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Abstract

Recently, a growing number of studies have used machine learning (ML) models to parameterize computationally intensive

subgrid-scale processes in ocean models. Such studies typically train ML models with filtered and coarse-grained high-resolution

data and evaluate their predictive performance offline, before implementing them in a coarse resolution model and assessing

their online performance. In this work, we provide a framework for systematically benchmarking the online performance of

such models, their generalization to domains not encountered during training, and their sensitivity to dataset design choices.

We apply this proposed framework to compare a large number of physical and neural network (NN)-based parameterizations.

We find that the choice of filtering and coarse-graining operator is particularly critical and this choice should be guided by

the application. We also show that our all of our physics-constrained NNs are stable when implemented online, but that

performance across metrics can vary drastically. In addition, to test generalization and help with interpretability of data-driven

parameterizations, we propose a novel equation-discovery approach combining linear regression and genetic programming with

spatial derivatives. We find this approach performs on par with neural networks on the training domain but generalizes better

beyond it. We release code and data to reproduce our results and provide the research community with easy-to-use resources

to develop and evaluate additional parameterizations.
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Key Points:7

• We develop 19 physical and climatological metrics to evaluate 148 subgrid closures8

online in an open-source idealized ocean model.9

• Neural network closures perform well online for some filtering operators under these10
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Abstract14

Recently, a growing number of studies have used machine learning (ML) models to pa-15

rameterize computationally intensive subgrid-scale processes in ocean models. Such stud-16

ies typically train ML models with filtered and coarse-grained high-resolution data and17

evaluate their predictive performance offline, before implementing them in a coarse res-18

olution model and assessing their online performance. In this work, we systematically19

benchmark the online performance of such models, their generalization to domains not20

encountered during training, and their sensitivity to dataset design choices. We apply21

this proposed framework to compare a large number of physical and neural network (NN)-22

based parameterizations. We find that the choice of filtering and coarse-graining oper-23

ator is particularly critical and this choice should be guided by the application. We also24

show that all of our physics-constrained NNs are stable and perform well when imple-25

mented online, but generalize poorly to new regimes. To improve generalization and also26

interpretability, we propose a novel equation-discovery approach combining linear regres-27

sion and genetic programming with spatial derivatives. We find this approach performs28

on par with neural networks on the training domain but generalizes better beyond it.29

We release code and data to reproduce our results and provide the research community30

with easy-to-use resources to develop and evaluate additional parameterizations.31

Plain Language Summary32

Accurately predicting climate change requires running intensive computer simu-33

lations called climate models. Climate models divide the world into grid cells, solving34

an approximation of continuous equations that model the true dynamics. For accurate35

predictions, these cells must be small, or equivalently models must be high-resolution.36

However, even with modern supercomputers, running many high-resolution simulations37

is prohibitively expensive.38

One solution is to run climate models at coarser resolution, but include “subgrid39

parameterizations” to account for physical processes occurring at finer scales and cor-40

rect bias. Parameterizations are usually developed by analyzing the continuous equa-41

tions and empirically determining formulae to predict unresolved effects. However, re-42

cent studies have applied machine learning (ML) methods to learn parameterizations au-43

tomatically from limited high-resolution data.44

This approach has shown promise, but also introduced new challenges with dataset45

preparation, evaluation, interpretability, and implementation. We provide an open-source46

framework for learning and evaluating parameterizations in a simplified model of the ocean.47

We use this framework to evaluate numerous ML methods and analyze how best to pre-48

pare datasets. We also develop a method of learning equation-based parameterizations49

which can be more easily interpreted and implemented. Our approach performs com-50

parably to the best ML parameterizations, but generalizes better to oceanic conditions51

unseen during training.52

1 Introduction53

Current state-of-the-art climate models solve geophysical fluid equations on hor-54

izontal grids of size 25km and coarser. Models at this resolution are not able to accu-55

rately and sufficiently resolve processes with physical length scales smaller than the model56

grid, for example, convection in the atmosphere and mesoscale eddies in the ocean. Since57

increases in computational power will likely not enable climate models to resolve these58

processes before the effects of climate change ensue (Fox-Kemper et al., 2014; Schnei-59

der et al., 2017), we must represent subgrid-scale (SGS) processes with closure models,60

also known as parameterizations. Yet, these SGS models are some of the largest sources61

of bias and uncertainties in climate simulations: e.g., insufficient representations of tran-62
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sient eddies cause biases in modeled currents and sea surface temperature in the ocean63

(Griffies et al., 2015; Hewitt et al., 2020), and the precipitation pattern is strongly sen-64

sitive to the different subgrid cloud closures, thereby causing significant errors in climate65

projections (Stevens & Bony, 2013). Therefore, developing robust parameterizations re-66

mains an important task towards reliable climate projections.67

In ocean circulation models, stratified turbulent processes are one of the primary68

targets of SGS closures (Pope, 2000; Vallis, 2017). Classic SGS models are typically de-69

signed with specific goals in mind; for example, to dissipate small-scale enstrophy (Smagorinsky,70

1963), to reinject energy at larger scales via backscattering (Jansen & Held, 2014; Jansen71

et al., 2015), or to improve the representation of heat and tracer transport in the ocean72

interior (Redi, 1982; Gent & Mcwilliams, 1990; Gent et al., 1995). However, human choices73

in the design, formulation, and tuning of these SGS models sometimes lead to poor cor-74

relation between parameterized SGS forcing and true SGS forcing as diagnosed from high75

resolution simulations (Khani & Porté-Agel, 2017). This can result in unrealistic large-76

scale simulations despite recent progress in the representation of resolved processes (Griffies77

et al., 2009; Fox-Kemper et al., 2019). These shortcomings call for complementary, more78

systematic and data-driven approaches.79

Recently, an increase in high-resolution observations and simulations combined with80

advances in machine-learning (ML) methods has propelled a surge in the development81

of data-driven SGS parameterizations in climate models (Krasnopolsky et al., 2010; Bolton82

& Zanna, 2019; Rasp et al., 2018; O’Gorman & Dwyer, 2018; Guillaumin & Zanna, 2021;83

Zanna & Bolton, 2021; Beucler et al., 2021; Guan et al., 2022; Yuval & O’Gorman, 2021;84

Frezat et al., 2022; Subel et al., 2022). Directly learning from data, ML methods auto-85

matically extract relevant information from observations and high-resolution simulations86

to improve coarse-resolution models at a reduced computational cost. Despite their uni-87

versal approximation properties (Hornik et al., 1989), popular ML models such as neu-88

ral networks are often opaque to interpretation and can extrapolate poorly to conditions89

unseen during training (Recht et al., 2018; O’Gorman & Dwyer, 2018; Bolton & Zanna,90

2019; Subel et al., 2022).91

The performance of data-driven approaches is greatly influenced by choices that92

must be made in dataset preparation. The formulation of the subgrid forcing term, ei-93

ther in terms of tendency or subgrid-scale fluxes, can affect the stability of parameter-94

ized models (Yuval et al., 2021). Different filtering schemes also have significant effects95

on the online performance of subgrid parameterizations (Piomelli et al., 1988; Zhou et96

al., 2019; Frezat et al., 2022).97

There is currently a vast number of possible choices in terms of ML models, train-98

ing target formulation, and filtering and coarse-graining methods. However, few stud-99

ies offer a direct and adequate comparison between data-driven ML methods and physical-100

based parameterizations. Moreover, well-defined quantitative (rather than qualitative)101

online metrics are lacking. In this paper, we introduce a family of datasets (Sections 2102

and 3) and quantitative metrics (Section 4) for learning and evaluating ocean eddy sub-103

grid parameterizations, both offline and online, using a quasi-geostrophic (QG) simula-104

tion (datasets and code are available open-source; see Appendix D). Our online metrics105

quantify to what extent the time-averaged spectral and distributional properties of pa-106

rameterized simulations match those of ground-truth high-resolution simulations, as well107

as whether they improve the accuracy of more predictable short-term dynamics. These108

metrics make it possible to comprehensively compare numerous parameterizations, and109

the effects of dataset design choices on their performance on the physics of the simula-110

tions (e.g., spectral properties), climate (e.g., distributional of variables such as PV), and111

weather (e.g., the evolution of short-term forecast).112

In Section 5, we perform such a study for fully convolutional neural network pa-113

rameterizations, evaluating how offline and online performance change with different de-114
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signs of inputs (i.e. types of feature variables – velocity or potential vorticity) and out-115

puts (i.e. formulations of subgrid-scale forcing). Even for the best-performing neural net-116

works, we find poor generalization to flow regimes unseen during training, consistent with117

previous literature (Recht et al., 2018; O’Gorman & Dwyer, 2018; Bolton & Zanna, 2019;118

