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Abstract

With radar sounders, coherent backscattering simulations from global planetary DEMs typically display a deficit in diffuse

clutter, which is mainly due to the implicit assumption that roughness at scales below the resolution of the DEM is absent.

Indeed, while polynomial approximations of the phase evolution across the facet allow for fast and mathematically rigorous

simulators, the coarse resolution of these planetary DEMs leads to a potentially significant portion of the backscattering response

being neglected. In this paper, we derive the analytical phase response of a rough rectangular facet characterised by Gaussian

roughness and a Gaussian isotropic correlation function under the linear phase approximation. Formulae for the coherent and

incoherent power scattered by such an object are obtained for arbitrary bistatic scattering angles. Validation is done both in

isolation and after inclusion in different Stratton-Chu simulators. In order to illustrate the different uses of such a formulation,

we reproduce two lunar radargrams acquired by the LRS instrument with a Stratton-Chu simulator incorporating the proposed

rough facet phase integral, and we show that the original radargrams are significantly better-reproduced than with state-of-the-

art methods, at a similar computational cost. We also show how the rough facet integral formulation can be used in isolation

to better characterise subglacial water bodies on Earth.
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Key Points:8

• Planetary digital elevation models are often of coarse resolution and depict a sur-9

face that is smooth at scales below that resolution.10

• Polynomial phase approximations can be used to simulate radar scattering rig-11

orously but they overestimate the coherence of reflected signals.12

• We analytically derive the linear phase approximation formula on a rough rect-13

angular facet, leading to much better clutter simulations.14
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Abstract15

With radar sounders, coherent backscattering simulations from global planetary DEMs16

typically display a deficit in diffuse clutter, which is mainly due to the implicit assump-17

tion that roughness at scales below the resolution of the DEM is absent. Indeed, while18

polynomial approximations of the phase evolution across the facet allow for fast and math-19

ematically rigorous simulators, the coarse resolution of these planetary DEMs leads to20

a potentially significant portion of the backscattering response being neglected. In this21

paper, we derive the analytical phase response of a rough rectangular facet characterised22

by Gaussian roughness and a Gaussian isotropic correlation function under the linear23

phase approximation. Formulae for the coherent and incoherent power scattered by such24

an object are obtained for arbitrary bistatic scattering angles. Validation is done both25

in isolation and after inclusion in different Stratton-Chu simulators. In order to illustrate26

the different uses of such a formulation, we reproduce two lunar radargrams acquired by27

the LRS instrument with a Stratton-Chu simulator incorporating the proposed rough28

facet phase integral, and we show that the original radargrams are significantly better-29

reproduced than with state-of-the-art methods, at a similar computational cost. We also30

show how the rough facet integral formulation can be used in isolation to better char-31

acterise subglacial water bodies on Earth.32

1 Introduction33

Radar sounders are low-frequency, nadir-pointing remote sensing instruments that34

operate by recording and processing electromagnetic signals reflected from a planetary35

body of interest. The incoming waveform that generates these reflections is generally trans-36

mitted by the radar sounder itself, a mode of operation known as active sounding, al-37

though signals of opportunity may also be used, a mode of operation known as passive38

sounding (Ulaby et al., 1981). Since the amplitude and phase of these reflections cor-39

respond to given changes of the dielectric constant across the medium of propagation,40

it is possible to infer a great amount of information from analysing these signals. For in-41

stance, radar sounders can be sensitive to the presence and composition of possible sub-42

surface features (Ulaby et al., 1981).43

In the last two decades, three highly successful orbital radar sounders have been44

operated within the Solar System: the Mars Advanced Radar for Subsurface and Iono-45

sphere Sounding (MARSIS) instrument aboard the the European Space Agency (ESA)46

Mars Express mission (Jordan et al., 2009); the Shallow Radar (SHARAD) instrument47

aboard the US National Aeronautics and Space Administration (NASA) Mars Recon-48

naissance Orbiter (MRO) mission (Croci et al., 2011); and the Lunar Radar Sounder (LRS)49

instrument aboard the Japan Aerospace Exploration Agency (JAXA) Kaguya mission50

(Ono et al., 2010). Three major planetary science missions embarking radar sounders51

are currently under development: the Radar for Icy Moons Exploration (RIME) of the52

ESA Jupiter Icy Moons Explorer (JUICE) spacecraft (Bruzzone et al., 2013); the Radar53

for Europa Assessment and Sounding: Ocean to Near-surface (REASON) instrument on54

the NASA Europa Clipper spacecraft (Blankenship et al., 2018); and the Subsurface Radar55

Sounder (SRS) aboard ESA’s Envision mission to Venus (Bruzzone et al., 2020).56

On Earth, airborne radar sounding of terrestrial ice sheets is one of the primary57

geophysical tools for characterising subglacial hydrologic systems (Schroeder et al., 2020).58

This includes studies that range from mapping the distribution of subglacial lakes across59

entire ice sheets (Wright & Siegert, 2012) to investigating the onset of subglacial melt-60

ing within a glacier catchment (Chu et al., 2018) and analysing individual water sub-61

glacial bodies (Rutishauser et al., 2018).62

Coherent backscattering simulators are tools of central importance at all stages of63

a radar sounder mission. They can assist in the design and validation of the instrument,64

help validate processing algorithms, and can also support planning and post-acquisition65
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analysis of the data. Such simulators take as input the characteristics of the instrument,66

of its environment, and a discretised version of the terrain of interest, or digital eleva-67

tion model (DEM), and give as output the radar response of the terrain for the consid-68

ered instrument. There are different types of backscattering simulators applied to radar69

sounding, the most important ones being finite-difference time-domain (FDTD) algorithms70

(Heggy et al., 2017), method of moments (MoM) simulators, pseudospectral methods (Lei71

et al., 2020), and those based on the Stratton-Chu formula (Berquin et al., 2015; Fa &72

Jin, 2010; Gerekos et al., 2018; Kobayashi et al., 2002; Nouvel et al., 2004).73

A common issue in planetary remote sensing is that global DEMs of Solar Systems74

objects usually have poor resolutions, in the hundreds of metres, whereas most backscat-75

tering simulation methods demand a resolution of the order of a tenth of the wavelength76

of the instrument, i.e., typically of the order of the metre, in order to be mathematically77

accurate. Stratton-Chu-type methods typically require more assumptions about scat-78

tering, but have been particularly popular in radar science due to their efficiency. These79

methods combine a way to compute the amplitude and polarisation of a field on a facet80

with a way to compute its phase. By allowing linear or polynomial variations of the phase81

across the facets of the DEM, it is possible to allow facets as large as several times the82

wavelength of the instruments (Berquin et al., 2015; Nouvel et al., 2004) – a huge com-83

putational improvement over FDTD or MoM simulators, which require an important over-84

sampling of the DEM to respect their internal assumptions. The large-facet linear phase85

approximation has been solved analytically for square (Nouvel et al., 2004) and trian-86

gular facets (Berquin et al., 2015), and has been generalised to multilayer terrains (Gerekos87

et al., 2018).88

However, even a well-crafted simulator is typically only as good as the input DEM,89

and a major limitation of having poorly-resolved DEMs is that roughness at scales be-90

low the resolution of the DEM is effectively taken to be zero (see Figure 1). However,91

this small-scale roughness is present on the real terrain and has a significant effect on92

the radar response, typically decreasing the nadir response and heightening the diffuse93

off-nadir response, both being a disadvantage for subsurface radar sounding. These ef-94

fects cannot be seen in a simulation based on a coarsely-resolved DEM, leading to a sim-95

ulated response that is “too coherent”, that is, with an excess of specular power and an96

underestimation of non-specular power (Berquin et al., 2015; Gerekos et al., 2018). Find-97

ing a way to include this small-scale response in Stratton-Chu simulators based on the98

linear phase approximation is thus crucial to fully benefit from these efficient methods.99

We note that similar problems have been looked at, with different assumptions and con-100

texts, in the Global Navigation Satellite System Reflectometry (GNSS-R) and high-resolution101

synthetic aperture radar (SAR) communities (Dente et al., 2020; Xu et al., 2021), although102

none of these formulations is entirely applicable to our problem. Within radar sounders103

specifically, (Grima, Schroeder, et al., 2014) derives the backscattered power from a fi-104

nite rough ellipse under the small perturbation model, but using rudimentary assump-105

tions on scattering. We also note that Sbalchiero et al. (2021) propose a treatment of106

a reduced version of this problem (i.e., using the discrete Stratton-Chu formula with rough107

facets) using FDTD pre-computed responses, but to our knowledge, the problem has yet108

to be solved analytically and validated for full radar responses.109

In this paper, we propose to generalise the linear phase approximation to rough rect-110

angular facets. Starting from the fundamental equation that describes the evolution of111

phase across a surface, we analytically recompute the integral of Nouvel et al. (2004) on112

a perturbed facet (see Figure 2), which is defined statistically. Separating the mean and113

the variance of the resulting power, a “coherent” and “incoherent” term naturally emerge.114

The formula for the phase response of a rough facet is rigorously validated both in iso-115

lation and integrated in Stratton-Chu simulators. After characterising and validating our116

formula, we show two different applications. The first is forward modelling. We illustrate117

our integrated all-scale simulator by reproducing LRS radargrams over two different re-118
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gions on the Moon, a mare and a crater, with and without the rough facet phase formula.119

The second application is to characterise subglacial water bodies using an updated ver-120

sion of the model described in Schroeder et al. (2014a). This application uses the rough121

facet integrals on their own, and does not involve a Stratton-Chu simulator.122

Our paper is structured as follows. In Section 2, we recall the state of the art in123

Stratton-Chu simulators and the linear phase approximation. In Section 3 we present124

our derivation of the comprehensive phase response of a rough facet. In Section 4 we present125

the validation of our formula from two different perspectives. Section 5 presents the two126

different applications of the rough facet phase integral. Section 6 concludes the paper.127

