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Abstract

Earthquake migration patterns are important to reveal various triggering mechanisms, including the tectonic process and

those caused by anthropogenic activities. Mapping out the spatial-temporal seismicity pattern is traditionally conducted using

reference marks either in spatial or time. However, such mapping is particularly challenging for induced earthquakes because

most industrial records that provide reference marks are unavailable to the public. Moreover, advances in earthquake detection

techniques proliferate earthquake catalogs and thus require labor-intensive investigation. Therefore, a new methodology is

demanded to automatically investigate spatial-temporal patterns of seismicity without reference marks. Here, we present a

deep learning-based method to automatically identify the timings and locations of anomalous seismicity, defined by the sudden

change of earthquakes in a region. We first rasterize multi-dimensional earthquake catalogs into 2-D distribution maps. Then,

we identify the maps with anomalous seismicities and extract their timings and locations to generate condensed catalogs to

reduce the manual effort in further investigation. We choose Changning and Weiyuan in Sichuan Basin as our study areas due

to their high seismicity rates in recent years. We use the Changning catalog to train the method and the Weiyuan catalog to

test the method’s spatial transferability. Our approach successfully condenses both the Changning and Weiyuan catalogs with

the accuracy of 0.87 based on the F1 score. The anomalous seismicities identified by our network include both earthquakes

associated with hydraulic fracturing and aftershocks following strong quakes. As such, our method could be applied to broader

areas with more complex migration patterns, including natural earthquake sequences.
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Key Points: 11 

• The method can detect anomalous events from induced earthquake catalogs. 12 

• The detected anomalous events can be used to further investigate the triggering mechanism 13 

of earthquakes. 14 

• The method can be applied to regions beyond the training data. 15 
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Abstract 17 

Earthquake migration patterns are important to reveal various triggering mechanisms, including 18 
the tectonic process and those caused by anthropogenic activities. Mapping out the spatial-19 
temporal seismicity pattern is traditionally conducted using reference marks either in spatial or 20 
time. However, such mapping is particularly challenging for induced earthquakes because most 21 
industrial records that provide reference marks are unavailable to the public. Moreover, advances 22 
in earthquake detection techniques proliferate earthquake catalogs and thus require labor-23 
intensive investigation. Therefore, a new methodology is demanded to automatically investigate 24 
spatial-temporal patterns of seismicity without reference marks. Here, we present a deep 25 
learning-based method to automatically identify the timings and locations of anomalous 26 
seismicity, defined by the sudden change of earthquakes in a region. We first rasterize multi-27 
dimensional earthquake catalogs into 2-D distribution maps. Then, we identify the maps with 28 
anomalous seismicities and extract their timings and locations to generate condensed catalogs to 29 
reduce the manual effort in further investigation. We choose Changning and Weiyuan in Sichuan 30 
Basin as our study areas due to their high seismicity rates in recent years.  We use the Changning 31 
catalog to train the method and the Weiyuan catalog to test the method’s spatial transferability. 32 
Our approach successfully condenses both the Changning and Weiyuan catalogs with the 33 
accuracy of 0.87 based on the F1 score. The anomalous seismicities identified by our network 34 
include both earthquakes associated with hydraulic fracturing and aftershocks following strong 35 
quakes. As such, our method could be applied to broader areas with more complex migration 36 
patterns, including natural earthquake sequences. 37 

Plain Language Summary 38 

Earthquakes migrate in space and time, sometimes forming clusters due to various mechanisms. 39 
Detecting anomalies in seismicity patterns helps understand why they occur and can play critical 40 
roles in seismic hazard mitigation. Although finding anomalies in a single dimension is 41 
straightforward, it is challenging to detect anomalies in earthquake patterns when spatial and 42 
temporal information is coupled together. A prior information either in space or time is normally 43 
required to analyze seismicity, but such information is not always available for induced 44 
earthquakes. Therefore, a new method is required to decouple the spatial and temporal 45 
information, providing references in at least one domain without prior knowledge. Here, we 46 
develop a deep-learning-based method to identify timings of abnormal seismicity. With these 47 
timings as references, the anomalies in the spatial domain will be apparent and can be easily 48 
extracted. With our method, the investigation of induced earthquakes will no longer depend on 49 
prior knowledge from industrial records.  50 

1 Introduction 51 

Earthquakes evolve spatially over time, and some patterns of the evolution provide 52 
important insights into the mechanisms driving earthquakes and their interactions (Freed, 2005). 53 
Different mechanisms such as static triggering (King et al., 1994), triggering due to afterslip 54 
(Barbot et al., 2009; Peng and Zhao, 2009), and dynamic triggering (Anderson et al., 1994; Hill 55 
et al., 1993; Kilb et al., 2000; Yun et al., 2019) can cause various earthquake migration patterns. 56 
For instance, King et al. (1994) discovered that the aftershocks of the 1992 Landers earthquake 57 
were distributed at sites where Coulomb stresses have risen. In a longer timescale, afterslip may 58 
have a more critical role in triggering aftershocks than static triggering. Barbot et al. (2009) 59 
observed greater moment release from afterslip than coseismic slip of the 2004 Parkfield 60 
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earthquake. The aftershocks of this earthquake migrated along the fault with logarithmic time 61 
since the mainshock, showing the distinct migration pattern of afterslip-triggered aftershocks 62 
(Peng and Zhao, 2009). In addition to aftershocks triggered by local mainshocks, dynamic 63 
triggering could also cause aftershocks by long-period waves. For instance, the 1992 MW 7.3 64 
Landers earthquake triggered three magnitude 3.4+ events and numerous small events at 65 
distances of several hundred kilometers (Anderson et al., 1994). Prejean et al. (2004) observed 66 
that the remotely triggered seismicity initiated with the arrival of the surface wave of the 2002 67 
MW 7.8 Denali Fault earthquake. 68 