Subel et al., 2021; Guan et al., 2022; Subel et al., 2022).119

Motivated by these generalization issues, as well as the lack of interpretability of120

neural networks, there has been increasing interest in the physical sciences community121

in symbolic regression (also known as equation discovery). In symbolic regression, in-122

stead of an opaque model, the final output of training is a transparent equation, which123

often generalizes better (Rudy et al., 2017; Zhang & Lin, 2018; Champion et al., 2019;124

Zanna & Bolton, 2020; Mojgani et al., 2021). Many of these studies perform symbolic125

regression using sparse linear regression on top of a manually constructed basis of terms126

representing various operations (e.g. derivatives or multiples) of base features. Although127

powerful for small numbers of terms, this approach quickly becomes prohibitive because128

the space and time requirements grow exponentially if we consider higher-order oper-129

ations.130

To address these challenges, in Section 6 we introduce a novel algorithm for equa-131

tion discovery based on genetic programming, an alternative form of symbolic regression132

that is stochastic but can more efficiently explore higher-order operations (Koza, 1994;133

Schmidt & Lipson, 2009; Xing et al., 2022). We adapt this algorithm to search over spa-134

tial differential operators, and combine it with linear regression and residual-fitting to135

more efficiently and accurately fit constants. We find that the discovered expression of136

symbolic parameterization includes features discovered in prior works, is superior to tra-137

ditional physics-informed turbulence SGS closures, has similar performance to neural net-138

works in both offline and online metrics, and generalizes better to unseen flow regimes139

than neural networks and baseline physical parameterizations.140

2 Numerical Simulations141

This section describes the simulations we use to generate our datasets, which are142

based on pyqg (Abernathey et al., 2022), a Python library that models quasi-geostrophic143

(QG) systems using pseudo-spectral methods. QG systems are able to capture the gen-144

eration of ocean mesoscale eddies, the key process we parameterize in this study, and are145

often used to develop and test physic-based parameterizations (P. S. Berloff, 2005; Porta Mana146

& Zanna, 2014; Jansen & Held, 2014). In addition, QG systems are a reasonable approx-147

imation to the equations of motion in more realistic ocean models in the limit of strong148

stratification and rotation. Importantly for this study, which tests numerous parame-149

terizations online, they can be simulated much more efficiently than full-fledged ocean150

models or GCMs.151

2.1 Idealized two-layer QG model152

We use a two-layer version of the QG model from pyqg. The model’s prognostic153

variable is potential vorticity (PV), denoted as q1 in the upper and q2 in the lower layer:154

qm = ∇2ψm + (−1)m f20
g′Hm

∆ψ, m ∈ {1, 2}, (1)

where ψm is the streamfunction with depth Hm, ∆ψ = (ψ1 − ψ2), and ∇ = ⟨ ∂∂x ,
∂
∂y ⟩155

is the horizontal gradient operator. Zonal and meridional velocities are obtained from156

the streamfunction by the relations um = −∂yψm and vm = ∂xψm, for each layer with157

m ∈ {1, 2}. We express the horizontal velocity as a single vector um = ⟨um, vm⟩. We158

use the beta-plane approximation, such that the Coriolis acceleration is a linear func-159

tion of latitude (y) with slope β, such that f = f0+βy, and g
′ is the reduced gravity.160
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Figure 1. Snapshots of upper (A,E) and lower (B,F) potential vorticity (PV), barotropic

kinetic energy (C,G), and barotropic enstrophy (D,H) for simulations run for 10 years in eddy

(A-D) and jet (E-H) configurations over a square, doubly-periodic domain of length 106 m. Eddy

configuration results in an approximately isotropic distribution of vortices, while jet configuration

results in the formation of stable, long-lived jets with more coherent latitudinal structure.

The prognostic equations, solved in spectral space, are:161

∂q̂m
∂t

= −Ĵ (ψm, qm)− ikβmψ̂m − ikUmq̂m + δm,2rekκ
2ψ̂2 + ŝsd, (2)

where ∂t is the Eulerian time derivative, (̂ ) denotes taking the Fourier transform, and162

κ =
√
k2 + l2 is the radial wavenumber, where k and l are zonal and meridional wavenum-163

bers, respectively. J (A ,B) = AxBy−AyBx is the horizontal Jacobian. The mean PV164

gradient in each layer is βm = β + (−1)m+1 f2
0

g′Hm
∆U , where ∆U = U1 − U2 is a fixed165

mean zonal velocity shear between the two fluid layers. The Dirac delta function, δm,2,166

indicates that the bottom drag with coefficient rek is only applied to the second and bot-167

tom layer. q̂ and ψ̂ are related to each other via168

(M− κ2I) ·
[
ψ̂1

ψ̂2

]
=

[
q̂1
q̂2

]
,where M =

− f2
0

g′H1

f2
0

g′H1

f2
0

g′H2
− f2

0

g′H2

 , (3)

such that either q or ψ can independently identify the state of the system.169

The model is solved pseudospectrally (Fox & Orszag, 1973) through inverting the170

velocity field and PV to real space, calculating the Jacobian using real-space PV fluxes,171

and transforming back to spectral space. The scale-selective dissipation (ssd), written172

as an additive term in Equation 2, is defined as a highly-scale selective operator, which173

attenuates the last 1/3 of the spatial frequencies of the spatial frequencies of all terms174

on the right-hand side of Equation 2. More precisely, the operator takes the form of an175

exponential filter, Fc(κ), such that176

Fc(κ
∗) =

{
1, κ∗ < κc

e−23.6(κ∗−κc)
4

, κ∗ ≥ κc
(4)

where κ∗ is the non-dimensional radial wavenumber and κc = 0.65π, the cut-off177

wavenumber. After each time step, q̂m(κ∗) values are multiplied by Fc(κ
∗). Similar to178
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the 2/3 dealiasing rule (Orszag, 1971), this filtering scheme reduces aliasing errors in the179

same range of scales, but additionally provides numerical dissipation necessary for sta-180

ble simulations. The energetic contribution from the ssd term is relatively small (see Fig-181

ure D11; energy fluxes are an order of magnitude lower than those shown in Figure 2D-182

G, and only nonzero over a narrow range of wavenumbers), which is important for sim-183

ulations of quasi-2D turbulence (Thuburn et al., 2014).184

2.2 Model setup185

We configure the model with a doubly-periodic square domain with a size of L =186

106m, a flat topography, and a total depth of H = H1 + H2, a fixed mean zonal ve-187

locity shear, ∆U with U2 = 0. We set a fixed deformation radius rd, which is the char-188

acteristic scale for baroclinic instability and mesoscale turbulence, using r2d =
g′

f2
0

H1H2

H189

(see Table 1 for parameter values).190

We select the model’s grid size, ∆x, in relation to the deformation radius. To re-191

solve mesoscale eddies, one needs to ensure that rd/∆x is greater than 2 (Hallberg, 2013).192

With rd = 15000m, if we choose a 256×256 grid where ∆xhires = L/256 = 3906.25m,193

then rd/∆xhires = 3.84, so mesoscale turbulence should be well-resolved; if instead we194

choose ∆xlores = L/64 = 15625m such that rd/∆xlores = 0.96, we expect that the195

simulation is unrealistic with a lack of mesoscale eddies. In such configuration, we would196

need to find a parameterization that acts at that resolution to replace the missing tur-197

bulent physics. We hereby refer simulations with a grid of 256×256 as “Highres”, and198

simulations with a grid of 64×64 as “Lores”. All simulations are run with a numerical199

timestep ∆t = 1hour.200

We consider two distinguishable flow regimes on which generalization properties201

of parameterizations can be tested: eddy configuration, which leads to the formation202

of isotropically distributed eddies, and jet configuration, which leads to the formation203

of anisotropic jets. These configurations exemplify the two primary scaling regimes of204

meridional heat transport (Gallet & Ferrari, 2021), and we will test whether parameter-205

izations learned with data from one generalize to the other. Snapshots from each are vi-206

sualized in Figure 1, and the pyqg parameters used to generate them are given in Ta-207

ble 1.208

Config. β [ 1
ms ] rek [ 1s ] H1 [m] H2 [m] ∆U [ms ] g′ [ms2 ] rd [m]

Eddy 1.5e-11 5.787e-07 500 2000 0.025 9.81 15000
Jet 1.0e-11 7.0e-08 500 5000 0.025 9.81 15000

Table 1. Table of parameters used in eddy and jet configuration.

