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Abstract

Most atmospheric models consider radiative transfer only in the vertical direction (1D), as 3D radiative transfer calculations

are too costly. Thereby, horizontal transfer of radiation is omitted, resulting in incorrect surface radiation fields. The horizontal

spreading of diffuse radiation results in darker cloud shadows, whereas it increases the surface radiation in clear sky patches

(cloud enhancement). In this study, we developed a simple method to account for the horizontal transfer of diffuse radiation.

We spatially filter the surface diffuse radiation field with a Gaussian filter, which is conceptually simple and computationally

efficient. We applied the filtering to the results of Large-Eddy Simulations for two summer days in Cabauw, the Netherlands,

on which shallow cumulus clouds formed during the day. We obtained the optimal filter size by matching the simulation results

with detailed high-quality observations (1Hz). Without the filtering, cloud enhancements are not captured, and the probability

distribution of global radiation is unimodal, whereas the observed distribution is bimodal. After filtering, the probability

distribution of global radiation is bimodal and cloud enhancements are simulated, in line with the observations. We found that

small changes in the filter width do not strongly influence the results. Furthermore, we showed that the width of the filter can

be parameterized as a linear function of e.g. the cloud cover. Hence, this work presents a proof-of-concept for our method to

come to more realistic surface irradiances by filtering diffuse radiation at the surface.
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Key Points:7

• We correct simulations of shallow cumulus cloud days with 1D radiative transfer8

for the 3D radiative effects in a post-processing step9

• The probability distributions of diffuse and global radiation closely match the ob-10
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Abstract14

Most atmospheric models consider radiative transfer only in the vertical direction (1D),15

as 3D radiative transfer calculations are too costly. Thereby, horizontal transfer of ra-16

diation is omitted, resulting in incorrect surface radiation fields. The horizontal spread-17

ing of diffuse radiation results in darker cloud shadows, whereas it increases the surface18

radiation in clear sky patches (cloud enhancement). In this study, we developed a sim-19

ple method to account for the horizontal transfer of diffuse radiation. We spatially fil-20

ter the surface diffuse radiation field with a Gaussian filter, which is conceptually sim-21

ple and computationally efficient. We applied the filtering to the results of Large-Eddy22

Simulations for two summer days in Cabauw, the Netherlands, on which shallow cumu-23

lus clouds formed during the day. We obtained the optimal filter size by matching the24

simulation results with detailed high-quality observations (1Hz). Without the filtering,25

cloud enhancements are not captured, and the probability distribution of global radi-26

ation is unimodal, whereas the observed distribution is bimodal. After filtering, the prob-27

ability distribution of global radiation is bimodal and cloud enhancements are simulated,28

in line with the observations. We found that small changes in the filter width do not strongly29

influence the results. Furthermore, we showed that the width of the filter can be param-30

eterized as a linear function of e.g. the cloud cover. Hence, this work presents a proof-31

of-concept for our method to come to more realistic surface irradiances by filtering dif-32

fuse radiation at the surface.33

Plain Language Summary34

The pattern of radiation at the surface is characterized by the presence of cloud35

shadows and peaks in the radiation caused by scattering of light by clouds. The amount36

of solar radiation that reaches the Earth’s surface determines how much energy is pro-37

duced by solar panels and how much heat and moisture is supplied to the clouds, thus38

it influences how the clouds develop. Existing models neglect the scattering of radiation39

in the horizontal direction, therefore the high peaks in the radiation are not modelled.40

In this paper, we show for two days with shallow cumulus clouds how we can include the41

effect of the horizontal propagation of radiation. We redistribute the radiation at the sur-42

face, and we compare our model results with measurements. After the redistribution,43

the high peaks in radiation are modeled. In general, we get a good match between the44

observed and modelled radiation distribution. We show that the redistribution can be45

made a function of the clouds in the model. Hence, this work presents a proof-of-concept46

for our method to come to more realistic surface radiation, without complex calculations.47

1 Introduction48

The amount of solar energy that reaches the earth surface is strongly influenced49

by the complex interactions between clouds and radiation. Therefore, solar energy partly50

reaches the surface directly and partly reaches the surface as diffuse radiation after it51

is scattered in the atmosphere by gases, aerosols and clouds. The total amount of solar52

energy reaching the surface, also referred to as surface irradiance or global radiation, gov-53

erns many processes at the surface. It drives the sensible and latent heat fluxes, which54

supply moisture and energy to boundary layer clouds and thus determine their devel-55

opment. Apart from the surface fluxes, the surface irradiance also influences plant pho-56

tosynthesis, as diffuse radiation is taken up by the canopy more efficiently than direct57

radiation (Kanniah et al., 2012). Furthermore, surface irradiance determines the pro-58

duction of renewable energy by solar panels. It is therefore important to have a good model59

representation of the surface irradiance and the partitioning between direct and diffuse60

radiation.61

Currently, clouds as well as radiation are usually parameterized in weather and cli-62

mate models. Existing parameterizations for radiation generally neglect the horizontal63
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transport of radiation. Radiative transfer is considered in 1D and within separate ver-64

tical columns (Independent Column Approximation, ICA), to keep calculations afford-65

able. Recent methods (Schäfer et al., 2016; Hogan et al., 2016) can account for the hor-66

izontal transport of radiation through cloud sides within grid boxes, making it possible67

to include the mean 3D effects in general circulation models. Between grid boxes, the68

horizontal transport can only be neglected if the grid boxes are large enough such that69

a cloud and its shadow fall within the same grid cell (Wapler & Mayer, 2008). As com-70

puting capacity increases, so does the model resolution. With that it becomes possible71

to resolve individual clouds in limited area models and horizontal transport of radiation72

between grid boxes is no longer negligible (Wissmeier et al., 2013). In Large-Eddy Sim-73

ulations (LES), clouds and their full 3D structure are resolved explicitly, while the cal-74

culation of radiative transfer remains generally 1D. To make a next step in realism, it75

becomes increasingly relevant to improve existing parameterizations to account for the76

horizontal transport of radiation.77

There are two major effects of the horizontal transport of radiation that cause the78

differences between radiative transfer in 1D and 3D. Firstly, in 1D, the cloud shadow is79

located exactly below the cloud. In reality, the cloud shadow is displaced and elongated.80

