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Abstract

Climate change is intensifying the hydrologic cycle and altering ecosystem function, including water flux to the atmosphere

through evapotranspiration (ET). ET is made up of evaporation (E) via non-stomatal surfaces, and transpiration (T) through

plant stomata which are impacted by global changes in different ways. E and T are difficult to measure independently at the

ecosystem scale, especially across sites that represent different land use and land management strategies. To address this gap

in understanding, we applied flux variance similarity to quantify how E and T differ across 12 different ecosystems measured

using eddy covariance in a 10 × 10 km2 area from the CHEESEHEAD19 experiment in northern Wisconsin, USA. The study

sites included seven deciduous broadleaf forests, three evergreen needleleaf forests, and two wetlands. Net radiation explained

on average 68% of the variance of half-hourly T, which decreased from summer to autumn. Average T/ET for the study period

was 55% in forested sites and 46% in wetlands. Deciduous and evergreen forests showed similar E trajectories over time despite

differences in vegetation phenology. E increased dramatically after large precipitation events in loam soils but the response in

sandy soils was more muted, consistent with the notion that lower infiltration rates temporarily enhance E. Results suggest

that E and T partitioning methods are promising for comparing ecosystem hydrology across multiple sites to improve our

process-based understanding of ecosystem water flux.
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Key Points:

• Eddy covariance-measured evapotranspiration was partitioned to transpi-
ration and evaporation using flux variance similarity at 12 sites

• Transpiration followed net radiation and was lowest in wetland ecosystems

• Daily evaporation varied little over time and amongst sites from summer
to autumn

• Soil type determined the response of evaporation to large precipitation
event

Abstract

Climate change is intensifying the hydrologic cycle and altering ecosystem func-
tion, including water flux to the atmosphere through evapotranspiration (ET).
ET is made up of evaporation (E) via non-stomatal surfaces, and transpiration
(T) through plant stomata which are impacted by global changes in different
ways. E and T are difficult to measure independently at the ecosystem scale,
especially across sites that represent different land use and land management
strategies. To address this gap in understanding, we applied flux variance sim-
ilarity to quantify how E and T differ across 12 different ecosystems measured
using eddy covariance in a 10 × 10 km2 area from the CHEESEHEAD19 exper-
iment in northern Wisconsin, USA. The study sites included seven deciduous
broadleaf forests, three evergreen needleleaf forests, and two wetlands. Net
radiation explained on average 68% of the variance of half-hourly T, which
decreased from summer to autumn. Average T/ET for the study period was
55% in forested sites and 46% in wetlands. Deciduous and evergreen forests
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showed similar E trajectories over time despite differences in vegetation phenol-
ogy. E increased dramatically after large precipitation events in loam soils but
the response in sandy soils was more muted, consistent with the notion that
lower infiltration rates temporarily enhance E. Results suggest that E and T
partitioning methods are promising for comparing ecosystem hydrology across
multiple sites to improve our process-based understanding of ecosystem water
flux.

1 Introduction

Climate change is intensifying the water cycle and increasing extreme precipita-
tion (Papalexiou & Montanari, 2019; Prein et al., 2017, Brutsaert, 2016; Eicker
et al., 2016; Huntington, 2006). It is unclear if other critical parts of the global
water cycle, like terrestrial evapotranspiration (ET), are decreasing in soil mois-
ture (Jung et al., 2010), largely unchanging (Xue et al., 2020) despite increases
in global atmospheric demand for water (Novick et al., 2016), or increasing due
to global warming (Wang et al., 2022). ET moves some 65,500 km3 of water
into the atmosphere every year (Oki & Kanae, 2006) and is a central compo-
nent of the global water cycle. It is critical to understand how the processes
that comprise ET – transpiration (T) and evaporation (E) – respond to ongoing
global changes the water cycle of a changing planet (Kool et al., 2014; Stoy et
al., 2019).

T represents a biotic water flux to the atmosphere through plant stomata, while
E comprises abiotic water flux pathways from the soil, plant surfaces, and other
surfaces to the atmosphere. Both E and T are controlled by net radiation (Rn),
vapor pressure deficit (VPD), air temperature (Ta), and atmospheric resistance
as described by the Penman-Monteith equation (Monteith, 1965; Penman, 1948);
but T is also driven also by vegetation properties, namely leaf area available for
transpiration and canopy conductance which is influenced by the dynamic re-
sponse of plant stomata to environmental cues. Plants respond to water scarcity
by closing their stomata to save water while sacrificing carbon gain with consid-
erable implications for carbon cycling. Stomatal closure also decreases evapora-
tive cooling, which increases surface temperature and is therefore fundamental
for understanding plant water stress and the atmospheric dynamics to which
the land surface is coupled. Understanding how different ecosystems regulate
water supplies reveals insight into how much water is available for groundwater
recharge and runoff (Anderson et al., 2017), and how ecosystem management
decisions impact water cycling.

E and T can be measured using lysimeters, leaf-level gas exchange measure-
ments, sap flow, and more (Kool et al., 2014), but are difficult to scale up to the
ecosystem level (Berkelhammer et al., 2016). Ecosystem ET, is readily measured
using eddy covariance, but most studies do not seek to partition eddy covariance
measured-ET into its components, which results in a paucity of ecosystem-scale
E and T observations to understand the impacts of land use and land manage-
ment changes on water cycling (Stoy et al., 2019). Water balance (Liu et al.,
2016), machine learning (Granata et al., 2020), remote sensing (Martens et al.
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2017), land surface models and hydrologic models (Sun et al., 2017; X.-J. Zhang
et al., 2014) can all be used to help estimate the contributions of E and T to ET
at different spatial and temporal resolutions, but often rely on assumptions that
require further validation. A large contributor to our uncertainty in understand-
ing ET across multiple scales is the lack of ground based E and T observations
at the ecosystem scale (Rigden et al., 2018).

Most eddy covariance studies focus on a single ecosystem, paired ecosystems in
close proximity, or multiple ecosystems across large spatial extents, few have
measured multiple ecosystems in close proximity, which is critical for under-
standing how different ecosystems contribute to the water balance of heteroge-
neous landscapes (Sun et al., 2021; Chu et al. 2021). We seek to address this
by estimating E and T directly at the ecosystem scale at multiple sites within
a diverse landscape using a dense array of eddy covariance towers within a 10
× 10 km2 area (Butterworth et al., 2021). We do so using an approach devel-
oped to partition carbon and water fluxes from high frequency eddy covariance
measurements called flux variance similarity (FVS) (Scanlon & Kustas, 2012;
Scanlon & Sahu, 2008). FVS assumes that stomatal and non-stomatal fluxes
independently conform to Monin-Obukhov similarity theory and has been suc-
cessfully applied to study E and T across multiple global ecosystems (Kustas
et al., 2018; Perez-Priego et al., 2018; Rana et al., 2018; Scanlon & Kustas,
2012; Sulman et al., 2018; Wagle et al., 2020) but less frequently in forests and
wetlands (Klosterhalfen et al., 2019; Sulman et al., 2018), leaving opportunities
for understanding the pathways by which different ecosystems use water.