2.3 Diagnostics209

The physical characteristics of QG systems can be qualitatively represented by var-210

ious diagnostics such as energy and enstrophy spectra, total kinetic energy and enstro-211

phy, and a spectral energy budget (Marques et al., 2022; Yankovsky et al., 2022). Fur-212

ther, we also use these diagnostics quantitatively to define difference and similarity met-213

rics and compare the performance across different SGS models implemented in low res-214

olution simulations in section 4.215

Resolution has a strong impact on these diagnostics. In Figure 2, we show quasi-216

steady state statistics (spectra, kinetic energy timeseries, probability density function)217

from simulations run at multiple resolutions (48×48, 64×64, 128×128, and 256×256 grids).218

The two higher-resolution simulations (L/∆x ≥ 128) show similar behavior, indicat-219
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Figure 2. Comparison of time-averaged kinetic energy power spectra summed over fluid layers

(A), time-series of total kinetic energy, (B), spatially flattened probability distribution of upper

layer PV (C), and spectral energy flux terms (D-G) for eddy configuration simulations at multi-

ple horizontal resolutions: L/∆x=256, L/∆x=128, L/∆x=64, and L/∆x=48. Higher-resolution

simulations (L/∆x≥128) converge, while lower-resolution simulations (L/∆x≤64) differ from

each other and from the higher-resolution simulations.

ing near-convergence of the statistical characteristics over the wavenumber band contain-220

ing most of the kinetic energy of mesoscale eddies. The two lower-resolution simulations221

(L/∆x ≤ 64) show significant differences due to insufficiently-resolved turbulent fea-222

tures which affect the flow at all scales.223

To identify the energy pathway of the flow, we evaluate spectral fluxes of different224

terms in the two-layer QG system. Let E(k, l) denote the total spectral energy density225

of the two-layer system, we have226

∂E(k, l)

∂t
=

2∑
m=1

Hm

H
R
[
ψ̂∗
mĴ(ψm,∇2ψm)

]
+

f20
g′H

R
[
(ψ̂∗

1 − ψ̂∗
2)Ĵ(ψ1, ψ2)

]
+

f20
g′H

k∆UR
[
jψ̂∗

1ψ̂2

]
− H2

H
rekκ

2|ψ̂2|2,

(5)

where ∗ denotes complex conjugate, R denotes real part, j is the imaginary unit, and the227

terms on the right-hand side are the spectral contributions from kinetic energy flux (KE228

flux), available potential energy flux (APE flux), available potential energy generation229

(APE gen), and bottom drag, respectively.230

The lower row of Figure 2 demonstrates the typical energy cycle in QG turbulence231

(Salmon, 1980; Vallis, 2017): the potential energy of fluctuations is extracted from the232

prescribed mean flow (APE gen) and cascades toward small scales up to the deforma-233

tion radius (APE flux) where it is converted to kinetic energy due to baroclinic insta-234

bility (not shown). The kinetic energy then flows back to large scales following the in-235

verse energy cascade (KE flux), where it is ultimately dissipated by friction (bottom drag).236
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The coarse resolution models (L/∆x ≤ 64) poorly resolve the formation of mesoscale237

eddies due to baroclinic instability and their enlargement due to the inverse energy cas-238

cade (Zanna et al., 2020), leading to underestimated extraction of energy from the mean239

flow and a breakdown in the energy cycle.240

A promising approach to avoid this breakdown is to supplement the resolved ki-241

netic energy flux with a so-called “backscatter” parameterization (Jansen & Held, 2014;242

Porta Mana & Zanna, 2014) which energize eddies. We believe that efficient subgrid pa-243

rameterizations should simulate backscatter at eddy permitting resolution, but also other244

processes that may matter, such as dissipation. In this paper we do not study precisely245

which physics are parameterized with data-driven subgrid models, but instead quantify246

how they influence the resolved energy cycle.247

3 Diagnosing Subgrid Forcing248

The goal of our work is to learn models that, given only low-resolution inputs, can249

predict the subgrid forcing, S, missing from a low-resolution QG model (Eq. 6). To do250

that, we need to first quantify subgrid forcing, which is generally done by filtering and251

coarse-graining high-resolution simulations. This is done sometimes under the implicit252

assumption that coarsened high-resolution data will have a similar enough distribution253

to low-resolution data that the same data-driven parameterizations will work for both.254

We use ( ) to denote a generic filtering and coarse-graining operator. However, the choice255

of filtering and coarse-graining and the choice of subgrid forcing terms to learn are not256

uniquely defined.257

In Sections 3.1 and 3.2, we present several options for how to define subgrid forc-258

ing terms in their continuous forms. Specifically, we consider a forcing S in the PV equa-259

tion that can be added to a coarse resolution simulation to improve its physics such that260

∂q̂m
∂t

= −Ĵ
(
ψm, qm

)
− ikβmψ̂m − ikUmq̂m + δm,2rekκ

2ψ̂2 + ŝsd + Ŝ, (6)

where S can take the form of {Sqtot , Sq, ∇ · ϕq, curl(Su, Sv), curl(∇ ·Φu)}, (detailed261

in Sections 3.1 and 3.2).262

In Section 3.3 we discuss the contribution of the forcing term to the energy bud-263

get. Finally, in Section 3.4, we describe three different filtering and coarse-graining op-264

tions applied in this work.265

3.1 Subgrid forcing of potential vorticity266

We consider three different definitions of subgrid PV forcing for each fluid layer of267

the QG model: a total tendency, Sqtot , which is computed online as the residual between268

the low-res and high-res simulation (e.g., P. S. Berloff (2005) and Brenowitz and Brether-269

ton (2018)); the subgrid forcing due to nonlinear advection, Sq; and the subgrid flux di-270

vergence forcing, ∇ · ϕq.271

3.1.1 Total tendency (nonlinear advection and numerical dissipation)272

Let ∂Ht and ∂Lt denote tendency functions from the high- and low-resolution mod-273

els, respectively (dropping subscripts referring to the model layer for simplicity). For any274

given high-resolution q, we can express its total subgrid forcing (Porta Mana & Zanna,275

2014; Kent et al., 2016; P. Berloff et al., 2021; Shevchenko & Berloff, 2021) due to the276

differences between the high- and low-resolution models with respect to ( ) as277

Sqtot = ∂Ht q − ∂Lt q. (7)

We compute this quantity by setting the initial conditions of the high- and low-resolution278

models to be q and q, respectively, taking a single step forward with equal ∆t, and sub-279
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tract the tendency of the low-resolution model from the filtered and coarse-grained ten-280

dency of the high-resolution model.281

3.1.2 Subgrid tendency due to nonlinear advection282

Another commonly used definition of subgrid forcing considers the unresolved non-283

linear advection (Bolton & Zanna, 2019; Beck et al., 2019; Maulik et al., 2019; Xie et al.,284