2 State of the art in large-facet coherent simulators128

Let us consider a discrete scatterer at a position r′. The phase accumulated by a
plane wave travelling from an emission point ri to r′ and then reflected or transmitted
from r′ to a reception point rr will be given by

φ(ri, rr, r
′) = ei(ki|r

′−ri|+ks|rr−r′|), (1)

where ki ≡ kik̂i and ks ≡ ksk̂s are the incoming and scattering wavevectors, respec-129

tively. In the case of a transmission, ki and ks have different norms, due to the change130

of dielectric constant at the interface. In the case of a reflection, their norms are the same.131

Finally, in the case of a monostatic reflection, i.e., when the receiver and the emitter are132

located at the same place, ki and ks have identical norms and opposite signs.133

Let us now consider that the scatterer is a facet, i.e., a continuous, smooth surface
A of initially arbitrary shape. In this case, the phase of the received signal will be given
by the integral of the expression above over the surface of this facet (see Figure 2-left):

Φ(rr, ri) =

�
A

φ(ri, rr, r
′)dr′. (2)

If the dimensions of the facets are very small, typically of the order of λ/10, it is134

reasonable to consider that the phase (1) is constant across the facet, in which case the135

integral (2) is trivially solved: Φ(rr, ri) = Aei(ki|rα−ri|+ks|rr−rα|), where A is the area136

of facet A and rα an arbitrarily-chosen point on its surface, typically its geometrical cen-137

tre. This method is known as the constant phase approximation (CPA) (Berquin et al.,138

2015). The main drawback of this approximation is that, for planetary DEMs with res-139

olutions of hundreds of metres, it requires massive amounts of oversampling to reach the140

O(λ/10) criterion.141

For this reason, more advanced phase computation methods have been devised. We142

review them in the next subsection.143

2.1 Analytical phase integrals144

Let us assume that A is a planar facet lying within a plane described by the fol-
lowing equation:

{r′|ax′ + by′ + d = z′} , (3)

where x′, y′, and z′ are the coordinates of r′ and a, b, d are real coefficients. The linear
phase approximation assumes that the argument of the exponential in (1) can be linearised
in the components of r′ as follows (Berquin et al., 2015).

ki|r′ − ri|+ ks|rr − r′| = A0x
′ +B0y

′ −D0, (4)

where 
A0 = kd,x + akd,z,

B0 = kd,y + bkd,z,

D0 = (ri · ki − rr · ks)− dkd,z,
(5)
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Figure 1: Illustration of the differences that might exist between a real-life terrain, which
is characterised by roughness down to the smallest scales (top), and a typical digital eleva-
tion model of that terrain, which is sampled at regularly-spaced intervals (bottom). Axes
represent distance in arbitrary units.

Figure 2: Illustration of the main quantities involved in the computation of the phase
integral and resulting power. The integration variable r′ runs over the plane defining the
facet [see (3)]. If the considered facet is smooth (left), the integration is done over r′; if it
is rough (right), the integration runs over r′ plus a perturbation δ(r′) that is parallel to
the normal n̂.
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with
kd ≡ ki − ks. (6)

The integral (2) has been solved analytically in the case of square (Nouvel et al.,
2004) and triangular facets (Berquin et al., 2015). In the case of a square facet of length
L, the phase integral reduces to

Φ(rr, ri) = e−iD0LxLy sinc

(
LxA0

2

)
sinc

(
LyB0

2

)
. (7)

where sinc (x) ≡ sin(x)/x and with

Lx = L cosαx, Ly = L cosαy, (8)

where αx,y are the x- and y-direction inclination angles of the facet, defined through sinαx =145

|n̂x|, sinαy = |n̂y|, and where n̂ is the unit outgoing (zenith-facing) normal to the facet.146

Formula (7) is known as the linear phase approximation (LPA). We note that, since any147

four points of a DEM generally do not generally lie on a single plane, additional assump-148

tions must be made for the definitions of the square facet itself. Here, we use the 5-point149

method outlined in (Nouvel et al., 2004) to define the average plane at any given DEM150

point, and normal n̂ to that plane, which is used to define the coefficients {a, b} is taken151

as the average of the normals obtained from each pair of edges. It should be remarked152

the use of square facets leads to the simulated DEM having discontinuities (consecutive153

facets do not necessarily share same edge orientation), a problem already noted in (Nouvel154

et al., 2004), and which has measurable impact on the backscattered response. This will155

be discussed in Section 4 when relevant.156

We note that the formulation is identical for the more general case of rectangular157

facets, one just needs to replace L in (8) by the lengths L1, L2 of the facet edges.158

With this expression as the phase contribution of a facet in (11), we are allowed159

to have L & λ, thus saving a huge amount of computational resources. Since most plan-160

etary DEMs are indeed coarsely-sampled, this formulation is a very efficient way to sim-161

ulate radar backscattering under these conditions. This formula only works inasmuch162

as the small variations of the direction of incoming and scattered wavevectors across the163

facet can be neglected. In practice it is reliable for facet lengths up to a few wavelengths.164

Higher-order polynomial approximations for the phase variations have been computed165

for cases when even larger facet sizes are required (Berquin et al., 2015; Nouvel et al.,166

2004). In this paper, we will limit ourselves to the linear phase approximation.167

The roughness at scales smaller than the resolution of the DEM are not captured168

by the linear phase approximation, since formula (7) is purely deterministic and depends169

solely on the DEM. On a real terrain, however, smaller-scale roughness is present and170

its effect is measurable. Reproducing this response whilst keeping large facets –that is,171

without resorting to oversampling the DEM to λ/10 and adding a realisation of the small-172

scale roughness– is the purpose of this work.173

2.2 Stratton-Chu formula174

Although the phase is usually the most complicated factor to compute, one must175

also know the amplitude and polarisation of the electromagnetic fields in order to sim-176

ulate scattering from or through a surface. The expressions above are meant to be used177

alongside the Stratton-Chu formula, which is based on the Kirchoff approximation, and178

is used to compute the complete back- or forward-scattered electric field.179

It is almost always the case that the relevant quantities evolve sufficiently slowly180

across the surface to allow for the discretisation of that surface into facets, and to as-181

sume the field amplitudes and polarisations are constant across any given facet. In ef-182
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fect, we are no longer computing the scattering on a given surface, but on an approx-183

imation of that surface being the DEM. Incidentally, our knowledge of the topography184

of planetary bodies is also limited by the resolution of the instrument they were mea-185

sured with, and are thus also discrete, or digital, objects.186

In their discretised form, the Stratton-Chu formulae for backscattered and forward-
scattered electric fields are given by [see e.g. Gerekos (2020)]:

Erefl(rr) =iki

N∑
α

[I− k̂sk̂s] · [ZiH‖(rα) + k̂s ×E‖(rα)]Φα(rr, ri), (9)

Etrans(rr) =− iks
N∑
α

[I− k̂sk̂s] · [ZrH‖(rα) + k̂s ×E‖(rα)]Φα(rr, ri), (10)

where α represents the index of the considered facet and N the number of considered187

facets. Zi and Zr are the impedances of the medium of transmission and reception, re-188

spectively. k̂s ≡ (rr − rα)|rr − rα|−1 is the scattering vector and also depends on α.189

E‖ and H‖ are the parallel components of the incoming electric and magnetic fields. I190

is the identity tensor. Lastly, Φα is the phase integral over the facet Aα defined in (2).191

To keep notation more succinct, it is common to regroup all the non-phase factors
into a single object, and write

E(rr) =

N∑
α

Fα(rr, ri)Φα(rr, ri). (11)

In the following, the α indices may be dropped for clarity. When the vector nature192

of the problem is not relevant, the electric field may be written as a scalar E and the cor-193

responding Stratton-Chu factors as F .194

2.3 Stratton-Chu formula with a time-domain signal195

The expressions above are in principle only valid for monochromatic fields. To in-
clude time-dependence, one should recompute the scattered field for all frequencies in-
volved and recombine them with appropriate weights through a Fourier transform. How-
ever, this process can be bypassed in the case of radar sounders due to their narrow band-
width, in which case the facet response in phase, delay and amplitude is computed at
the centre frequency f0 only (Gerekos et al., 2018, 2019). In this case we consider that
each facet reflects a delayed copy of the incoming signal s(t), and the time-dependant
Stratton-Chu formula then reads :

E(rr, t) ≈
N∑
α

Fα(rr, ri)
∣∣
f=f0

Φα(rr, ri)
∣∣
f=f0

s(t− τα), (12)

where τα is the travel time of the signals from the emitter to the facet centre to the re-196

ceiver.197

To keep notation light, time-dependence will not be shown explicitly unless nec-198

essary.199

3 Phase response of a rough facet200

We now aim at analysing how (7) changes when the planar surface of the facet is201

perturbed. The first steps of the derivation of the facet-level rough phase integral, the202

main novel contribution of this paper, partially follow those of (Fung, 1994; Kong, 2000;203

Tsang & Kong, 2004) on the backscattering law of an infinite random rough terrain un-204

der the Kirchoff approximation, which we adapt here for continuity.205

–7–
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Figure 3: Graph of the functions |〈Φ̃〉|2 (left) and DΦ (right) for a facet of length L = 3λ
that lies on the plane defined by the equation −0.2x − 0.5y = z. Roughness in top row:
σ = λ/16; middle row: σ = λ/4 , and bottom row: σ = λ , all of which with l = 2λ. The
emitter is located at ri = (0, 0, 2000λ), and points towards nadir: k̂i = (0, 0,−1). The
bounds of the box are equal to L4, the theoretical maximum of the square norm of the
phase integral for any given direction.