Here, we use FVS to directly partition E and T from ET measurements across
multiple forest and wetland ecosystems in northern Wisconsin, USA. We briefly
describe the study ecosystems and their relationship with conditions that result
in successful partitioning of the FVS algorithm. We focus our analysis on quanti-
fying the response of E and T from the study ecosystems to the diverse climatic
conditions and phenological changes experienced during the measurement pe-
riod across the transition from summer to autumn. We hypothesize that i) the
wetlands and forested sites will partition E and T differently across the study
period and that wetlands will support more E. More specifically, we expect that
ii) T will dominate ET during summer due to high energy inputs and leaf area
and E will dominate ET during autumn in the forested ecosystems due to de-
creased T, and that iii) T will differ little amongst forest ecosystems following
the notion that it is a “conservative” quantity that is relatively insensitive to
forest type (Oishi et al., 2010; Roberts, 1983).

2 Materials and Methods

2.1 Study Sites

The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled
by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) was
designed to understand how the atmospheric boundary layer responds to het-
erogeneity in land surface structure and function (Butterworth et al., 2021). It
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deployed one of the highest density networks of eddy covariance measurements
of surface-atmosphere energy fluxes to date: 19 flux towers in a 10 × 10 km2

area among an extensive array of land surface and atmospheric measurements
in northern Wisconsin, USA, centered around the existing 447-m WLEF tower
AmeriFlux site (US-PFa) (45.9459, −90.2723) (Figure 1, Table 1) near Park
Falls, Wisconsin USA. This region is located in the Köppen climate zone: Dfb:
warm-summer humid continental (Beck et al., 2018). The July - October 2019
measurement period allowed us to capture how seasonal changes in vegetation
structure and function impact E and T. Mean annual temperature is 4.33 °C
and mean annual precipitation is 823 mm with significant precipitation in all
seasons.

Figure 1. A map of 17 of the CHEESEHEAD19 eddy covariance study sites
in a 10 × 10 km2 area in northern Wisconsin, USA. Sites are labeled with
abbreviations used in the CHEESEHEAD19 project (Butterworth et al., 2021)
(Table 1). Black indicates deciduous broadleaf sites, red indicates evergreen
needleleaf sites, blue indicates wetland sites, and white indicated the WLEF
tower. (Google Earth & Wisconsin State Cartographer’s Office, 2022)

Tower placement within the study domain followed a stratified random grid pat-
tern with towers placed on average 1.4 km away from their nearest neighboring
tower and 3.5 km from the WLEF tall tower (Davis et al., 2003; Xu et al., 2017).
This partial randomization – taking distance to road, USFS-owned land and ap-
propriate tree gap for tower into consideration – resulted in spatial variability in
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vegetation height and ecosystem type including observations in challenging flux
measurement conditions. The study ecosystems included four evergreen needle-
leaf forests (ENF) sites dominated by Pinus spp., Picea mariana and/or Larix
spp., two wetland sites (WET), four aspen (Populus tremuloides)- dominated
sites, one maple (Acer saccharum)-dominated site, and five mixed forest sites,
one of which was near a lake, and most of which are a mix of aspens and pines
(Table S1). All mixed and deciduous forests are denoted as deciduous broadleaf
forests (DBF) for the purposes of this study given that their change in leaf area
across the seasonal transition will differ from ENF sites. Towers were mounted
32 m above ground level at the forest sites and between 1-3 m above ground
level at the wetland sites (Table 1). Of the 19 EC towers, 17 used an open path
infrared gas analyzer rather than closed path systems to which an additional
density term needs to be applied to the Fluxpart algorithm (Stoy et al., 2019),
described below. Of these 17 sites, we study 12 due to data availability but
provide an extended description of all in Table S1.

The study towers were part of the Integrated Surface Flux System
(UCAR/NCAR) and included CSAT3 sonic anemometers and EC150 open-
path infrared H2O/CO2 gas analyzers (Campbell Scientific, Inc) to measure
turbulent fluxes, a NR01 four-component radiometer (Hukseflux, Delft, The
Netherlands), and SHT85 aspirated air temperature (Ta) and relative humidity
(RH) sensors (NCAR) above the plant canopies VPD was calculated. Ta
and RH were also measured at 2 m and at mid-canopy in the forests. Soil
measurements included four-level soil temperature measurements (NCAR) at
0.6, 1.9, 3.1, and 4.4 cm depths, EC-5 soil moisture probes (Decagon, Pullman,
WA) at 5 cm, and HFT heat flux plates at 5 cm in forested sites and buried
in mats in the wetlands. Precipitation was measured at a SURFRAD station,
a ground-based measurement system for continuous long-term measurements
of climatic data, located at a grass field within the CHEESEHEAD19 study
domain at 45.9458, −90.2944.

2.2 Eddy Covariance and Flux Partitioning

The eddy covariance (EC) method is widely used to measure carbon dioxide and
water vapor fluxes worldwide (Baldocchi, 2014). Eddy covariance takes high-
frequency (10–20 Hz) measurements of three-dimensional wind velocity, CO2,
and H2O concentrations in the roughness sublayer over the plant canopy. As-
suming that turbulent mixing is sufficient, half-hourly (or hourly) net ecosystem-
scale flux measurements can be calculated. However, to improve our process-
level understanding of ecosystems and to improve models, EC fluxes need to be
partitioned into their separate parts: photosynthesis and respiration for carbon
dioxide fluxes and E and T for water. This underlies the need for effective and
accurate flux partitioning methods (Kool et al., 2014; Stoy et al., 2019).

A promising approach for partitioning ET into T and E is flux-variance similarity
(FVS) (Scanlon & Kustas, 2010). FVS assumes that stomatal and non-stomatal
turbulent fluxes conform independently to Monin-Obukhov Similarity Theory.
For a brief conceptual description, assume that there are two end-member scenar-
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ios for a parcel of air transported from the surface: one that interacts only with
stomata and one that does not. An eddy transported away from a surface that
is respiring CO2 and evaporating water through pathways other than stomata
will have deviations from mean CO2 concentration (c’) and water vapor concen-
tration (q’) that are positively correlated. An eddy of air that interacts with a
surface with open stomata will have a negative relationship between c’ and q’
that is determined by plant water use efficiency (WUE) with more water vapor
and less carbon dioxide (due to photosynthesis) than surrounding air. WUE
can be used to establish a relationship between the variance of CO2 associated
with stomatal intake and the correlation between stomatal and non-stomatal
CO2 exchange processes (Figure 2).