2020; Zanna & Bolton, 2020; Guillaumin & Zanna, 2021; Guan et al., 2022), which can285

be expressed as286

Sq = (u · ∇)q − (u · ∇)q, (8)

where (u·∇) denotes the advection operator defined on the coarse grid. Note that287

following Grooms et al. (2013) and Porta Mana and Zanna (2014), we define the filtered288

and coarsened velocity u by inverting the filtered and coarsened PV q̂ to ψ̂ using Eq. 3,289

multiplying ψ̂ by ik and il, and applying an inverse Fast Fourier Transform (FFT) to290

obtain û and v̂, respectively.291

3.1.3 Flux divergence subgrid tendency.292

One difficulty in parameterizing subgrid forcing is that naive ML parameterizations293

may not obey conservation laws, e.g. for momentum and vorticity. Many physical pa-294

rameterizations are formulated as divergences of fluxes to satisfy conservation laws by295

the divergence theorem. Ideally, we want to learn ML parameterizations which behave296

similarly. One approach is to train ML models to predict subgrid forcing (e.g. Sq) but297

incorporate a numerical divergence operation into their architectures (e.g. as the final298

layer of a neural network, see Zanna and Bolton (2020)). Another is to diagnose a dif-299

ferent quantity whose divergence equals the subgrid forcing (Pawar et al., 2020; Stoffer300

et al., 2021; Yuval et al., 2021), train ML models to predict this quantity (i.e., the sub-301

grid flux) directly, and compute divergences outside the learned model as part of the im-302

plementation of parameterization.303

To enable experimentation with this second approach, we define a “subgrid flux”304

that will be predicted by the FCNN305

ϕq = uq − ūq̄. (9)

Under the assumption that the flow is incompressible (i.e. that ∇·u ≈ ∇·u ≈ 0) and306

that differentiation commutes with filtering and coarsening, we can show that307

∇ · ϕq = ∇ · (uq − u q) ≈ Sq.

These three formulations (Sq, Sqtot , and ∇·ϕq) are always highly correlated and often308

nearly identical, but the exact value of this correlation (especially for ∇·ϕq vs. the oth-309

ers) can range from 0.75 to 1−10−14, depending on the layer, timestep, configuration,310

and especially the filtering and coarse-graining operator (Section 3.4).311

3.2 Subgrid forcing of velocity312

Realistic ocean models use velocity as their prognostic variable with temperature313

and salinity, rather than PV. Many studies have focused on momentum subgrid closures314

(Zanna & Bolton, 2020; Guillaumin & Zanna, 2021). Here, we define momentum forc-315

ing which is later related to the subgrid PV forcing.316

The first definition involves the advection-based subgrid momentum forcing given317

by318

Su = (u · ∇)u− (u · ∇)u. (10)
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Analogous to Equation 9, we also define momentum subgrid flux terms as319

ϕu = uu− uu,

ϕv = uv − u v.
(11)

We use Φu = (ϕu,ϕv) to denote the matrix of all four terms of the stress tensor, with320

a total forcing ∇·Φu; where the y-component of ϕu is equal to the x-component of ϕv.321

Given that the PV flux is composed of two parts: the relative vorticity flux and322

the buoyancy or thickness flux, we note that the relative vorticity flux is related to the323

momentum flux via the curl operator (Vallis, 2017; Killworth, 1997). In our simulations,324

we update the PV tendency with the curl of subgrid momentum forcing, e.g., curl(Su, Sv) =325

∂xSv−∂ySu, which serves as a momentum parameterization in QG equations (similarly326

for Φu). Note that curl(Su, Sv) is different from Sq when obtained from the respective327

coarse-grained fluxes: correlations between the two terms range from +0.2 to -0.4 de-328

pending on the filtering and coarse-graining operator.329

3.3 Contribution of forcing to diagnostics330

Similar to Eq. 5, we derive the spectral contribution of subgrid-scale forcing towards331

total energy332 (
∂E(k, l)

∂t

)sub

= − 1

H

2∑
m=1

HmR
[
ψ̂∗
mŜm

]
, (12)

where Ŝm denotes the spectral PV tendency induced by the SGS model in the mth layer.333

This equation states that the total tendency induced by the subgrid term can be writ-334

ten as the projection of subgrid tendency onto the streamfunction in each layer.335

3.4 Coarse-graining and filtering336

We are using a combination of filtering and coarse-graining to diagnose the sub-337

grid forcing. There are a number of possible ways to filter and coarse-grain simulations.338

Filtering can be identified by various convolutional kernels (top-hat, Gaussian, e.g., Sagaut339

(2006)), which can be approximated on a given mesh with quadrature rules (Xie et al.,340

2020; Guillaumin & Zanna, 2021), polynomials based on Laplacian operator (Sagaut &341

Grohens, 1999; Grooms et al., 2021) or applied in spectral space (Guan et al., 2022). Coarse-342

graining methods include spectral truncation (Thuburn et al., 2014), averages over boxes343

(Porta Mana & Zanna, 2014; Beck & Kurz, 2021) or subsampling (Xie et al., 2020, i.e.344

selection of every K ′s point). The combination of filtering and coarse-graining has also345

been shown to reduce aliasing in the computation of subgrid forcing (Zanna & Bolton,346

2021). Here, rather than focusing on one method for filtering and coarse-graining, we347

examine the sensitivity of our results to three different operators for diagnosing the sub-348

grid forcing in our simulations: two different filters in spectral space (referred to as “Op-349

erator 1” and “Operator 2”) , and one filter in real space (and “Operator 3”).350

For Operator 1 and Operator 2, given that pyqg is a pseudo-spectral model, it is351

natural to use spectral methods to perform coarse-graining and filtering. For data gen-352

eration, we first coarse-grain and then filter , which are commutative for elementwise spec-353

tral filtering operators, so can be done in whichever order is most convenient. Coarse-354

graining is done by coarse-graining the simulation by a factor of K, or more precisely,355

truncating the set of spatial modes of q̂ by only keeping the first 1/K. For example, in356

the case of going from resolution 256×256 to 64×64, we start with a q̂ with 128 modes357

and only keep the first 32. Spectral filtering generally consists of applying selective de-358

cay that reduces the strength of the highest frequencies, whereas low-frequency compo-359

nents are mostly retained after truncation. Here, we use two different filtering methods360

(Sections 3.4.1 and 3.4.2).361
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Finally, to mimic the procedure necessary for ocean models which are not run in362

spectral space, we convert our output to a Cartesian grid and applying filtering and coarse-363

graining in real space (“Operator 3”, Section 3.4.3).364

3.4.1 Operator 1: spectral truncation, sharp filter365

The first option is implemented by simply applying the same quadruple-exponential366

filter used by pyqg to implement small-scale dissipation in Equation 4. This filter leaves367

small wavenumbers unchanged but attenuates wavenumbers above a cutoff threshold κc ≡368

2/3 of the low-resolution model’s Nyquist frequency:369

q̂κ =

{
q̂κ, κ < κc

q̂κ ∗ e−23.6(κ−κc)4∆x4
lores , κ ≥ κc.