–8–
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3.1 Definition of the perturbation206

As in Kong (2000), we add a perturbation to the surface of the facet in a direction
parallel to the normal of that facet

r′ → r′ + δ(r′)n̂, (13)

where δ(r′) ∼ N (0, σ2) is a zero-mean Gaussian perturbation of variance σ2 (see Fig-207

ure 2-right). Moreover, we assume an isotropic Gaussian correlation function for the rough208

facet, and we denote l its correlation length.209

We now perform a Taylor expansion on |r−(r′+δ(r′)n̂)| around the small quan-
tity δ(r′), also called the vector modulus approximation by some authors: |r−(r′+δ(r′)n̂)| =
|r− r′|− n̂ · (r− r′)|r− r′|−1δ(r′) +O(δ2). Thus under the perturbation the phase (1)
becomes

φ→ φ̃ = φe−iKδ(r
′), (14)

with

K ≡ ki cos θi + ks cos θr, (15)

and where cos θi = n̂·(ri−r′)|ri−r′|−1 and cos θr = n̂·(rr−r′)|rr−r′|−1. Since the an-210

gles θi and θr vary very little over the facet, we will replace r′ by rα in the cosine for-211

mulae, thus making K independent of r′.212

3.2 Total perturbed intensity213

We now show how to compute the total ensemble-averaged intensity P (rr) = 〈|E(rr)E†(rr)|〉
of the field (11) reflected by a collection of rough facets, following the derivation of Kong
(2000). Without loss of generality, we write

P (rr) = |〈E(rr)〉|2 +
(
〈|E(rr)|2〉 − |〈E(rr)〉|2

)
, (16)

≡ |Eavg(rr)|2 + E2
var(rr), (17)

where E2
var(rr) ≡ 〈|E(rr)|2〉−|〈E(rr)〉|2. In essence, we have decomposed the field into

an average part and a fluctuating part. The power of the average part adds coherently
(and is thus referred to as the coherent power) while the power from the fluctuating term
adds incoherently (and is thus referred to as the incoherent power) (Campbell & Shep-
ard, 2003). In other words we can write:

|Eavg(rr)|2 =

∣∣∣∣∣
N∑
α

Fα(ri, rr)〈Φ̃α〉(rr, ri)

∣∣∣∣∣
2

, (18)

E2
var(rr) =

N∑
α

Fα(ri, rr)2DΦ,α(rr, ri), (19)

with, following the derivation presented in Appendix A,

〈Φ̃〉 = e−iD0−σ
2K2

2 LxLy sinc

(
LxA0

2

)
sinc

(
LyB0

2

)
, (20)

DΦ = e−σ
2K2

∞∑
m=1

(σ2K2)m

m!

l4

m2
FA(m)FB(m), (21)

where

FA(m) = 1− e−
L2
xm

l2 cos(LxA0)

+
√
πe−

A2
0l

2

4m

[
Re {Am erfi (Am)} − Re {Am} erfi (Re {Am})

]
,

(22)

–9–
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^ ^ ^ ^ ^ ^

Figure 4: Numerical validation of (20) and (21) computed as total average power
〈|Φ|2〉 = |〈Φ̃〉|2 + DΦ for different values of the surface RMS height, correlation length,
and for different bistatic scattering directions (left: nadir backscatter; centre: arbitrary
bistatic angles; right: off-nadir backscattering on non-principal axis). Solid lines: analyti-
cal values. Dots: numerical values computed over 100 trials. Black dashed line: numerical
floor of the discretisation.

FB(m) = 1− e−
L2
ym

l2 cos(LyB0)

+
√
πe−

B2
0 l

2

4m

[
Re {Bm erfi (Bm)} − Re {Bm} erfi (Re {Bm})

]
,

(23)

and

Am =
A0l

2 + i2Lxm

2l
√
m

, Bm =
B0l

2 + i2Lym

2l
√
m

, (24)

where A0 and B0 were defined in (5).214

The coherent part of our formulation, equation (20), is nothing but the unperturbed215

phase response of a rectangle with an attenuation factor. The squared norm of this quan-216

tity appears when deriving the coherent backscattering law of a rough surface under the217

Kirchoff approximation (Kong, 2000). Similar and related formulae exist in other con-218

texts [Carrer et al. (2019); Xu et al. (2021)], which is not surprising given that the rather219

immediate nature of its derivation. Regarding the incoherent part of our formulation,220

the much less trivial equation (21), it is the finite-surface equivalent of the incoherent221

backscattering law of a rough surface under the Kirchoff approximation (Kong, 2000).222

To our knowledge, (21) has thus not been derived before, and the novel contribution of223

our paper rests on the combined use of (20) and (21) for radar sounder applications. The224

latter formula’s convergence or any choice of parameters is demonstrated in Appendix225

B. The differences and similarities between this formula and the infinite-terrain incoher-226

ent Kirchoff backscattering law found in (Kong, 2000; Tsang & Kong, 2004) is discussed227

in Appendix C.228

To illustrate our formulation, we display in Figure 3 the magnitude in logarithmic229

scale of the coherent and incoherent parts of the phase response of an inclined facet, for230

three different cases of roughness. As the roughness is increased (top to bottom), we can231

see the coherent component (left) steadily decline, particularly in non-specular directions,232

as expected, whereas the incoherent component (right) takes over and becomes more isotropic,233

as expected. It is interesting to note that, for small to moderate amounts of roughness,234

the incoherent radiation pattern retains the memory of the shape of the facet, so that235

it is only at very high roughness level that the facet shape stops having an influence.236
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3.3 Reproduction of speckle from incoherent power237

Formula (17) can be used to compute the coherent and incoherent power from a238

given DEM using the Stratton-Chu formula, using formulae (18) with (20), and (19) with239

(21), respectively. However, the resulting incoherent power is an average power, and al-240

though mathematically correct, it will not display any of the speckle behaviour seen in241

an actual radargram. This feature is nevertheless desirable for both visual fidelity and242

statistical accuracy of the simulated radargrams.243

For this reason, we also propose an alternative way to simulate backscattering with244

the rough facet integrals, one where each incoherent return is assigned a random phase,245

in a way that generates the same average incoherent power (19).246

Let a random phasor φr be defined as follows:

φr ≡
ε1 + iε2√

2
, where ε1, ε2 ∼ N (0, 1), (25)

N (0, 1) being the unit normal distribution. We define the coherent, incoherent, and to-
tal fields as follows:

Ecoh(rr) =

N∑
α

Fα(ri, rr)〈Φ̃α〉(rr, ri), (26)

Eincoh(rr) =

N∑
α

Fα(ri, rr)
√
DΦ,α(rr, ri)φr, (27)

Etot(rr) = Ecoh(rr) + Eincoh(rr). (28)

Effectively, we claim that when a random phase is drawn from distribution (25), the av-247

erage power computed from the field (28) matches the average power obtained at (17).248

We demonstrate this equivalence in Appendix D. This effectively gives (28) Rician am-249

plitude statistics, that is, a sum of a constant phasor and a complex Gaussian. We note250

that more complex formulations for speckle reproduction have been proposed [e.g. Haynes251

(2019)], but the relatively simple one we are using here produces amply satisfying results,252

as we will show in Sections 4.3 and 5.1.253

In practice, formulation (17) will be more useful when coherent and incoherent power254

must be separated and when comparing with analytical solutions, whereas formulation255

(28) –which mixes coherent and incoherent fields beforehand– will be much more sat-256

isfying for simulations and forward-modelling. Additionally, the reproduction of speckle257

statistics from the scalar incoherent power is necessary if one wishes to apply any radar-258

gram analysis methods that relies on the power distribution of surface or clutter echoes259

on simulated radargrams (see Section 5.1.3).260

4 Validation261

We confirm the validity of our expressions (20) and (21) two ways. First, we per-262

form a direct comparison of the analytical formulae against the statistics of the phase263

response of numerically-generated facets with Gaussian roughness (Section 4.1). Second,264

we incorporate the equations into a coherent large-facet Stratton-Chu simulator such as265

Gerekos et al. (2018), in which we conduct two experiments. The first is a comparison266

of the results of the proposed formulation with Haynes et al. (2018), an in-depth study267

of nadir power scattered from the first Fresnel zone under different roughness regimes268

(Section 4.2); the second takes a comprehensive sounding scenario over a terrain that is269

fractal at large scales, and compares the radar response (including off-nadir) over an over-270

sampled DEM with a realisation of the roughness with that obtained over the original271

DEM with the rough facet integral (Section 4.3).272
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4.1 Rough facet integral in isolation273

We start by validating formulae (20) and (21) independently of any simulator, by
comparing them to the statistics of the phase contribution of isolated rectangular facets
with realisations of Gaussian roughness. We assume the facet is in the XY plane. The
domain of the finite facet is finely discretised and the complex surface phase integral is
computed as a sum over the elements of the discretisation as

Φnum = (∆x)2
∑
j

ei[kd,xxj+kd,yyj+kd,zz(xj ,yj)], (29)

where (kd,x, kd,y, kd,z) are the components of the wave vector difference, (xj , yj) are the274

coordinates of the discretised elements in the XY plane, z(xj , yj) is the height of the ran-275

dom rough surface, and ∆x is the side length of the square elements. The sum is taken276

over all points j that make up the facet, and the discretisation step is assumed to be the277

same in x and y.278

Figure 4 compares the total average power 〈|Φ|2〉 obtained analytically [i.e., the279

sum of the coherent and incoherent components (20) and (21)] and numerically [i.e., through280

equation (29) computed over many trials] as a function of the RMS roughness σ and sur-281

face correlation lengths l, using different combinations of incident and scattered direc-282

tions. For more generality, the facet is taken to be a rectangle rather than a square. The283

facet size for the simulations is L1 = 4λ, L2 = 7λ. For each set of parameters, 100 re-284

alisations of a 2D Gaussian rough surface were generated and the phase integral com-285

puted. The generated surfaces are made 10 times larger than the largest correlation length,286

from which a facet of size L1×L2 is stamped; this ensures that there are enough cor-287

relation lengths in the generated surface for accurate surface statistics. The surfaces are288

discretised at ∆x = λ/40. From Haynes et al. (2018), the numerical floor for this com-289

putation for low correlation lengths is (∆x)2A where A = L1L2 is the area of the facet290

and which is plotted as the dashed line. A value of λ = 1 was used in this test with-291

out loss of generality, as quantities involved are normalised by the wavelength.292