In addition to the tectonic process, anthropogenic activities such as fluid injection may 69 
also cause clear migration of earthquakes, which serve as one of the vital information to infer 70 
their inducing mechanisms. In the past decade, the rate of induced earthquakes has increased 71 
abruptly in the US and Canada (Atkinson et al., 2016; Bao and Eaton, 2016; Friberg et al., 2014; 72 
Holland, 2013) due to activities like wastewater disposal that are associated with hydrocarbon 73 
production. Hydraulic fracturing, a technique commonly used in stimulating fracture growth, can 74 
also trigger moderate (ML 3–5) and strong (ML > 5) earthquakes, causing substantial damage. 75 
Since 2010, China has been conducting shale gas exploration, drilling over 500 production wells 76 
in the Sichuan Basin (Tan et al., 2020). Meanwhile, the Sichuan Basin has experienced frequent 77 
earthquakes (Lei et al., 2019a; Yang et al., 2020; Wong et al., 2021; Zhou et al., 2021). The fluid 78 
injection may activate the local faults and lead to large earthquakes. For instance, the MW 5.7 79 
earthquake that occurred on June 17th, 2019, Changning, killed 13 people, injured more than 200 80 
people, and damaged numerous buildings, was considered as an interaction among hydraulic 81 
fracking, salt mining, and smaller magnitude earthquakes in the region (Lei et al., 2019b; Jia et 82 
al., 2020; Liu and Zahradník, 2020). In September and December 2019, two moderate 83 
earthquakes with magnitudes >5 occurred in Weiyuan, killing four people and injuring 75 (Lei et 84 
al., 2019a; Wang et al., 2020; Sheng et al., 2020). These sequences illustrated the urgent need to 85 
closely monitor the seismicity induced by hydraulic fracturing and better understand the 86 
underlying triggering mechanisms. 87 

Mapping out seismicity evolution in high resolution has been commonly used to infer the 88 
mechanisms driving earthquakes and their migrations for both natural earthquakes (Anderson et 89 
al., 1994; Peng and Zhao, 2009; Zhang et al., 2022; Zhu et al., 2022) and induced seismicity (Lei 90 
et al., 2017; Haffener et al., 2018; Grigoli et al., 2018). The typical approach to analyzing spatio-91 
temporal migration relies on a spatial or temporal mark, such as a mainshock for natural 92 
earthquakes or industrial records for induced ones. Compared with natural earthquakes, induced 93 
seismicity is sometimes more challenging to investigate partly due to its small spatio-temporal 94 
scales and the necessity of including low magnitude earthquakes with limited accuracy of 95 
hypocenters. Despite these difficulties, many studies have conducted the temporal correlation 96 
between earthquake occurrence timings and injection records to link the induced seismicity with 97 
hydraulic fracturing (Haffener et al., 2018; Lei et al., 2017; Lei et al., 2019b; Meng et al., 2019; 98 
Tan et al., 2020). Some other studies have used earthquake hypocenters as a critical indicator to 99 
identify the induced earthquakes with large magnitude (ML > 4) (Grigoli et al., 2018; Sheng et 100 
al., 2020). Incorporating both spatial and temporal information, Johann and Shapiro (2020) 101 
applied a multidimensional cross-correlation technique to investigate the spatio-temporal 102 
relationship between induced seismicity and injection volumes. However, all the studies 103 
mentioned above are based on correlation with industrial activities, which are not entirely 104 
accessible to the public (Schultz et al., 2020). Therefore, a new methodology is demanded to 105 
map out seismicity migration without prior information. 106 
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Here, focusing on induced earthquakes that often exhibit spatial clustering yet abrupt 107 
changes of low-magnitude events in a short period, we develop a deep-learning-based, automated 108 
method to extract anomalous spatial-temporal information from earthquake catalogs. Powered by 109 
deep learning, our method does not require prior knowledge (e.g., background seismicity rates 110 
from historical catalogs, industrial operation records) and thus is applicable for induced 111 
earthquakes. We first train our neural network from a well-identified induced earthquake 112 
sequence in the Changning shale gas block within the Sichuan Basin. Then we apply the trained 113 
network to the dataset in the Weiyuan shale gas block to identify anomalous changes in the 114 
pattern of seismicity. Moreover, due to the transferability of deep learning, our method has the 115 
potential to be applied to a broader area and detect abnormal changes in seismicity during natural 116 
earthquake sequences, including those associated with foreshock sequences or aftershock 117 
triggering.  118 

2. Catalog data and characteristics 119 

Our study region is located in the southern Sichuan Basin (Fig. 1), where several shale 120 
gas blocks have been rapidly developed since 2011. Among the shale gas blocks in Sichuan, 121 
Changning and Weiyuan blocks are the two major gas production sources (Zou et al., 2018). 122 
Since 2014, the pace of shale gas production has been accelerated, and frequent earthquakes, 123 
including events with magnitudes larger than five, have been reported (Meng et al., 2019; Yang 124 
et al., 2020; Zhou et al., 2021). 125 

We first adopt an earthquake catalog in Weiyuan, which contains 24,719 earthquakes 126 
from September 2018 to August 2020 (Wong et al., 2021; Fig. 1a), bounded by longitudes 127 
104.21° and 105° and latitudes 29.2° and 29.8°. From 2018 to February 2019, seismic 128 
waveforms were recorded by nine short-period seismometers (Yang et al., 2020). From 2019 to 129 
2020, 14 additional seismometers were deployed in the region, bringing the total number of 130 
stations to 23. The phase data are picked by a machine-learning phase picker (Zhu and Beroza, 131 
2019), and earthquakes are relocated through the double-difference (HypoDD) algorithm 132 
(Waldhauser and Ellsworth, 2000).  133 

The catalog in the Changning shale gas field is from Meng et al. (2019), who derived 134 
high-resolution earthquake locations from local temporary seismic stations. The catalog contains 135 
18,507 earthquakes from July 2015 to January 2020 (Fig. 1c) with magnitudes up to MW 4.7, 136 
bounded by longitudes 104.2° and 105.4° and latitudes 27.8° and 28.6°. Between February 2015 137 
to April 2017, 6 temporary seismometers were deployed, and additional 15 seismometers were 138 
added afterward. The stations were distributed evenly within and surrounding the study region, 139 
yielding a high-resolution catalog with a completeness magnitude of ML 1.1 that was derived 140 
from a double-difference tomographic method (tomoDD, Zhang and Thurber 2003). 141 
Furthermore, the seismicity in the catalog shows a close relationship with hydraulic fracturing 142 
(Meng et al., 2019), making it a reliable training dataset to extract the features of injection-143 
induced earthquakes. 144 
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 145 