The displacement of the cloud shadow can impact the cloud size (Veerman et al., 2020),81

trigger secondary circulations (Gronemeier et al., 2017) and increase the formation of82

cloud streets (Jakub & Mayer, 2017). Secondly, the diffuse radiation reaches the surface83

exactly under the cloud in 1D. In reality, diffuse radiation is spread out over a larger sur-84

face area (Wissmeier et al., 2013; Wapler & Mayer, 2008; Hogan & Shonk, 2013). The85

horizontal spreading of the diffuse radiation results in more uniformly dark cloud shad-86

ows, whereas it increases the surface radiation in clear sky patches (cloud enhancement).87

Recently, Villefranque and Hogan (2021) provided the observational evidence for the 3D88

radiative effects. The horizontal spreading of radiation causes the characteristic bimodal89

distribution of solar irradiance observed under cloudy conditions (Schmidt et al., 2007,90

2009; Gristey et al., 2020b; Kreuwel et al., 2020). Gristey et al. (2020b) showed that the91

probability distribution of global radiation of simulations with 1D radiative transfer clearly92

differs from the distribution of global radiation of observations and simulations with 3D93

radiative transfer. This difference is caused by the lack of horizontal spreading of dif-94

fuse radiation. Therefore, the spreading of the diffuse radiation is the focus point of this95

study.96

Different methods exist to include 3D radiative effects or account for them. Ra-97

diative transfer can be computed accurately in 3D, for example with a Monte Carlo sim-98

ulation (Mayer, 2009), but these calculations are orders of magnitude slower than 1D cal-99

culations. A more efficient 3D method is the TenStream solver (Jakub & Mayer, 2015).100

However, with the TenStream solver the surface fields of diffuse radiation are not dif-101

fused enough (Jakub & Mayer, 2015) and the calculations are still more than an order102

of magnitude slower than 1D calculations (Veerman et al., 2020; Jakub & Mayer, 2015).103

The probability distribution of the global radiation can also be predicted from cloud field104

properties with machine-learning (Gristey et al., 2020a). Alternatively, 1D radiative trans-105

fer calculations can be adapted to account for the 3D radiative effects. Such adaptations106

include the spatial information that is necessary to study the impact of the 3D effects107

on the simulations, which is not possible with the method of Gristey et al. (2020a). Fur-108

thermore, such adaptations are computationally more efficient than Monte Carlo sim-109

ulations or the TenStream solver. Therefore, adaptations of 1D radiative transfer cal-110

culations can potentially be applied to longer time ranges and larger domains.111

Existing literature shows that the errors in the location and shape of the cloud shadow112

can be tackled by using tilted columns (Tilted Independent Column Approximation, TICA)113

(e.g., Wissmeier et al., 2013; Wapler & Mayer, 2008; Várnai & Davies, 1999). The spread-114

ing of the diffuse radiation can be included by smoothing the 1D diffuse radiation fields115

(Nonlocal Independent Column Approximation, NICA, Marshak et al. (1995)). Espe-116
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cially these smoothing methods strongly simplify the actual radiative transfer. It is there-117

fore very important to thoroughly validate the performance of these methods. In pre-118

vious work, the smoothed 1D radiation was validated against 3D simulations for snap-119

shots of cloud fields (Marshak et al., 1995; Zuidema & Evans, 1998; Wapler & Mayer,120

2008; Wissmeier et al., 2013). Instead, we will use observations for the development and121

validation of our smoothing method, which allows us to test our method over a period122

of time. Different options exist to smooth the diffuse radiation. The simplest option is123

to use the area average diffuse radiation for the whole study area (Wapler & Mayer, 2008),124

which works well for small domains sizes with a regular cloud field, but often a more gen-125

erally applicable approach, such as a smoothing filter, is required. Possible filters use a126

gamma distribution (Marshak et al., 1995) or a Gaussian distribution (Zuidema & Evans,127

1998; Wissmeier et al., 2013). The simplest distribution, the Gaussian, requires the de-128

termination of only one parameter, the standard deviation (sigma). Sigma can be pa-129

rameterized for use in operational models. Wissmeier et al. (2013) proposed a method130

where sigma is a function of the solar zenith angle and the distance from the center of131

the surface pixel to the center of the base of the closest cloud. This method requires the132

calculation of many sigmas, as sigma differs per surface pixel.133

The aim of this study is to correct 1D radiative transfer calculations for the 3D ra-134

diative effects. We focus on the spreading of the shortwave diffuse radiation at the sur-135

face as this is essential to capture the cloud enhancements and more uniformly dark cloud136

shadows. We will use a spatial filter to smooth the diffuse radiation at the surface. We137

strive to keep the parameterization as simple as possible, thus we will use one filter size138

per time step for the whole domain and we will investigate the possibilities to describe139

this filter size as a linear function of one or a couple of cloud variables. As we aim to in-140

vestigate the potential of the filtering, we will apply the filtering as a post-processing step141

to our LES output. We base our filtering on and validate our filtering against observa-142

tions, as observations are available for long periods of time, for which 3D calculations143

are not feasible anymore. Additionally, the advantage of observations is that they are144

measurements of reality and not influenced by any model parameterization or assump-145

tion. We will study two shallow cumulus cloud days in Cabauw, the Netherlands, for which146

high-resolution observations (1Hz) are available from the Baseline Surface Radiation Net-147

work (BSRN) station.148

2 Data149

For this study, we selected two summer days (4 July and 15 August 2016) in Cabauw,150

the Netherlands, during which shallow cumulus clouds formed. The 3D radiative effects151

are most pronounced when cloud shadows and regions with cloud enhancements both152

occur frequently, thus we selected days with highly variable surface global radiation. Fur-153

thermore, ice and liquid water impact radiation differently, thus we selected days with-154

out high clouds (which contain ice). Lastly, we are interested in clouds that are surface155

driven, as the formation of these clouds is the result of the local surface irradiance. There-156

fore, we selected days that started and ended with cloud-free skies and had shallow cu-157

mulus clouds during the day.158

We compared the simulation results (as described in the next section) with obser-159

vations from the Royal Netherlands Meteorological Institute (KNMI) observatory in Cabauw.160

