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Abstract

The correlation between surface displacements and groundwater level changes has been widely used to understand aquifer

properties and their site characteristics; however, the underlying mechanism of various correlation types and influence of

earthquakes has not been fully investigated. In this study, we examine correlations in Osaka and Kyoto, Japan, over 4 years

including the period of the June 18, 2018, Mw 5.6 northern Osaka earthquake surface displacement from InSAR analyses and

groundwater level monitoring data. Both positive and negative correlations were identified at groundwater level observation

stations. Based on the different types of correlations, we propose a new conceptual aquifer model that drives the opposite

interaction between the surface displacement and the groundwater level change. We further reveal that sites with negative

correlations increased after the earthquake, suggesting that the earthquake increased the groundwater recharge rate as a result

of increases in aquifer transportation properties such as permeability and porosity.
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Key Points:

• Surface displacement and groundwater level change were mapped with
high spatial density before and after the 2018 northern Osaka earthquake

• We propose a new model of aquifer connectivity on the basis of positive
and negative correlations between the displacement and the change

• Mw 6 class earthquakes could change aquifer properties over a wide area,
causing enhancements in negative seasonal correlations

Abstract

The correlation between surface displacements and groundwater level changes
has been widely used to understand aquifer properties and their site charac-
teristics; however, the underlying mechanism of various correlation types and
influence of earthquakes has not been fully investigated. In this study, we exam-
ine correlations in Osaka and Kyoto, Japan, over 4 years including the period
of the June 18, 2018, Mw 5.6 northern Osaka earthquake surface displacement
from InSAR analyses and groundwater level monitoring data. Both positive and
negative correlations were identified at groundwater level observation stations.
Based on the different types of correlations, we propose a new conceptual aquifer
model that drives the opposite interaction between the surface displacement and
the groundwater level change. We further reveal that sites with negative corre-
lations increased after the earthquake, suggesting that the earthquake increased
the groundwater recharge rate as a result of increases in aquifer transportation
properties such as permeability and porosity.

Plain Language Summary

Groundwater level changes cause changes in the pore water pressure and water
load, which in turn cause surface displacements. Recently, the correlation be-
tween the surface displacement and groundwater level changes has been revealed
using Interferometric Synthetic Aperture Radar (InSAR) analyses, a technique
capable of widely estimating surface displacements. However, the mechanism of
the correlation is still not clear. In this study, we estimate the surface displace-
ments during a period including the Mw 5.6 northern Osaka earthquake that
occurred on June 18, 2018, in Osaka and Kyoto, Japan, and examine its corre-
lation with the groundwater level changes. We find that positive and negative
correlations were scattered at each groundwater level observation site, indicat-
ing that the aquifer system is complicated and changing even over short ranges.
In addition, the negative correlations became larger after the earthquake. This
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might be due to the increase in the recharge rate, resulting from the increase in
the porosity and infiltration rate caused by the earthquake.

1 Introduction

Natural hazards, such as earthquakes, droughts, floods, and typhoons, pose
risks to the conservation and management of groundwater resources. In par-
ticular, earthquakes cause widespread crustal deformation, altering the crustal
properties and impacting the quantity and level of the groundwater. Crustal
deformation data over a wide area and in time series play an important role in
examining the area and progression of earthquake impacts.

Interferometric Synthetic Aperture Radar (InSAR) is a rapidly advancing geode-
tic observation technique used to obtain wide-area, time-series surface displace-
ment data. InSAR analyses have spread to a variety of fields, following its initial
application to the surface deformation induced by the 1992 Landers earthquake
(Massonnet et al., 1993; Wald and Heaton, 1994; Fialko et al., 2004). Recently,
it has been applied to the estimation of surface displacements caused by hy-
draulic head changes, and many previous studies have revealed permeability,
land use types, or storage coefficients related to correlations between hydraulic
head changes and surface displacements (Chaussard et al., 2014b; Normand et
al., 2015; Malinowska et al., 2020; Zhou et al., 2020). Surface displacements that
result from groundwater level changes are also induced by earthquakes (King et
al., 2006; Ishitsuka et al., 2017; Liu et al., 2018; Ishitsuka et al., 2020). Further-
more, recent studies have shown that surface displacements that have resulted
from hydraulic head changes prior to an earthquake may serve as earthquake
precursors, reflecting the subtle alteration of the crustal permeability depend-
ing on the crustal stress state (Moro et al., 2017; Wang et al., 2019). Because
appropriate groundwater monitoring requires an intensive understanding of the
overall interactions between groundwater and aquifer skeletons, understanding
the mechanisms of such correlations, the impact of earthquakes on these cor-
relations, and the relationship between earthquakes and aquifer properties is
essential.

Seasonal surface displacements caused by seasonal hydraulic head changes have
attracted attention with respect to understanding the site characteristics of
aquifers over wide areas (Demoulin, 2006; Demoulin et al., 2007); such charac-
teristics include the spatial distribution of the skeletal storage coefficient (Bell
et al., 2008; Chaussard et al., 2014a; Chen et al., 2017; Hu et al., 2018; Mourad
et al., 2021) and the aquifer connectivity (Ishitsuka et al., 2014; Chaussard
et al., 2014a; Neely et al., 2021). Most previous studies regarded the correla-
tion between the seasonal surface displacement and the hydraulic head change
as a positive relationship (i.e., ground uplift with increasing groundwater level
and vice versa). A positive correlation can be explained by the change in the
pore pressure according to the change in the hydraulic head. However, a recent
study by Lu et al. (2020) demonstrated that the correlation can be negative
(i.e., ground uplift/subsidence in response to decreasing/increasing groundwater
level). In their conceptual model, negative correlations were explained by the
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cumulative water mass load because an increasing load (i.e., an increase in the
hydraulic head) can lead to subsidence (Panda et al., 2018; Zhan et al., 2021;
Heki et al., 2022). The conceptual model implies that whether the correlation is
positive or negative could depend on the balances between the influences of the
pore pressure and the water mass load (Lu et al., 2020). We speculate that such
a variety of groundwater-induced displacement mechanisms may have occurred
in many aquifer systems worldwide. However, only a few examples of studies
discuss these positive and negative correlations. Moreover, understanding the
mechanisms and site characteristics of such contrary types of correlations is
crucial to interpreting InSAR surface displacement data.