Figure 2. A schematic representation of basics of flux variance and correlation
between stomatal and non-stomatal CO2 and water vapor exchange processes.

In this way, evapotranspiration (ET) can be partitioned into E and T by match-
ing observed correlations of q’ and c’ that represent a combination of stomatal
and non-stomatal processes to those that correspond to purely stomatal or non-
stomatal processes (Scanlon & Sahu, 2008). Subsequent work by Skaggs et al.
(2018) noted an algebraic solution to terms that had previously been solved
numerically (Palatella et al., 2014). The analytical solution was incorporated
into an open-source Python 3 module, Fluxpart (Skaggs et al. 2018), that im-
plements the FVS method to partition E and T. The original FVS approach of
Scanlon et al. (2010) used a simple WUE formulation, which assumes a constant
ratio between leaf-internal CO2 concentrations and atmospheric CO2 concentra-
tion of 0.7 for C3 plants following Campbell and Norman (1998). Fluxpart also
implements other methods for WUE, including models in which intercellular
CO2 varies as a function of VPD (Skaggs et al., 2018), and a model in which
optimal stomatal behavior is assumed in response to VPD (Scanlon et al., 2019).
We compared the constant ratio and optimality models and chose the constant
ratio approach because it had a greater amount of successfully partitioned mea-
surements (see Table S8). Fluxpart also applies quality control routines to
the high-frequency data, correcting for external fluctuations associated with air
temperature and vapor density (Detto & Katul, 2007; Webb et al., 1980).
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Fluxpart delivers predictions of latent heat flux due to evaporation (LEe) and
transpiration (LEt) from the eddy covariance latent heat flux measurements
(LE) with units of W m−2. E, T, and ET in mm half hour−1 were calculated
by dividing their corresponding LE by the latent heat of vaporization using the
equation of Henderson-Sellers (1984) and the density of water. It is important to
note that the Fluxpart algorithm is not always able to make the calculation for
different reasons. FVS and the eddy covariance methodology assume the surface-
atmosphere exchange is well-represented by a turbulent flux, which is not always
the case, especially at night (Zhu et al., 2006). Additionally, the FVS method
is applicable only when a negative carbon flux exists due to photosynthesis,
and positive carbon and water fluxes exist due to respiration, transpiration
and evaporation, and when eddy covariance measured fluxes, variances, and
correlations for CO2 and water satisfy several constraints (Scanlon et al., 2019,
Eq 13). FVS results tend to match known fluxes generated using large eddy
simulation when there is a clear separation of CO2 and H2O sinks and sources
(Klosterhalfen et al., 2019). As a consequence of these limitations and the fact
that eddy covariance time series contain multiple gaps (e.g. due to weather
or instrumentation, etc.), we gap filled missing E, T, and ET data to create
continuous time series over the study period.

Eddy covariance data were gap filled using REddyProc (Wutzler et al., 2018)
for R (R Core Team, 2021). REddyProc inputs half-hourly eddy covariance
data and performs quality checks and data filtering based on measured flux and
friction velocity to discard data collected under insufficient turbulence. LE was
gap filled using a mean diurnal course algorithm, which replaces missing values
based on observations measured within one hour of adjacent days if climate
conditions are similar. We also used this algorithm to gap fill FVS-generated
LE due to evaporation (LEe) and transpiration (LEt) – which were converted
to E and T – under the assumption that these fluxes, like ET, vary little from
day to day with similar climate forcing.

We analyzed the success rate of FVS partitioning to site and measurement
characteristics using linear regression to explore if there were certain circum-
stances that led to greater partitioning success. Partitioning success was ana-
lyzed against LAI, canopy (z) and instrument height (h), the distance between
them (z-h) and the ratio between them (z/h). We also used linear regression
to explore the effects of abiotic factors on E and T, namely their response to
net radiation following the Priestley Taylor equation (Priestley & Taylor, 1972)
which assumes that water fluxes follow linear response to net radiation when
water is not limiting.

2.4 Uncertainty analysis

Eddy covariance measurements, like all measurements, contain uncertainty,
which must be quantified for a robust estimate of net fluxes (Goulden et al.,
1996). We used the approach of Richardson et al. (2006) which assumes that
surface-atmosphere fluxes taken under similar climatic conditions at the same
time on consecutive days should be approximately equal, and thereby uses dif-
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ferences between these measurements to estimate a random error, which trends
to follow a Laplacian (double exponential) distribution (Hollinger & Richardson,
2005). We performed a sensitivity analysis on the conditions considered to be
sufficiently similar by Richardson et al. (2006) – photosynthetic photon flux
density differences less than 37.5 µmol m−2 s−1, air temperature differences less
than 3 °C , and wind speed differences less than 1 m s−1 – and found little
justification to use other values. We added a wind direction threshold of a dif-
ference of no greater than 30 degrees to account for heterogeneous vegetation
surrounding some towers. We then used this “daily differencing” approach to
calculate the standard deviation of measured or FVS-partitioned ET, T, and E
by calculating the linear relationship between the magnitude of the flux and its
standard deviation, and applying this linear model to all observations, which
was taken to be the random error of the measurements.

Gap filling uncertainty was calculated using the standard deviation of the
marginal distribution sampling calculated by REddyProc output (Wutzler
et al., 2018) for ET, T, and E. We combined gap filling uncertainty for
the gap filled quantities with random uncertainties of the measurements to
create a continuous vector of the standard deviation of ET, T, and E at
half-hourly time intervals. The resulting standard deviation estimates were
autocorrelated, and uncertainty was propagated by estimating the effective
number of observations after accounting for autocorrelation (nEff) using ‘log-
norm::computeEffectiveAutoCorr’ (Wutzler 2021) in R. We used the observed
and gap filled flux measurements to compute nEff because the magnitude of
measurement uncertainty is a function of the magnitude of the flux (Richardson
et al. 2006), and because this approach provided a more conservative estimate
of the standard error of the mean flux value. We computed the standard error
of the mean for each latent heat flux (LEe, LEt, and LE) for each ecosystem for
which sufficient partitioned values were obtained (described further in Section
3), by first calculating the variance for random and gap filling uncertainty (x)
separately using

𝑉 𝑎𝑟(𝑥) = 𝜎2𝑥
𝑛𝐸𝑓𝑓−1 (1)

Where 𝜎2𝑥 is the mean value of the variance that describes the random or gapfill-
ing uncertainty of each flux (LEe, LEt, and LE). The total standard deviation
was then calculated by summing variances. Significant differences in the mean
value for each site were calculated using one-way ANOVA with Tukey’s HSD
post-hoc test. The Bonferroni filter was applied to adjust the 95% significance
level for the 66 comparisons that resulted from analyzing differences amongst
12 sites: (1−0.95)/66 = 0.00076.