The numerical and analytical results show excellent agreement in all cases. This293

was validated over a wide range of wave vector angles and facet sizes with the same re-294

sults. These examples also show that even if the input parameters violate the Kirchhoff295

approximation (i.e., correlation lengths, RMS roughness levels, or scattering angles that296

are too large) that the analytical equations accurately predict the literal evaluation of297

the statistical average powers of the scalar phase integral for Gaussian surfaces and isotropic298

Gaussian correlation function.299

4.2 Nadir response: comparison with literature300

The validity of (21) in isolation having been demonstrated, we now propose to val-301

idate the exactitude of a rudimentary radar simulator that includes the rough facet in-302

tegral in the phase response of its facets.303

In Haynes et al. (2018), the authors proposed a formula giving the coherent and304

incoherent power scattered at normal incidence from an rough disc that has the size of305

the first Fresnel zone. This disk has Gaussian roughness and has no large-scale topog-306

raphy.307

4.2.1 Total power calculation308

In our framework, this corresponds to a simulation where the DEM is a flat disk309

the size of the first Fresnel zone, where we neglect all the vectorial and reflectivity fac-310

tors from the computation of the electric field. The Stratton-Chu formula we utilise is311

that for monostatic backscattering [i.e., formula (9) with rr = ri].312
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Figure 5: Comparison between the simulated backscattered power [sum of (33) and (34)]
from the first Fresnel zone and the result from theory: λ-adimensionalised parametric scan
in the (σ, l, L, h) space. 10 contour lines are shown in each plot.

Starting with a simplified emitting field

Ei(r, t) =
Vi

|r− ri|
eiki|r−ri|s(t), (30)

where Vi =
√
Pi controls the amplitude of the emitter, taken here as the square root

of the radiated power Pi so as to match the setup of Haynes et al. (2018). Neglecting
reflection coefficients and vector-related quantities in the Stratton-Chu equation, we take

Fα(ri, rr) =
ikiVi

(4π)2|rα − ri|2
(31)

as the F factor in (12).313

To leave processing out of the picture, we assume the emitted signal is a Gaussian
pulse:

s(t) = exp

[
−πBw

Ts
(t− t0)2

]
, (32)

where Bw is the instrument bandwidth, Ts the duration of the pulse, and t0 the time of314

emission of the pulse.315
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We write that the simulated coherent and incoherent power can be expressed as:

Pcoh(rr, t) =(4π)2

[
N∑
α

Vis(t− τα)

(4π)2|rα − rr|2
〈Φ̃α〉(rr, rr)

]2

, (33)

Pincoh(rr, t) =(4π)2
N∑
α

[
Vis(t− τα)

(4π)2|rα − rr|2

]2

DΦ,α(rr, rr), (34)

where τα represents the two-way travel time of electromagnetic waves from the radar to316

the facet α.317

The total backscattered power is given by the sum of the coherent and incoherent318

powers as per (17).319

4.2.2 Simulation setup320

Using the equations above, we performed a systematic, λ-independent parametric321

scan over a range of one order of magnitude for the facet size L and two orders of mag-322

nitudes for the platform altitude h. We compare the obtained nadir power to the the-323

oretical formulation for the power backscattered from a rough first Fresnel zone at nadir324

(Haynes et al., 2018).325

In these simulations, we perform a hard cut-off at the first Fresnel zone boundary,326

and facets whose centres lie beyond this boundary are discarded. The most challenging327

aspect of this validation is thus the approximation of a disk with large square facets. For328

this reason, we must ensure the radar is properly centred on a facet of the flat DEM. Any329

other configuration will result in a lopsided footprint. This artificial requirement is only330

needed here, and has no effect when considering extended footprints, as in the next val-331

idation and applications.332

4.2.3 Validation outcome333

Figure 5 shows the result of this analysis. The cyan colour, which corresponds to334

an absolute error inferior to 1 dB, dominates the parameter scan. Looking at successive335

columns, we can see there is little effect of the altitude on the overall accuracy of our re-336

sults. Looking at successive rows, we can see that the range of fidelity of the simulated337

response is the most constrained at the intermediate roughness of σ = λ/4. We will ex-338

pand on the reasons for this in the following.339

When the coherent term dominates (top row), the main limitation to accuracy is340

predictably the facet size. As the facets get larger, it becomes more and more difficult341

to correctly approximate the first Fresnel disk with squares, even with the linear phase342

approximation. These are essentially the limitations of Nouvel et al. (2004).343

When the incoherent term starts to emerge (middle row), the simulator yields very344

accurate responses everwhere except where the correlation length of the small-scale rough-345

ness is larger than the facet itself. The reason for this is that, when the correlation length346

is larger than the facet size, the “roughness” that is being added to the facets corresponds347

to a shifting or a tilting of the entire facet rather than to a perturbation. With such facets,348

the roughness across the entire DEM no longer corresponds to that of the reference ter-349

rain in terms of correlation length (see also the discussion of Appendix Appendix C). We350

note that, this limination does not concern us from a practical point of view. Our goal351

is to incorporate the missing roughness scales from a poorly-resolved DEM where the352

facet height is considered correct, implying that, if there is small-scale roughness, its cor-353

relation length is must be comparable or smaller than the DEM resolution.354

–14–



manuscript submitted to Radio Science

Table 1: Characteristics of the SHARAD, LRS , and MARSIS sounders as used through-
out this paper, along with the resolution of the best available global DEM of their or-
biting body, i.e., the MOLA-HRSC blended DEM for Mars and the LOLA DEM for the
Moon.

SHARAD LRS MARSIS

Central frequency [MHz] 20 5 1.3
Wavelength in vacuum [m] 15 60 230
Bandwidth [MHz] 10 2 1
Altitude [km] 300 100 500
Sampling frequency [MHz] 26.67 6.25 2.8
Chirp duration [µs] 85 200 250
Transmitted power [W] 10 800 5
PRF [Hz] 700 20 127

Orbiting body Mars Moon Mars
Best global DEM resolution [m] 200 118 200

When the incoherent term dominates (bottom row), a similar remark can be made,355

although the limitation looks less strict. That is likely because at a high sigma, the ex-356

cinction effect dominates over the specifics of the rough facet pattern.357

In summary, the agreement between theory and our method is excellent, and de-358

viates by no more than 1 dB in the vast majority of scientifically-relevant cases.359

4.3 Full response in presence of topography: comparison with random360

realisations361

After having successfully validated the simulator for a flat terrain and a footprint362

restricted to the first Fresnel zone, we conclude the validation with a maximally-comprehensive363

test. Starting from a DEM with large facets and long-range topography, and, consider-364

ing the full radar response (nadir and off-nadir), we propose to compare the output of365

a Stratton-Chu simulator that includes the rough facet integral with that of a Stratton-366

Chu simulator ran on an oversampled DEM with a realisation of that small-scale rough-367

ness. Referring to Figure 1, we essentially compare the radargram obtained from the top368

DEM with the constant phase approximation, with the radargram obtained from the bot-369

tom DEM with the rough facet integral.370

Due to the very high computational load of generating the simulations on the highly371

oversampled DEM, it is not realistic to perform a systematic analysis of the error, as we372

did in the case of nadir power (where the footprint is only as large as the first Fresnel373

zone). For this reason, we instead present three representative cases, corresponding to374

real-life sounders MARSIS (Jordan et al., 2009), LRS (Ono et al., 2010) and SHARAD375

(Croci et al., 2011), using facet sizes corresponding to that of the best global DEM of376

their corresponding planet (Fergason et al., 2018)(Smith et al., 2010). The character-377

istics of these radars are shown in Table 1.378

4.3.1 Total power calculation379

Unlike in the previous subsection, the complete Stratton-Chu formula (12) is used,380

and we are now taking into account the local Fresnel coefficients at the facets, as well381
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as the full vectorial and time-dependant aspects of the field. For this test, we make use382

of the formulation with speckle, so as to compare power histograms for clutter as well.383

The time-domain signal s(t) is a linear chirp, as with real instruments:

s(t) = exp

[
iπ
Bw
Ts

(t− t0)2

]
, (35)

where, as previously, Bw is the instrument bandwidth, Ts the duration of the pulse, and384

t0 the time of emission of the pulse. When such a signal is used, a range-compression op-385

eration must be performed at the end to make features emerge. This consists of cross-386

correlating the received field with the reference signal.387

Coherent and incoherent fields are computed as in (28), with added time-domain
consideration discussed in Section 2.3. The fields are then projected onto the polarisa-
tion ê of the antenna, range-compressed, and converted into power. In summary, the to-
tal power is given by:

P (t, rr) =
Gλ2

4π

∣∣∣∣∣
{

N∑
α

[
Fα(rr, rr) · ê

][
〈Φ̃α〉(rr, rr)+

√
DΦ,α(rr, rr)φr

]
s(t− τα)

}
⊗ s(t)

∣∣∣∣∣
2

,

(36)

where G = 1.67 is the gain of a dipole antenna and ⊗ represents a cross-correlation in388

the time-domain.389

4.3.2 Simulation setup390

For each sounder, four simulations are conducted. Two simulations with only long-391

range topography: one with large facets (LF) and one with small facets (SF); and two392

simulations with added small-scale roughness: one with large facets using the rough facet393

integral, and one with small facets using a realisation of the roughness on the DEM. We394

call “base” terrains those that only contain long-range topography.395

The long-range topography is the same in all four cases, and modelled with frac-396

tional Brownian motion (fBm). The terrain has a dielectric constant of 5. The spacing397

between the acquisitions is taken to be 500 m in all cases. The small-facet “base” DEM398

is obtained by oversampling the original DEM to the desired resolution with linear in-399

terpolation. The small-facet rough DEM is obtain by adding the small-facet base DEM400

with a DEM that is a realisation of a Gaussian field with isotropic Gaussian correlation401

function with the desired σ and l. The small-facet DEMs have a resolution of λ/10, ex-402

cept for SHARAD, where computational limitations restricted us to λ/5 = 3 m.403

We note that our rough integral formulations assume that small-scale roughness404

is perpendicular to the facet, for each considered facet, whereas our way of generating405

the rough SF DEMs is essentially equivalent to have the perturbation oriented along the406

z-axis. This might have non-negligible consequences, as we will see later.407

The characteristics of the simulations are given in Table 2. For the LF base ter-408

rains, the parameter 0 < H < 1 is the Hurst coefficient, and ζ is the RMS height dif-409

ference at the scale of the resolution. We attempted to avoid any relationship between410

the roughness parameters and the L/λ ratio, generally the main driver of inaccuracy in411

simulations. This was possible for all parameters except the correlation length, which412

has an upper constraint given by the facet size in the rough integral, and a lower con-413

straint given by the quality of the realisation in the SF DEM.414

The small-scale roughness level used in these cases are relatively low, for two rea-415

sons. First, even a slight amount of roughness has a dramatic impact on off-nadir scat-416

tering, and we would like to illustrate this effect without drowning the nadir response,417
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Table 2: Summary of the terrain parameters used in the simulations of Section 4.3.