Accordingly, this study quantifies the correlation between groundwater level
changes and surface displacements using data at 21 groundwater level obser-
vation sites from January 2017 to December 2020, including the 2018 northern
Osaka Mw 5.6 earthquake that occurred throughout the Osaka Plain and Kyoto
Basin in Japan. Using an InSAR analysis and a dense groundwater observation
network, we show a variety of correlation types in the aquifer system and update
the existing conceptual model to explain these positive and negative correlations.
On the basis of the analysis, we explain the impact of the Mw 5.6 northern Os-
aka earthquake that occurred on June 18, 2018 (Hirata et al. 2018), by showing
changes in the parameters related to the permeability and elastic properties.
To the best of our knowledge, this is the first study to find that Mw 6 class
earthquakes, which occur frequently worldwide, can change crustal properties
over wide areas and can change the seasonal correlation between the surface
displacement and groundwater level changes. We believe this finding can con-
tribute to understanding of the prerequisite knowledge required for groundwater
monitoring.

2 Data and Methods

The InSAR analysis was performed using data obtained from Sentinel-1, a Eu-
ropean Space Agency satellite, to estimate surface displacements. A total of
102 scenes acquired from December 24, 2016, to December 27, 2020, were used
in the ascending orbit and 102 scenes acquired from December 30, 2016, to De-
cember 21, 2020, were used in the descending orbit to investigate the effects of
the 2018 northern Osaka earthquake on the surface displacements (Figure 1a;
see also Table S1).

Groundwater level data from January 1, 2017, to December 31, 2020, at 21
groundwater level observation sites published by the Water Quality Database
were used (Ministry of Land, Infrastructure, Transport and Tourism, Japan,
2021). One-hourly groundwater level data were sampled to convert to a daily
average. The 21 groundwater level observation sites located near the epicenter
of the northern Osaka earthquake were selected (Figure 1b; see also Table S2).
Of these, 15 observation sites are above unconfined aquifers and 6 sites are above
confined aquifers (see Table S2). The depth intervals of the strainers at all the
wells were shallower than 70 m (see Table S2).
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In this study, we used a persistent scatterer InSAR (PSInSAR) analysis, which
can extract only stable pixels with little noise (Kampes, 2006; see also Text S1).
A PSInSAR analysis usually assumes a linear constant-velocity model of the
surface displacement (Ferretti et al., 2000; Ferretti et al., 2001); accordingly,
this study also follows this assumption. However, linearity may not be main-
tained because of the occurrence of the earthquake. Therefore, we prepared the
primary data in two periods, before and after the earthquake, and separated
the InSAR analysis into these two periods (Figure 1a). In this paper, results
under the conditions of an amplitude dispersion index of adx = 0.25 and a phase
coherence of coh = 0.60 are treated as representative results. PS pixels are often
located at manmade objects in urban areas; therefore, the analysis is suitable
for surface displacement estimations in the Osaka Plain and the Kyoto Basin,
where major cities (Osaka and Kyoto) are located. This target area contains
abundant underground aquifers (Taniguchi et al., 2005), and the correlation
between the surface displacements and the groundwater level changes has been
qualitatively pointed out in the past (Hashimoto et al., 2016). When comparing
the obtained surface displacements with changes in the groundwater levels, PS
pixels within a 1-km square around each groundwater observation station site
were extracted and the average surface displacement value of these PS points
was used for comparison with the groundwater level. Furthermore, for com-
parison with the groundwater levels, we performed a 2.5-dimensional analysis
to calculate the surface displacement in the vertical direction using data from
southward and northward orbits (Fujiwara et al., 2000; see also Text S2).

𝑅xy(𝜏) = 𝑥(𝑡)𝑦(𝑡+𝜏)
√𝑥2•𝑦2

#(1)

Because we calculated the CCCs each year, six correlation coefficients for each
condition between January 2017 and December 2020 were obtained at each site.
We then calculated the averages and standard deviations of the coefficients for
each site.

3 Results

3.1 Characteristics of the surface displacements and groundwater level changes

We found that the annual displacement patterns revealed by the Sentinel-1 in-
terferograms differed before and after the earthquake (Figure 2a and 2b; see also
Figure S1). The uplift in the black framed area in Figure 2a and 2b agrees with
the results of other InSAR analyses (Morishita, 2021), and our results further
show that the areas of uplift became even larger after the earthquake. Com-
paring the annual groundwater level changes before and after the earthquake,
the map patterns of the annual surface displacement after the earthquake (Fig-
ure 2b) are generally correlated with the groundwater level changes (Figure
S2). This agreement of the patterns likely indicates that the uplift and sub-
sidence after the northern Osaka earthquake are associated with groundwater
level changes. In fact, even if a location is not near a ruptured fault, earth-
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quakes can cause changes in the groundwater level and pore water pressure via
permeability modification, which results in the elastic expansion/contraction
of the aquifer (e.g., Moro et al., 2017; Wang et al., 2019). However, we found
that the annual displacement pattern before the earthquake showed only a weak
correlation with the groundwater level change (Figures 2a and S2).