2.5 Visualization

We are faced with the challenge of presenting time series observations from mul-
tiple ecosystems in response to similar environmental drivers. Throughout, we
use a Butterworth filter (Butterworth, 1930) to smooth micrometeorological,
eddy covariance, and FVS-generated time series as a visual aid, taking advan-
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tages of the filter’s ability to exclude high frequencies that complicate visual
representation while being uniformly sensitive to the lower frequencies that dis-
play the dominant patterns in the time series. The measurement record at three
of the sites began in late July while the rest began in early July, which compli-
cated the visual presentation; we simply excluded these sites from the figures
to aid readability. All statistical analyses are applied to the raw and not the
filtered data.

3 Results

Rn (Figure 3A) and Ta (Figure 3B) decreased from summer to autumn with
oscillations at approximately weekly time scales as a consequence of synoptic-
scale meteorological drivers observed during the measurement period (Desai et
al., 2021). A maximum temperature of 27.7 °C was observed on July 5 with
a minimum of 2.3 °C on October 5. There was an extended period of above-
average temperatures for over a week beginning September 16; such positive
temperature anomalies during autumn are a common feature of the climate
of the Upper Midwest. The temperature difference between the top of the
canopy and the bottom of the canopy decreased throughout the season (not
shown) suggesting more energy reaching the ground as leaves begin to fall despite
decreasing Rn throughout the seasonal shift.

A pluvial growing season was experienced in 2019 with frequent rain events
across the entire measurement period (Figure 4a): Precipitation across the State
of Wisconsin deviated from average by a positive 39.1 mm in July, negative 6.1
mm in August, positive 83.3 mm in September, and positive 63.5 mm in Oc-
tober (NOAA 2022). The average daily precipitation event was 8.34 mm/day,
excluding trace rainfall, with a maximum event of 52 mm on September 3. The
longest period without a rain event was 8 days in late-August. Soil moisture
at most sites it dropped to its lowest point in late-August at the end of the pe-
riod without rain (Figure 4b and Figure S1). The highest soil moisture content
followed the large storm event in September, peaking on September 13 (Figure
4b). The one-dimensional water balance (the cumulative sum of precipitation
minus evaporation for the study period) reached a positive water balance dur-
ing the measurement period in early September (Figure 4c) during the large
precipitation events at most sites. Atmospheric VPD was similar among the
forested ecosystems where it averaged (3.47 kPa) but was lower in the wetland
ecosystems (1.32 kPa) (Figure 4d).
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Figure 3. The daily average of thermodynamic variables (a) net radiation and
(b) air temperature for a representative tower, NE2 (Figure 1, Table 1) during

the 2019 measurement period.

Figure 4. Hydrological variables during the July mid-October 2019 measure-
ment period. (a) Precipitation measured at the SURFRAD station, (b), soil
water content for a representative site, NE2 (Table 1) (See Figure S1 for more
sites), (c) the one-dimensional water balance at all sites (cumulative sum of
evapotranspiration subtracted from cumulative sum of precipitation), and (d)
daily averaged vapor pressure deficit. ENF sites are denoted in red, DBF sites
in black, and wetlands in blue.

3.2 FVS Partitioning

The FVS algorithm was satisfied the constraints of physically realistic solutions
41% of the time at SE6, an ENF site (Table 2), but never did at NE1 and
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satisfied these constraints less than 25% of the time at NW2, SW2, SE4, and
SE5. These sites were removed from subsequent analyses with the exception
of the wetland site SE4 (with > 20% partitioning success) which was left in
the interest of comparison against other wetland sites. NE3 was also left out
of analysis, despite higher success, due to late start of data in mid-July. This
left 12 sites for the subsequent analyses for which FVS resulted in a physically
realistic solution between 26 to 41% of the time. The lack of partitioning for
most sites is due mainly to missing data in some capacity, which accounted for
between 15% and 42% of invalid partitioning data, depending on the site. The
rest of the errors (Table 2) were largely due to an inability to satisfy realistic
solutions and error messages indicating that the observation did not align with
Monin-Obukhov similarity theory. Partitioning success increased with a greater
difference between instrument height and canopy height (𝑅2 = 0.30), but no
relationship between partitioning and position of measurements relative to the
roughness sublayer (using instrument height to canopy height ratio as a proxy)
was found, nor between partitioning success and LAI, instrument height, or
canopy height.

3.3 Evapotranspiration

Figure 5. (a) The daily median evapotranspiration (ET) from July 3rd to
October 11th, 2019, for all sites smoothed with a Butterworth filter to aid
visualization, and (b) the cumulative sum of evapotranspiration across all sites.
ENF sites are denoted in red, DBF sites in black, and wetlands in blue.

ET generally decreased from summer to fall (Figure 5a), in response to fluc-
tuations in Rn at approximately weekly time scales that correspond to frontal
weather systems (Figure 3a). The ET (as well as E and T) uncertainty analy-
sis indicated that cumulative fluxes from most sites were significantly different
from most other sites (Table S2), but there was no difference amongst forests
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dominated by DBF or ENF trees (Figure 5) when comparing cumulative sums.
Wetland sites had significantly lower average ET over the measurement period
(244 mm), than forested sites (307 mm) (P<0.0001, Figure 5b).

3.4 Evaporation

Figure 6. (a) The daily median evaporation (E) from July 3rd to October 11th,
2019, for all sites smoothed with a Butterworth filter (b) cumulative sum across
all sites. ENF sites are denoted in red, deciduous sites in black, and wetlands in
blue.
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Figure 7. The daily median evaporation from July 3rd to October 11th, 2019,
for 3 sites: NE2, SE2, SE6, smoothed with a Butterworth filter to show soil
texture differences. A deciduous broadleaf forest with loam (SE2) is denoted in
black and two evergreen needle leaf forests on sandy soils are denoted in red for
comparison.

FVS-partitioned E across all sites was more aseasonal than perhaps expected
(Figure 6a) and the seasonal sum of E for tussock flow-through wetlands
(123 mm) was not significantly different from the mean of the forested sites
(124 mm) (Figure 6b). Mean LEe was significantly different among most sites,
using pairwise comparison, but LEe at SW1 and NE2 was not significantly
different to most other sites due to their larger standard errors (Table S3).
The site with highest E (147 mm), NE2, was dominated by pine and fir spruce,
while the site with the lowest E was SW4 (100 mm), a mixed hardwood forest.
A few sites had generally higher evaporation during the summer, notably NW4
(Figure 5a), but most followed a relatively constant daily trend until September
12 when there was an increase in E across all sites. This followed a significant
rain event the day before, as well as two large rain events on 3rd and 5th of
September. Soil water content also peaked on this day (Figure S1).