Radar fBm topography (base) Small-scale roughness

MARSIS H = 0.58, ζ = 3.7m σ = λ/10, l = λ/3
LRS H = 0.84, ζ = 3.5m σ = λ/20, l = λ

SHARAD H = 0.71, ζ = 1.6m σ = λ/15, l = 6λ

and second, small amounts of roughness are likely to be the preferred application domain418

of our method when used on real-life DEMs (see Section 5). We note that this does not419

necessarily makes these cases “easier”, as the coherent component of the simulator is more420

sensitive than the incoherent one, and important small-scale roughness levels are actu-421

ally easier to reproduce with the integrated simulator (see previous subsection).422

4.3.3 Validation outcome423

The resulting simulated radargrams are shown in Figure 6, which are arranged with424

the three instruments as columns, and the cases as rows. Visual comparison within each425

column of the first two radargrams (that is, the LF and the SF runs without small-scale426

roughness) shows the similarities and differences that can be expected between the lin-427

ear phase approximation on large square facets –essentially the method of Nouvel et al.428

(2004)– and the constant phase approximation on small facets. Comparing the last two429

radargrams of each column (that is, the LF and SF runs that include small-scale rough-430

ness) highlights the contribution of the rough phase integral. Visual agreement between431

these rough runs is very good, except perhaps for the SHARAD simulation, where L ≈432

13.33λ.433

The analysis of these radargrams is shown in Figure 7-(left) in terms of average range-434

line, and in Figure 7-(right) in terms of the clutter power histograms. In Figure 7-(left),435

the dotted curves are the average rangelines for the “base” terrain, for both large and436

small facets (blue and yellow curves, respectively). The solid curves represent the ter-437

rain with added small-scale roughness, either in the form of the rough phase integral or438

as a realisation on the SF DEM (red and purple curves, respectively). The “base” dot-439

ted curves are given for reference, whereas the small-scale roughness-related solid curves440

are the ones of interest. In Figure 7-(right), the histograms for the cases including small-441

scale roughness are plotted using the same colours.442

The outcome of the MARSIS test, where L ≈ 0.87λ and l = λ/3, is excellent.443

Nadir power levels from the LF and SF simulations are in perfect agreement, whether444

small-scale roughness is added (solid curves) or not (dotted curves). Interestingly, off-445

nadir power is slightly overestimated in the “base” case, but is almost perfectly repro-446

duced with large rough facets when small-scale roughness is considered in the λ/10 sim-447

ulation. This mirrors results obtained in the previous subsections: when incoherent power448

dominates (as in the non-nadir regions of this test), results tend to be more accurate.449

We also remark that the jitter of the small-scale roughness curves is not structure: if the450

number of averaged rangelines would increase, the lines would get flatter and flatter. The451

power histograms of the LF and SF simulations involving small-scale roughness are also452

almost identical.453

The LRS test, where L ≈ 2λ and l = λ, is also conclusive. A few discrepancies454

can nevertheless be noticed. Looking at the simulations that include small-scale rough-455

ness (solid curves), we observe an error of a few dB for the nadir power. Ignoring small-456

scale roughness (dotted curves), deviations start to appear is in the far off-nadir regime.457
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Figure 6: Comprehensive Stratton-Chu simulations [eq. (36)] using DEMs with long-
range topography, with and without small scale roughness, for MARSIS (left), LRS (cen-
tre), and SHARAD (right). Results shown are using: the large-facet base DEM (top row),
the oversampled base DEM (second row), the large facet base DEM using the rough phase
integral (third row), and the oversampled base DEM where a random realisation of the
considered small-scale roughness has been added to the DEM (bottom row). The param-
eters of the terrains are listed in Table 2. The average rangelines are shown for each case
in Figure 7-(left). For the simulations involving small-scale roughness, the red boxes show
the limits of the area for which the histograms shown in Figure 7-(right) were computed.

–18–



manuscript submitted to Radio Science

Clutter histogram,
fBm topography + Gaussian small-scale:

MARSIS with 200m facets

-160 -150 -140 -130 -120 -110 -100
Backscattered power [dBW]

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a
b

ili
ty

LF fBm base + rough integral
SF fBm base + realisation

LRS with 118m facets

-130 -120 -110 -100 -90 -80
Backscattered power [dBW]

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a
b

ili
ty

LF fBm base + rough integral
SF fBm base + realisation

SHARAD with 200m facets

-180 -170 -160 -150 -140 -130 -120
Backscattered power [dBW]

0

0.02

0.04

0.06

P
ro

b
a
b

ili
ty

LF fBm base + rough integral
SF fBm base + realisation

Figure 7: Average rangelines (left) and clutter histograms (right) of the radargrams
shown in Figure 6: comparison between base terrain with large smooth facets (blue),
base terrain with large rough facets (red), base terrain with small facets (yellow), and
base terrain with small facets with an added realisation of the perturbation (purple). The
parameters of the terrains are listed in Table 2.
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When using triangular facets (not shown here), a much better agreement between the458

“base” LF and SF simulations was obtained. We thus believe the discrepancies are due459

to the limitations of the linear phase approximation on square facets, which are carried460

by both the smooth and rough simulations. In this case, it is worth noting the differences461

are still slight, and that the rough facet simulation is almost indistinguishable from the462

SF with a realisation of the roughness in terms of both clutter power angular dependence463

and clutter power histogram.464

The SHARAD test, with L ≈ 13.33λ, is the most challenging. The average range-465

line and histogram comparison highlights the visual discrepancy seen in Figure 6. Ignor-466

ing small-scale roughness (dotted curves), there is a slight discrepancy of a few dB for467

nadir power, and a difference in off-nadir power angle dependence can be observed. This468

issue is also carried to the simulations including small-scale roughness (solid curves). Es-469

sentially, the discrepancies observed in the LRS cases have all increased. In the presented470

test, we nevertheless remark that the agreement is excellent at time-delays of up to 3 µs,471

which corresponds to an apparent depth of 1.8 km. This should be satisfactory for most472

applications.473

The main driver of differences between SF and LF simulations in the case of small-474

scale roughness seem to be L and l. There does not seem to be a correlation with σ, which475

is not surprising given the small σ involved. Due to the absence of satisfying analytical476

formulation for the backscattering from the type of terrains simulated here, and the com-477

putational load of simulating on the small-facet DEMs, it is difficult to envision a way478

to disentangle the sources of errors in the (L, l,H, ζ) space, especially given the limita-479

tions on the range of possible l once L and λ are chosen. By reverting to scalar fields and480

Gaussian waveforms as in the previous section, the same discrepancies could be observed.481

We thus attribute them primarily to the limits of the linear phase approximation and482

the limitation of square facets in the case of large facets. The main issue with square facets,483

as noted in Berquin et al. (2015), is that they provide a discontinuous representation of484

the surface, leading to less accurate wavefront reconstruction. That is a problem that485

the use of triangular facets can partially solve (Berquin et al., 2015). The derivation of486

a rough facet integral for triangular facets, or indeed arbitrarily-shaped facets, is thus487

planned as future work. We also note that the use of small-facet simulations as refer-488

ence should also be subject to caution, as we mention in point 4.3.2 of this subsection.489

4.4 Discussion490

We have first demonstrated that our formulae (20) and (21) are correct descrip-491

tions of a rough facet in isolation. The results of Figure 4 showed our formulae are able492

to accurately reproduce the scattering from a rough facet no matter the bistatic scat-493

tering angles we chose.494

We have then characterised their range of validity when included in a basic elec-495

tromagnetic simulator and considering the backscattering from a rough flat Fresnel disk,496

and we found the results to be accurate within less than 2 dB for most of the probed pa-497

rameter space. The cases where the accuracy was lower was i) when the coherent com-498

ponent dominates (i.e., low small-scale roughness), and ii) when the coherence length499

of the facet roughness was significantly larger than the dimensions of the facet. Limi-500

tation (i) is simply the consequence of the limitations of the linear phase approximation501

on square facets as described in Nouvel et al. (2004), whereas limitation (ii) refers to cases502

which do not have physical relevance in the real world.503

Finally, considering a complete rangeline, the complete Stratton-Chu formula, and504

DEMs with significant topography, we compared the results of our simulator with the505

integrated rough facet formulation with those obtained from an oversampled DEM upon506

which small-scale roughness with the same characteristics was superimposed. In these507

tests, we have found that the method can safely be used with MARSIS and LRS on the508
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Figure 8: Ground tracks (red line) and DEMs (background) for the two radargrams pre-
sented in Section 5.1. Left: Oceanus Procellarum DEM, centred at (34.34◦N, -61.12◦E),
and LRS track 20071223000958. Right: Crater Plato DEM, centred at (52.94◦N, -
11.70◦E), and LRS track 20080821022958.