Cabauw is located in the centre of the Netherlands (51.971 °N, 4.927 °E), where the sur-161

roundings are flat and mainly consist of meadows and ditches. At the measurement site,162

basic meteorological variables such as specific humidity, temperature and wind speed are163

measured at 7 levels along a 200 m high tower (KNMI Data Services, 2022b). The cloud164

cover is measured with a NubiScope, which is a scanning infrared radiometer (KNMI Data165

Services, 2022a). These observations all have a 10 min resolution. We used these obser-166

vations to validate the general performance of the LES model. For the main analyses,167

we used the observed shortwave irradiances (global, direct and diffuse) from the Base-168
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line Surface Radiation Network (BSRN) site in Cabauw. At this station, broadband ir-169

radiances are measured at a single location with a high frequency (1 Hz). Details about170

the radiation measurements can be found in Knap (2018).171

Apart from the observations, the clear sky radiation is available every minute, as172

calculated with the McClear model (Gschwind et al., 2019). The clear sky radiation is173

the amount of radiation that would have reached the surface if there were no clouds present.174

3 Methods175

3.1 Model Simulation176

We performed realistic LESs using MicroHH (Van Heerwaarden et al., 2017). Our177

simulations use an interactive land-surface scheme, similar to HTESSEL (Balsamo et al.,178

2009) and our land surface is a homogeneous grassland. The 1D radiative transfer is cal-179

culated every 10 sec with RTE+RRTMGP (Pincus et al., 2019), using delta-scaling of180

the cloud optical properties. We simulate realistic weather conditions by coupling our181

LES to ERA5 with a method similar to the one described by e.g Neggers et al. (2012)182

and Schalkwijk et al. (2015). In short, in this setup, the atmosphere and soil are initialised183

from ERA5. Furthermore, the large scale forcings acting on the LES domain are recon-184

structed from ERA5 and added to the LES as time and height varying external forcings.185

These forcings are the advective tendencies of potential temperature, humidity and wind,186

the subsidence velocity, and geostrophic wind components. The domain mean state of187

the simulations is nudged towards ERA5 at a time scale of 3 hours, to prevent long ex-188

periments from drifting away from reality. For 4 July, the humidity close to the surface189

is much lower in ERA5 compared to the observations, thus we increased the initial hu-190

midity with 10% at the surface, and a linearly decreasing percentage above until roughly191

1000 m (50 model levels). Additionally, we increased the nudging timescale to 12 h in192

the lowest 2 km (82 levels), to prevent the model from going towards the too dry ERA5193

data.194

Our domain has a size of 25.6 km x 25.6 km x 17 km, with a horizontal resolution195

of 50 m and a vertical grid spacing that increases with height, starting with 20 m grid196

spacing at the surface. Our LES uses double-periodic boundary conditions. We ran the197

simulations from 6 to 18 UTC (8-20 local time) and we saved the domain average statis-198

tics every 5 min. Additionally, we saved, every 10 sec, the results for an individual col-199

umn in the centre of the domain (x = y = 12.8 km) and the horizontal cross sections for200

some key variables: liquid water path (including ice), shortwave downward radiation at201

the surface (both global and direct), cloud base height, cloud top height.202

We investigated the probability distributions to compare the modeled radiation with203

the observations. We used the Probability Density Functions (PDFs) as used by Gristey204

et al. (2020b). These PDFs show the relative occurrence of the radiation values. There-205

fore, they provide insight into the occurrence and strength of cloud shadows and cloud206

enhancements. Apart from changes in the cloud field, PDFs based on time series include207

the effect of the changing solar zenith angle (SZA). We correct for the changing SZA by208

dividing the radiation values of both the simulation and the observations by cos(SZA)209

when PDFs are considered. Hereby, the radiation is normalised to a 0 degree solar zenith210

angle or, in other words, it is the radiation value as if the sun was right above the ob-211

server. For all PDFs, we used a binsize of 20 W m-2 and we resampled the observations212

to 10 sec averages, to match with the model resolution.213

3.2 Smoothing Diffuse Radiation214

We used a Gaussian filter to account for the 3D effects on diffuse radiation. This215

filter convolves the surface diffuse radiation from the 1D radiative transfer model with216
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a Gaussian distribution. This means that the diffuse radiation at one point becomes a217

weighted average of the point itself and its neighbours. In 1D, the weights are described218

by a Gaussian distribution (G1D) of the form:219

G1D(x) =
1√

2πσfilter

exp

(
−x2

2σ2
filter

)
.220

In which σfilter is the standard deviation of the distribution and x is the distance221

from the point of interest. The filter includes the neighbours within four times the stan-222

dard deviation (σfilter), so x ranges between -4σfilter and +4σfilter. At the borders of the223

domain, the data is wrapped, meaning that data from the opposite side of the domain224

is included in the convolution. This is in line with the periodic boundaries of the sim-225

ulations. To filter in 2D, 1D convolutions are performed in both horizontal directions sub-226

sequently. We tested the filtering for σfilter between 0 and 1.5 km, in steps of 50 m, to227

determine the optimal sigma (σopt). We determine σopt per time step. as we apply the228

Gaussian filter per time step.229

3.3 Determining the Optimal Filter Size230

We determine σopt by comparing the simulation with the observations. The sim-231

plest way to do this is to compare the standard deviation of the observations with the232

standard deviation of the simulated field. From the simulation, we used the standard de-233

viation of the diffuse radiation PDF after filtering (stdsmooth). This means that stdsmooth234

is calculated over a smoothed field normalised by cos(SZA). Thus, stdsmooth is calculated235

per time step. The standard deviation of the observations (stdobs) is calculated from the236

time series between 10 and 16 UTC, normalised by cos(SZA) . Therefore, stdobs is con-237

stant. We consider the filtered distribution optimal if stdsmooth is as close as possible to238

stdobs. The impact of using the standard deviation as the optimization criterion is dis-239

cussed in section 5, as well as the impact of using stdobs for all time steps.240