Figure 1. Earthquake distribution in our study areas Weiyuan (a) and Changning (c). (b) and (d) 146 
shows the time series of earthquake numbers for Weiyuan and Changning over the entire study 147 
period.  148 

Both catalogs contain seismic features distinct from background seismicity. Here, we 149 
define three types of behaviors as abnormal seismicity: (1) earthquake migration, (2) sudden, and 150 
(3) gradual increase of earthquake number in small subregions (Figure 2). In the first scenario, 151 
earthquake migration, the previous earthquake swarms vanish, and new swarms appear (Figure 152 
2a), but the total number of earthquakes in the whole region does not change much (Figure 2e). 153 
In the second scenario, a group of earthquakes may emerge quickly in a small region and then 154 
vanish in a short term (Figure 2b), exhibiting a clear signature of temporal clustering (Figure 2f). 155 
In contrast, the earthquake number may change gradually over time but overall maintain at a 156 
high level for days (Figure 2g). We classify such phenomenon as type 3.  157 

The coupling of spatial and temporal information in the catalogs complicates the 158 
detection of individual clusters (Figure 1). For instance, the three types of abnormal features 159 
could occur simultaneously in various subregions (Figure 2d & h). Therefore, we choose the 160 
deep learning algorithm to solve this complexity. Additionally, the spatial transferability of deep 161 
learning could enable the method to be applied to places beyond the training region, meaning 162 
that we could apply the network to extract similar abnormal features in various regions. To 163 
demonstrate, we use the Changning catalog to train the deep learning network and then use the 164 
Weiyuan catalog to test the spatial transferability of the network. 165 

In the two catalogs, we focus on the spatio-temporal changes in earthquake number and 166 
epicenter to extract abnormal features. The magnitudes of the earthquakes are not used because 167 
(1) most induced earthquakes have small magnitudes, and (2) large-magnitude earthquakes will 168 
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naturally become good references providing timings and locations for detailed investigations. We 169 
do not use depth information since induced earthquakes caused by hydraulic fracturing are 170 
usually concentrated in a specific depth range. Also, the usage of earthquake hypocenters 171 
requires higher accuracy in event depths, which are however often not resolved as good as did 172 
for epicenters. 173 

 174 

Figure 2. Example of anomalous seismicity within a 2-day time window in Changning (a & c) 175 
and 12-hour window in Weiyuan (b & d). Circles represent the locations and magnitudes of 176 
earthquakes. (a) shows the example of earthquake migration, (b) shows the sudden change in 177 
seismicity, (c) shows the gradual changes in seismicity in the region, and (d) shows the 178 
combination of the second and the third scenarios. (e-h) show the earthquake magnitude and the 179 
time series of earthquake numbers each day (a & c) or every 6 hours (b & d) in a longer time 180 
window. The red arrows indicate the period of the figures above. 181 

3 Method 182 

Temporal and spatial changes in earthquake numbers have been widely used to illustrate 183 
the causal relationship between anthropogenic activities and induced seismicity (Lei et al., 2017; 184 
Lei et al., 2019a; Yang et al., 2020). Without a large magnitude earthquake or industrial records 185 
as a reference, the abnormal increase in earthquake rates becomes essential to distinguish the 186 
induced seismicity from the background. In Changning, the average seismic rate before hydraulic 187 
fracturing was less than four events every three years from 1970 to 2014. From 2015 to 2017, 188 
15,057 earthquakes with ML>0 were identified after shale gas production began (Meng et al., 189 
2019). A similar phenomenon occurred in Weiyuan, with infrequent seismicity before mid-2015 190 
and a dramatic increase in the number of earthquakes afterward (Yang et al., 2020).  191 

Here, based on the variation of earthquake numbers, we automatically extract spatio-192 
temporal anomalous information based on deep learning technology (Fig. 3). The deep learning 193 
network is designed to identify and extract the timing of abnormal events, and a post-process 194 
procedure extracts the locations of abnormal events. More specifically, our method has three 195 
main steps: 196 

• Rasterizing an earthquake catalog into distribution maps that are discretized in space 197 
and time.  198 

• Applying the network to a sequence of consecutive maps to identify the abnormal 199 
ones and their timings.  200 
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• Extracting the locations where the earthquakes are concentrated from each abnormal 201 
map. 202 

 203 

Figure 3. Diagram of the deep-learning-based framework described in the Method section. 204 

3.1 Generating distribution maps 205 

To generate distribution maps, we count the number of earthquakes in each grid with a 206 
given temporal and spatial resolution. Here we set the spatial resolution as 2 kilometers, the 207 
commonly recognized maximum diffusion range of an injection well (Atkinson et al., 2020). 208 
Thus, the image sizes are 59×44 in Changning and 38×33 in Weiyuan. After rasterization, we 209 
pad images with zeros to keep an identical size, 75×75, for each image. Apparently, the seismic 210 
density determines the temporal resolution. A too-wide temporal resolution could cause many 211 
timings to be abnormal, which violates our objective of saving manual practice. However, a too-212 
narrow time window might lead to missing some abnormal timings. In Changning, we rasterize 213 
the catalog into daily distribution maps, while the temporal resolution for the Weiyuan catalog is 214 
six hours from a trial-error process, and each map has its timing. 215 