(13)

In some sense, this is the most conservative choice of filter possible (i.e. closest to not370

filtering at all), since it will already be applied within the ocean model. We use “Op-371

erator 1” to refer to spectral truncation followed by the application of this filter.372

3.4.2 Operator 2: spectral truncation, softer Gaussian filter373

The second spectral filtering option considered (“Operator 2”) is to instead apply374

the following Gaussian filter to all remaining modes:375

q̂κ = q̂κ ∗ e−κ
2(2∆xlores)

2/24 (14)

This choice of filter is based on Guan et al. (2022) and Pope (2000). According to the376

definition of the filter width given by Lund (1997), this filter is twice as large as the grid377

size of the coarse model.378

3.4.3 Operator 3: diffusion-based filtering, real-space coarsening379

Finally, we consider a procedure which is closer to the procedure needed for ocean380

models. We apply GCM-Filters (Grooms et al., 2021; Loose et al., 2022), a recent fil-381

tering method which approximates the spectral transfer function of Gaussian filter with382

polynomials based on the Laplacian diffusion operator, converting our pyqg output to383

a Cartesian grid. We then coarse-grain the filtered output in real space. To reduce the384

resolution by a factor of K, we average the input field over non-overlapping boxes of K×K385

points. We call this procedure “Operator 3.”386

A comparison of the effects of these different filtering and coarse-graining opera-387

tors on PV and its subgrid forcing is shown in Figures 3 and 4.388

3.5 Comments regarding notation389

We use superscripts (1), (2), and (3) (for Operators 1, 2, and 3, respectively) to390

describe subgrid forcing computed with each operator. For example, S
(1)
q signifies the391

subgrid tendency due to nonlinear advection diagnosed by Equation 8 and computed with392

the operator from Section 3.4.1, while Φ(3)
u signifies the tensor of velocity subgrid fluxes393

diagnosed by Equation 11 and computed with the operator from Section 3.4.3.394

In addition, we use ( ) to refer to all low-resolution variables, whether coarse-grained395

from a high-resolution simulation or natively from a low-resolution simulation. The rea-396

son is that we evaluate parameterizations offline over filtered and coarse-grained high res-397

olution variables, but evaluate parameterizations online over low-resolution variables. Al-398

though these variables can be different in various respects (e.g., may be differently dis-399

tributed), when learning data-driven parameterizations from subgrid forcing data col-400

lected offline, we necessarily assume that one will generalize to the other. Though this401

is an assumption we explicitly test in online evaluation.402
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In the remaining text, we also simplify ∇ to just ∇ for conciseness. It should be403

treated as ∇ when applied to a coarsened or low-resolution variable.404

Longitude

La
tit

ud
e

A High-res PV B Operator 1 C Operator 2 D Operator 3

2

0

2

Upper PV [s 1]

×10 5

E F G

5

0

5

Forcing [s 2]

×10 11

Comparing effects of three filtering and coarse-graining operators
on potential vorticity forcing

10
6m

Figure 3. Comparison of the effects of three different methods of filtering and coarse-graining

256×256 eddy configuration initial states (A) to 64×64 (B-D), along with resulting forcing terms

Sq, defined in Eq. 8 (E-G). Operators 1 (B,E) and 2 (C,F) truncate Fourier modes and apply

sharp and soft spectral filters, respectively, while Operator 3 (D,G) applies diffusion-based fil-

tering and averaging in real space. See Section 3.4 for operator definitions and Figure 4 for

comparisons of associated spectral properties.

4 Metrics405

In the sections that follow, we evaluate a large number of parameterizations on data406

generated with different operators and forcing formulations, as well as different inputs407

and architectures. Given that the models are too numerous to manually inspect, we de-408

fine several levels of metrics to quantify their performance. In Section 4.1, we define met-409

rics which can be evaluated offline, i.e. on held-out testing sets of subgrid forcing data.410

In Section 4.2, we define online metrics that measure the similarity of low-resolution sim-411

ulations run with the parameterization to high-resolution simulations. These metrics ac-412

count for (1) aspects of the model physics (e.g., kinetic energy flux at different scales),413

(2) the climatological biases and characteristics of key variables (e.g, distributions of po-414

tential vorticity), and (3) the forecast skill of the simulation (e.g., decorrelation timescales415

of short term forecasts).416

4.1 Offline417

Offline metrics quantify the parameterization’s skill at predicting its intended tar-418

get. For each fluid layer, we consider:419

1. The coefficient of determination (R2), 1 − E[(S−Ŝ)2]
E[(S−E[S])2] , which is 1 when predic-420

tions are perfect, 0 when predictions are no better than than always predicting421

the mean, and negative when worse than always predicting the mean.422

2. Pearson correlation (ρ), Cov(S,Ŝ)
σSσŜ

, where σ denotes the empirical standard devi-423

ation of a quantity over the dataset. This quantity is between -1 and 1 and can424
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Figure 4. Energy redistribution, Eq. 12 (A) and power spectra (B) of Sq by filtering and

coarse-graining operator (computed on eddy configuration data, averaged over time, and summed

across layers). Each operator produces forcing which redistributes energy differently across scales

with different spatial spectra. See Figure 3 for comparisons of forcing snapshots.

remain high even when R2 is negative, e.g. if predictions are wrong by a large but425

consistent scaling factor.426

These metrics are evaluated on held-out datasets of filtered and coarse-grained high-resolution427

simulations from both eddy and jet configurations. They can either be aggregated over428

time and space or expressed as functions of time or space. In addition, we visualize the429

power and energy redistribution spectra of the predicted subgrid forcing and compare430

them to the corresponding quantities for the ground-truth forcing.431

4.2 Online432

In contrast to offline metrics, we evaluate online metrics by initializing a new QG433

simulation at low resolution and, at every time step, passing its state to the parameter-434

ization and adding the parameterization’s output to the PV tendency. The distribution435

of these low-resolution states may therefore be different, but by analyzing the ultimate436

results and testing for various forms of consistency with high-resolution results (i.e. on-437

line metrics), we can evaluate whether the parameterization is effective at improving the438

model physics and/or the climatological or forecast skill.439

To compute such online metrics, we first run 5 parameterized low-resolution sim-440

ulations for 10 years in both eddy and jet configurations initialized from different ran-441

dom states, saving all state variables and diagnostics described in Section 2.3. We then442

compute distance metrics between the (statistical and spectral) distributions of these vari-443

ables from the parameterized low-resolution simulation and those from 5 simulations run444

at high resolution in corresponding configurations. Finally, we normalize these distances445

by the corresponding metrics for unparameterized low-resolution simulations to obtain446

more interpretable similarity scores.447
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4.2.1 Differences between time-averaged power spectra and fluxes448

Some of the most important characteristics of simulations are how energy and en-449

strophy distribute and flow across scales, which we measure using power spectra and the450

spectral flux diagnostics described in Section 2.3. Ideally, a parameterized simulation should451

match a high-resolution simulation with respect to all such quantities.452

For both power spectra and fluxes, we compute a total root mean squared differ-453

ence between curves f :454

spectral diff(sim1, sim2; f) ≡
√

1

|K|
∑
k∈K

(
fsim1(k)− fsim2(k)

)2
(15)

where K is a suitably chosen set of isotropic wavenumbers common to both simulations.455

In our case, K is evenly distributed in log space and is up to 2/3 of the Nyquist frequency456

of the low-resolution simulation (≈ 1.07×10−5m−1). We compute this metric for the457

energy and enstrophy power spectra in each layer and for the spectral energy fluxes (KE458

flux, APE flux, APE generation, and bottom drag), yielding a total of 8 metrics. The459

contribution of parameterizations towards total energy (Eq. 12) is added onto the KE460

flux term for parameterized low-resolution simulations. An illustration of this kind of461

distance metric is shown in Figure 5A.462
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Figure 5. Illustration of the three types of difference metrics defined in Section 4.2.

spectral diffs (A) compute the RMSE between different quantities summed over isotropic

wavenumber κ. distrib diffs (B) compute the earth mover’s distance between the marginal dis-

tributions of variables at the end of the simulation. decorr diff (C) estimates how much faster a

given simulation diverges from a high-resolution simulation when starting from the same random

initial state.