Soil data was used from the NRCS Soil Survey to categorize the dominant soil
type for most of the flux footprint at each site in order to capture soil texture
on an ecosystem scale. Of the 17 sites, 5 were sandy soils, one was a loam, and
the rest were sandy loams (Table 1). The site with the loam soil exhibited a
large increase in E on September 14th after the large storm event on September
3rd, followed by smaller rain events on September 5th, and 11-13th (Figure 7),
when soil water content also peaked (Figure 4b and S1).

3.5 Transpiration
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Figure 8. (a) The daily median transpiration from July 3rd to October 11th,
2019, for all sites smoothed with a Butterworth filter (b) cumulative sum across
all sites. ENF sites are denoted in red, DBF sites in black, and wetlands in blue.

T decreased steadily, on average, throughout the study period along with the
decline in Rn (Figure 3a) which explained about 68% of its variance, on average,
across all sites. This is evident in the cumulative sum which begins to flatten
out starting late-August, following a significant drop in Rn in early September
(Figure 3a and 8b) during and after the precipitation events (Figure 4a). Mean
LEt was significantly different across most ecosystems (Table S4). SW3, a dense
mixed DBF, had the highest cumulative T (197 mm), while NW1, a pine and
spruce/fir forest, had the lowest amongst forest sites (163 mm). Wetland sites
transpired significantly less than the forested sites on average (121 mm) across
the measurement period, while forest T averaged 178 mm (P<0.0001). There
was a period of increased transpiration in mid-September, following the large
precipitation events (Figure 4A).

3.6 The E/ET and T/ET ratios
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Figure 9. The daily median of (a) E/ET and (b) T/ET for all sites from July
3rd to October 11th, 2019, smoothed using a Butterworth filter for visualization.
ENF sites are denoted in red, DBF sites in black, and wetlands in blue. 3.

E/ET (Figure 9a) increased, and T/ET (Figure 9b) decreased, on average, over
the course of the study with a notable increase in E/ET (and corresponding
decrease in T/ET) in early September during the wet period. Because ET
decreased (Figure 5a) and E remained relatively constant across the study period
(Figure 6a), E/ET increased during that time (Figure 9a). Average T/ET for
all sites over the course of the entire study was 52% and averaged 46.0% at the
wetland sites, 52.6% at the ENF sites, and 54.3% at the DBF sites.

3.7 Uncertainty analysis

The range of uncertainties in the FVS-partitioned water fluxes, calculated as
the combination of random measurement uncertainty and gap filling uncertainty,
ranged from 3.0% to 6.3% for LE (Table S5), 4.1% to 7.8% for LEt (Table S6)
and 5.3% to 10.5% for LEe (Table S7).

4 Discussion

4.1 Overview

Partitioning ET to increase our understanding of the hydrologic components is
becoming increasingly important for water resource management in a changing
climate. While transpiration and evaporation fluxes can be readily measured
at point or individual tree scales, it remains difficult to measure at ecosystem
scale across multiple sites. This study attempts to address this using a dense
array of 17 eddy covariance towers in a 10×10 km2 area of which 12 ecosystems
had a higher proportion of Fluxpart algorithm convergence. We hypothesized
that wetlands and the forests will partition E and T differently during the
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seasonal transition from early July to early October in northern Wisconsin and
expected T to dominate ET in the summer and decrease into autumn with little
differentiation between ecosystem types, while E should dominate in forested
ecosystems in autumn due to loss of transpirable surfaces and that T will differ
little amongst forest ecosystems following relative insensitivity to forest type
(Oishi et al., 2010; Roberts, 1983).

We found that ET decreased (Figure 5a) when energy inputs into the charac-
teristically energy-limited ecosystems decreased (Figure 3a) as expected. This
seasonal decline in ET was dominated by a corresponding decline in T (Figure
8a), whereas E was largely aseasonal across the measurement period (Figure 6a)
with little difference among ecosystems in its cumulative sum despite different
responses to wet conditions due to soil texture (Figure 6b). The cumulative sum
of T across the measurement period differed little among forests as anticipated,
despite differences in forest composition. We describe the FVS partitioning
outcomes that resulted in these findings before describing seasonal patterns
of fluxes and their responses to micrometeorological variability across different
ecosystems.

4.2 FVS Partitioning

Towers were placed in a quasi-random nature to address the CHEESEHEAD19
study objectives to understand the role of landscape heterogeneity in mesoscale
atmospheric dynamics (Butterworth et al., 2021). As a result, some towers were
located in less-than-ideal flux measurement terrain including near vegetation
transitions and at the aquatic/terrestrial interface, which contributed to the
lack of Fluxpart algorithm success in some cases. Partitioning results were
not obtained at NE1 because the Fluxpart models for estimating water use
efficiency require the instrument height to be above the canopy height (Table
1). The Fluxpart algorithm often failed at the wetland sites due to “negative
VPD”, which is consistent with the challenges of precisely calibrating humidity
measurements near saturation (Meyer et al., 2008) noting that the near-surface
air at the wetland ecosystems had lower VPD on average (Figure 4d).

Partitioning success is influenced by scalar-scalar correlations such as water va-
por (q) and carbon dioxide (c) concentrations, which in turn are influenced by
sink-source distribution, height (atmospheric surface layer, roughness sublayer),
surface heterogeneity, and canopy density (Skaggs et al., 2018; Klosterhalfen
et al., 2019). As mentioned previously, towers were not always placed in op-
timal positions and in addition to the inherent heterogeneity of the ecosystem
surface, senescence of deciduous foliage produced additional patchiness to the
landscape which can be an important factor in validity of scalar similarity, and
may have interfered with scalar-scalar relations (Williams et al., 2007). We
examined the relationship between partitioning success and site characteristics
and found no significant correlation between LAI, the canopy height or instru-
ment height. There was a weak positive correlation (R2 = 0.30) between the
distance between the canopy and instrument height and partitioning success. A
previous study (Klosterhalfen et al. 2019) found that partitioning success was
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correlated positively to the instrument to canopy height ratio, overall canopy
height, instrument height, and LAI. However, this was concluded using large
eddy simulation outputs and may therefore differ from field observations of het-
erogeneous ecosystems. We found no correlation between partitioning success
and the canopy to instrument height ratio, and no correlation to canopy or in-
strument height individually. If sampling heights are too far from the canopy,
turbulence would likely fully mix the air parcel and distinguishing the scalars
via partitioning may therefore no longer be accurate (Klosterhalfen et al. 2019,
Zahn et al., 2022). For which Zahn et al. (2022) recommends an instrument
to canopy height ratio (z/h) of less than or equal to 2, to fall outside of the
roughness sublayer but not be too far above the canopy for flux partitioning al-
gorithms like FVS. Of our 17 sites, 7 fell outside of this range, one of which being
within the roughness sublayer. Zahn et al. (2022) also found when compared to
two other partitioning methods, FVS had the lowest rate of convergence because
of frequent failure to satisfy its assumptions, principally because of missing ob-
servational data. The main source of uncertainty arises from approximations
used to represent the correlation coefficient between carbon and water vapor
components. Despite the limitations of any flux partitioning approach, FVS
provided novel insights into E and T in this study that help us understand the
ecohydrology of multiple different ecosystems within a landscape.