3.4 Parameterization for the Filter Size241

The optimal filter size (σopt) is a characteristic of the distribution of diffuse radi-242

ation, thus it is related to the cloud field. Therefore, σfilter might be calculated as a func-243

tion of properties of this cloud field. A possible parameterization was proposed by Wissmeier244

et al. (2013). Their parameterization involves the calculation of σfilter per grid cell per245

time step. We investigated the possibilities to have a parameterization with less differ-246

ent values of σfilter by using one σfilter per time step for the whole domain. We tested247

parameterizations of the simple form: σfilter = cv, in which c is a constant and v a vari-248

able related to the cloud field. In section 5, we will discuss further how well one filter249

size can be used for the entire domain.250

From existing literature, it is expected that σfilter is related to the cloud base height251

and/or the solar zenith angle (Wissmeier et al., 2013; Wapler & Mayer, 2008). On top252

of that, we hypothesize that σfilter is related to the sizes of the individual clouds, as the253

effect of small clouds can be filtered away with a narrow filter, whereas the effect of large254

clouds needs a wider filter to be filtered out. We used the maximum cloud size as a mea-255

sure for the cloud sizes present in the cloud field. The maximum cloud size is determined256

using a cloud tracking algorithm, as described by Heus and Seifert (2013). In short, all257

columns with a Liquid Water Path (LWP) larger than 0 g m-2 that are connected to each258

other are considered to form one cloud. The cloud size is then simply the square root259

of the area of the cloud. Apart from the maximum cloud size, we consider the cloud thick-260

ness and cloud cover for the parameterization of σfilter as these variables are related to261

the maximum cloud size (Van Laar et al., 2019). In summary, we considered cloud thick-262

ness, cloud cover, cloud base height, solar zenith angle, and maximum cloud size to de-263

termine the best parameterization for σfilter.264
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Figure 1. Timeseries of global radiation as (a) observed, (b) simulated and (c) filtered for 4

July. (d), (e) and (f) are as (a), (b) and (c), but for 15 August. For the simulations, the time

series are taken at the centre point of the domain.

In addition to the single variable parameterizations, we investigate the improve-265

ment that can be obtained by using multiple linear regression. We start from the sin-266

gle variable parameterization that gives the best match (the highest correlation coeffi-267

cient) with our σopt. We add one variable at a time and determine which combination268

gives the highest correlation with σopt.269

4 Results270

We will first show the general development of the simulations and compare it to271

the observations. Then, we will discuss the distribution of the radiation in detail, fol-272

lowed by the filtering of the radiation and the possible parameterizations for this filter.273

4.1 Case Description and Model Validation274

The timeseries of observed global radiation (Fig. 1a, d) show that the global ra-275

diation is either higher or lower than under clear sky conditions. The global radiation276

is lower than the clear sky value in a cloud shadow. When there is no cloud shadow, the277

radiation is enhanced by diffuse radiation scattered by a nearby cloud. In the simula-278

tion with 1D radiative transfer (Fig. 1b, e), the global radiation is either lower than or279

equal to the radiation under clear-sky conditions, meaning that cloud shadows occur, but280

cloud enhancements are not simulated. The rightmost panels in Fig. 1 show the time-281

series after we filtered the diffuse radiation. These will be discussed in section 4.3.282

Fig. 2 shows the timeseries of cloud cover, temperature and humidity. Comparing283

the model simulations with the observations shows that the simulations accurately cap-284
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Figure 2. Time series of (a) cloud cover, (b) temperature and (c) specific humidity for 4 July.

(d), (e) and (f) are as (a), (b) and (c), but for 15 August. Temperature and humidity are at 10m

height.

ture realistic weather conditions. The simulation results are more smooth, because they285

are average values over the model domain, whereas the observations are at one location.286

For 4 July, the simulated cloud onset is about half an hour later than in the observations,287

whereas for 15 August it is about half an hour earlier. Although the modelled cloud struc-288

tures will never be exactly as observed, the average cloud cover is well simulated for both289

days. Veerman et al. (2022) showed for the case of 15 August 2016 that a similar cloud290

cover is modelled when 3D radiative transfer calculations are used.291

The simulated vertical profiles (Fig. 3) show that, in both cases, a stable bound-292

ary layer was present at the beginning of the day, at 6 UTC. The addition of sensible293

heat caused the boundary layer to grow and heat up. In the afternoon, the boundary294

layer was well mixed. On 4 July, the humidity above the boundary layer increases over295

time, but the changes are only small close to the boundary layer top. In general, only296

small changes in the profiles occur above the boundary layer, indicating that large scale297

advection plays a minor role. On both days, the local surface fluxes determine the de-298

velopment of the profiles during the day, which makes these days suitable case studies.299

The profiles of liquid water show that clouds are formed under the inversion (Fig. 3c,300

f). On the 15th of August, a strong inversion ( 7 K) was present at the top of the bound-301

ary layer (Fig. 3d, e). The clouds spread out horizontally under the inversion, as the in-302

version prevents the clouds from growing in the vertical. This causes relatively thin clouds303

and a high cloud cover (Fig. 2d) for a case with shallow cumulus clouds. The clouds on304

both days clearly differ in their thickness and liquid water content. Thus, we can get an305

indication of how well our method works for shallow cumulus conditions, by testing our306

filtering method for these two days. In the remainder of this paper, we will focus on the307

hours between 10 UTC and 16 UTC when clouds are observed and simulated on both308

days.309
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Figure 3. Domain-average vertical profiles of (a) liquid water potential temperature, (b) spe-

cific humidity, (c) liquid water specific humidity for 4 July. (d), (e) and (f) are as (a), (b) and

(c), but for 15 August.

Figure 4. PDFs of (a) global radiation, (b) direct radiation, (c) diffuse radiation for the ob-

servations, the original simulation and the simulation after filtering for 4 July. (d), (e) and (f)

are as (a), (b) and (c), but for 15 August. For these PDF, the time series from 10 to 16 UTC are

used. For the simulation, the time series is taken at the centre point of the domain. All values

are normalised by cos(SZA).
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Figure 5. Surface fields at 15 August 12 UTC. The first row shows the original fields of (a)

global radiation, (b) diffuse radiation, and (c) direct radiation. The second row shows the fields

obtained with Monte Carlo ray tracing of (d) global radiation, (e) diffuse radiation and (f) di-

rect radiation. The third row shows the fields after filtering the diffuse radiation of (g) global

radiation and (h) diffuse radiation. (i) shows the difference in radiation between the original and

filtered simulation. Note that we did not change the direct radiation. Therefore, the difference

in (f) is the difference in diffuse radiation (b vs e) as well as the difference in global radiation

