	-0.0041

Table S9: Non-Normalized Domain Trends in Annual Precipitation Metrics from 1970 to Present for NEON Domains. Trends in annual mean precipitation (mm/decade), annual wet day frequency (days/decade), interannual precipitation variability (mm/decade), and relative interannual precipitation variability (decade⁻¹) are shown for each domain. Bolded values denote statistical significance at the p <0.05 level. Values are presented visually in Figure 2 in the main text.

			Interannual	Relative Interannual
	Annual Mean	Annual Wet Day	Variability of	Variability of
	Precipitation	Frequency	Precipitation	Precipitation
	(%/decade)	(%/decade)	(%/decade)	(%/decade)
Northeast	1.9	0.7	2.4	0.0
Mid Atlantic	0.3	0.0	4.3	4.1
Southeast	-0.8	-1.8	3.1	3.9
Atlantic Neotropical	2.0	0.8	0.7	-2.4
Great Lakes	1.4	0.4	0.0	-1.4
Prairie Peninsula	2.5	0.0	-0.1	-2.3
Appalachians and Cumberland				
Plateau	1.4	0.0	3.1	2.1
Ozarks Complex	0.6	-0.5	0.8	0.7
Northern Plains	2.7	0.7	0.1	-2.5
Central Plains	0.7	0.0	6.2	6.1
Southern Plains	0.4	-1.8	9.5	9.6
Northern Rockies	-1.5	-1.1	-3.7	-3.0
Southern Rockies and Colorado				
Plateau	-1.4	-1.8	0.4	2.3
Desert Southwest	-5.8	-6.3	-4.0	2.0
Great Basin	-1.4	-1.0	-1.1	-0.1

Pacific Northwest	0.9	0.0	-0.8	-1.0
Pacific Southwest	-2.4	-1.8	-4.4	-2.1
Tundra	5.8	3.9	-0.6	-7.2
Taiga	1.2	0.0	-1.4	-2.3
Pacific Tropical	0.2	-0.5	-2.7	-1.6

Table S10: Normalized Domain Trends in Annual Precipitation Metrics from 1970 to Present for NEONDomains. Trends in annual mean precipitation, annual wet day frequency, interannual precipitationvariability, and relative interannual precipitation variability are shown for each domain. Trends arenormalized against the mean value within each domain to produce trends in percent change/decade.Bolded values denote statistical significance at the p < 0.05 level. Values are presented visually in Figure3 in the main text.

Figure S1: U.S. NCA Region Trends in Various Precipitation Metrics from 1970 to Present. (a) Map of changes in annual mean precipitation for each NCA region within the contiguous U.S. Red-blue fill indicates domain-level trends in annual mean precipitation in mm/decade (dark grey borders). Hatching indicates domain trends not reaching statistical significance. (b) Same as (a) but for annual wet day frequency and units of days/decade. (c) Same as (a) but for interannual precipitation variability with purple-green fill and units of mm/decade. (d) Same as (c) but for relative interannual precipitation variability and units of decade⁻¹.

			Interannual	Relative Interannual
	Annual Mean	Annual Wet Day	Variability of	Variability of
	Precipitation	Frequency	Precipitation	Precipitation
	(mm/decade)	(days/decade)	(mm/decade)	(decade-1)
Alaska	9.2	0.3	-2.8	-0.0082
U.S. Caribbean	_	-	_	-
Hawaii and U.SAffiliated Islands	-38.8	-2.9	-14.8	-0.0004
Midwest	21.3	0.4	1.1	-0.0026
Northeast	20.2	0.6	3.7	-0.0001
Northern Great Plains	8.0	0.0	0.1	-0.0041
Northwest	0.7	-0.3	-0.5	0.0000
Southeast	2.1	-0.5	6.7	0.0054
Southern Great Plains	3.3	-0.8	11.0	0.0146
Southwest	-7.7	-1.1	-2.5	0.0018

Table S11: Non-Normalized Domain Trends in Annual Precipitation Metrics from 1970 to Present for

NCA Regions. Trends in annual mean precipitation (mm/decade), annual wet day frequency (days/decade), interannual precipitation variability (mm/decade), and relative interannual precipitation variability (decade⁻¹) are shown for each domain. Bolded values denote statistical significance at the p < 0.05 level.