3.2 Principles of labeling anomalous seismicity and preparing the training set 216 

The labeling of anomalous seismicity is based on the definition of three types of 217 
abnormal behaviors (Fig. 2). The maps with migration and sudden increases are self-evident. 218 
When the earthquake number increases gradually, we only consider the map with the local peak 219 
as abnormal to reduce the number of detected events and the manual effort required for further 220 
investigation. Although our objective is to detect the abnormal induced seismicity, we do not 221 
exclude the anomalous events caused by large natural earthquakes because it will not hurt our 222 
objective and could also provide unique abnormal seismic features to enrich the training set. For 223 
labeling all the types of abnormal maps, we use a threshold of six, meaning all the abnormal 224 
maps should have at least six earthquakes in a small cluster. The cluster size varies, and different 225 
types of behavior might occur at the same time. For instance, one cluster is vanishing but still has 226 
a large earthquake number, while another cluster suddenly appears in a different place. Due to 227 
these complexities, deep learning technology is more appropriate for detecting abnormal events. 228 
The label preparation is conducted iteratively. We first prepare the initial labels and train the 229 
network. Then, we manually check the differences between the network’s output and refine the 230 
labels. For instance, the network can detect some missing abnormal events by manual labeling. 231 
Further, for ambiguous events that we consider normal, we will reconsider them if the network 232 
thinks differently. Such iterative progress would mitigate the manual error and subjectiveness in 233 
the label preparation.  234 
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After label preparation, we integrate a series of consecutive maps and their labels to 235 
compose a training example. We move the temporal window by one image each step to make 236 
multiple training examples. The number of labels equals the number of consecutive maps minus 237 
one since the abnormality of the first map will not be determined without a prior map as a 238 
reference. The training set contains all the abnormal distribution maps in Changning from July 239 
2015 to January 2020, with 1624 distribution maps with 212 abnormal ones. Due to the 240 
imbalance between normal examples and abnormal ones, we randomly discard 1/3 of normal 241 
samples to balance the training data. From the training samples, we randomly choose 10% as the 242 
validation dataset. The validation dataset mitigates overfitting and adjusts hyperparameters such 243 
as the learning rate. 244 

We use the data in Weiyuan from March to October 2019 as our test dataset. The test 245 
region is beyond the training region to test the spatial transferability of the network. Further, the 246 
test set can provide a more representative accuracy of the network than the training set since a 247 
high accuracy of the training set is expected. The preparation for the test set is the same as the 248 
training set. The test set includes 937 distribution maps with 154 abnormal ones.  249 

We apply the data augmentation to increase the diversity of our training dataset and the 250 
generalization of the network while keeping the manual labeling of rasterized maps to a 251 
manageable level. We flip and rotate the distribution image by degrees ranging from 45° to 315° 252 
with an interval of 45°. We also shift images vertically by 5 and 10 pixels and horizontally by 253 
steps ranging from 5 to 25 with an interval of 5 pixels. In the original training data, the 254 
earthquakes are located in the maps' central part. The earthquakes will sample more areas in the 255 
image domain by shifting images. All the augmentations are conducted independently and share 256 
the same list of labels.  257 

To further enrich the training dataset, we generate three types of artificial distribution 258 
maps. The first type has scatter distributions with an earthquake number less than two in a single 259 
pixel (Fig. S1a). The other two types are both superimposed on the first one. The second type has 260 
pixels with earthquake numbers larger than six (Fig. S1b). The third type has pixels where the 261 
earthquake number increases gradually in the same pixel, and the peak has more than six 262 
earthquakes (Movie S1). The maps from the second and the peak from the third types will be 263 
classified as anomalous maps, while the maps from the first type are normal ones.  264 

3.3 Deep learning network for identifying anomalous maps 265 

Deep learning has been widely applied in seismology, such as automating phase picking 266 
(Zhu and Beroza, 2019; Johnson et al., 2021), locating earthquakes (Zhang et al., 2020), and 267 
determining focal mechanisms in real-time (Kuang et al., 2021). Here, we adopt the idea of 268 
image classification to identify abnormal earthquake distribution maps. The conventional way of 269 
classifying images is to apply the deep learning network to a single image. The output would be 270 
a list of binary numbers indicating which class the image belongs to (He et al., 2016). Here, we 271 
apply the network to a sequence of distribution maps and output binary numbers indicating their 272 
abnormality, i.e., seismicity changes as defined above. To examine the effect of input map 273 
numbers, we use five, seven, and ten consecutive maps as the input.  274 

Here, we use the ResNet deep learning architecture, which has achieved outstanding 275 
performance in image classification (He et al., 2016). ResNet includes a building block of 276 
residual learning (Fig. S2), which can avoid the typical problem that the accuracy becomes 277 
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saturated and degrades as the network depth increases. With such a design, ResNet allows to 278 
greatly increase the network depth and the learning capacity (He et al., 2016). Therefore, it could 279 
be applied to broader areas with more complex and diverse migration patterns, including natural 280 
earthquakes. ResNet has different branches with various numbers of blocks and layers. The more 281 
layers a network has, the more learning capability it contains. However, a too large network 282 
might yield overfitting issues, depending on the complexity level of the task. We examine the 283 
performance of ResNet-18, ResNet-34, and ResNet-101 (Fig. 4) and choose the best one. 284 
ResNet-18 has eight blocks, containing 17 convolutional layers; ResNet-34 has 16 blocks, 285 
containing 33 convolutional layers; ResNet-101 has 33 blocks, containing 100 convolutional 286 
layers. All the networks have a fully connected layer at the end of the architecture to generate the 287 
output labels. We use binary cross-entropy as the loss function and the stochastic gradient 288 
descent method as the optimizer. We also use the L2 regularization factor to mitigate the 289 
overfitting issue. We train the networks using different learning rates and L2 regularization 290 
factors and choose the most proper values for each network based on the final validation loss. 291 
The details of selecting the learning rate and L2 regularization factor are described in the 292 
supplementary material (Text S1). 293 
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 294 

Figure 4. Architecture of the ResNet-18, ResNet-34, and ResNet-101. Different colors represent 295 
different building blocks. Conv 3×3, 64 means a convolutional layer with a 3×3 kernel and 64 296 
channels. FC means fully connected layers. The inputs are a sequence of distribution maps, and 297 
outputs are binary numbers indicating the abnormality of the last four maps. 298 