(a vs d). The SZA is 37.9°. The fourth row shows the PDFs of (j) global radiation, (k) diffuse

radiation, and (l) direct radiation corresponding to the fields in (a) until (h). For the PDFs of

the observations, the time series between 10 and 16 UTC are used.
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4.2 1D Radiative Transfer310

In this section, we examine the surface irradiance from the simulation with 1D ra-311

diative transfer by looking at PDFs of global, direct and diffuse radiation (Fig. 4) and312

an example of the surface radiation fields in the simulation (Fig. 5, top row). We will313

first discuss the differences between the observations and the simulation with 1D radia-314

tive transfer. The PDFs and surface fields of the simulation after filtering will be dis-315

cussed in the next section.316

The simulated distribution of global radiation does not resemble the observed dis-317

tribution (Fig. 4a, d). This is in line with the results of Gristey et al. (2020b) and Schmidt318

et al. (2007). The differences between the observations and the simulation can be explained319

by considering the direct and diffuse radiation separately (Fig. 4) and from the spatial320

patterns (Fig. 5, top row).321

The direct radiation is close to zero in the cloud shadows and around 800 w m-2
322

in other areas (Fig. 5c). The simulated diffuse radiation is highest under the clouds (Fig.323

5b). This partly compensates for the reduced direct radiation. Under the clouds, the dif-324

fuse radiation is highest, up to 500 W m-2, in areas with a low LWP. In areas with a high325

LWP, the diffuse radiation is reduced as more radiation is absorbed and more radiation326

is scattered back upwards. In simulations with 1D radiative transfer, the cloud shadows327

are located exactly below the clouds (Fig. 5c). From simple geometry, it is clear that the328

shadow of a cloud is not directly below a cloud, unless the sun is right above the cloud.329

Additionally, the cloud shadows are too small in simulations with 1D radiative trans-330

fer, as only the top of the cloud intercepts radiation. In reality, the radiation falls on the331

cloud under an angle, thus part of the cloud sides also intercepts radiation, causing a larger332

cloud shadow. Previous studies showed that the, more complex, Tilted Independent Col-333

umn Approximation (TICA) can be used to simulate the cloud shadows correctly in terms334

of both size and location (Wapler & Mayer, 2008; Várnai & Davies, 1999).335

The spatial radiation patterns result in the PDFs shown in Fig. 4. The PDFs of336

the direct radiation show peaks around zero and between 800 and 1000 w m-2, for both337

observations and simulations (Fig. 4b, e). The high values of simulated direct radiation338

are higher than the maximum observed direct radiation. On 4 July, the simulated val-339

ues are up to 74 W m-2 more than the maximum observed, on 15 August up to 37 W340

m-2. In line with this overestimation, the average diffuse radiation is underestimated (Fig.341

4c, f). This is also observed for the clear sky radiation, indicating that the difference might342

be the effect of aerosols, which are not included in the radiation calculations. The im-343

pact hereof is discussed in section 5. The simulated diffuse radiation PDF is dominated344

by amounts of diffuse radiation around 50 W ,-2, that occur under clear sky conditions.345

This diffuse radiation is the result of scattering by gases. The large peak in the PDF is346

clearly not in line with the observed PDF (Fig. 4c, f). Thus, for the days and times shown347

in fig. 4, we find that the differences in the smoothness of the global radiation field and348

thereby the shape of the global radiation PDF are primarily caused by differences in the349

diffuse radiation, which is in line with the findings of Gristey et al. (2020b). Hence, we350

will focus on accounting for the horizontal transport of diffuse radiation to get the PDF351

correct.352

4.3 Smoothing Diffuse Radiation353

We applied a spatial filter, to account for the horizontal spreading of diffuse radi-354

ation. Then, we combined the filtered diffuse radiation with the original direct radiation,355

to obtain the new global radiation. This means that we introduced the horizontal spread-356

ing of the diffuse radiation, but not the 3D effect on the direct radiation. Fig. 5g, h shows357

an example of the resulting surface radiation fields. The difference between the original358

and filtered fields is shown in Fig. 5i. The difference in Fig. 5i is the difference in dif-359

fuse radiation as well as the difference in global radiation, as we did not change the di-360
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rect radiation. The difference plot makes clear how the filtering influences the radiation.361

Diffuse radiation is reduced in the regions where it was originally the highest, thus un-362

der the clouds. Diffuse radiation is increased in the regions where it was originally low,363

thus in the clear sky patches and in the centres of the clouds. In the example cross sec-364

tions of diffuse radiation at the surface in Fig. 5b, h, diffuse radiation under the clouds365

is reduced with a maximum reduction of 327 W m-2 and in clear sky patches it is increased366

with a maximum of 310 W m-2. The cross section in Fig. 5h shows that the highest amounts367

of diffuse radiation still occur below the clouds, but the areas around the clouds also re-368

ceive diffuse radiation. This is in line with the results of Wissmeier et al. (2013), who369

showed that filtering the diffuse radiation can greatly improve the surface radiation fields.370

Combining the filtered diffuse radiation field (Fig. 5e) with the original direct radiation371

field (Fig. 5c) results in the global radiation field shown in Fig. 5d. This global radia-372

tion field shows cloud enhancements in addition to the cloud shadows and clear sky patches.373

For comparison, we performed a 3D radiative transfer calculation for this time step.374

To this end, we took the cloud field from our simulation with 1D radiative transfer and375

performed Monte Carlo ray tracing, as described in Veerman et al. (2022) but with delta-376

scaled cloud optical properties. The surface irradiance fields obtained with the ray trac-377

ing are shown in Fig. 5d, e, f. Fig. 5 j, k and l show the PDFs corresponding to the fields378

in Fig. 5a until h. In the direct radiation fields, we see that with 3D radiative transfer,379

the cloud shadows are shifted northwards compared to the 1D simulation. The diffuse380

radiation field is much more smooth with 3D radiative transfer compared to 1D radia-381

tive transfer. The ray tracer, as well as the filtered 1D simulation, shows a single peak382

in the diffuse radiation PDF, in contrast with the two peaks of the 1D simulation. Also383

compared to our filtered diffuse radiation field, the 3D radiative transfer calculations give384

a more smooth diffuse radiation field. This results in a narrower distribution for the ray385

tracer compared to the filtered 1D simulation. As a result of the more smooth diffuse386

field, the cloud enhancements are larger in the 3D simulation, compared to our filtered387

simulation. This is visible both in the surface fields and in the PDFs. In Fig. 5 j, k and388

l, the distribution of the observations is also shown. The simulated distributions should389

be compared with the observations with care, as the observations are at one location over390