Comparing the time-series surface displacements and groundwater level changes,
we found seasonal correlations at 18 groundwater level observation sites (Fig-
ures 2c–2f and S3). We classified the patterns of the seasonal correlations into
three categories: positive correlation (PC), negative correlation (NC), and no
correlation (UC). Sites H and N were categorized as PC, showing the ground
surface rising and subsiding in correspondence with the groundwater level in-
creases and decreases, respectively (Figure 2c and 2d). The UC category was
identified at three sites, C, D, and T, where the time-series surface displace-
ments were not significantly related to the groundwater level changes (Figure
S3). The other 16 sites belong to the NC category. In these NC sites, we found
that the time-series surface displacements and groundwater level changes were
negatively correlated. The surface subsides despite increases in the groundwater
level, and the surface rises when the groundwater level falls (Figure 2e and 2f).
The groundwater level changes at the NC sites are linked to seasonal changes
in precipitation (see Figure S4), whereas the groundwater level changes at the
PC sites may be linked to temporal groundwater extraction. Focusing on the
negative correlations, we found that the negative correlations became more sig-
nificant after the 2018 northern Osaka earthquake because of the larger surface
displacements. For example, at sites Q and C, the negative correlations between
the time-series surface displacements and the groundwater level changes were
not significant prior to the earthquake; however, the correlations became more
significant after the earthquake (Figure 2e and 2f).

The time-series surface displacements and groundwater levels at each observa-
tion site are shown in Figure S3. Seasonal correlations are observed around all
the groundwater level sites, except for the UC sites, C, D, and T. The peaks in
the correlations, including both positive and negative correlations, appear ap-
proximately every 365 days (see Figure S5). Even though some previous studies
have pointed out that the correlation between the time-series displacement and
the groundwater level may have a time lag (Normand et al., 2015; Zhou et al.,
2020), the time-series data used in this study did not exhibit significant time
lags.

3.2 Quantification of the correlations between the time-series displacement and
the groundwater level

The results of the coefficients for the entire analyzed period are shown in Figure
3a (see also Table S3). The CCC patterns were generally consistent with the
qualitative classifications of PC, NC, and UC described in Section 3.1. Because
the orders of the standard deviations were mostly smaller than those of the
average, we concluded that the variations in the coefficients for each year were
not large and that the CCC site differences were statistically significant.
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3.3 Correlation changes before and after the 2018 northern Osaka earthquake

We calculated the change in the CCCs before and after the 2018 northern Osaka
earthquake (Figure 3b; see also Table S4) by dividing the surface displacement
and groundwater level change data into two periods (Figure 1a). The standard
deviations did not change significantly before and after the earthquake. One
of the main findings of this study is that the CCCs are clearly visible as be-
ing smaller for all sites except one. In other words, the CCCs shifted from
PC before the earthquake to NC after the earthquake. Furthermore, some of
the observations, where no correlation was observed before the earthquake, also
showed an increase in negative correlations after the earthquake. It is difficult
to assume that any event other than the earthquake caused the change in the
correlation during that period; therefore, we interpret the changes in the corre-
lation as being induced by the 2018 northern Osaka earthquake. To the best
of our knowledge, such changes in the correlation before and after earthquakes
have not been previously reported.

To examine the spatial characteristics of the correlation change, we plotted the
distribution of the changes in the correlation at each site (Figure 3c and 3d).
The spatial pattern at the groundwater level observation sites shows that the
type of correlation change was different even over short distances. The spatial
pattern implies that the aquifer characteristics are spatially complex and that
aquifer properties may be highly heterogeneous. For example, site H shows
positive correlation and site G shows negative correlation. Compared with a
previous study by Lu et al. (2020), our calculation showed that the correlations
between the surface displacements and the groundwater level changes were more
spatially dense, therefore demonstrating the effectiveness of InSAR analyses and
dense groundwater measurements to classify the characteristics of aquifers at a
higher resolution.

4 Discussion

4.1 Possible aquifer models

Lu et al. (2020) proposed that seasonal surface displacements depend on the
balance between the pore pressure and the water mass load in an aquifer. We
checked whether the aquifers at each site being confined or unconfined was an
influential factor determining the type of correlation (i.e., positive or negative);
however, this proved irrelevant. This indicates that the conceptual model does
not depend on whether the aquifer is unconfined or confined.

Positive correlations were observed at two sites, N and H, where groundwater
is extracted from deep underground; the groundwater level changes in shallow
aquifers correlate with groundwater pumping from depth (Figure 2e and 2f).
This indicates that the deep groundwater level change is linked with the shallow
groundwater level changes in these sites. On the basis of this interpretation,
we propose a new conceptual aquifer model (Figure S6). In the area where the
surface displacement is positively correlated with the hydraulic head, a shallow
aquifer may be connected to a deep aquifer that is in contact with a deep im-
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permeable layer. Because of the vertical connectivity, we assume that the effect
of the water mass load is mitigated by the impermeable layer, while the effect
of the pore water pressure increases. Conversely, at sites showing negative cor-
relation, the observed aquifer is not assumed to be connected to a deep aquifer;
therefore, the effect of the water mass load is larger, for example, subsidence
occurs because of the mass load of the surface water. At the UC sites, especially
sites C, D, and T, there was no seasonal component to the groundwater level
changes, suggesting that they reflect complex aquifer structures.