4.3 Controls over Evaporation

E was largely aseasonal across the study period and remained the daily sum of E
varied little throughout the shift from late June until mid-October (Figure 6b).
This finding is supported by Paul-Limoges (2020) who also found quasi-constant
daily E below the canopy throughout seasonal changes in a deciduous forest in
Switzerland. E is strongly associated with changes in soil moisture under water
limited conditions (Or & Lehmann, 2019; Perez-Priego et al., 2018); however as
long as the moisture content of the soil surface is close to saturation, atmospheric
conditions control E, which begs the question of why it varied little during our
measurement campaign as Rn decreased.

An explanation follows from recent advances in soil E modeling. Based on the
widely used equation proposed by Gardner (1959) which suggests that evapora-
tion decreases as a function of the square root of time following precipitation
events, Brutsaert (2014) proposed an exponential decay function of soil mois-
ture drawdown. Or & Lehmann (2019) introduced a model based on the notion
that soil is an ‘evaporative capacitor’ with recharge and discharge based on pre-
cipitation statistics and soil physical characteristics. In this model, stage-I of
drying soil is governed by atmospheric conditions, as capillary flow through the
soil is sufficient to satisfy evaporative demand and E is only limited by avail-
able energy in the gradient between upper layers of the soil and the atmosphere.
During stage-II, E becomes primarily a function of soil water content and soil
hydraulic properties: evaporation rates drop significantly as the soil continues
to dry and the system becomes water-limited. The transition between the first
and second stage is dictated by storage, the product of average water content
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and the characteristic length (𝐿𝑐) of the soil – the limiting depth for capillary
extraction of water from deeper soils – which varies by soil texture, with shorter
lengths for both coarse and fine-textured soils (Or & Lehmann 2019). The
characteristic length is considered a good indicator to encompass soil hydraulic
properties’ effect on evaporation (Schneider et al., 2021).

We can examine our observations in the context of these models. Frequent
precipitation inputs in our study domain are consistent with a situation where
the time-varying component of E during dry-downs played a minor role in the
observed time-series, on average. The range in soil textures across the study do-
main indicated that we would expect to see evaporative differences at some sites
during stage-II drying, i.e. sandy soils should evaporate less than other sites.
We found evidence of this with a large increase in E after the early September
rain events at the loam site (Figure 7), consistent with a lower infiltration rate
in loam soils. We found that while mean E at most sites was statistically differ-
ent from each other, there was very little overall difference in cumulative LEe
between them despite the variability in soil type. This is consistent with the
notion that the ecosystems were never water-limited in a way that would influ-
ence evaporation rates due to 𝐿𝑐. Soil moisture was variable throughout the
summer but tended to increase through the fall (Table S1), keeping character-
istic lengths short and E largely under atmospheric control. This is supported
by Schneider et al. (2021) who found no difference in E between different soil
types, while other studies have found distinct differences between evaporation
and soil texture at water-limited sites (Merlin et al., 2016).

During autumn, as total Rn decreases (Figure 3a) more sunlight can penetrate
the canopy as leaves begin to fall during senescence, especially in the DBF
forests. We posit that declining leaf area compensated for declining Rn through
the seasonal transition such that changes in subcanopy Rn were muted, such
that the subcanopy Rn declined at a lower rate than above-canopy Rn. Coupled
with sporadic precipitation events which maintained soil moisture levels in the
later months, E/ET increased (Figure 9a) as T declined (Figure 8a). This
resulted in a situation where E is quasi-constant throughout the season while T
declined steadily due to its close coupling with Rn.

4.4 Controls over transpiration

T is driven by differences in atmospheric water and soil water potentials but
unlike E, is regulated through plant stomata. Rn dictated T, which explained
68% of the average variance across all sites in our energy-limited ecosystems.
Water availability was not limiting, and canopy conductance was unaffected
during the pluvial study year. High VPD typically causes plants to close their
stomata to minimize water loss (Monteith 1995), but high VPD conditions tend
to co-occur with high radiation therefore making it difficult to separate their
effects (Grossiord et al. 2020). Transpiration rates increase as VPD increases
to a certain threshold depending on the ecosystem (Ficklin & Novick, 2017;
Franks et al., 1997; Marchin et al., 2016; Sulman et al., 2016; Will et al., 2013).
This consumptive behavior is a reflection of environments that are not water-
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limited, such that gas exchange is maximized (Sadok et al., 2021). Accordingly,
stomata respond to changes in radiation such that T changes in proportion to
the radiation load (Pieruschka et al., 2010). The ecosystems studied here were
controlled by Rn and consequentially T, and while T increased VPD, it rarely
reached the limiting threshold of 1 kPa (Körner, 1995; Oren et al., 1999), as
VPD remained below this threshold 90% of the time.

4.5 T/ET

Average T/ET from the July to October study period was 52.3% across all
sites, with an average of 54.5% among the forested sites and 46.0% among the
wetland sites. These numbers fall within the wide range established by many
previous global studies of various ecosystems of 40 to 90% (Good et al., 2015;
Schlesinger & Jasechko, 2014; L. Wang et al., 2014; Wei et al., 2017a; Zhou et
al., 2016). This study is on the lower end of the previously reported range of 40
to 86% for temperate forests (Schlesinger & Jasechko, 2014) and is lower than
estimates generated using isotopic approaches on the order of 64% (Good et al.,
2015). However, Paschalis et al. (2018) found a significant decline in T/ET
when moving from dry to wetter areas – about a 10% change – which may
explain why we see lower T/ET than some other studies in our energy-limited,
but not water limited ecosystems, as precipitation during 2019 exceeded annual
averages compared to previous years.

Wang et al. (2014) showed an exponential relationship between LAI and T/ET
indicating that vegetative control over T/ET occurs over the lower LAI range.
However, when only natural vegetation sites (with LAI>1) were considered,
there was a negligible dependence of T/ET on LAI (Paschalis et al. 2018). LAI
data collected for 5 mixed forest sites on June 25th (NE2, NE4, SE3, SE6, SW4)
revealed no relationship between T/ET and LAI, however, all sites had LAI>1.
This finding is supported by Fatichi and Pappas (2017) and Berkelhammer et al.
(2016) who found that LAI matched seasonal dynamics of T/ET but not diel,
daily or annual timescales. In contrast, Nelson et al. (2020) found that T/ET
varied much more between sites than different years at the same site, indicating
more reliance on site characteristics than climatic variables.