We start the training by initializing the network parameter using the He initialization 299 
method (He et al., 2015). We adopt an early-stopping strategy to mitigate overfitting. After each 300 
training epoch, we calculate the validation error and stop the training if the validation error starts 301 
to increase for ten consecutive epochs. The inferencing after the training will sample a single 302 
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image multiple times since we move the temporal window by one image each time. We calculate 303 
the averaged output for each image and consider it abnormal if the value is larger than 0.4, an 304 
empirical threshold. The inferencing will be conducted on test data—the Weiyuan catalog from 305 
March to October 2019—to quantify the accuracy of the networks. Specifically, we calculate the 306 
F1 score on the test dataset to measure the consistency between manual labels and the network’s 307 
predication and use it as the accuracy:  308 

𝐹1 =
𝑇𝑃

𝑇𝑃 + 0.5 × (𝐹𝑁 + 𝐹𝑃)
(1) 309 

TP is true positive representing the maps that both the manual label and the network 310 
consider as abnormal. FN is false negative, and FP is false positive. Both are network 311 
misidentifications: FN is the network’s negative predication and TP is the positive predication. 312 
We choose to use the F1 score since it focuses on the network’s ability to detect abnormal events 313 
and considers both types of misidentifications. We conduct nine experiments that combine three 314 
networks (ResNet-18, ResNet34, and ResNet-101) and three numbers (five, seven, and ten) of 315 
input maps. We calculate the F1 score of each experiment and choose the one with the largest F1 316 
score. 317 

3.4 Extracting anomalous locations from the identified maps 318 

The post-processing procedure further extracts the anomalous locations and generates a 319 
catalog of abnormal events. For the identified abnormal maps, we apply a thresholding method to 320 
extract the location with concentrated earthquake distribution. We first filter the image with a 321 
3×3 matrix of ones to sum up all the values in the surrounding pixels. Second, we extract two 322 
sets of locations: (1) the locations with a value larger than the threshold (six) in the filtered maps 323 
and (2) the locations in the original maps where the pixel value is larger than half of the 324 
threshold. Third, we take the intersection of the two location sets as the abnormal locations. 325 
Instead of using a single threshold, these processes could extract locations of clusters of various 326 
sizes. Moreover, the post-processing could filter out some misidentified maps with no 327 
concentrated earthquakes, further increasing our method’s accuracy. Finally, we generate a 328 
catalog of abnormal events by taking each abnormal location at a specific timing as an event.  329 

4. Results 330 

The key results are presented in the following order: (1) F1-score-based comparison 331 
among the nine experiments as in Table 1; (2) the application on the Weiyuan catalog; (3) the 332 
application on the Changning catalog. 333 

4.1 The best network based on the F1 score of the test set 334 

Table 1. F1 scores of the nine experiments. TP means true positive, and FP means false positive.  335 
 Five maps Seven maps Ten maps 

ResNet-18 TP: 141 

FP: 58 

F1: 0.79 

TP: 128 

FP: 28 

F1: 0.81 

TP: 115 

FP: 16 

F1: 0.79 
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ResNet-34 TP: 137 

FP: 19 

F1: 0.87 

TP: 136 

FP: 30 

F1: 0.84 

TP: 122 

FP: 24 

F1: 0.80 

ResNet-101 TP: 127 

FP: 13 

F1: 0.85 

TP: 112 

FP: 12 

F1: 0.79 

TP: 132 

FP: 32 

F1: 0.82 

We estimate the accuracy of the nine experiments by comparing manual labels and 336 
network predications. The uncertainties estimation is conducted in Weiyuan, a different shale gas 337 
field than Changning where the training was conducted, which can therefore provide a more 338 
representative estimation of the model’s accuracy. Table 1 summarizes the F1 score of the nine 339 
experiments with higher F1 scores showing the better results. All the experiments have similar 340 
and promising performances, while ResNet-34 is better than the other two branches for our task. 341 
More convolutional layers lead to greater learning capability. However, the complexity level is 342 
limited due to the small input image size (75×75). Therefore, a too deep network could easily 343 
overfit the training data. In other words, ResNet-101 has a larger learning capability than what 344 
this task needs and the overfitting issues make the performance of ResNet-101 worse than 345 
ResNet-34. However, ResNet-101 might be more appropriate when applying to datasets that 346 
have longer durations and larger special coverage (e.g., natural earthquake catalogs). The best 347 
experiment here is the combination between ResNet-34 and five consecutive maps, which is used 348 
to derive all the following results. As an example, Fig. 5a shows the visual comparison between 349 
manual labels and the predications of the best network. The two datasets are consistent with each 350 
other in the number of days when we found anomalous seismicity in September 2019. The visual 351 
comparison in other periods of the test data is shown in Fig. S3.  352 

Using these identified timings, we can then find the location where the anomalous 353 
seismicity occurred (Fig. 5b). Some earthquakes, e.g., those in the east of the study region 354 
associated with the 2019 MS 5.4 earthquake, are spatially and temporally clustered (Fig. 5b). 355 
However, there are spatially separated locations where seismicity nearly emerged at the same 356 
time (Fig. 5b), making it difficult to automatically identify by traditional methods.  357 

 358 

Figure 5. Comparison between manually picked anomalous timings and network identifications 359 
in Weiyuan, September 2019. The red bars represent the manually identified anomalous timings. 360 
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The stars show the identified timings by the well-trained network. The arrow points to the 361 
anomalous seismicity caused by the MS 5.4 earthquake on September 8th, 2019. 362 