4.2 Change in the groundwater response and aquifer properties before and after
the earthquake

To investigate whether the groundwater level response to precipitation changed,
we applied a numerical equation (Park et al., 2008) to the daily average ground-
water level data at the groundwater level observation site Q in Ayukawa and the
daily average precipitation data at the precipitation observation site in Ibaraki
(Figure 1b). ℎ = ℎ0 exp (kt) + 𝛼𝑃(𝑒𝑥𝑝(kt)−1)

kn #(2)
Here, ℎ, 𝑃 , and 𝑡 indicate the groundwater level, precipitation obtained at
discrete intervals, and time, respectively, and 𝑘, 𝛼, and 𝑛 are the rate coefficient
to groundwater discharge, the ratio of recharge to precipitation, and the fillable
porosity in the ground, respectively. ℎ, 𝑃 , and 𝑡 are observations, and we
estimated 𝛼

𝑛 and 𝑘 (see also Text S4).

The estimated value of the groundwater level is in good agreement with the
maximum peak value of the measured value, especially prior to the earthquake,
suggesting a good representation of the increase in the groundwater level as a
result of precipitation during the examined period (Figure 4a). Conversely, the
measured values frequently exceeded the estimated values after the earthquake
(Figure 4a). This result suggests that the amount of groundwater per unit of
precipitation increased as a result of the earthquake, for example, the permeabil-
ity may have increased as a result of the earthquake, as suggested in previous
studies (King et al., 2006; Liu et al., 2018). Note that the estimated minimum
peak does not agree with the measured values. This mismatch occurs because
Eq. (2) does not consider the drainage from the initial value (Figure 4a).

The estimated parameters in Eq. (2) were 𝛼
𝑛 = 1.5 × 10−3 and 𝑘 = −5.9 × 10−2

T−1 before the earthquake and 𝛼
𝑛 = 1.5 × 10−3 and 𝑘 = −2.7 × 10−2 T−1 after

the earthquake. Because 𝑘 is proportional to the inverse of 𝑛, this implies that
𝑛 and � became twice as large after the earthquake. This result suggests that
the earthquake increased the porosity and recharge rate of the groundwater and
therefore increased the amount of groundwater, as proposed in Elkhoury et al.
(2006) and Manga et al. (2012). Our observation and interpretation support
our hypothesis that the negative correlations were enhanced by the earthquake
because the negative correlation appears when the pore water pressure becomes
large (Elkhoury et al., 2006; Manga et al., 2012).

4.3 Change in the pseudoelastic constant before and after the earthquake
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The enhancement of the negative correlation between the surface displacements
and the groundwater level changes also implies that the susceptibility of the sur-
face displacements per unit change in the hydraulic head was likely altered by
the earthquake. To investigate this phenomenon in more detail, we calculated
the ratio of the daily groundwater level changes to the daily surface displace-
ments and compared the ratios before and after the earthquake. When the
groundwater level changes and surface displacements are positively correlated,
their ratio is known as the skeletal storage coefficient (Chen et al., 2017; Ishit-
suka et al., 2019). However, this does not hold when the correlation is negative.
Instead, we treat the constant ratio as a pseudoelastic constant because a nega-
tive correlation indicates that the surface displacements were caused primarily
by the water mass load according to Lu et al. (2020). A positive value of
the pseudoelastic constant indicates that the surface displacements were caused
primarily by the pore water pressure, while a negative value indicates that the
surface displacements were caused primarily by the water mass load. The abso-
lute value of the pseudoelastic constant indicates the degree of susceptibility to
surface displacements caused by groundwater level changes (see also Text S5).

The calculated pseudoelastic constant at the groundwater level observation site
Q is shown in Figure 4b. At this site, the pseudoelastic constant was negative,
suggesting that the ground displacements were caused by the water mass load.
The estimated pseudoelastic constants before and after the earthquake at all
observation sites are shown in Figure 4c. At most sites, the pseudoelastic con-
stants became smaller after the earthquake, for example at Ayukawa (see Figure
S7). The exception is site N, Yahataminami, where the pseudoelastic constant
was positive and the pseudoelastic constant became larger after the earthquake.
This increase in the constant is likely due to the increase in the pore water
pressure as opposed to the increase in the water mass load. The increase in the
absolute value of the pseudoelastic constant suggests that the seismic-induced
increase in the permeability and porosity (Elkhoury et al., 2006; Manga et al.,
2012) resulted in a modification of the elastic properties of the aquifer.

5 Conclusions

In this study, by applying a PSInSAR analysis to the Osaka and Kyoto areas,
Japan, where the 2018 northern Osaka earthquake occurred, we found that Mw
6 class earthquakes can influence aquifer property changes over a wide area.
This finding was based on the conceptual aquifer model of Lu et al. (2020)
and our results using CCCs showing that seasonal surface displacements were
correlated with groundwater level changes. To the best of our knowledge, this
is the first time that it has been confirmed that Mw 6 class earthquakes affect
not only the linear correlation between surface displacements and groundwa-
ter level changes but also the seasonal negative correlation. The change in
the correlation is explained by changes in the aquifer properties (i.e., porosity,
permeability, and the recharge rate of the ground) induced by the earthquake.
This is the first time that satellite data have been used to determine changes in
aquifer properties over a wide area after an earthquake. In other words, we have
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captured a new important natural phenomenon of long-term seasonal changes
caused by earthquakes. The results were validated from multiple perspectives,
including possible aquifer models, pre- and post-earthquake groundwater re-
sponses, aquifer properties, quasi-elastic constants, and changes in the spatial
properties. Explanations of the overall mechanisms of surface displacements af-
ter earthquakes will contribute to obtaining useful information for groundwater
level monitoring and subsurface resource development.
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Figure
1. (a) Combination of Sentinel-1 data used for InSAR analysis. The vertical
axis shows the perpendicular baseline, and the horizontal axis shows the date of
the radar irradiations by the satellite in the descending orbit. Data obtained in
September 26, 2017 and November 20, 2018, respectively were used as reference
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data for InSAR analysis bordering on June 18, 2018 when the northern Osaka
earthquake occurred. (b) The study area including the Osaka Plain and the
Kyoto Basin. The inset shows the area of middle Japan. The groundwater
level observation sites are sorted by alphabet from A to U (see Table S2). The
background data are hosted by Environmental Systems Research Institute, Inc.