DEMs of their respective planet, and with correlation lengths that are of the order of509

the wavelength or smaller. However, the wide difference of facet length and wavelength510

in the case of SHARAD probably warrants some oversampling of the MOLA-HRSC DEM511

to ensure the off-nadir results are correct in any situation with the proposed formula-512

tion. We note that despite the limitations that were observed by thoroughly analysing513

the validation radargrams, visual comparisons of the LF and SF radargrams remains sat-514

isfactory in all cases, making the proposed simulator suitable for forward-modelling and515

clutter discrimination without such disclaimers.516

5 Applications517

To demonstrate the versatility and utility of our formulation, we develop two dif-518

ferent contexts in which formulae (20) and (21) can be used. The first application is to519

better simulate radar echoes with a coherent Stratton-Chu simulator and coarsely-resolved520

DEMs. We demonstrate that the inclusion of rough facets with well-chosen small-scale521

roughness characterisations lead to much better reproduction of radargrams acquired by522

actual instruments. As a second application, we propose to use the coherent and inco-523

herent radiation patterns we developed to better characterise subglacial water bodies based524

on their specular content, expanding on the work of Schroeder et al. (2014b).525

5.1 Forward modelling with the proposed all-scale simulator526

We show in this subsection simulated radargrams of natural terrains using the same527

comprehensive simulator described in Section 4.3 at equation (36), and we compare them528

to actual radargrams acquired over the same terrain. We chose to reproduce lunar radar-529

grams acquired by the LRS instrument. The reasons for this choice are several: (i) the530

SNR of the range-compressed data product is high, thus we do not have to resort to radar-531

grams that have undergone advanced SAR processing, (ii) the global DEM of the Moon532

has a good resolution compared to the LRS instrument (L ≈ 2λ), and we verified in533

Section 4.3 that it the errors of the LPA/square facets are low for this case, and (iii) the534
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Oceanus Procellarum: smooth facets simulation on LOLA DEM
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Figure 9: Illustration of the effect of rough facets in a Stratton-Chu simulation
of a real radargram of Oceanus Procellarum, Moon. Top: simulation of LRS track
20071223000958 using the LOLA DEM and smooth facets. Middle: simulation of LRS
track 20071223000958 using the LOLA DEM and rough facets (this paper). Bottom:
original LRS radargram 20071223000958.
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Moon has no ionosphere, removing the need for ionosphere distortions correction mea-535

sures.536

Two areas were picked to illustrate the capabilities of the Stratton-Chu simulator537

combined with the proposed rough facet formulation: a portion of eastern Oceanus Pro-538

cellarum captured in LRS track 20071223000958, which represents a smooth area, and539

a limb of Crater Plato captured in LRS track 20080821022958, which represents a clutter-540

dominated area. The ground track of these two radargrams is shown in Figure 8. These541

tracks correspond to the tracks of the simulated radargrams over the Lunar Orbiter Laser542

Altimeter (LOLA) DEMs (Smith et al., 2010), locally re-projected in orthographic pro-543

jection in each case.544

The dielectric constant of the surface was assumed to be uniformly equal to 4 (Ono545

et al., 2009). In order to factor out any uncertainty on absolute emitted power, process-546

ing, and surface reflectivities, we opted for a normalisation of our simulated radargrams547

by an amount that is constant for both terrains. This constant was computed from the548

smoothest areas of the Oceanus Procellarum radargram (first 100 rangelines); since lu-549

nar maria are the Moon’s smoother surfaces, this is the straightforward choice to mea-550

sure non-roughness-related differences of power. We compared the average rangeline in551

the rough facet simulation with that of the LRS track. The normalisation constant we552

extracted is 18.1 dB. This amount is added to all LRS simulations, smooth or rough, in-553

cluded in this section. A hamming-windowed chirp was used, as in the LRS instrument,554

to model the time-domain signal as accurately as possible.555

5.1.1 Oceanus Procellarum556

The rough-facet simulation was produced with a facet-level roughness of σ = 1.5557

m and l = 70 m, which is consistent with the decametre-scale roughness of lunar maria558

(Cai & Fa, 2020). The comparison between the smooth-facet simulation, the rough-facet559

simulation, and the original radargram can be seen in Figure 9.560

The gain in fidelity of the diffuse clutter rendition in the rough facet simulation is561

dramatic, and illustrates how even gentle amounts of roughness have a significant im-562

pact in off-nadir scattering. The appearance of specular clutter is also improved, as the563

rough-facet simulation no longer shows range-migration hyperbolae that are not present564

in the original picture.565

Subtle differences between the rough-facet simulation and the original radargram566

in the near-surface regime can be observed, in particular at latitudes larger than 35◦N.567

These can be due to slight local variations of surface properties (e.g., roughness, dielec-568

tric constant), or can be indicative of subsurface scattering (e.g., volumetric effects or569

layering). By factoring out the effects due to small-scale roughness with given charac-570

teristics, this example highlights how forward-modelling can be used for hypothesis-testing.571

5.1.2 Crater Plato572

We chose σ = 1.9 m and l = 80 m for the rough-facet simulation of Crater Plato,573

modelling a roughness that sits between that of lunar maria and that of lunar highlands574

(Cai & Fa, 2020), which we believe is realistic for a crater sitting between two maria. The575

comparison between the smooth-facet, rough-facet, and original radargrams can be seen576

in Figure 10. In the simulated radargrams, an artefact can be observed at a depth of about577

4 km. This corresponds to a Bragg resonance from the regular lattice that characterises578

the DEM (Nouvel et al., 2004)1.579

1 If needed, the position and strength of these artefacts can be reduced to acceptable levels through a

resampling of the DEM.
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Crater Plato: LRS track 20080821022958
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Figure 10: Illustration of the effect of rough facets in a Stratton-Chu simulation of a real
radargram of Crater Plato, Moon. Top: simulation of LRS track 20080821022958 using
the LOLA DEM and smooth facets. Middle: simulation of LRS track 20080821022958
using the LOLA DEM and rough facets (this paper). Bottom: original LRS radargram
20080821022958.
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Similar comments can be made for this case regarding the aspect of diffuse and spec-580

ular clutter, adding credence to the fact the rough-facet simulator can also be applied581

to areas with rich topography. Also of notice are the areas where the original radargram582

displays less diffuse clutter, e.g., around latitudes of 54◦N and 55.3◦N, a feature which583

is also visible in the simulation.584

5.1.3 Perspectives585

One important aspect is that inclusion of roughness at facet level solves the long-586

standing problem of clutter simulators displaying too much specular clutter (Berquin et587

al., 2015; Gerekos et al., 2018). Ridden of an overabundance of parasitic clutter, the pro-588

posed method is thus expected to be helpful for geological interpretation of radargrams.589

Due to our formulation being closed-form, a Stratton-Chu simulator of surface backscat-590

tering fitted with the proposed rough phase integral uses similar computational resources591

as a simulator fitted with the regular linear phase approximation, thus being very com-592

petitive with respect to finite-element methods [see e.g. Gerekos et al. (2018)].593

As σ and l affect the off-nadir angle-dependence of backscattered power in differ-594

ent ways, it is reasonable to assume that the parameter space could be constrained uni-595

voquely for a given radargram. The proposed simulator could thus be used within an596

iterator to extract the small-scale roughness of a given terrain. We defer the construc-597

tion of a proper inversion algorithm to a future study. Such a method would complement598

other roughness-estimation methods such as reflectometry (Grima, Blankenship, et al.,599

2014; Grima, Schroeder, et al., 2014).600

Lastly, we note that facet-level roughness is likely better described with self-affine601

description (Landais et al., 2015). However, given the relatively constrained area that602

is covered by a typical DEM facet, the scale-dependence of roughness is likely to be less603

relevant at scales that affect radar backscattering. This is a probable reason why we are604

able to reproduce natural radargrams with rather high fidelity using a Gaussian distri-605

bution of heights with an isotropic Gaussian correlation function. For the same reason,606

more complicated roughness models such as fractional Brownian motion (fBm) could prove607

necessary if we are dealing with DEMs with resolutions of the order of the kilometre. In608

this case, we could envision adapting fBm scattering laws (Iodice et al., 2012) to the facet609

method to solve this problem.610

5.2 A subsurface application: estimating subglacial water geometry611

In Schroeder et al. (2014a), the authors treated the case of flat, specular, bright,612

coherent, anisotropic subglacial water bodies observed beneath Thwaites Glacier, West613

Antarctica using airborne radar sounding data. In this paper, the authors exploited the614

fact that the water bodies were coherent, flat, specular, and bright to assume that the615

variation in post-focusing bed echo power as a function of SAR focusing aperture was616

determined by the scattering function of the subglacial water bodies alone. The authors617

describe this scattering function of the basal ice-water interface in terms of the “spec-618

ularity content” Sc of the echo given by Sc = S(S + D)−1, where S is the “specular”619

component of echo and D is the “diffuse”. In Schroeder et al. (2014a), these components620

are estimated by focusing the radar sounder data with SAR focusing apertures spanning621

different ranges of angles θ at the ice-bed interface. By focusing with two different aper-622

tures, the authors could estimate the aperture-independent contribution of S and the623

aperture-dependent contribution of D to the focused echo power.624

The authors further exploited the anisotropy of the specularity content of the ob-625

served drainage-aligned high-specularity portion of the upper Thwaites Glacier catch-626

ment (Schroeder et al., 2013) to assume that the reflecting geometry of the subglacial627

water bodies could be approximated by the radar cross-section of a rectangular plate.628
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Figure 11: Geometry of the problem treated in Section 5.2, that is, the application of
our rough facet formulae to the characterisation of small subglacial water bodies. The
water body is modelled as a single rough facet.