Wetland T/ET is significantly altered by structural factors such as open water,
plant species and diversity, as well as environmental factors like diurnal fluc-
tuations in air and water temperature and water table depths (Drexler et al.,
2004; Eichelmann et al., 2018). Between wetland sites the most important fac-
tor affecting ET levels is the proportion of open water versus vegetation cover
(Eichelmann et al. 2018). Shorter vegetation, such as tussock grasses which
can often be found in wetlands, optimize leaf structure to minimize water loss
in light rich environments (Givnish, 1988) resulting in lower transpiration but
greater WUE compared to forested sites. As the area of open water increases,
E increases more than T, as we found evidence of decreased T/ET in wetlands
compared to the forested sites.

4.6 Uncertainty analysis
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Uncertainties in the FVS-partitioned water fluxes ranged between 3.0% and
10.5%, which was similar to or slightly larger than random measurement uncer-
tainties (3-6%) from other forested ecosystems (Goulden et al., 1996; Oren et al.,
2006; Stoy et al., 2006). Earlier approaches assumed that LE can be gap filled
with a high degree of success due to their relatively predictable response to en-
vironmental conditions (Falge et al., 2001). For example, REddyProc tends to
estimate gaps in latent heat flux measurements with a low degree of uncertainty
(Foltýnová et al., 2020). Nevertheless, future efforts should examine the ability
of gap filling methods to accurately simulate LEt and LEe. More complex LE
gap filling methods are being developed (e.g. Khan et al., 2021) but it needs to
be determined if they will offer improved predictive skill. We elected not to esti-
mate the “spatial” uncertainty of estimating heterogeneous ecosystems using a
single point measurement (Oren et al., 2006) as we did not have multiple towers
in individual ecosystems to do so and sought to avoid unconstrained estimation.
We also had little basis for estimating bias errors including potential underes-
timation of LE due to the known challenges of lack of energy balance closure
of eddy covariance measurements (Foken, 2008; Leuning et al., 2012; Stoy et
al., 2013). However, independent approaches are converging on the notion that
underestimated turbulent flux terms may be due more to sensible than latent
heat fluxes (Charuchittipan et al., 2014; Gerken et al., 2018; Mauder et al.,
2020), suggesting low variability, more or less independent of the energy bal-
ance closure. Ongoing efforts to parameterize underestimated turbulent fluxes
require estimates of atmospheric boundary layer heights (Mauder et al., 2021),
which are difficult to quantify using individual flux towers (Beamesderfer et al.,
in review), but the extensive land surface and atmospheric observations avail-
able from CHEESEHEAD19 (Butterworth et al., 2021) provide opportunities
to better-understand potential bias uncertainties in eddy covariance measure-
ments.

It is important to note that unknown uncertainties discussed above and different
methods to estimate WUE in the FVS algorithm also impact results. FVS may
overestimate soil E (Klosterhalfen et al., 2019) while conditional sampling meth-
ods (Thomas et al., 2008; Zahn et al., 2022) may underestimate it in comparison
to respiration chamber measurements, with implications for our understanding
of E and T. For reference on comparisons of FVS to leaf-level measurements
see Scanlon et al., 2019, and for comparison to other partitioning methods see
Nelson et al., 2020 and Klosterhalfen et al., 2019. Ongoing efforts to improve
water flux partitioning including optimality solutions for WUE in flux variance
similarity (Scanlon et al., 2019) and new conditional sampling methodologies
(Zahn et al., 2022) will ideally improve the accuracy of these methods to create
defensible estimates of water flux terms.

4.7 Implications for forests, wetlands, and water management

Our results have implications for forest hydrology but few studies have looked at
the influence of forest management practices on evapotranspiration (Komatsu
& Kume, 2020). Practices like forest thinning are commonly used as a water
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saving strategy but are understudied, particularly in wet environments (Sun et
al., 2017). Forest thinning, which influences ET partitioning with increased light
penetration due to a more open canopy, alters the microclimate of the ground
layer. Sun et al. (2017) found that ET decreased by 20% after thinning, yielding
an increase in water yield to the watershed, as supported by other studies (Dung
et al., 2012; Hawthorne et al., 2013). Most forest hydrology research involves
changes in runoff rather than change in ET; this omission – due in part to
the relative difficulties in measuring ET versus runoff – can hinder accurate
modeling and therefore optimal management (Komatsu and Kume 2020).

Wetlands are essential climate regulators, but unfortunately are globally declin-
ing three times faster than forests, with most losses due to land use change, agri-
culture and climate change (Finlayson & Davidson, 2018; Granata et al., 2020).
Considering both wetland losses and wetland restoration efforts underway, such
as converting crop lands back to wetlands (WDNR 2008), understanding the hy-
drologic changes is imperative. Difference in evapotranspiration from wetland
sites (especially with open water) is significant compared to drained agricultural
sites, with much higher ET in the wetlands (Eichelmann et al. 2018). Not only
is ET higher, but the use of water is much different; T/ET has found to be
between 31-37% in wetlands but on the order of 70% in the cropping systems
that often replace them (Wang-Erlandsson et al., 2014; Wei et al., 2017b). Ad-
ditionally, increasing global temperatures could have significant implications for
evaporative loss from wetlands as it has been shown that air and water temper-
atures are strong drivers of nighttime ET, which is dominated by E in these
systems (Eichelmann et al. 2018; 2022). When wetlands are drained there are
detrimental effects for water storage and groundwater inflation (van der Kamp
& Hayashi, 2009); improving our understanding of the contributions of E and
T to ET is essential to understanding land use and climate change impacts on
water cycling in these systems.

4.8 Future work

Remote sensing has become a promising and dominant approach to be able to
quantify global ET (Mu et al., 2007; K. Zhang et al., 2016). Currently algo-
rithms are able to model E and T separately, however, these have never been
independently validated across multiple ecosystems using observations (Talsma
et al., 2018). A key advantage of eddy covariance is the continuous, sub-daily
sampling and spatial scale of the measurements which can easily be linked to
remote sensing products (Chu et al., 2017). Among ET detecting sensors are
Landsat, MODIS, Sentinel GOES and ECOSTRESS, a thermal radiometer on
the International space station which produces thermally derived ET at 70 m
resolution (Fisher et al., 2017), aligning with characteristic length scales of eddy
covariance flux footprints. This allows for validation of the new ECOSTRESS
algorithm which uses the PT-JPL model to estimate E and T from the land
surface (Fisher et al., 2008, 2017). Remote sensing can aid in coverage of
larger areas and address some of the representativeness problems of our cur-
rent technology and instrumentation (Schimel et al., 2015), and can be used
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to understand local hydrologic cycling more comprehensively. However, land
surface heterogeneity is an inevitable problem in calculating ET with coarse res-
olution (Burchard-Levine et al., 2021) and land surface heterogeneity can cause
errors in LE (Butterworth et al., 2021; Liu et al., 2016). Therefore, addressing
the problem of land surface heterogeneity is crucial for a more accurate ET
estimation.