Figure 2. Annual surface displacements by PSInSAR analysis of (a) before the
earthquake and (b) after the earthquake. Blue indicates subsidence displace-
ment, red indicates uplift and black star indicates the epicenter of the earth-
quake. (c), (d), (e), (f) Comparison of time-series of surface displacements and
groundwater level changes at sites H, N, Q and C.
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Figure 3. (a) Comparison of cross-correlation coefficients (CCCs) between sur-
face displacements and groundwater level changes from 2017 to 2020. The time
lag to calculate the coefficient was set to zero days. The solid circles and er-
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ror bars indicate the average and standard deviations of CCCs between surface
displacements obtained from the six conditions of PSInSAR analysis and ground-
water level changes, respectively. (b) Comparison of the CCCs before and after
the 2018 northern Osaka earthquake. The straight line indicates 1 ∶ 1. (c), (d)
Distribution of CCCs before (c) and after (d) the earthquake for all the ground-
water level observation sites in the Osaka and Kyoto area (see Table S2 for the
symbols).

Figure 4. Investigations of crustal property changes due to the earthquake. (a)
Comparison of estimated groundwater level change by the numerical algorithm
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(Park et al., 2008) and observed groundwater level change. (b) Change of pseu-
doelastic constants before and after the earthquake at site Q: Ayukawa. The
slope of the straight line is the inverse of the pseudoelastic constant. (c) Vari-
ation of pseudoelastic constants before and after the earthquake. The straight
line represents 1 ∶ 1. The black circles and error bars indicate the average values
and the standard deviations.
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Text S1. 24 

Gamma software was used for differential interferometric processing (Werner et al., 25 

2000; Wegmüller et al., 2016). Stamps, developed by Stanford University, was used for 26 

phase unwrapping (Hooper et al., 2007; Hooper et al., 2012). To remove atmospheric 27 

noise, we performed a temporal filtering (Ferretti et al., 2000) with a moving average of 28 

200 × 200 pixels in the spatial direction and 30 days in the temporal direction. We 29 

changed the parameters in the PSC selection and PS selection sections to obtain results 30 

for a total of six analysis conditions, as shown in the following equations. 31 

𝝈̂𝝓 =
𝝈𝒂

𝒂̅
(𝟏′) 41 

𝜞 =
𝟏

𝑵
|∑ 𝒆𝒙𝒑{𝒋(𝝓𝒏𝒐𝒊𝒔𝒆)}

𝑵

𝒏=𝟏

| (𝟐′) 42 

where 𝝈𝒂 is the standard variance of the amplitude and 𝒂̅ is the average of the amplitude 32 

of a pixel. 𝝓𝒏𝒐𝒊𝒔𝒆 denotes the stochastic observation error due to the decrease in 33 

coherence. 𝒏 and 𝑵 denote the number of interferometric pairs and the total number of 34 

interferometric pairs, respectively. The amplitude dispersion index (𝒂𝒅𝒙, 𝝈̂𝝓) was tested 35 

for two conditions, 𝟎. 𝟐𝟓 and 𝟎. 𝟑𝟓, and the phase coherence (𝒄𝒐𝒉, 𝜞) was tested for 36 

three conditions, 𝟎. 𝟔𝟎, 𝟎. 𝟕𝟎 and 𝟎. 𝟖𝟎. The annual displacements were then calculated 37 

from the estimated time-series displacements using the least squares method under each 38 

condition. The geobasemap satellite in MATLAB was used as the background for the 39 

mapping.  40 
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Text S2. 43 

Specifically, a plane along the two vectors of the satellite line of sight for the northward 44 

and southward orbits was obtained, and the vertical and east-west displacements in that 45 

plane were calculated using the following equation. 46 

𝑫𝑳𝑶𝑺 = [−𝐜𝐨𝐬 𝜶 𝐬𝐢𝐧 𝜽 𝐬𝐢𝐧 𝜶 𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽][𝑫𝑬𝑾 𝑫𝑵𝑺 𝑫𝑼𝑫]𝐓 (𝟑′) 54 

where 𝑫𝑳𝑶𝑺 represents the displacement in the satellite line-of-sight direction, and 𝑫𝑬𝑾, 47 

𝑫𝑵𝑺, and 𝑫𝑼𝑫 represent the displacement in the east-west, north-south, and up-down 48 

directions, respectively. 𝜽 is the angle of incidence, and 𝜶 is the directional angle of the 49 

satellite flight with respect to clock-wise direction with north direction as positive. 50 

However, the dates of the data obtained from the northward and southward orbits differed 51 

by approximately six days. For this reason, the vertical displacements obtained were 52 

adjusted to the date of the data obtained from the southward orbit.  53 
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Text S3. 55 