Figure S2: U.S. NCA Region Trends in Annual Precipitation Metrics from 1970 to Present. Trends in annual mean precipitation (dark blue), annual wet day frequency (light blue), interannual precipitation variability (dark green), and relative interannual precipitation variability (light green) for each domain. Trends are normalized against the mean value within each domain to produce trends in percent change/decade. Non-filled circles indicate non-significant domain-trends (p < 0.05). Note outlying trends in both metrics of interannual variability for the Southern Great Plains region are not displayed.

			Interannual	Relative Interannual
	Annual Mean	Annual Wet Day	Variability of	Variability of
	Precipitation	Frequency	Precipitation	Precipitation
	(%/decade)	(%/decade)	(%/decade)	(%/decade)
Alaska	1.0	0.3	-1.7	-4.0
U.S. Caribbean	-	-	-	-
Hawaii and U.SAffiliated Islands	-2.6	-2.1	-3.9	-0.1
Midwest	2.3	0.5	0.7	-1.4
Northeast	1.8	0.5	2.1	-0.1
Northern Great Plains	1.7	0.0	0.1	-1.7
Northwest	0.1	-0.3	-0.2	0.0
Southeast	0.2	-0.5	2.8	2.9
Southern Great Plains	0.4	-1.3	5.7	6.0
Southwest	-1.8	-2.1	-1.9	0.6

Table S12: Normalized Domain Trends in Annual Precipitation Metrics from 1970 to Present for NCA Regions. Trends in annual mean precipitation, annual wet day frequency, interannual precipitation variability, and relative interannual precipitation variability are shown for each domain. Trends are normalized against the mean value within each domain to produce trends in percent change/decade. Bolded values denote statistical significance at the p < 0.05 level.

Responses of Annual Precipitation and Interannual Variability of Precipitation to Changes in Wet Day Frequency and Intensity (Standard Deviation of Wet Day Intensity Increased)

Figure S3: Responses of Annual Precipitation Totals and Interannual Variability of Precipitation to Changes in Wet Day Frequency and Intensity (Standard Deviation of Wet Day Intensity Increased). (a) Initial probability distribution function (light grey) of annual precipitation totals based on Great Lakes domain precipitation intensity distribution. Projected probability distribution function (blue) after incorporating 10% increase in wet day frequency. (b) Same as (a) but for interannual variability of precipitation. (c) Same as (a) but for relative interannual variability of precipitation. (d-f) Same as (a-c) but projected probability distribution function function incorporates a 10% increase in mean wet day intensity

while the standard deviation of precipitation intensity distribution increases. (g-i) Same as (a-c) but projected distribution function incorporates both a 10% increase in wet day frequency and a 10% increase in mean wet day intensity.

Responses of Annual Precipitation and Interannual Variability of Precipitation to Changes in Wet Day Frequency and Intensity (Standard Deviation of Wet Day Intensity Decreased)

Figure S4: Responses of Annual Precipitation Totals and Interannual Variability of Precipitation to Changes in Wet Day Frequency and Intensity (Standard Deviation of Wet Day Intensity Decreased). (a) Initial probability distribution function (light grey) of annual mean precipitation based on Great Lakes domain precipitation intensity distribution. Projected probability distribution function (blue) after incorporating 10% increase in wet day frequency. (b) Same as (a) but for interannual variability of precipitation. (c) Same as (a) but for relative interannual variability of precipitation. (d-f) Same as (a-c)

but projected probability distribution function incorporates a 10% increase in mean wet day intensity while the standard deviation of precipitation intensity distribution decreases. (g-i) Same as (a-c) but projected distribution function incorporates both a 10% increase in wet day frequency and a 10% increase in mean wet day intensity.

Figure S5: NEON Domain Trends in Various Precipitation Metrics from 1950 to Present. (a) Map of changes in annual precipitation for each NEON domain within the contiguous U.S. Red-blue fill indicates domain-level trends in annual mean precipitation in mm/decade (dark grey borders). Hatching indicates domain trends not reaching statistical significance. (b) Same as (a) but for annual wet day frequency and units of days/decade. (c) Same as (a) but for interannual precipitation variability with purple-green fill and units of mm/decade. (d) Same as (c) but for relative interannual precipitation variability and units of decade⁻¹.