5 Conclusion

This study applies the flux variance similarity method to partition ET using
high frequency data from eddy covariance towers to investigate the role of vege-
tation and seasonal dynamics in E and T. On average T accounted for 54.5% of
ET at forested sites and 46.0% for wetlands, emphasizing a lower contribution
of E in forests. E was relatively aseasonal and independent of ecosystem type
throughout the study period due to the frequent precipitation but differed after
large precipitation events as a function of soil type, where loam soils tended
to have greater E following compounding rain events. T is highly correlated
with climatic variables depending on the ecosystem, which varied between wet-
lands and forested ecosystems. While minimal, DBF ecosystems tended to have
greater T compared to coniferous forests. Wisconsin has seen a 15% increase
in annual precipitation since 1950, with most extreme increases dominated by
seasonal transitions, spring and fall, and this trend is expected to maintain
(WICCI 2020). Therefore partitioning ET into its components during a sea-
sonal transition in a wet year across various ecosystems provides new insights
for understanding how different ecosystems use water with implications for hy-
drologic modeling in an era of rapid land use and climate change.
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Table 1. All CHEESEHEAD19 eddy covariance sites with open-path
infrared gas analyzers with site descriptions and characteristics.

Site Name Vegetation Ameriflux ID Latitude (°N) Longitude (°W) Tower Height (m) Mean vegetation height (m) St. dev. Vegetation height (m) % sand % silt % clay
NW1 Red pine US-PFb 45.97200 -90.32317 32 10.8 6.9 68.4 21.1 10.5
NW2 Aspen US-PFc 45.96773 -90.30878 12 6.7 6 65.1 29.5 5.4
NW3 Wetland (Tussock stream) US-PFd 45.96892 -90.30103 3 0.3 0.9 56.4 32.7 10.9
NW4 Lake (S shore) US-PFe 45.97930 -90.30042 32 8.9 8.9 56.4 32.7 10.9
NE1 Pine US-PFg 45.97348 -90.27230 32 33.2 6.6 90.2 6.6 3.2
NE2 Pine and young larch US-PFh 45.95573 -90.24060 32 10 6.7 92.7 3.6 3.7
NE3 Hardwood, pine understory US-PFi 45.97490 -90.23273 32 13.1 6.5 65.1 29.5 5.4
NE4 Maple US-PFj 45.96187 -90.22703 32 11.4 7.2 65.1 29.5 5.4
SW1 Aspen US-PFk 45.91490 -90.34250 32 5.8 4.7 65.1 29.5 5.4
SW2 Aspen/birch US-PFl 45.94090 -90.31773 25 6.8 5 90.2 6.6 3.2
SW3 Hardwood US-PFm 45.92067 -90.30990 32 6.1 4.2 65.1 29.5 5.4
SW4 Hardwood US-PFn 45.93922 -90.28232 32 11.5 5.9 65.1 29.5 5.4
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SE2 Maple, pine understory US-PFp 45.93652 -90.26408 32 11 5.1 49.5 42.2 8.3
SE3 Aspen US-PFq 45.92715 -90.24750 32 6.2 4.7 79.1 12.4 8.5
SE4 Tussock wetland US-PFr 45.92448 -90.24745 3 0.1 0.2 56.4 32.7 10.9
SE5 Aspen US-PFs 45.93808 -90.23818 12 4.4 6.1 90.2 6.6 3.2
SE6 Pine, aspen understory US-PFt 45.91973 -90.22883 32 7.3 6.1 90.2 6.6 3.2

Table 2: The likelihood of Fluxpart success by site and error codes
for the cause of failure.

Site Name Veg. Percent Valid Partitioning Missing data due to all data are NAN Missing due to too few data Missing data due to ustar <= ustar_tol =0.1 Missing data due to Fq <= 0 Missing data due to negative VPD Missing data due to vpd <=0 Missing data due to wue> Fc/Fq Missing due to Fc/Fq >= pqc*sigc/sigq Missing data due to Fc/Fq<sigc/sigq/pqc Missing due to canopy height < meas. height
NW1 pine 32.69% 21.13% 4.24% 5.72% 5.43% 2.48% 5.43% 1.33% 17.50% 4.04% 0%
NW2 aspen 14.86% 21.79% 8.49% 25.20% 3.85% 3.53% 4.24% 0.20% 16.92% 0.93% 0%
NW3 wetland 28.75% 35.5% 8.48% 6.18% 1.42% 7.8% 3.56% 0.11% 7.28% 0.92% 0%
NW4 pine 27.72% 15.49% 10.00% 3.74% 5.55% 5.07% 5.72% 0.48% 22.99% 3.22% 0%
NE1 pine 0% 41.81% 4.75% 3.79% 2.90% 0% 2.64% 0% 0% 0% 44.11%
NE2 pine 33.49% 25.48% 6.64% 6.59% 3.33% 3.69% 5.36% 0.16% 12.70% 2.56% 0%
NE3 hardwood 26.23% 35.84% 5.88% 5.15% 4.04% 3.03% 5.89% 0.16% 12.41% 1.37% 0%
NE4 maple 38.85% 23.90% 5.03% 5.40% 4.18% 3.95% 6.55% 0.87% 10.10% 1.16% 0%
SW1 aspen 33.19% 27.4% 5.79% 9.85% 3.1% 2.30% 5.27% 0% 12.12% 0.84% 0%
SW2 aspen 24.66% 18.75% 6.33% 8.01% 2.26% 2.31% 2.15% 0.17% 29.04% 4.29% 0%
SW3 hardwood 40.87% 18.75% 5.62% 9.15% 5.32% 2.28% 3.86% 0.73% 11.88% 1.53% 0%
SW4 hardwood 39.21% 27.69% 5.16% 6.27% 4.58% 0.57% 0.68% 1.62% 12.68% 1.55% 0%
SE2 hardwood 35.72% 24.31% 10.15% 3.51% 3.86% 19.76% 4.20% 1.30% 11.75% 3.22% 0%
SE3 aspen 30.57% 22.24% 5.24% 12.95% 4.91% 3.31% 1.96% 0.52% 17.17% 1.14% 0%
SE4 wetland 21.35% 39.85% 9.03% 5.91% 1.50% 5.38% 1.92% 0% 10.26% 4.77% 0%
SE5 aspen 17.89% 38.23% 8.81% 11.95% 2.05% 3.69% 3.53% 0% 11.63% 2.08% 0%
SE6 pine 40.10% 22.49% 5.50% 7.37% 4.86% 1.69% 2.90% 2.24% 10.49% 2.35% 0%
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