𝑹𝒙𝒚(𝝉) = 𝒙(𝒕)𝒚(𝒕 + 𝝉)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ √𝒙𝟐̅̅ ̅ ∙ 𝒚𝟐̅̅ ̅⁄ (𝟏) 56 

where 𝑹𝒙𝒚 is the CCC (−𝟏 ≤ 𝑹𝒙𝒚 ≤ 𝟏), 𝒙̅ is the average groundwater level change, 𝐲̅ is 57 

the average vertical surface displacement, 𝒕 is time, and 𝝉 is time shift. In this study, 58 

positive correlations were considered for 𝑹𝒙𝒚 values larger than 0.2, negative correlations 59 

for 𝑹𝒙𝒚 values smaller than -0.2 and no correlations otherwise. 60 

Before calculating the CCC, we applied a pre-processing which reduce the linear 61 

component. In the first period, we used June 11, 2018 as the reference date, and in the 62 

second period, June 23, 2018 as the reference date (on the reference date, surface 63 

displacement was zero). The data were resampled by spline interpolation to obtain the 64 

same number of samples as the groundwater level changes data, and the 10-day moving 65 

average was calculated. The data were normalized by the absolute values of the 66 

maximum and minimum values when the maximum and minimum values exceeded 1 67 

mm and -1 mm, respectively. The linear trend representing the long-term trend was then 68 

removed in order to evaluate the seasonal correlations. Similarly, the data of groundwater 69 

level change was also processed. The missing data were resampled by spline 70 

interpolation, with June 18, 2018 as the reference date, and then the linear trend 71 

indicating the long-term trend was removed. High-frequency variations in groundwater 72 

level changes were observed at four sites D, F, P and T, so the high-frequency changes 73 

were removed by applying a 14-day moving average process. Finally, the data were 74 

normalized by the absolute values of the maximum and minimum values when the 75 

maximum and minimum values exceeded 1 m and -1 m, respectively.  76 
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Text S4. 77 

The groundwater level data (𝒉) and precipitation data (𝑷) for one year before the 78 

earthquake in 2016 were used to determine 𝜶 ⁄ 𝒏 and 𝒌. These data were then used to 79 

calculate the estimated groundwater level for each year from 2015 to 2020 (Figure 4a). 80 

The groundwater level on January 1 of each year was used as the initial value for the 81 

calculation. The fmincon algorithm in MATLAB was used to solve the nonlinear 82 

optimization problem.  83 
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Text S5.  84 

When the pseudoelastic constant becomes small, a slight increase in pore water pressure 85 

or water mass load will cause surface displacements. In this study, we estimated the 86 

pseudoelastic constants by dividing the surface displacements and groundwater level 87 

changes data into before and after the earthquake. Specifically, the least-squares method 88 

was applied to each data before and after the earthquake to obtain the slope of the line 89 

that shows the inverse of the pseudoelastic constant.  90 
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 91 

Figure S1. Annual surface displacements of the target area in the vertical direction for all 92 

conditions other than 𝒂𝒅𝒙 =  𝟎. 𝟐𝟓, 𝒄𝒐𝒉 =  𝟎. 𝟔𝟎.  93 
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 94 

Figure S2. (a) Difference in annual groundwater level changes between before and after 95 

the earthquake at each groundwater level observation site. (b) The two-dimensional 96 

linear interpolation based on triangulation was applied to (a).  97 
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 98 

Figure S3. Comparison of surface displacements and groundwater level changes at each 99 

groundwater level observation site when 𝒂𝒅𝒙 =  𝟎. 𝟐𝟓 and 𝒄𝒐𝒉 =  𝟎. 𝟔𝟎.  100 
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 101 

Figure S4. The example of seasonal groundwater level change depends on the amount 102 

of precipitation. As an example, we compared the groundwater level change at the 103 

groundwater level observation site Ayukawa with the precipitation at the precipitation 104 

observation site Ibaraki.    105 
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 106 

Figure S5. Cross-correlation coefficients between surface displacements and 107 

groundwater level changes within a 1-year time lag when 𝒂𝒅𝒙 =  𝟎. 𝟐𝟓 and 𝒄𝒐𝒉 =  𝟎. 𝟔𝟎. 108 
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 109 

Figure S6. A model of aquifers representing the mechanism of seasonal correlation 110 

between surface displacement and groundwater level changes.   111 
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 112 

Figure S7. (a) Pseudoelastic constants for all PSInSAR analysis conditions at 113 

groundwater level observation sites (A) ~ (D). The black line shows the inverse of the 114 

pseudoelastic constants before the earthquake and the red line shows the inverse of the 115 

pseudoelastic constants after the earthquake. 116 

  117 
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 118 

Figure S7. (b) Pseudoelastic constants for all PSInSAR analysis conditions at 119 

groundwater level observation sites (E) ~ (H). The black line shows the inverse of the 120 

pseudoelastic constants before the earthquake and the red line shows the inverse of the 121 

pseudoelastic constants after the earthquake.  122 
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 123 

Figure S7. (c) Pseudoelastic constants for all PSInSAR analysis conditions at 124 

groundwater level observation sites (I) ~ (L). The black line shows the inverse of the 125 

pseudoelastic constants before the earthquake and the red line shows the inverse of the 126 

pseudoelastic constants after the earthquake. No PS points were present under 𝒂𝒅𝒙 =127 

𝟐. 𝟓, 𝒄𝒐𝒉 = 𝟎. 𝟖 at Site I: Oguraike.  128 
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 129 