4.2.2 Differences between spatially flattened probability distributions463

We also consider differences between the empirical distributions of various quan-464

tities in different simulations at the end of the simulation, which we measure with earth465

mover’s distance or Wasserstein distance (Monge, 1781; Rubner et al., 2000):466

distrib diff(sim1, sim2; f) ≡
∫ ∞

−∞

∣∣Psim1(f ≤ x)− Psim2(f ≤ x)
∣∣dx, (16)

where Psim(f ≤ x) is a cumulative distribution function of quantity f in a given simulation.467

If we imagine the two probability density functions as mounds of earth, this metric cor-468

responds to the minimum amount of work required to move all the mass from one mound469

to the other. For 1-dimensional distributions, it reduces to the integral of the difference470

in each cumulative distribution function, which we approximate empirically. We com-471

pute these differences for the quasi-steady-state distributions (marginalized over space472
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and at the final timestep) of u, v, q, the kinetic energy density (u2+v2)/2, and enstro-473

phy curl2(u)/2 at each layer. This leads to 10 total metrics for each simulation.474

Note that when comparing low-resolution to high-resolution metrics, we are com-475

paring the distributions of, e.g., u and u, so histograms are appropriately normalized.476

An illustration of this kind of comparison is shown in Figure 5B, though for brevity we477

show only the difference in the integrals of PDFs rather than the integrals of the cor-478

responding CDFs (which gives the exact value of distrib diff).479

4.2.3 Differences in decorrelation times480

The previous metrics consider whether aggregate, long-term simulation statistics481

(i.e. “climate”) match those of high-resolution simulations. Arguably, though, param-482

eterizations should also improve the similarity of short-term trajectories (i.e. “weather”)483

between low- and high-resolution simulations – or at least not significantly worsen it.484

We measure this short-term similarity by defining a “decorrelation time” metric,485

i.e. minimum time t to achieve correlation δ from above, averaged over ensemble of ini-486

tial conditions q0 and their perturbations ϵ487

decorr time(sim1, sim2) ≡ Eq0,ϵ
[
min
t

{
t : Corr

(
q
(t)
sim1(q0), q

(t)
sim2(q0+ϵ)

)
≤ δ

}]
(17)

where each q
(t)
sim(q0) denotes a snapshot of the PV for the given simulation integrated for488

time t starting from an initial condition q0 sampled from the quasi-steady state, ϵ is a489

small independent Gaussian perturbation with standard deviation 10−10, and δ = 0.5.490

When sim1 and sim2 have the same dimensionality, Corr denotes the simple Pearson491

correlation; when they have different dimensionalities (i.e. if sim1 is higher resolution492

than sim2), we compute the correlation after filtering and coarse-graining the higher-493

resolution simulation to the resolution of the other simulation using Operator 1 (Equa-494

tion 13). We approximate expectations Eq0,ϵ using empirical averages over 5 random sam-495

ples of q0, ϵ, and we use the same random high-resolution q0 for all low-resolution mod-496

els so that correlation trends for different low-resolution models can be paired.497

With a decorrelation time now defined, we can compare the expected time it takes498

for one type of simulation to fall out of sync with another, vs. the expected time it takes499

for one simulation to fall out of sync with a perturbed version of itself:500

decorr diff(sim1, sim2) ≡ decorr time(sim1, sim1)− decorr time(sim1, sim2), (18)

In our study, sim1 is a high-resolution simulation, which stays correlated with a perturbed501

version of itself for a relatively long time, while sim2 will be a low-resolution simulation.502

With the eddy configuration, the correlation of high-resolution simulations stays above503

0.5 for about 1 year (black vertical line in Figure 5C; this roughly quantifies the limit504

of predictability of the system), whereas unparameterized low-resolution simulations re-505

main >0.5 correlated for about 2 months (gray vertical line in Figure 5C), leading to a506

decorr diff of 10 months (red arrow in Figure 5C). For a parameterized low-resolution507

simulation, we might hope that its decorr diff is lower than that of the low-resolution508

model (e.g., 8 months), indicating that its short-term evolution is more consistent with509

that of the high-resolution model.510

4.2.4 From difference to similarity511

One issue with defining such a variety of distance metrics is that they become dif-512

ficult to compare especially when they have different units. However, for any particu-513

lar metric, what we care about is not its actual value but whether it is smaller for pa-514

rameterized simulations (vis-à-vis Highres simulations) than for low-res simulations. To515

that end, we re-express our distance metrics as similarity scores that quantify how much516
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closer parameterized models are to high-res than to low-res:517

Similarity(param,high-res; diff) ≡ 1− diff(param,high-res)

diff(low-res,high-res)
. (19)

This similarity score is approximately 1 if the parameterized model’s distance to the high-518

res model is much smaller than that of the low-res model (and exactly 1 for the high-519

res model ); it is approximately 0 if this distance is approximately equal to that of the520

low-res model (and exactly 0 for the low-res model), and is less than 0 if the distance521

is larger than that of the low-res model. An example is shown in Figure 6. We also in-522

clude a validation of the consistency of these scores with respect to high- and low-resolution523

simulations generated with different random initial conditions in Figure D10. In general,524

we evaluate our online results using similarity scores.525
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Figure 6. Example online similarity scores for two parameterizations corresponding to the

spectral diff of their KE flux terms with respect to high-res (as compared to low-res). In this

example, the first parameterized model’s KE flux curve is much closer to that of the high-res

model than the low-res model, so its similarity is positive and close to 1 (though slightly lower

than it might seem from visual inspection due to the logarithmic x-scale). The second parameter-

ized model, on the other hand, is further away than low-res, so it receives a negative score.

Note that there are many alternative metrics that could have been selected (e.g.,526

RMSE for decorrelation timescales, Kullback-Leibler for probability distributions (Kullback527

& Leibler, 1951), absolute error for differences in spectra, etc), that may augment the528

set defined here to focus on other aspects of the simulations (e.g. extreme events).529

4.3 Experimental Setup530

With our datasets and metrics now defined, we now describe our experiments to531

learn and evaluate parameterizations. In total, we test 148 parameterizations—105 fully532

convolutional neural networks (FCNNs) trained with different dataset design decisions533

(described in Section 5), a hybrid linear and symbolic regression method using genetic534

programming (described in Section 6), and 42 different parameter settings spread over535

three baseline physical parameterizations: symbolic regression from Zanna and Bolton536

(2020), backscatter from Jansen and Held (2014), and Smagorinsky (1963), all three de-537

scribed in Appendix A.538

The trained parameterizations are evaluated offline and also implemented into the539

coarse resolution simulation with 64×64 horizontal resolution for the online evaluation.540
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To simplify the discussion, we begin by describing these categories of parameterizations541

individually, along with some of the experimental results specific to those categories. We542

then compare performance across parameterization categories in Section 7.1.543

Because we have multiple categories of parameterization (FCNN, genetic program-544

ming, and baselines) and multiple categories of online metric (spectral, distributional,545

and decorrelation time) with numerous individual parameterizations (148) and metrics546

(19) within each category, we will often simplify as follows. For each category of online547

metric, we summarize individual parameterization’s scores by taking means (or medi-548

ans and percentiles if visualizing variation). For each category of parameterization, we549

either show a distribution of these mean scores, or select individual parameterizations550

to highlight from the Pareto frontier of mean scores within each category, i.e. the set of551

parameterizations which maximize some linear combination of mean scores.552

5 Convolutional Neural Network Parameterizations553

We consider parameterizations implemented as fully convolutional neural networks554

(FCNNs) which output predictions for all x, y points simultaneously. Models receive in-555

put data at all points x, y in both layers (though we train separate models for each fluid556

layer to reduce memory cost during training), which allows them to be maximally flex-557

ible, and therefore useful for studying the effects of changing attributes of the dataset558

on best-case performance.559

5.1 Dataset design choices560

For our FCNN experiments, we are interested in how the structure of the dataset561

affects the offline and online performance. We train FCNNs to predict subgrid forcing562

diagnosed with each of the five forcing formulations ({Sqtot , Sq, ∇·ϕq, curl(Su, Sv), curl(∇·563

Φu)}, Section 3), and for each forcing formulation, we generate three FCNNs trained on564

datasets generated by each filtering and coarse-graining operator (Section 3.4). Finally,565

we also investigate the effect of the choice of input variables we pass to the FCNN by566

testing every non-empty element of the power set of {q,u,∇u = (∂xu, ∂xv, ∂yu, ∂yv)},567

which is 7 options in total. This gives us 5×3×7 = 105 total options for constructing568