The authors then integrated the scattering function that plate across θ to illustrate the629

dependence of Sc on water body of length L1, width L2, and survey orientation Ψ (Schroeder630

et al., 2014a). These quantities are shown in Figure 11. Both this calculation and the631

definition of Sc itself in Schroeder et al. (2014a) implicitly assume that non-coherent con-632

tributions to the scattering function of basal water bodies and SAR-focused bed echo633

power are negligible. However, our own results show that even quasi-specular interfaces634

can have significant incoherent components to the angular-dependence of their scatter-635

ing functions.636

The single-facet scattering functions presented in this paper provide expressions637

for both the coherent and incoherent contributions to the scattering function of a sin-638

gle, flat, rectangular facet with wavelength-scale or subwavelength-scale roughness. There-639

fore, our results can provide improved constraints on the geometry of subglacial water640

bodies that meet the same simplifying assumptions as those addressed in Schroeder et641

al. (2014a). The most significant of these assumptions is that the bed echo power returned642

from the water body dominates any power from off-nadir clutter (so that the latter can643

be neglected in our single-facet simulation).644

We can thus generalise the model of Schroeder et al. (2014a) as follows. First, we645

may do away with the need for two different apertures and subsequent the separation646

of “specular” and “diffuse” distinctions, and instead compute the total integrated power647

as a function of the aperture angle. This gives a presumably unique curve for the set of648

parameters that describe the facet and the observation, which can be used for param-649

eter inversion. Second, our formulation also allows the water body to have a slope in the650

x and y directions, shown as αx and αy, respectively. Third, we are able to include both651

the RMS height and the correlation length of such a rough body, under the usual assump-652
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Figure 12: Characteristic focused power curves as a function of the uncorrected SAR
aperture angle [formula (37)] of a water body with the following default properties: rough-
ness σ = λ/16, l = 2λ, plane equation [formula (3)] with a = −0.2, b = −0.5, dimensions
L1 = L2 = 3λ, survey line angle Ψ = 0◦. These four properties are varied in isolation in
each plot.

tion of a Gaussian distribution of heights and isotropic Gaussian correlation function,653

which we denote with the usual σ and l symbols.654

In particular, equations (20) and (21) must both be integrated across the angles
spanned by the SAR focusing window, and then scaled by the relevant processing gain
(with the coherent power increasing proportional to the processing gain and the inco-
herent power increasing like its square root) before summation (Raney, 2011). The to-
tal power as a function of the integration angle Θ can thus be written as

Pfoc(Θ) ∼
� Θ/2

−Θ/2

Nacq

∣∣∣〈Φ̃〉(rt, rt)
∣∣∣2 +

√
NacqDΦ(rt, rt)dθ, (37)

where Nacq is the number of acquisitions within the span defined by Θ and rt is the po-
sition on the surface shown in Figure 11 and is a function of θ:

rt = (h tan θ cos Ψ, h tan θ sin Ψ, h), (38)

assuming without loss of generality that the origin O coincides with the water body cen-655

tre. The angle to the radar can be computed from Snell’s law, but this calculation will656

be ignored in this exercise. We therefore refer to Θ as the uncorrected SAR aperture an-657

gle.658

In Figure 12 we show a few examples of these characteristic focused power curves,659

and how they vary as we modify various properties of the water body. As with the pre-660

vious application (Section 5.1), we defer the definition of an inversion method and the661

characterisation of its precision to a later paper, but the presented curves illustrate how662
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this method can be used to “fingerprint” subglacial water bodies. We assume the acqui-663

sitions are evenly spaced in θ, with a spacing of 1◦, and derive the number of acquisi-664

tions accordingly. In reality the acquisitions are equidistant, but this approximation is665

acceptable for illustrative purposes. The subsurface index of refraction, which affects the666

wavenumber k, was taken to be nice =
√

3.667

The method presented in Schroeder et al. (2014a) can therefore be considered a par-668

ticular case of choosing two apertures Θ1 and Θ2 along this characteristic curve.669

Even at the single-facet level, this treatment allows for more precise constraints on670

the geometry of flat subglacial water bodies which can be approximated as rectangles671

(Schroeder et al., 2014a). The generality of the formulation also allows the straightfor-672

ward extension of the specularity concept to include the full range of aperture lengths673

which can provide even stronger empirical constraints on the full scattering function of674

the water body including its roughness [e.g. from accreted ice as in MacGregor et al. (2009)]675

and its slope, [e.g. Castelletti et al. (2019); Ferro (2019); Heister and Scheiber (2018);676

Oswald and Gogineni (2008)]. Once the model is extended to realistic target geometries677

spanning more than a single facet, the approach can treat the full range of subglacial wa-678

ter body geometries and sizes (MacKie et al., 2020) including those with patches much679

larger than O(λ).680

6 Conclusions681

We have derived expressions for the phase contribution of a rough, arbitrarily-inclined,682

rectangular facet under the linear phase approximation, assuming a zero-mean Gaussian683

distribution of height with an isotropic Gaussian correlation function. The resulting phase684

integral naturally splits into a coherent and an incoherent term. We have extensively val-685

idated the obtained formulae, both in isolation and within Stratton-Chu simulators, con-686

strained their domain of application as much as technically possible, and concluded the687

formula can be used without risks for facet lengths and correlation lengths of the order688

of a few wavelengths, regardless of the facet RMS height.689

We demonstrated how the facet incoherent power could be used to accurately model690

speckle within a Stratton-Chu simulator, and applied these results to simulations of LRS691

radargrams over diverse types of terrains. The results showed how inclusion of the rough692

facet formalism significantly enhances the fidelity of simulations, even with subtle amounts693

of facet-level roughness. Additionally, we have shown that the problem of characteris-694

ing the radar signature of small subglacial water bodies is well-suited for the proposed695

model. By modelling these water bodies as a single rough rectangular facet, we showed696

how our formalism improves on state-of-the-art methods by removing the need for as-697

sumptions on the geometry of these bodies and the nature of their backscattered signals.698

For a given wavelength, the accuracy of our formulation is mainly limited by two699

factors, which are the facet size and the correlation length. Considering the best global700

DEMs of the Moon and of Mars, we showed that the proposed method can satisfacto-701

rily simulate LRS and MARSIS radargrams with rough facets, but that in the case of702

SHARAD, some oversampling of the MOLA-HRSC DEM of Mars is probably advised.703

Future work is envisioned to be as follows. First, the computations shown here will704

be generalised to other facet shapes, with triangular facets being the polygon of most705

interest. Triangles provide a much better medium for the facetisation of DEMs, and a706

rough triangular facet phase integral would provide a true generalisation of Gerekos et707

al. (2019) and Gerekos et al. (2018). This would open the way to more accurate mul-708

tilayer Stratton-Chu descriptions, with numerous applications for terrestrial or plane-709

tary radar science. We could also consider generalising this model to other types of rough-710

ness.711
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The codes used in this paper were written in MATLAB. The rough-facet Stratton-720

Chu cluttergram simulator used in this work is based on Gerekos et al. (2018), and its721

source code is available at http://doi.org/10.5281/zenodo.7051503. The lunar LRO722

LOLA DEMs were created through the UGSG Imagery Processing Cloud, and the source723

files are available at http://pds-geosciences.wustl.edu/missions/lro/lola.htm.724

The scripts used for fBm and Gaussian surface generation are available on MATLAB File725

Exchange (Botev, 2016, 2022). Finally, the LRS data is available at http://darts.isas726

.jaxa.jp/planet/pdap/selene/.727

Appendix A Derivation of 〈Φ̃〉 and DΦ728

This derivation picks up from equation (17) in the body of the text. We start by
injecting the perturbed phase (14) into the facet phase integral (2):

Φ̃ =

�
A

φ(ri, rr, r
′)e−iKδ(r

′)dr′. (A1)

Using the fact that the stochastic and deterministic parts of (A1) are separable,
the expressions for the ensemble-averaged phase response 〈Φ̃〉 and its square norm 〈|Φ̃|2〉 =
〈Φ̃Φ̃†〉 can be easily derived. Using basic properties of the log-normal distribution, we
obtain

〈Φ̃〉 =

�
A

φ(r′)〈e−iKδ(r
′)〉dr′ = Φe−σ

2K2/2, (A2)

〈|Φ̃|2〉 =

�
A

dr′
�
A

dr′′φ(r′)φ(r′′)†〈e−iK[δ(r′)−δ(r′′)]〉, (A3)

=

�
A

dr′
�
A

dr′′eikd·(r′−r′′)e−σ
2K2[1−C(|r′−r′′|)], (A4)

where we dropped the ri, rr dependencies for clarity. Equation (A2) yields formula (20).729

In the linear phase approximation, we have

kd · (r′ − r′′) = A0(x′ − x′′) +B0(y′ − y′′). (A5)

From the decomposition (17), we see that the Φ-dependent terms of Evar will take
on the form of an average of the intensity minus the intensity of the average. We denote

DΦ ≡ 〈|Φ̃|2〉 − |〈Φ̃〉|2 =

�
A

dr′
�
A

dr′′eikd·(r′−r′′)
(
e−σ

2K2[1−C(|r′−r′′|)] − e−σ
2K2
)
, (A6)

the phase contribution of the fluctuating part of the intensity. It is equal to

DΦ =

� Lx/2

−Lx/2
dx′

� Lx/2

−Lx/2
dx′′

� Ly/2

−Ly/2
dy′

� Ly/2

−Ly/2
dy′′ei[A0(x′−x′′)+B0(y′−y′′)]

·
(
e
−σ2K2

[
1−C

(√
(x′−x′′)2+(y′−y′′)2

)]
− e−σ

2K2

)
,

(A7)
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where Lx and Ly were defined in (8). This integral is usually solved through the usual
centre-difference change of variable with unit Jacobian u ≡ r′ − r′′, v ≡ (r′ + r′′)/2.
With the linearisation (A5), we obtain:

DΦ =

� Lx

−Lx
du1

� Ly

−Ly
du2(Lx − |u1|)(Ly − |u2|)ei(A0u1+B0u2)(e−σ

2K2[1−C(|u|)] − e−σ
2K2

).