Figure S7. (d) Pseudoelastic constants for all PSInSAR analysis conditions at 130 

groundwater level observation sites (M) ~ (P). The black line shows the inverse of the 131 

pseudoelastic constants before the earthquake and the red line shows the inverse of the 132 

pseudoelastic constants after the earthquake.  133 



 

 

17 

 

 134 

Figure S7. (e) Pseudoelastic constants for all PSInSAR analysis conditions at 135 

groundwater level observation sites (Q) ~ (T). The black line shows the inverse of the 136 

pseudoelastic constants before the earthquake and the red line shows the inverse of the 137 

pseudoelastic constants after the earthquake.  138 
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 139 

Figure S7. (f) Pseudoelastic constants for all PSInSAR analysis conditions at groundwater 140 

level observation sites (U). The black line shows the inverse of the pseudoelastic 141 

constants before the earthquake and the red line shows the inverse of the pseudoelastic 142 

constants after the earthquake. 143 

Table S1. Data from the European Space Agency's Sentinel-1 satellite used in the 144 

PSInSAR analysis are shown.  145 

  146 

Satellite

Satellite

orbit

direction

Data pair observation

period

Number of

scenes
Incident angle

Satellite

traveling

direction angle

Path / Frame Polarization Beam mode

Sentinel-1

102

102

2016/12/30-2020/12/21

2016/12/24-2020/12/27

Descending

Ascending

37~40° VV IW

17/474

10/107

N13°W

N193°S
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Table S2. The symbol, name, and strainer depth of each groundwater level observation 147 

site are shown. 148 

 149 

  150 

Symbols
Observation

site name

Confined

or

Unconfined

Latitude (°) Longitude (°)

Center Min Max

A Hiyoshi 8.1 0.0 16.1 U 34.8190722 135.5891667

B Toji 59.3 53.3 65.3 C 34.9530556 135.8113889

C Katsura 14.2 8.2 20.2 U 34.8908333 135.6911111

D Kamitoba 51.7 45.7 57.7 C 34.9027778 135.7336111

E Daigo 10.2 8.2 12.2 U 34.9888889 135.7677778

F Shimotoba 43.2 37.2 49.2 C 34.9641667 135.7436111

G Kamiueno 9.4 6.9 11.9 U 34.9372222 135.7111111

H Nagaokakyo 45.2 40.2 50.2 C 34.7797222 135.6605556

I Oguraike 23.3 10.3 36.3 U 34.9761111 135.7041667

J Higashiimoarai 43.7 37.2 50.2 C 34.8538889 135.6883333

K Ogura 8.6 5.9 11.2 U 34.9358333 135.6938889

L Gokobashi 26.0 22.0 30.0 U 34.8163889 135.6600000

M Oyamazaki 18.3 15.5 21.0 U 34.8991667 135.7833333

N Yawataminami 20.2 10.7 29.7 U 34.9077778 135.7611111

O Takatsuki 10.7 7.2 14.2 U 34.8908333 135.6816667

P Kuzuha 12.0 9.2 14.7 U 34.7727778 135.6008333

Q Ayukawa 8.2 7.0 9.4 U 34.9386111 135.7433333

R Nakamiya 10.2 6.2 14.1 U 34.8569444 135.6544444

S Kasuga 9.5 4.0 15.0 U 34.9877778 135.7525000

T Shimeno 26.2 22.2 30.2 U 34.7680556 135.5800000

U Torikainishi 47.5 41.8 53.2 C 34.8600000 135.7150000

Strainer depth (m)
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Table S3. Average (Ave), standard deviation (Std) of the correlation coefficients in the 151 

whole periods for all PSInSAR analysis conditions. 152 

  153 

adx

Symbol Name Ave Std coh 0.60 0.70 0.80 0.60 0.70 0.80

Q Ayukawa -0.43 0.03 -0.45 -0.38 -0.40 -0.44 -0.42 -0.47

E Daigo -0.39 0.08 -0.43 -0.38 -0.28 -0.32 -0.46 -0.48

L Gokobashi -0.19 0.05 -0.16 -0.20 -0.17 -0.11 -0.27 -0.24

J Higashiimoarai -0.19 0.04 -0.18 -0.22 -0.19 -0.11 -0.22 -0.18

A Hiyoshi -0.43 0.04 -0.41 -0.44 -0.37 -0.40 -0.49 -0.45

D Kamitoba -0.04 0.12 -0.18 -0.05 0.09 0.14 -0.06 -0.18

G Kamiueno -0.38 0.12 -0.23 -0.34 -0.52 -0.56 -0.39 -0.26

C Kasuga 0.03 0.03 0.01 0.04 0.08 0.02 0.02 0.01

S Katsura -0.70 0.09 -0.73 -0.74 -0.53 -0.65 -0.79 -0.75

P Kuzuha -0.34 0.04 -0.33 -0.40 -0.39 -0.28 -0.35 -0.32

H Nagaokakyo 0.41 0.07 0.33 0.36 0.45 0.54 0.41 0.37

R Nakamiya -0.25 0.11 -0.30 -0.36 -0.05 -0.14 -0.34 -0.31

K Ogura -0.16 0.06 -0.13 -0.17 -0.08 -0.13 -0.25 -0.22

I Oguraike -0.28 0.21 -0.47 -0.45 0.11 -0.09 -0.40 -0.38

M Oyamazaki -0.35 0.07 -0.37 -0.39 -0.34 -0.22 -0.42 -0.40

T Shimeno -0.06 0.08 -0.11 -0.11 0.12 -0.03 -0.10 -0.10

F Shimotoba -0.39 0.09 -0.47 -0.40 -0.26 -0.28 -0.42 -0.48

O Takatsuki -0.47 0.05 -0.36 -0.48 -0.49 -0.49 -0.51 -0.50

B Toji -0.49 0.05 -0.50 -0.50 -0.41 -0.44 -0.54 -0.54

U Torikainishi -0.14 0.07 -0.11 -0.23 -0.03 -0.15 -0.19 -0.10

N Yawataminami 0.60 0.13 0.63 0.68 0.31 0.63 0.70 0.63

0.25 0.35



 