			Interannual	Relative Interannual
	Annual Mean	Annual Wet Day	Variability of	Variability of
	Precipitation	Frequency	Precipitation	Precipitation
	(mm/decade)	(days/decade)	(mm/decade)	(decade ⁻¹)
Northeast	25.8	1.1	4.4	0.0009
Mid Atlantic	7.8	0.2	11.0	0.0083
Southeast	14.4	-0.4	-2.6	-0.0041
Atlantic Neotropical	11.5	1.1	-20.6	-0.0164
Great Lakes	20.0	1.3	-1.8	-0.0054
Prairie Peninsula	26.1	1.2	-0.7	-0.0062
Appalachians and Cumberland				
Plateau	23.1	0.7	7.3	0.0036
Ozarks Complex	27.8	0.5	2.5	-0.0017
Northern Plains	11.3	0.8	1.9	-0.0009
Central Plains	11.6	0.3	-0.4	-0.0048
Southern Plains	20.5	0.6	3.8	-0.0007
Northern Rockies	2.4	0.2	-0.4	-0.0017
Southern Rockies and Colorado				
Plateau	4.4	0.4	-0.4	-0.0047
Desert Southwest	3.2	0.0	0.9	-0.0019
Great Basin	2.6	0.2	2.7	0.0075

Pacific Northwest	-4.0	0.0	7.4	0.0066
Pacific Southwest	0.7	0.0	5.7	0.0111
Tundra	11.8	2.4	-1.7	-0.0142
Taiga	5.1	0.8	-2.3	-0.0079
Pacific Tropical	5.2	0.0	-3.7	-0.0030

Table S13: Non-Normalized Domain Trends in Annual Precipitation Metrics from 1950 to Present forNEON Domains. Trends in annual mean precipitation (mm/decade), annual wet day frequency(days/decade), interannual precipitation variability (mm/decade), and relative interannual precipitationvariability (decade-1) are shown for each domain. Bolded values denote statistical significance at the p <0.05 level.

Figure S6: NEON Domain Trends in Annual Precipitation Metrics from 1950 to Present. Trends in annual mean precipitation (dark blue), annual wet day frequency (light blue), interannual precipitation

variability (dark green), and relative interannual precipitation variability (light green) for each domain. Trends are normalized against the mean value within each domain to produce trends in percent change/decade. Non-filled circles indicate non-significant domain-trends (p < 0.05). Note outlying trends in both metrics of interannual variability for the Atlantic Neotropical domain, and relative interannual variability for the Pacific Northwest, are not displayed.

			Interannual	Relative Interannual
	Annual Mean	Annual Wet Day	Variability of	Variability of
	Precipitation	Frequency	Precipitation	Precipitation
	(%/decade)	(%/decade)	(%/decade)	(%/decade)
Northeast	2.4	0.9	2.8	0.6
Mid Atlantic	0.7	0.2	5.8	5.1
Southeast	1.0	-0.4	-1.0	-2.2
Atlantic Neotropical	0.8	1.1	-7.9	-9.2
Great Lakes	2.4	1.3	-1.4	-3.5
Prairie Peninsula	3.0	1.5	-0.4	-3.1
Appalachians and Cumberland				
Plateau	1.9	0.7	3.9	2.3
Ozarks Complex	2.2	0.6	1.0	-0.9
Northern Plains	2.5	1.4	1.9	-0.4
Central Plains	2.3	0.6	-0.3	-2.0
Southern Plains	2.5	0.9	1.9	-0.3
Northern Rockies	0.6	0.3	-0.5	-0.8
Southern Rockies and Colorado				
Plateau	1.2	0.8	-0.5	-1.9
Desert Southwest	1.2	0.0	1.0	-0.5
Great Basin	0.8	0.4	3.6	3.1

Pacific Northwest	-0.3	0.0	3.1	3.9
Pacific Southwest	0.1	0.0	2.9	3.1
Tundra	3.3	3.0	-2.4	-6.0
Taiga	1.2	1.0	-2.8	-3.8
Pacific Tropical	0.4	0.0	-1.4	-1.2

Table S14: Normalized Domain Trends in Annual Precipitation Metrics from 1950 to Present for NEONDomains. Trends in annual mean precipitation, annual wet day frequency, interannual precipitationvariability, and relative interannual precipitation variability are shown for each domain. Trends arenormalized against the mean value within each domain to produce trends in percent change/decade.Bolded values denote statistical significance at the p < 0.05 level.