4.2 Application on the Weiyuan catalog 363 

In Weiyuan, we condense the catalog from 24,719 events to 831 abnormal ones after 364 
running the detection by our trained network. The locations and timings in the condensed 365 
anomalous catalog provide critical information for further investigation of the triggering 366 
mechanisms of each earthquake cluster. For example, we identify an anomalous cluster starting 367 
from April 30th, 2019, in northeastern Weiyuan (Fig. 6a). Using a 60-hour temporal window and 368 
a 2-km spatial grid, we find that earthquakes near the anomalous event show a distinct spatio-369 
temporal pattern (Fig. 6a, c, and e). Most earthquakes were within the pressure diffusion front 370 
with a hydraulic diffusivity of 0.8 m2/s, which is consistent with the value estimated in the 371 
region (Wong et al., 2021; Sheng et al., 2022), indicating that this earthquake swarm is likely 372 
driven by pore pressure diffusion. The other example is a cluster starting from August 08th, 373 
2019, in Weiyuan (Fig. 6b). Before August 08th, 2019, there were no earthquakes around the 374 
anomalous location (2 km spatial coverage), but the earthquake number increased drastically 375 
later (Fig. 6b). This cluster contains no events with magnitude larger than 3 (Fig. 6f), and the 376 
magnitude-time pattern does not suggest an aftershock sequence. 377 
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 378 

Figure 6. Two examples of identified anomalous earthquake clusters in Weiyuan. (a) shows a 379 
cluster occurred on April 30th, 2019, and was potentially driven by pore pressure diffusion. The 380 
red block in the map indicates the location of the cluster. (b) shows a sequence occurred on 381 
August 08th, 2019, and the earthquake number increased dramatically. The red blocks in the 382 
maps of (a) and (b) indicate the locations of the clusters. (c) and (e) show the seismicity of the 383 
cluster in (a), while (d) and (f) indicate the one in (b). Both clusters have no large-magnitude 384 
earthquakes. 385 

In addition to detecting locations and timings for individual clusters, the condensed 386 
catalog could provide insights into the overall earthquake migration during the entire study 387 
period (Movie S2). To illustrate, we count the total number of “anomalous” events in each grid 388 
to generate a hot map of anomalous seismicity (Fig. 7b), in which a few distinct subregions can 389 
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be identified in Weiyuan (Fig. 7b). In comparison, identifying such “anomalous” subregions was 390 
not straightforward in a traditional map of seismicity, despite that the earthquakes were colored 391 
by their occurrence times (Fig. 7a). For instance, we identify one subregion (subregion 1) on the 392 
hot map (Fig. 7b), where numerous seismicities occurred in the subregion within two years (Fig. 393 
7a). As identified by our network, the anomalous seismicities were concentrated from March to 394 
May and September 2019, respectively (Fig. 8). From March to May 2019, seismicity in 395 
subregion 1 clearly exhibited a few clusters, emerging at different times (Fig. 8a). But there were 396 
no earthquakes with magnitudes larger than 3 (Fig. 8c). In September 2019, an MS 5.4 397 
earthquake occurred in the subregion, leading to a group of aftershocks that were identified by 398 
our neural network (Fig. 8b & d). In the west of the study region, we also identified one 399 
subregion 2 (Fig. 7), which exhibited two anomalous behaviors from April to July 2020 (Fig. 9). 400 
First, an earthquake cluster emerged in the northeastern part of subregion 2 (blue dots in Fig. 9a) 401 
and lasted until the end of April (Fig. 9b). After a few days of a few earthquakes (Fig. 9b), 402 
numerous earthquakes started to occur in the central part of the subregion and then migrated 403 
towards its northeast, northwest, and southwest directions. 404 

 405 

Figure 7. The density of abnormal seismicity in Weiyuan. (a) shows the seismicity of the entire 406 
Weiyuan catalog. (b) a hot map of our identified “abnormal” regions, showing the total number of 407 
anomalous events in each grid. The subregions are shown as black boxes and are identified based 408 
on the density of abnormal events. 409 
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 410 

Figure 8. Seismicity in subregion 1 of Weiyuan during abnormal periods. (a) and (b) show the 411 
seismicity in subregion 1 from Mar to May 2019 and from Sep to Oct 2019, respectively. (c) and 412 
(d) are the corresponding time series of (a) and (b), showing the earthquake magnitudes and 413 
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earthquake numbers every six hours in subregion 1. The MS 5.4 earthquake is shown as the black 414 
star in (b) and the red dot in (c). 415 

 416 

Figure 9. Seismicity in subregion 2 of Weiyuan from April to June 2020 (a) and the 417 
corresponding time series of earthquake magnitudes and earthquake numbers every six hours (b). 418 
The northeastern cluster (blue) occurred in April, and the other cluster started to emerge in May 419 
and migrated in three directions afterward. 420 

4.2 Application on the Changning catalog 421 

After training our network from a subset of seismicity in Changing, we then conduct the 422 
network detection and condense the catalog from 18,507 events to 498 based on the manually 423 
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identified labels. In Changning, the event locations were usually concentrated in small 424 
subregions for several months (Movie S3). The hot map of anomalous seismicity in Changning 425 
shows four distinct subregions (Fig. 10). For instance, from February to April 2016, anomalous 426 
locations were always in subregion 1, forming two obvious earthquake clusters in the northern 427 
and southern parts (Fig. S4). From April to May 2017, subregion 1 became active again, 428 
exhibiting a cluster in the central zone. In subregion 2, numerous clusters emerged in September 429 
2016 and from January to February 2017. These clusters have no earthquakes with magnitudes 430 
larger than five and no distinct migration features (Fig. S5). It was suggested that the anomalous 431 
seismicity in subregion 2 was likely caused by hydraulic fracturing operations, which happened 432 
from 3rd September to 8th October 2016 and from 12th to 19th January 2017, respectively 433 
(Meng et al., 2019).  434 

In addition to anomalous low-magnitude-induced seismicity, our method could also 435 
detect anomalies caused by large earthquakes and their aftershocks. For instance, our method 436 
detects the anomalies in seismicity caused by an MW 5.2 earthquake on December 16th, 2018, in 437 
subregion 3 (Lei et al., 2019b) and an MW 5.8 earthquake that occurred on June 17th, 2019, in 438 
subregion 4 (Fig. 11). Furthermore, the aftershocks of the large earthquakes could also cause the 439 
proliferation of earthquake numbers. Therefore, the anomalous event continuously occurred in 440 
subregion 3 from December 2018 to January 2019 (Fig. 12a & c) and in subregion 4 from June 441 
to July 2019 (Fig. 12b & d). Although it is not our primary motivation to detect aftershocks and 442 
practically it is not necessary to use such an algorithm because the large earthquakes already 443 
serve as landmarks, the ability to detect anomalies caused by large-magnitude earthquakes shows 444 
the feasibility of applying our algorithm in natural earthquake sequences. It also demonstrates the 445 
effectiveness of using earthquake numbers without magnitudes and depth. 446 