6 hours, and the simulations are a field at one time. It is clear that by filtering the 1D391

simulations, a close match with the observations is obtained in this time step. This in392

line with our expectations, as our filter size is chosen such that we match the observa-393

tions as good as possible.394

The impact of the filtering is also clearly visible in the timeseries (Fig. 1c, f) and395

corresponding PDFs (Fig. 4). The shape of the simulated diffuse radiation PDFs closely396

matches the shape of the observed PDF, when the diffuse radiation is filtered with the397

optimal filter width (σopt). The PDFs of global radiation are now bimodal. There is one398

peak below 500 W m-2, showing that the cloud shadows became more uniformly dark.399

The second peak is at higher irradiance values than the original peak, showing that the400

irradiance in regions other than the cloud shadows is increased. The bimodal PDFs of401

global radiation can also be obtained directly from the characteristics of the cloud field402

by using machine learning as shown byGristey et al. (2020a). By filtering the diffuse ra-403

diation, we provide not only the global radiation statistics, but also the partitioning be-404

tween direct and diffuse radiation, as well as an indication of how the radiation is dis-405

tributed spatially. This spatial information is essential to couple a parameterization for406

the 3D radiative effects to an LES in the future.407

The cloud enhancements are also clearly visible in the timeseries (Fig. 1c, f). Be-408

fore filtering, the McClear value was simulated in the clear sky periods. After filtering,409

the cloud enhancements are simulated and their magnitude is in line with the peaks in410

the observations. Furthermore, before filtering, some cloud shadows were much darker411

than others. After filtering, the cloud shadows are more similar, which is also in line with412
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Figure 6. Time series of σfilter for (a) 4 July and (b) 15 August (b). σopt and σfilter as a lin-

ear function of the individual cloud variables, as well as the combination of cloud cover, cos(SZA)

and mean cloud base height.

the observations. Together, Fig. 4 and Fig. 1 show that our filtering method greatly im-413

proves the model results.414

4.4 Sigma Parameterization415

Next, we want to parameterize σfilter as a function of the cloud properties in the416

simulation, to be able to filter the diffuse radiation in a simulation. Therefore, we inves-417

tigated how well σopt can be described as a function of cloud thickness, cloud cover, cloud418

base height, solar zenith angle, and maximum cloud size. The time series of σopt are shown419

in Fig. 6. Note that for 15 August, the range of σ shown is larger than for 4 July. On420

the 15th of August, σopt increases during most of the period and is fairly constant at the421

end. On the 4th of July, σopt increases a bit in the first three hours and decreases after-422

wards. The average σopt on 15 August is 700 m, which is close to the 625 m found by423

Wissmeier et al. (2013) for their case with cumulus mediocris. For 4 July, we find a smaller424

average σopt of 360 m.425

The optimal filter size (σopt) can be parameterized by relating it to the cloud field.426

Fig. 6 shows simple approximations of σopt. Regarding the trends, the maximum cloud427

size, cloud cover, cos(SZA) and mean cloud thickness all show an increase in the begin-428

ning of the period and a decrease later on. For 4 July, this is exactly what we also ob-429

serve for σopt. For 15 August, we do not find a decrease in σopt at the end of the period,430

which is best captured by the approximation based on the cloud base height. Regard-431

ing the values, we find that using cos(SZA), mean cloud thickness or mean cloud base432

height gives an overestimation of the filter size on 4 July and an underestimation of the433

filter size on 15 August. The estimates based on the maximum cloud size and cloud cover434

capture the trends more closely. However, especially near the end of the period on 15435

August, the estimates based on cloud cover and maximum cloud size also underestimate436
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Table 1. Correlation coefficient (r) showing the correlation between σopt and possible parame-

terizations of σfilter using different (combinations of) variables.

variable(s) r

cloud cover 0.830
cos(SZA) -0.473
maximum cloud size 0.728
mean cloud thickness -0.736
mean cloud base -0.113
cloud cover, cos(SZA) 0.874
cloud cover, maximum cloud size 0.833
cloud cover, mean cloud thickness 0.854
cloud cover, mean cloud base 0.829
cloud cover, cos(SZA), maximum cloud size 0.874
cloud cover, cos(SZA), mean cloud thickness 0.884
cloud cover, cos(SZA), mean cloud base 0.937
cloud cover, cos(SZA), mean cloud base, maximum cloud size 0.941
cloud cover, cos(SZA), mean cloud base, mean cloud thickness 0.943
cloud cover, cos(SZA), mean cloud base, mean cloud thickness, maximum cloud size 0.944

the optimal filter size by up to a factor two. The advantage of the cloud cover is that437

it is readily available in the model, whereas the maximum cloud size has to be obtained438

with a cloud tracking algorithm (Heus & Seifert, 2013), and hence induces additional com-439

putational cost.440

Table 1 shows the correlation coefficients between σopt and approximations based441

on different variables. First, the correlation coefficients for the single variable approx-442

imations are shown. The highest correlation is obtained when we use the cloud cover.443

We also performed multiple linear regressions. As we obtained the highest correlation444

with a single variable when using the cloud cover, we did multiple linear regression with445

two variables: the cloud cover and one of maximum cloud size, cos(SZA), mean cloud446

thickness and mean cloud base height. The correlation increases most when cos(SZA)447

is added. We continued adding variables to the combination with the highest correla-448

tion coefficient until a multi linear regression with all variables. Adding the cos(SZA)449

and mean cloud base height increased the correlation from 0.83 to 0.94. Adding than also450

the mean cloud thickness and maximum cloud size resulted in an increase in correlation451

of less than 0.01.452

To fully capture the development of σopt more complex methods, such as machine453

learning, can potentially be used. For example, Gristey et al. (2020a) used machine learn-454

ing to directly predict the PDFs of global radiation from a set of cloud field properties.455

During the two days that we studied, especially the cloud cover and maximum cloud456

size are clearly correlated with each other (r > 0.8). It is possible that this correlation,457

which is undesired if both variables are used in a multiple linear regression, is specific458

to the chosen shallow cumulus cases. To carefully check whether the parameters included459

are independent of each other, a larger dataset is required. In addition, given the lim-460

ited size of our dataset, there is also a chance that a multiple linear regression overfits461

when using too many variables. We will therefore continue by using the simple approx-462

imations of the filter size based on cloud cover only and cloud cover, cos(SZA), and mean463

cloud base height. Hereby, we can investigate how sensitive the resulting diffuse radia-464

tion PDF is to the used filter size.465
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Figure 7. (a) timeseries of σopt and approximations of σfilter as a function of the cloud cover.