Figure S7: U.S. NCA Region Trends in Various Precipitation Metrics from 1950 to Present. (a) Map of changes in annual mean precipitation for each NCA region within the contiguous U.S. Red-blue fill indicates domain-level trends in annual mean precipitation in mm/decade (dark grey borders). Hatching indicates domain trends not reaching statistical significance. (b) Same as (a) but for annual wet day frequency and units of days/decade. (c) Same as (a) but for interannual precipitation variability with purple-green fill and units of mm/decade. (d) Same as (c) but for relative interannual precipitation variability and units of decade⁻¹.

			Interannual	Relative Interannual
	Annual Mean	Annual Wet Day	Variability of	Variability of
	Precipitation	Frequency	Precipitation	Precipitation
	(mm/decade)	(days/decade)	(mm/decade)	(decade-1)
Alaska	7.6	0.8	-2.2	-0.0079
U.S. Caribbean	_	-	-	-
Hawaii and U.SAffiliated Islands	-26.3	-1.5	-1.1	0.0069
Midwest	22.5	1.0	1.4	-0.0029
Northeast	26.8	0.8	4.7	0.0005
Northern Great Plains	8.0	0.4	1.6	-0.0006
Northwest	-3.3	-0.4	5.4	0.0110
Southeast	7.1	-0.4	5.0	0.0026
Southern Great Plains	7.6	0.0	-0.4	-0.0046
Southwest	2.9	0.0	1.6	0.0023

Table S15: Non-Normalized Domain Trends in Annual Precipitation Metrics from 1950 to Present for

NCA Regions. Trends in annual mean precipitation (mm/decade), annual wet day frequency (days/decade), interannual precipitation variability (mm/decade), and relative interannual precipitation variability (decade⁻¹) are shown for each domain. Bolded values denote statistical significance at the p <

0.05 level.

Figure S8: U.S. NCA Region Trends in Annual Precipitation Metrics from 1950 to Present. Trends in annual mean precipitation (dark blue), annual wet day frequency (light blue), interannual precipitation variability (dark green), and relative interannual precipitation variability (light green) for each domain. Trends are normalized against the mean value within each domain to produce trends in percent change/decade. Non-filled circles indicate non-significant domain-trends (p < 0.05). Note outlying trend relative interannual variability for the Northwest is not displayed.

			Interannual	Relative Interannual
	Annual Mean	Annual Wet Day	Variability of	Variability of
	Precipitation	Frequency	Precipitation	Precipitation
	(%/decade)	(%/decade)	(%/decade)	(%/decade)
Alaska	0.9	0.7	-1.3	-3.7
U.S. Caribbean		-		-
Hawaii and U.SAffiliated Islands	-1.7	-1.2	-0.3	2.2
Midwest	2.5	1.1	0.9	-1.6
Northeast	2.5	0.7	2.8	0.3
Northern Great Plains	1.7	0.6	1.4	-0.3
Northwest	-0.4	-0.4	3.2	5.3
Southeast	0.5	-0.4	2.1	1.5
Southern Great Plains	1.0	0.0	-0.2	-1.8
Southwest	0.7	0.0	1.2	0.7

Table S16: Normalized Domain Trends in Annual Precipitation Metrics from 1950 to Present for NCA Regions. Trends in annual mean precipitation, annual wet day frequency, interannual precipitation variability, and relative interannual precipitation variability are shown for each domain. Trends are normalized against the mean value within each domain to produce trends in percent change/decade. Bolded values denote statistical significance at the p < 0.05 level.