 

1 

 

Table S4. Average (Ave), standard deviation (Std), and difference of the correlation coefficients before and after the earthquake for all 154 

PSInSAR analysis conditions. 155 

 156 

Before the

earthquake

After the

earthquake

Before the

earthquake

After the

earthquake
adx

Symbol Name Ave = ① Ave = ② ② - ① Std Std coh 0.60 0.70 0.80 0.60 0.70 0.80 0.60 0.70 0.80 0.60 0.70 0.80

Q Ayukawa -0.01 -0.53 -0.52 0.05 0.02 0.00 0.02 0.09 -0.08 -0.04 -0.02 -0.54 -0.49 -0.52 -0.54 -0.51 -0.56

E Daigo -0.15 -0.48 -0.32 0.08 0.11 -0.11 -0.01 -0.23 -0.21 -0.19 -0.18 -0.54 -0.50 -0.30 -0.37 -0.56 -0.59

L Gokobashi -0.17 -0.19 -0.02 0.09 0.09 -0.03 -0.24 -0.18 -0.29 -0.22 -0.07 -0.19 -0.20 -0.17 -0.02 -0.28 -0.28

J Higashiimoarai 0.03 -0.26 -0.28 0.16 0.06 0.17 0.03 -0.31 0.03 0.07 0.19 -0.28 -0.30 -0.14 -0.22 -0.31 -0.28

A Hiyoshi -0.05 -0.48 -0.44 0.09 0.02 0.03 -0.10 0.08 -0.15 -0.16 0.01 -0.46 -0.49 -0.48 -0.46 -0.53 -0.50

D Kamitoba 0.40 -0.22 -0.62 0.12 0.09 0.21 0.49 0.42 0.53 0.50 0.25 -0.29 -0.26 -0.08 -0.13 -0.27 -0.30

G Kamiueno -0.25 -0.42 -0.17 0.14 0.13 -0.10 -0.25 -0.17 -0.51 -0.35 -0.13 -0.26 -0.37 -0.62 -0.58 -0.41 -0.30

C Kasuga -0.05 0.23 0.28 0.02 0.18 -0.05 -0.07 -0.06 -0.08 -0.05 -0.01 0.07 0.23 0.55 0.37 0.14 0.03

S Katsura -0.64 -0.74 -0.10 0.06 0.07 -0.64 -0.67 -0.51 -0.69 -0.70 -0.65 -0.77 -0.76 -0.59 -0.71 -0.81 -0.79

P Kuzuha 0.10 -0.55 -0.64 0.15 0.03 0.27 -0.05 -0.11 0.07 0.13 0.28 -0.53 -0.54 -0.58 -0.58 -0.53 -0.52

H Nagaokakyo 0.46 0.41 -0.06 0.11 0.07 0.43 0.45 0.29 0.64 0.54 0.44 0.31 0.35 0.49 0.52 0.40 0.36

R Nakamiya -0.02 -0.28 -0.26 0.20 0.15 0.26 -0.21 -0.24 -0.13 -0.06 0.24 -0.39 -0.38 0.01 -0.17 -0.39 -0.39

K Ogura 0.02 -0.21 -0.24 0.15 0.10 0.22 -0.03 -0.24 -0.04 0.02 0.19 -0.22 -0.21 -0.03 -0.19 -0.33 -0.31

I Oguraike 0.05 -0.37 -0.43 0.13 0.22 0.06 0.05 0.33 -0.07 -0.02 -0.02 -0.55 -0.57 -0.04 -0.10 -0.51 -0.45

M Oyamazaki -0.21 -0.39 -0.18 0.08 0.09 -0.12 -0.25 -0.32 -0.25 -0.23 -0.11 -0.43 -0.43 -0.35 -0.21 -0.47 -0.46

T Shimeno -0.01 -0.07 -0.06 0.15 0.07 -0.22 -0.12 0.23 0.13 0.00 -0.09 -0.09 -0.11 0.07 -0.08 -0.13 -0.10

F Shimotoba 0.14 -0.55 -0.68 0.17 0.04 -0.07 0.15 0.43 0.23 0.14 -0.06 -0.57 -0.57 -0.46 -0.53 -0.58 -0.58

O Takatsuki -0.04 -0.63 -0.58 0.14 0.06 0.15 0.02 -0.22 -0.21 -0.05 0.07 -0.51 -0.64 -0.64 -0.62 -0.67 -0.68

B Toji -0.23 -0.55 -0.32 0.10 0.06 -0.07 -0.25 -0.25 -0.35 -0.32 -0.12 -0.57 -0.55 -0.47 -0.48 -0.59 -0.61

U Torikainishi -0.07 -0.16 -0.09 0.13 0.06 -0.13 -0.29 0.14 0.00 -0.09 -0.05 -0.11 -0.22 -0.09 -0.21 -0.23 -0.12

N Yawataminami 0.71 0.58 -0.12 0.19 0.14 0.75 0.83 0.30 0.77 0.83 0.75 0.67 0.67 0.32 0.46 0.69 0.68

Before the earthquake After the earthquake

0.25 0.35 0.25 0.35