 447 

Figure 10. The density of abnormal seismicity in Changning. (a) shows the seismicity of the 448 
entire Changning catalog. (b) hot map of abnormal seismicity, showing the total number of 449 
anomalous events in each grid. The subregions are shown as black boxes and are identified based 450 
on the density of abnormal events. 451 
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 452 

Figure 11. Anomalies caused by large-magnitude earthquakes in Changning. (a) shows the 453 
anomaly on December 16th, 2018 in subregion 3. (b) shows the anomaly on June 17th, 2019 in 454 
subregion 4. The circles in the legend box indicate the ML 1 earthquakes. 455 
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 456 

Figure 12. Seismicity in subregions 3 and 4 of Changning. (a) and (b) show the seismicity in 457 
subregions 3 and 4 during their active period, respectively. (c) and (d) are the corresponding time 458 
series of (a) and (b), showing the earthquake magnitudes and daily earthquake numbers in 459 
subregions 3 and 4. The abnormal seismicities in both subregions 3 and 4 are triggered by large 460 
earthquakes, shown as green stars in both (a) and (b). 461 

5. Discussion  462 

5.1 Choosing the appropriate time interval 463 

The choice of temporal resolution directly impacts the results, as the temporal density of 464 
earthquakes determines the time interval of distribution maps. A large temporal resolution could 465 
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cause a large proportion of abnormal timings, while a too-small interval could miss some 466 
abnormal timings. Here, we test the effect of the time interval for the Weiyuan catalog by setting 467 
it as 24 and 4 hours, respectively, and compare it with our optimal 6-hour interval. For the 24-468 
hour interval, we identify 315 abnormal timing from 724 distribution maps. While most of the 469 
reported timings were correct, the large proportion of anomalous maps violates our objective of 470 
saving manual practice. In addition, the reported timings are less precise than using a six-hour 471 
interval. In comparison, we condense the original catalog to 572 events when using the 4-hour 472 
interval, less than the number (831) using the 6-hour interval. The 4-hour interval misses some 473 
events because a shorter temporal interval dilutes the earthquake distribution for each map, and 474 
some changes are not intense enough to be detected (Fig. 13b).  475 

The results of the above test show that the choice of time interval to generate the 476 
distribution maps can lead to a trade-off between the accuracy of reported timing and the amount 477 
of manual practice. To overcome this, we may choose the strategy of adaptive time interval, i.e., 478 
find the anomalous timing in a relatively large time window first and then use a finer temporal 479 
resolution. Furthermore, the absolute value of the time interval is subject to the total number of 480 
earthquakes in a selected region, which depends on the background seismicity rate in the region 481 
and the total duration of the catalog. For induced earthquakes, the study region and catalog 482 
duration are usually selected according to the area of interest and time scales of industrial 483 
activities. Therefore, the temporal resolution in our algorithm can be set and adjusted subject to 484 
research focus. 485 

 486 

Figure 13. Example of missing events due to the finer temporal resolution. (a) is identified as 487 
abnormal but (b) is not because the changes in (b) are not intense enough. The circles in the 488 
legend box indicate the ML 1 earthquakes. 489 

5.2 Potential applications on natural earthquakes 490 

Compared with induced earthquakes in the same term, catalogs of natural earthquakes 491 
may have fewer earthquake numbers and thus a lower frequency of anomalies. However, our 492 
algorithm can be directly applied on detecting “anomalous” changes in natural earthquakes. As 493 
demonstrated by the aftershock sequences of the 2019 MW 5.8 Changning and the 2018 MW 5.2 494 
Xingwen earthquakes, our algorithm is effective in detecting such changes in the amount of 495 
seismicity in a relatively small region. Although it is not necessary to identify the emergence of 496 
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aftershocks with such an advanced technique, it may be applicable to investigate detailed 497 
aftershock evolution provided that some well-identified training datasets are available. 498 

As we do not need to include magnitude information of earthquakes, it is obvious that our 499 
algorithm can be effective to identify earthquake swarms, an earthquake sequence in which no 500 
clear large-magnitude events (mainshock) exist. Normally earthquake swarms have been 501 
considered associated with fluid migration (Shelly et al., 2013); thus, mapping out swarms may 502 
advance our understanding of subsurface fluid transportation. 503 

In addition, earthquakes may exhibit in foreshock-mainshock sequences, i.e., a series of 504 
small magnitudes preceding a large event in a time window from days to weeks (Kato and 505 
Nakagawa, 2014; Yao et al., 2020; Zhang et al., 2022; Zhu et al., 2022). Indeed, nearly 50% of 506 
large earthquakes had foreshocks, particularly for interplate events (Jones and Molnar, 1976; 507 
Bouchon et al., 2013). Despite the mechanisms driving foreshocks remain controversial (Zhu et 508 
al., 2022), foreshocks have been considered as the most reliable precursors that are hopeful for 509 
earthquake prediction. Because foreshocks often have low magnitudes, similar to the earthquakes 510 
used in this study, it is anticipated that our algorithm is capable of detecting the foreshock 511 
migration.  512 

However, it is extremely challenging to recognize an ongoing foreshock sequence 513 
(Brodsky and Lay, 2014). Although our algorithm is able to identify an emerging earthquake 514 
sequence, it is a well-known difficult problem to distinguish them from the background 515 
seismicity. If there are well-recorded catalogs of background seismicity and large events with 516 
profound foreshock sequences, we may train our network to learn their features, respectively. 517 
Should there be distinct features between events leading to large earthquakes and these 518 
background ones, our network is hopeful to gain the capability of labeling potential foreshock 519 
sequences. The network’s generalization ability of course needs to be tested in various regions 520 
and should be done in future studies. 521 