(A8)
The exponentials relating to the perturbation can be expanded as a Taylor series as eσ

2K2C(|u|) =∑∞
m=0(σ2K2)mCm(|u|)/m!. We furthermore assume that the perturbation is characterised

by an isotropic Gaussian correlation function

C(|u|) = e−|u|
2/l2 , (A9)

where l is the correlation length. Thus, by factorising e−σ
2K2

, we obtain (Kong, 2000)
e−σ

2K2[1−C(|u|)] − e−σ2K2

= e−σ
2K2 ∑∞

m=1(σ2K2)me−m|u|
2/l2/m!. Inserting this into

(A8), the integral involves only the linearised phase along with an exponential of u2
1+

u2
2. We obtain that DΦ can be decomposed into four integrals:

DΦ = e−σ
2K2

∞∑
m=1

(σ2K2)m

m!
(I1 + I2 + I3 + I4) , (A10)

where

I1 =

� Lx

0

du1

� Ly

0

du2(Lx − u1)(Ly − u2)φε,

I2 =

� 0

−Lx
du1

� 0

−Ly
du2(Lx + u1)(Ly + u2)φε,

I3 =

� Lx

0

du1

� 0

−Ly
du2(Lx − u1)(Ly + u2)φε,

I4 =

� 0

−Lx
du1

� Ly

0

du2(Lx + u1)(Ly − u2)φε,

(A11)

and φε ≡ ei(A0u1+B0u2)−m(u2
1+u2

2)/l2 .730

From here, since the bounds of the double integrals are independent of each other,
the primitives that appear in (A11) can ultimately be reduced to these two identities:

�
eiax−bx

2

dx =− ie
− a24b

2

√
π

b
E(x), (A12)

�
xeiax−bx

2

dx =− eiax−bx
2

2b
+
ae−

a2

4b
√
π

2
√
b3
E(x), (A13)

where a and b > 0 are real factors, and where we used the shorthand notation

E(x) ≡ erfi

(
a

2
√
b

+ i
√
bx

)
, (A14)

where erfi (z) ≡ −i erf (iz) is the imaginary error function, and erf (z) ≡ (2/
√
π)
� z

0
e−t

2

dt731

is the error function (Abramowitz & Stegun, 1964; Weisstein, 2022). The first identity732

can be obtained from the definition of the error function, by completing the square in733

the exponential argument and carrying out the appropriate change of variables. The sec-734

ond integral can be obtained from the first through integration by parts, and by using735

fundamental properties of the error function (Weisstein, 2022).736

Using these two results along with purely algebraic manipulations, formula (A10)737

can be re-expressed into (21). In particular, the Re {·} operators appear naturally within738

this process using erfi(z†) = [erfi (z)]†.739
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Appendix B Convergence analysis740

We gather under the quantity DΦ,m all the elements that are being summed in (21):

DΦ = e−σ
2K2

∞∑
m=1

DΦ,m. (B1)

We will demonstrate the (absolute) convergence of this series.741

A lot of different positive constants are involved in the DΦ,m terms. We chose a
real constant C > 0, supposedly larger than any combination of m-independent fac-
tors found in DΦ,m, so that we can write

|DΦ,m| ≤
C2m

m!m2
[1 + Ce−Cm + Ce−C/mSm]2, (B2)

where
Sm ≡ |Re {Cm erfi (Cm)} |+ |Re {Cm} erfi (Re {Cm}) |, (B3)

and

Cm ≡
C1√
m

+ iC2

√
m, (B4)

where C1 and C2 are real positive constants taken such that Sm is greater or equal than742

both Re {Am erfi (Am)}−Re {Am} erfi (Re {Am}) and Re {Bm erfi (Bm)}−Re {Bm} erfi (Re {Bm}).743

Notice that all the terms are positive in the right-hand side of (B2), unlike in DΦ,m, in744

order to ensure the inequality is always true.745

The right-hand side of (B2) can be expanded in a sum of six terms:

|DΦ,m| ≤
C2m

m2m!
+
C2+2me−2Cm

m2m!
+
C1+2me−Cm

m2m!

+
2C1+2me−C/mSm

m2m!
+

2C2+2me−C(1/m+m)Sm
m2m!

+
C2+2me−2C/mS2

m

m2m!
,

(B5)

≡ d1 + d2 + d3 + d4 + d5 + d6. (B6)

We will examine the absolute convergence of their series through the d’Alembert
criterion2. It can easily be understood that all terms that do not involve Sm will gen-
erate series that are absolutely convergent due to the factorial growth outpacing any ex-
ponential growth. The radius of convergence of the first three terms is zero. Therefore:

∞∑
m=0

|d1| <∞,
∞∑
m=0

|d2| <∞,
∞∑
m=0

|d3| <∞. (B7)

To prove the three remaining terms also absolutely converge, we first notice that, for m→
∞, the following expansions hold true:

Re {Cm erfi (Cm)} =− C2

√
m+ e−C

2
2m

cos(2C1C2)√
π

[
1 +O

(
1

m

)]
, (B8)

Re {Cm} erfi (Re {Cm}) =
2C1√
πm

+O
(

1

m

)2

, (B9)

Thus we see that Sm grows at worst as
√
m and S2

m as m. Therefore, replacing Sm into
(B5), and using similar argument than previously, we can see that the radius of conver-
gence of the last three terms is also zero, from which we conclude:

∞∑
m=0

|d4| <∞,
∞∑
m=0

|d5| <∞,
∞∑
m=0

|d6| <∞. (B10)

2 The d’Alembert criterion states that if r ≡ limn→∞ |an+1/an| < 1, then
∑∞

n=0 an absolutely con-

verges, with r being convergence radius.
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^ ^ ^ ^ ^ ^

Figure B1: Comparison between the rough facet formulation (this work), and the
infinite-terrain backscattering law, using an identical setup as for the facet-level val-
idation presented in Section 4.1 and Figure 4. Solid lines: Rough facet total power
〈|Φ|2〉 = |〈Φ̃〉|2 +DΦ. Dashed lines: Kirchoff backscattering function 〈|Φ|2〉 = |〈Φ̃〉|2 + σK .

By virtue of (B2) we have proved that DΦ is not only convergent, but absolutely for any746

choice of parameters.747

In practice, we have found that the series generally converges with as little as 10748

terms for gentle amounts of roughness (σ . λ/20) and as much as 250 terms when σ749

is comparable to the wavelength. The correlation length l and the bistatic angles of scat-750

tering have a moderate effect on the number of terms needed for convergence.751

Appendix C Comparison with Kirchoff backscattering law752

The novel formula (21) can be regarded as the finite-facet equivalent of the Kir-
choff incoherent backscattering function derived in (Kong, 2000) and other textbooks,
given by

σK = πLxLy

∞∑
m=1

(σ2K2)m

m!m
l2e
−K2

ρl
2

4m e−σ
2K2

, (C1)

where K2
ρ = k2

d,x+k2
d,y. While the derivation of (C1) sends the bounds of (A8) to in-753

finity –or equivalenty, invokes an l � L assumption–, the rough facet formulation in-754

vokes no such assumption and preserves the original facet dimensions. Naturally, the cor-755

relation length in the rough facet formulation cannot be infinitely large with respect to756

the facet dimensions but the limitation arises from the physical meaning of having l�757

L rather than being built-in the formula. The practical consequence of this is that the758

range of validity of the rough facet formula is greater in the (σ, l, L) space.759

In Figure B1 we compare the rough-facet total power to the Kirchoff total power760

for the same cases as those analysed in Figure 4. Since the rough-facet curves of Figure761

4 were in excellent agreement with the data points, we can interpret any deviation of Kir-762

choff from the rough facets as erroneous.763

The Kirchoff backscattering law is in very good agreement with the rough facet for-764

mulation for either very small correlation lengths, or very large RMS heights. Differences765

appear outside of this regime. We can observe that for nadir backscattering, significant766

deviation start to appear at low σ values when l = 5λ, for a facet that is 4λ by 7λ of767

size. For larger look angles, > 10 dB deviations occur at l = 2λ, or even l = λ for768

very small RMS heights (σ < 0.1λ). Overall, (C1) can severely break down as early as769

l ≈ 0.2L for some combinations of σ and scattering angles, while the rough facet for-770

mula easily maintained accuracy at l ∼ L for all angles and all values of σ.771
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In conclusion, the rough-facet formula allows for greater flexibility in the choice of772

facet-level roughness parameters than the Kirchoff backscattering function. Leaving more773

room for a geophysics-driven choice of small-scale roughness, rough facets are better-suited774

for integration in a facet method-based radar simulator.775

Appendix D Equivalence of average incoherent power and speckle776

We provide a quick proof the that inclusion of speckle in Section 3.3 gives that cor-
rect average power. Using the following shorthand, let the coherent, incoherent, and to-
tal fields from a single facet be

Ucoh = 〈Φ̃〉, (D1)

Uincoh =
√
DΦφr, (D2)

Utot = Ucoh + Uincoh, (D3)

where φr is given by (25). The total average power is

P = 〈|Utot|2〉. (D4)

Substituting the above we get

P = 〈|Ucoh + Uincoh|2〉, (D5)

= 〈|Ucoh|2 + 2 Re {UcohUincoh}+ |Uincoh|2〉, (D6)

= 〈|Ucoh|2〉+ 〈2 Re {UcohUincoh}〉+ 〈|Uincoh|2〉, (D7)

= |Ucoh|2 + 〈|Uincoh|2〉, (D8)

where we have used the fact that Ucoh is a constant and the real and imaginary parts
of φr are zero-mean Gaussian random variables which eliminates the cross term. Look-
ing at the incoherent component and substituting (D2) and (25)

〈|Uincoh|2〉 =〈|
√
DΦφr|2〉, (D9)

=DΦ〈|ε1 + iε2|2〉/2, (D10)

=DΦ

(
〈|ε1|2〉+ 〈|ε2|2〉

)
/2, (D11)

=DΦ (1 + 1) /2, (D12)

=DΦ, (D13)

where we have used the fact that the mean of the square of the standard normal N (0, 1)
is equal to 1. Therefore, this speckle model gives the same average power as summing
the average coherent and average incoherent powers alone, that is

P = |〈Φ̃〉|2 +DΦ. (D14)
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