FCNN parameterizations.569

Notation-wise, we refer to models trained on each option as, e.g., FCNN(q,u→S(2)
u ),570

which signifies an FCNN trained on the values of PV and velocity to estimate subgrid571

momentum forcing (Eq. 10), computed with Operator 2 (spectral truncation + Gaus-572

sian filter, Section 3.4.2).573

For each operator and configuration, we use data from 250 independent high-resolution574

simulations started from random noise and run for 10 simulation years (generally reach-575

ing the quasi-steady state by 3-5 simulation years depending on the configuration; we576

also include data from the transient spin-up state in the dataset). We sample subgrid577

forcing formulations (i.e. potential prediction targets) and coarsened model state vari-578

ables (i.e. potential input variables) every 1000 simulation hours, to remove almost all579

correlation between successive samples. This gives us 6 datasets (2 simulation configu-580

rations, jet and eddy, × 3 operators) each with 21,750 snapshots of input and target vari-581

ables (each of which is a 64×64×2 array).582

5.2 Architectural details and constraints583

Following Guillaumin and Zanna (2021), we train FCNNs with 8 fully convolutional584

layers (128 and 64 filters for the first two layers, respectively and 32 thereafter), ReLU585

activations, batch normalization after all intermediate layers, and circular padding due586

to the periodicity of the domain. Each input variable at each fluid layer is passed in a587
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separate input channel. The loss function is mean squared error (MSE), defined as E
[
(S − Ŝ)2

]
,588

where E denotes the expected value over a dataset and S is a generic prediction target.589

The FCNNs are trained for 50 epochs on a MSE loss evaluated over minibatches of 64590

samples.591

In preliminary experiments, we found that constraining the FCNNs’ final output592

layers to have zero spatial mean when predicting Sq and Su was necessary for online nu-593

merical stability (as otherwise, q can continually increase, leading to Courant-Friedrichs-594

Lewy (CFL) condition violations). This is done within the FCNN architecture and not595

as a post-processing step. The constraint ensures that at each timestep, parameteriza-596

tions redistribute but not increase or decrease the total PV. However, when predicting597

ϕq and Φu, we leave FCNNs unconstrained because we only apply predictions after tak-598

ing their divergence.599

Although the chosen architecture could be improved, e.g., by adopting the U-Net600

model of Ronneberger et al. (2015), our goal is not to maximize the performance but to601

study its relationship with dataset design choices.602
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Figure 7. Visualizing the effects of different dataset design choices: A) filtering and coarse-

graining operator, B) forcing formulation, C) input. We use the probability distributions of mean

spectral similarity scores, conditioned on each design choice, and smoothed using kernel density

estimation for visual clarity. Similarity score probability mass further to the right (past the 0

line, and towards 1) indicate that the corresponding difference metric was low compared to low-

res, therefore indicating good online performance. The results suggest that marginally, similarity

was highest along most metrics for parameterizations trained to use velocity (Panel C) to predict

velocity-based subgrid forcing (Panel B) calculated with a sharp spectral filter (Panel A).

5.3 Sensitivity of FCNN performance to dataset design603

We now present FCNN-specific results of how online performance varies with the604

dataset design choices described in Section 5.1. For each design choice, we constructed605

the corresponding eddy configuration training data, trained an FCNN parameterization,606

and evaluated it in both eddy and jet configuration, both offline and online. In each case,607

all simulations were numerically stable (the CFL condition was not violated). The sta-608

–18–



manuscript submitted to JAMES

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Online distributional similarity

0.2

0.0

0.2

0.4

0.6

0.8

1.0
On

lin
e 

sp
ec

tra
l s

im
ila

rit
y  BS

CAT
(0.

00
7,1

.2)

 Hybrid Symbolic

 BSCAT(0.01,1.1)

 FCNN(q S(1)
qtot

)

Spectral vs. distributional similarity                                
on eddy config (with Pareto frontier)                                

FCNN on S(1)

FCNN on S(2)

FCNN on S(3)

Backscatter + Biharm.
Zanna & Bolton 2020
Hybrid Symbolic

Figure 8. Mean eddy-configuration distributional and spectral similarity scores for many of

the 148 parameterizations tested, with those defining the Pareto frontier shown with text (the

runs with remaining parameterizations, including all Smagorinsky runs, have scores to the lower-

left of the plot range.)

bility is likely due to our architectural constraints (as discussed above) and perhaps the609

spectral numerical dissipation scheme of pyqg. However, performance in terms of sim-610

ilarity metrics varied greatly.611

To visualize this variation, Figure 7 shows the kernel density estimates (Rosenblatt,612

1956) of conditional probability distributions of the mean spectral diff similarity score613

(substituting Eq. 15 into Eq. 19) for different dataset design choices of filtering and coarse-614

graining operator, forcing formulation, and input variables. Specifically, these plots show615

the distribution of the average similarity score across KE power spectra, enstrophy power616

spectra, and energy budget terms over isotropic wavenumber, conditioned on different617

choices of filter and coarse-graining (Fig. 7A), targeted forcing formulation (Fig. 7B),618

and input variables (Fig. 7C). Probability density closer to 1 indicates better performance.619

Overall, we see higher spectral similarity scores for FCNNs trained on data generated620

with Operator 1 (spectral truncation with sharp filter) (Fig. 7A) and predicting momen-621

tum forcing rather than PV forcing (Fig. 7B). The choice of input has a weaker impact622

on these scores (Fig. 7C), though simpler terms (u, ∇u, or q alone) do slightly better,623

consistent with (Dresdner et al., 2022). The same results hold for distrib diff simi-624

larity (not shown), which is strongly correlated with spectral diff (Figs 8).625

In addition, we can gain insights through analyzing specific models. If we look at626

the Pareto frontier of eddy-configuration distributional and spectral similarity across all627

our experiments (Fig. 8), we find that the only Pareto-optimal FCNN predicts S
(1)
qtot , which628

is computed with Operator 1 but formulated in terms of PV rather than velocity. If we629

compare this FCNN to others which are identical except for the filtering and coarse-graining630

operator (Fig. D4) or forcing formulation (Fig. D5), we find again that the choice of op-631

erator continues to matter, but that the forcing formulation has much less effect as FC-632

NNs predicting other forcing formulations with the same filtering and coarse-graining633
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Figure 9. Offline R2 scores by dataset design choice as in Figure 7, almost all of which

achieve an R2 of above 0.8 regardless of condition. The best models by offline R2 are different

from those in Figure 7.

operator all have near-identical effects. Combining these individual results with the ag-634

gregate results of Fig. 7, our overall interpretation is that a) the choice of operator is the635

most important for online performance, and b) predicting velocity forcing (Su or Φu)636

rather than PV forcing (Sq, Sqtot , or ϕq) is not necessary for optimal performance, but637

may be more robust to variations in other suboptimal design choices (e.g. picking Op-638

erators 2 or 3). Operator 1 is more faithful to the numerics of the coarse-resolution model639

that we are using in the online evaluation (this is further supported by the lack of backscat-640

ter generated using ZB2020, see conclusions).641

5.4 Relationship between offline and online FCNN metrics642

Offline performance, measured using R2, is strong for all design choices (see Fig. 9),643

though its relationship with online performance depends on the filtering and coarse-graining644

operator. For Operator 1, we see positive correlations between offline and online perfor-645

mance (Fig. 10A, D), meaning that higher R2 parameterizations generally performed bet-646

ter online. However, for Operators 2 and 3, we see low or negative correlations, mean-647

ing that improved offline performance was associated with worse rather than better on-648

line performance. This result underscores the importance of not focusing too much on649

improving the offline performance of subgrid parameterizations without first demonstrat-650

ing that such improvements lead to improvements in physical realism online.651

5.5 Varying the evaluation target652

Some studies measure the online performance of parameterized low-resolution mod-653

els with respect to the filtered and coarse-grained version of high-resolution data (Beck654

et al., 2019; Xie et al., 2020; Guan et al., 2022), rather than the high-resolution simu-655

lation. Calculating similarity scores for coarse-resolution parameterized models relative656

to a coarsened and filtered high-resolution simulation increases the scores of top-performing657

FCNNs, if the parameterization and the target high-resolution models use the same op-658

erator (Figure 11). However, even when the target is coarsened with Operator 2 or 3,659