(b) PDFs of the diffuse radiation for the observations, original 1D simulation and filtered simu-

lation. For these PDF, the time series from 10 to 16 UTC are used. For the simulation, the time

series is taken at the centre point of the domain. All values are normalised by cos(SZA). For the

filtering, the σ’s from (a) are used. (c) and (d) are as (a) and (b), but for 15 August.

4.5 Sigma Sensitivity466

It is important to know how sensitive the resulting PDFs are to a change in σfilter,467

as σfilter differs depending on which parameterization is used. We defined three possi-468

ble approximations of σopt as a function of the cloud cover, with the constant being 1000,469

1200 and 1400 (Fig. 7a, c). For most of the times, all three approximations are close to470

σopt. Only for the last part of 15 August, the parameterizations deviate strongly from471

σopt. In addition, 7 a, c shows σfilter based on the cloud cover, cos(SZA) and mean cloud472

base height. Fig. 7b and d show the PDFs of diffuse radiation that are obtained when473

using the different approximations of σfilter. The differences between the three possible474

approximations based only on the cloud cover are small, as well as the differences be-475

tween the approximations based only on cloud cover, the approximation based on three476

variables and σopt. By eye, it is not possible to tell which one of these PDFs matches477

the PDFs of the observations best. This shows that with a rough approximation of σfilter478

we can reach a clear improvement, compared to the original 1D radiative transfer cal-479

culations.480
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5 Discussion481

In this section, we reflect on the assumptions made while comparing the observa-482

tions to the simulations.483

First, we assumed that one value for stdobs is representative for the hours between484

10 and 16 UTC. Calculating stdobs over different, shorter periods results in different val-485

ues for stdobs, which would have resulted in different values for σopt. Ideally, the time-486

span over which stdobs is calculated is related to the changes in the cloud field. If the487

cloud field changes, the standard deviation should change accordingly. However, the av-488

eraging period should also be long enough to have a statistically reasonable estimate for489

stdobs. Furthermore, stdobs depends on the clouds that pass over the sensor and the size490

of these clouds in the direction of the wind. A better representation of the cloud field491

in all directions can be obtained by performing measurements in a grid. Gristey et al.492

(2020b) used observations from 10 locations to study the relation between the cloud frac-493

tion and the cloud radiative effect. Their results indicate that the observation density494

should be at least one order of magnitude larger to be able to detect the relationships495

found in model simulations. Alternatively, one could base σopt on a 3D simulation in-496

stead of observations, as was done before by e.g. Wissmeier et al. (2013) and Zuidema497

and Evans (1998).498

Second, we assumed that σfilter is optimal if the resulting standard deviation of the499

diffuse radiation field is as close as possible to the standard deviation of the observed dif-500

fuse radiation. A matching standard deviation does not guarantee that the PDFs also501

have a similar shape. To determine the impact hereof, we determined σopt also from the502

shapes of the PDFs of diffuse radiation. To this end, we described the shape of the ob-503

served PDF by fitting a gamma distribution through it. Then, we determined σopt by504

minimizing the Euclidean distance between the filtered PDF and the fitted gamma-distribution.505

There was no clear improvement in the PDFS, although the obtained σopt based on the506

shape is in general a bit larger. We therefore argue that the simple matching of the stan-507

dard deviations functions well enough.508

Third, a matching standard deviation also does not guarantee that the PDFs have509

a similar mean. From Fig. 4c, f, it became clear that the diffuse radiation is on average510

too low in our simulations. This underestimation has three possible causes. The mod-511

elled and observed clouds might be slightly different. Although the cloud cover is sim-512

ilar in the observations and simulations, the cloud structures might be different. Further-513

more, clouds and radiation interact differently in 1D compared to reality. In reality, a514

fraction of the photons leaves the clouds on the sides after only a few scattering events.515

Therefore, statistically, these photons are likely to be scattered forward, thus towards516

the surface. In 1D calculations, these photons do not leave the clouds, so they are likely517

scattered again. As these photons are scattered multiple times, the chances increase that518

these photons are scattered back upwards, reducing the amount of diffuse radiation that519

reaches the surface. However, we also find an underestimation of the clear-sky diffuse520

radiation, which cannot be related to differences in the cloud field. This underestima-521

tion is likely caused by the absense of aerosols in the radiation computations. The un-522

derestimation is larger on 4 July (maximum 70 W m-2) than on 15 August (maximum523

50 W m-2), which is in line with the larger aerosol optical depth on 4 July compared to524

15 August. (We compared the aerosol optical depths from the McClear model (Gschwind525

et al., 2019), not shown.) For broken cloud conditions, Schmidt et al. (2009) and Gristey526

et al. (2022) showed that aerosols reduce the irradiance in the gaps between the clouds,527

by scattering radiation to the cloudy regions. In 1D simulations, the radiation scattered528

by aerosols cannot propagate horizontally to the cloudy regions, thus it will reach the529

surface in the gaps between the clouds. Thus in our PDFs, the diffuse radiation in the530

gaps between the clouds will increase. How the PDF will change exactly depends on the531

properties of the aerosols. As the optical depth of the aerosols is much smaller than the532

optical depth of the cumulus clouds, there will still be a large difference in diffuse radi-533
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ation between the cloudy regions and the gaps between the clouds. Therefore, we argue534

that filtering the diffuse radiation can still be used to mimic the effect of the horizon-535

tal propagation of diffuse radiation. As the initial distribution of diffuse radiation is dif-536

ferent when aerosols are included, the optimal filter size will also be different. This means537

that the possible parameterizations in Fig. 6 and Fig. 7 are designed for very clean con-538

ditions and have to be updated when aerosols are included. Aerosols do not only scat-539

ter radiation (direct effect of aerosols), but aerosols also interact with nearby clouds (in-540

direct effect of aerosols). The relative importance of these effects is uncertain as it de-541

pends on characteristics of both the clouds and the aerosols (Boucher et al., 2013).542