5.3 Limitations and possible solutions 522 

Although our method achieves promising results in the Sichuan Basin, it has several 523 
limitations. First, the network might fail to identify small-distance migration, depending on the 524 
spatial grid in our model and the location resolution of the training catalog. Second, when 525 
anomalous seismicity occurs frequently, the network might not automatically pick the precise 526 
onset of the anomaly, depending on the temporal resolution. These two cases are caused by the 527 
leak of corresponding training examples. The Changning catalog does not contain enough cases 528 
where anomalous seismicity migrated in a small distance or occurred frequently. Including more 529 
catalogs into the training data could increase the method’s generalization and accordingly help to 530 
solve these misidentifications. Third, the current study does not consider the hypocenter depth of 531 
earthquakes due to the difficulties of visualizing 3-D matrixes and preparing the training labels. 532 
With more manual practice and higher catalog accuracy in the future, we could consider depth 533 
information in the network. 534 

6. Conclusion 535 

This study designs a novel method based on deep learning to automate the detection of 536 
anomalous seismicity. The detected locations and timings provide important information for 537 
investigating the triggering mechanisms of each earthquake cluster. Our approach could 538 
condense a large earthquake catalog to a focused catalog containing only anomalous events, 539 
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saving intensive manual practice. Based on the condensed catalogs, our further analysis reveals 540 
seismically abnormal subregions in the Changning and Weiyuan shale gas field and their 541 
corresponding active periods. In addition to the anomalous seismicity caused by anthropic 542 
activities, the method could also detect anomalies caused by large natural earthquakes. Owing to 543 
the large learning capability of deep learning, we could apply the method to broader areas with 544 
more complex and diverse earthquake migration patterns. 545 
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Text S1. Choosing a proper learning rate and L2 regularization factor 

We use the final validation loss to choose the learning rate and L2 regularization 
factor. If the learning rate is too large, the training loss will decrease greatly at the 
beginning but show little change later on, and the final validation loss is high. If the 
learning rate is too small, the training loss curve will show a nearly linear trend. The final 
validation loss will be high since it needs more training epochs to decrease than the 
patience threshold we set. L2 regularization factor penalizes large weights, and therefore 
it could suppress any irrelevant components of the weight vector by choosing the 
smallest vector that decreases the training loss. A too small weight decay can hardly have 
enough regularization effect while a too large weight decay could hurt the network 
training progress. From Table S1 to Table S6 shows the final validation loss by using 
different values of weight decay and learning rate for the three networks. For each 
network, we choose the learning rate and weight decay with the smallest final validation 
loss.   

 
 

 

Figure S1. Example of earthquake artificial distributions maps. (a) shows the scatter 
distribution and (b) show the concentrated distribution with pixels having more than five 
earthquakes.   
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Figure S2. (a) The building block of residual learning used in ResNet-18 and ResNet-34. 
(b) The building block of residual learning used in ResNet-101. For both types of building 
blocks, the block adds its input with the feature map after going through convolutional 
layers to obtain the output.  
 

 

Figure S3. Comparison between manually-picked anomalous timings and network 
identifications in Weiyuan, 2019. The red bars represent the manually-identified 
anomalous timings. The green ones are identified by the well-trained network. 
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Figure S4. Seismicity in subregion 1 of Changning region during abnormal periods. (a) 
and (b) show the seismicity in subregion 1 from Feb to Apr 2016 and from Apr to May 
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2017, respectively. (c) and (d) are the corresponding time series of (a) and (b), showing 
the earthquake magnitudes and daily earthquake numbers in subregion 1. 

 

 

Figure S5. Seismicity in subregion 2 of Changning region during abnormal periods. (a) 
and (b) show the seismicity in subregion 1 in Sep 2016 and from Jan to Feb 2017, 
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respectively. (c) and (d) are the corresponding time series of (a) and (b), showing the 
earthquake magnitudes and daily earthquake numbers in subregion 2. 
 

Weight decay 0 0.001 0.003 0.005 0.01 0.03 0.05 

Final validation loss 0.22 0.215 0.212 0.161 0.166 0.199 0.26 

Table S1. Final validation losses using different L2 regularization factors (weight decay) 
for ResNet-18. 

 

Learning rate 0.001 0.003 0.005 0.007 0.01 

Final validation loss 0.161 0.152 0.128 0.167 0.228 

Table S2. Final validation losses using different learning rates for ResNet-18.   

 
 

Weight decay 0 0.001 0.003 0.005 0.01 0.03 0.05 

Final validation loss 0.195 0.187 0.137 0.133 0.174 0.272 0.327 

Table S3. Final validation losses using different L2 regularization factors (weight decay) 
for ResNet-34.   
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Learning rate 0.001 0.003 0.005 0.007 0.01 

Final validation loss 0.175 0.133 0.162 0.139 0.161 

Table S4. Final validation losses using different learning rates for ResNet-34.   

 

Weight decay 0 0.001 0.003 0.005 0.01 0.03 0.05 

Final validation loss 0.232 0.201 0.204 0.145 0.154 0.277 0.372 

Table S5. Final validation losses using different L2 regularization factors (weight decay) 
for ResNet-101.   

 

Learning rate 0.0005 0.0007 0.001 0.003 0.005 0.007 

Final validation loss 0.426 0.145 0.149 0.153 0.182 0.193 

Table S6. Final validation losses using different learning rates for ResNet-101.   
 
 

Movie S1. A movie shows the artificial distribution maps where earthquake number 

increase gradually. 

https://www.youtube.com/watch?v=DZDhHBKZdtY 

Movie S2. Similar to Movie S1 but in Weiyuan, from Sep 2018 to Aug 2020. 

https://www.youtube.com/watch?v=-MjzMq9Om_Y 

Movie S3. A movie shows the spatial-temporal migration of anomalous seismicity in 
Changning, from 2016 to 2019. 

https://www.youtube.com/watch?v=0JcnT08F-2g&t=1s 

 