Fourth, we assumed that one σfilter can be used for the whole domain. On the two543

selected days, the cloud properties were homogeneous in space over an area larger than544

our domain size. For these cases, our results show that we can greatly improve the ra-545

diation field with one filter size. With that we show that σfilter can be related to the sta-546

tistical properties of the cloud field. Thus, the filter size does not have to vary on the547

scale of a single cloud, which is the case in Wissmeier et al. (2013), where they use the548

distance from the center of the surface pixel to the center of the base of the closest cloud.549

Instead, the filter size can varies on the scales on which the statistical properties of the550

cloud fields vary. This does mean that when the domain is larger and/or the cloud prop-551

erties are not statistically the same in the whole domain, more than one σfilter will be552

required.553

6 Conclusion554

In this work, we described a simple approach to correct the unrealistic surface so-555

lar irradiance fields that arise from LES with 1D radiative transfer. Horizontal trans-556

fer of radiation is omitted in 1D, resulting in a misplacement of the cloud shadows and557

a lack of horizontal spreading of diffuse radiation. We approximated the horizontal spread-558

ing of the diffuse radiation by filtering the diffuse radiation at the surface with a Gaus-559

sian filter. We determined the optimal width of the Gaussian filter by comparing our sim-560

ulations to observations. We applied this approach to two case studies with shallow cu-561

mulus clouds. For these cases, filtering the diffuse radiation resulted in a PDF of global562

radiation that closely matches the observations. The time series of global radiation af-563

ter filtering show the characteristic cloud enhancements that were not simulated with564

the 1D radiative transfer model. The width of our filter can be approximated with a lin-565

ear function of only one cloud variable. For the two shallow cumulus cloud cases that566

we analyzed, we found that the best approximation of the filter width with one variables567

is σfilter ≈ 1250 cloud cover. Changing the fitting constant to 1000 or 1400, or adding568

additional variables does not result in a visually worse result.569

The results show that the used approach has the potential to correct for the 3D570

radiative effect by adding minimal changes to existing methods. This assures that the571

impact on computational times is small. First tests showed that the filtering increases572

the total runtime of the model with less than 1%. Therefore, this method has the po-573

tential to be applied to many more days and different locations in the future.574

Our results suggest that our method could be further improved by including aerosols,575

especially on days with a high aerosol optical depth, as this should reduce the overes-576

timation of direct radiation and accompanying underestimation of diffuse radiation. In577

addition, the filtering of the diffuse radiation can be combined with the tilted column578

approach, that can correct the direct radiation for the 3D radiative effects. Furthermore,579

one can consider extending the filtering to the longwave spectral range.580

Extending to many more days will allow for further generalization to different cloud581

regimes and will give more insight in the usability of a single variable parameterization582

and the added value of a multiple variable parameterization. A larger dataset will al-583
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low to split the dataset in a training and test dataset, which would give insight in the584

robustness of our parameterization.585

In short, we have shown that filtering the surface diffuse radiation has the poten-586

tial to give more realistic surface irradiances with minimal additional computational cost.587

We applied the filtering as a post-processing step, which directly improves model results588

regarding the surface, for example when studying the impact of radiation on renewable589

energy production by solar panels or the impact on surface processes such as photosyn-590

thesis. Additionally, coupling the filter to the LES can potentially contribute to a bet-591

ter representation of the surface fluxes and with that a better representation of the cloud592

dynamics.593

7 Open Research594

The observations of temperature, humidity and cloudcover at the measurement sta-595

tion in Cabauw are openly available from the KNMI Data Platform (https://dataplatform596

.knmi.nl/dataset/cesar-tower-meteo-lc1-t10-v1-0 and https://dataplatform597

.knmi.nl/dataset/cesar-nubiscope-cldcov-la1-t10-v1-0, last accessed 16 Septem-598

ber 2022). The observations of radiation are available in Knap and Mol (2022) and Mol599

et al. (2022). The model simulations are performed with MicroHH (Van Heerwaarden600

et al., 2017) and the used version is available at https://github.com/microhh/microhh/601

tree/develop. All other data and scripts used to conduct this research are added for602

peer review in the folder data&scripts.zip. This information will be made available in603

a repository once the manuscript is accepted.604
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Gschwind, B., Wald, L., Blanc, P., Lefèvre, M., Schroedter-Homscheidt, M., &634

Arola, A. (2019). Improving the McClear model estimating the downwelling635

solar radiation at ground level in cloud-free conditions – McClear-v3. Meteorol-636

ogische Zeitschrift , 28 (2), 147-163.637

Heus, T., & Seifert, A. (2013). Automated tracking of shallow cumulus clouds in638

large domain, long duration large eddy simulations. Geoscientific Model Devel-639

opment , 6 (4), 1261.640
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van Heerwaarden, C. (2020). Three-dimensional radiative effects by shallow717

cumulus clouds on dynamic heterogeneities over a vegetated surface. Journal718

of Advances in Modeling Earth Systems, 12 (7).719

Veerman, M., van Stratum, B. J., & van Heerwaarden, C. C. (2022). Cumulus720

convection over land in cloud-resolving simulations with a coupled ray tracer.721

arXiv preprint arXiv:2208.05247 .722

Villefranque, N., & Hogan, R. J. (2021). Evidence for the 3d radiative effects of723

boundary-layer clouds from observations of direct and diffuse surface solar724

fluxes. Geophysical Research Letters, 48 (14), e2021GL093369.725

Wapler, K., & Mayer, B. (2008). A fast three-dimensional approximation for the cal-726

culation of surface irradiance in large-eddy simulation models. Journal of Ap-727

plied Meteorology and Climatology , 47 (12), 3061–3071.728

Wissmeier, U., Buras, R., & Mayer, B. (2013). paNTICA: A fast 3D radiative729

transfer scheme to calculate surface solar irradiance for NWP and LES models.730

Journal of applied meteorology and climatology , 52 (8), 1698–1715.731

Zuidema, P., & Evans, K. (1998). On the validity of the independent pixel approx-732

imation for boundary layer clouds observed during ASTEX. Journal of Geo-733

physical Research: Atmospheres, 103 (D6), 6059–6074.734

–20–