–20–



manuscript submitted to JAMES

distrib

spectral

decorr

R2

Forcing in 
{Sq, Sqtot, q}

1.0

.90

.55

.37

.90

1.0

.51

.29

.55

.51

1.0

.51

.37

.29

.51

1.0

A Operator 1
1.0

.98

-.21

.01

.98

1.0

-.21

-.05

-.21

-.21

1.0

.68

.01

-.05

.68

1.0

B Operator 2
1.0

.89

.04

-.30

.89

1.0

-.19

-.51

.04

-.19

1.0

.77

-.30

-.51

.77

1.0

C Operator 3

di
st

ri
b

sp
ec

tr
al

de
co

rr R
2

distrib

spectral

decorr

R2

Forcing in 
{Su, u}

1.0

.58

.37

.09

.58

1.0

-.02

-.04

.37

-.02

1.0

.20

.09

-.04

.20

1.0

D

di
st

ri
b

sp
ec

tr
al

de
co

rr R
2

1.0

.52

.66

-.57

.52

1.0

.19

-.14

.66

.19

1.0

-.83

-.57

-.14

-.83

1.0

E

di
st

ri
b

sp
ec

tr
al

de
co

rr R
2

1.0

.93

.04

-.04

.93

1.0

.01

.04

.04

.01

1.0

.65

-.04

.04

.65

1.0

F

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
rre

la
tio

n 
be

tw
ee

n 
m

ea
ns

Metric correlation conditioned on coarsening and forcing formulation

Performance metric

Figure 10. Correlation between FCNNs’ mean scores in each metric group conditioned on the

filtering and coarse graining operator (columns) and forcing formulation (rows) used to generate

their training data. In most cases, distributional and spectral similarity are closely correlated.

Correlations with offline R2 tend to be negative or small, except for FCNNs trained to predict

PV forcing variants computed with Operator 1 (A).

the actual scores of these models are significantly lower than in the case where the FCNN660

is trained on data generated by Operator 1. The FCNN trained on data generated by661

Operator 1 has the best overall spectral similarity score whether we perform the eval-662

uation using the original high-resolution data or data coarsened with Operator 1. This663

result suggests that Operator 1 is more appropriate for computing subgrid forcing in this664

dataset in an absolute sense.665

5.6 Feature importance for FCNNs666

To explore the importance of individual features to our FCNN predictions, we look667

at snapshots of input gradients, or the partial derivatives of the model’s output with re-668

spect to its inputs (Baehrens et al., 2010). Note that although there are many proposed669

methods for quantifying neural network input saliency (Springenberg et al., 2014; Bach670

et al., 2015), input gradients consistently pass sanity checks that have been developed671

to validate these methods, while many alternatives do not (Adebayo et al., 2018; Kin-672

dermans et al., 2019).673

In Fig. 12, we show a snapshot of input gradients for the FCNN(q→S(1)
qtot) at the674

center of the domain, which quantifies the sensitivity of its predictions at this particu-675

lar location to its inputs. Although our FCNN architecture allows changes in the upper676

layer q to influence the lower layer prediction and vice-versa, this particular FCNN’s in-677

put gradients are only large in magnitude for q in the same layer as the output, suggest-678

ing that it largely operates layer-wise.679

Additionally, gradients were largest in magnitude around the spatial location of the680

output, suggesting that the model operates locally in the horizontal plane. However, we681
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Figure 11. Boxplots showing distribution of spectral diff similarity scores (across all FC-

NNs trained with each filtering and coarse-graining operator, e.g. S(1) for Operator 1, with any

forcing formulation) when the definition of similarity is changed to be relative to a filtered and

coarsened version of the high-resolution simulation (bottom three rows), rather than the original

high resolution simulation (top row). Center line shows medians, colored bars show the interquar-

tile range (middle 50% of the data), whiskers show positions of nearest points outside twice the

interquartile range, and dots show outliers. In general, the relative performance of FCNNs im-

proves when evaluating them against simulations coarsened with the same operator used in their

training data. However, absolute performance is only high for FCNNs trained on data from Oper-

ator 1 (spectral truncation + maximally sharp filter).

find that a radius of 5 pixels (4th-order operations) is needed to explain 50% of the gra-682

dients, and a radius of 9 pixels (8th-order operations) is needed to reach 95% (Figure 12683

I). This suggests that symbolic parameterizations may need to be fairly non-local and684

high-order to mimic the behavior of FCNNs. We explore this in the next section.685

6 Hybrid Linear and Symbolic Regression and Genetic Programming686

In addition to opaque models such as neural networks and random forests, it is also687

possible to learn equations from data directly with symbolic regression (Koza, 1994).688

Symbolic-regression based on running sparse linear regression on top of a manu-689

ally constructed feature library has become popular and achieved impressive results in690

a number of applications (Brunton et al., 2016; Li et al., 2021). Zanna and Bolton (2020)691

(ZB2020 hereafter) learned an expression for the subgrid momentum forcing Su with sparse692

Bayesian regression (see Eq. A7 in Appendix). They used data generated from an ide-693

alized primitive equation model, with Gaussian filtering (similar to Operator 2 defined694

here). Using data from pyqg and Operator 2 to calculate the same basis features as in695

ZB2020 (i.e., divergence, vorticity, stretching and deformation, their x- and y-derivatives,696

and all cross-multiples), we are able to re-discover Eq. A7 with a simple sparse linear re-697

gression algorithm.698

However, sparse linear regression entails trade-offs between the size and expressive-699

ness of the feature library and the complexity and cost of sparse regression, as discussed700

in Zanna and Bolton (2020). In the example above, our feature library has the initial701

basis features (4 elements), their first spatial derivatives (8 elements), and all cross-multiples702

of those initial features (144 elements). If we want to expand this library to consider suc-703
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Figure 12. Input gradients of an FCNN mapping q (A,E) to S
(1)
qtot (B,F), evaluated at the

center of the domain. Gradient magnitudes are largest around the x, y-position corresponding

to the prediction (C,H) in a given layer. However, they still extend relatively far horizontally,

needing 9 pixels to reach >95% of their full magnitude (I).

cessively higher-order derivatives (or more than just linear and quadratic multiples), then704

the number of different expressions we must evaluate for the whole dataset will grow ex-705

ponentially. Additionally, many expressions will be highly correlated, which can prevent706

many sparse regression algorithms from converging (Hastie et al., 2015).707

6.1 Hybrid genetic programming (GP)708

An alternative approach for symbolic regression is genetic programming (GP), a709

classic approach in AI (Turing, 1950; Koza, 1994). In contrast to sparse regression, GP710

algorithms do not require an explicit feature library, simply a set of atomic features and711

a set of operations for combining them. The GP algorithm then constructs arbitrarily712

deep expressions by successively applying operators to combine atomic and/or compos-713

ite features in a randomized fashion, using evolutionary principles to guide a parallel search714

for an expression that parsimoniously fits the data.715

More concretely, GP algorithms begin with a “population” of initially short and716

randomly-constructed programs. At each iteration (“generation”), programs are randomly717

culled, with probability inversely related to their relative performance on a “fitness” met-718

ric (see Algorithm 1). Programs that survive can then be randomly modified (“mutated”)719

in a variety of ways, which can either lengthen or shorten them. This procedure is re-720

peated for a configurable number of generations, after which the GP algorithm returns721

the best-performing program.722

To implement genetic programming, we used the gplearn Python library (Stephens,723

2019). We ran into several difficulties with its default implementation, primarily in its724

difficulty discovering linear combinations of terms with different orders of magnitude in725

the weights (constant ranges must be chosen beforehand, and are sampled randomly rather726

than optimized), as well as the lack of built-in support for spatial differential operators727

in program evolution. We defined custom gplearn functions for differential operators728

(∂/∂xi,∇2, and u·∇)) and combined genetic programming and linear regression in an729

iterative, residual-fitting procedure described in Algorithm 1. Crucially, in each genetic730

programming step, we define fitness in terms of correlation rather than absolute error,731

making fitting the outermost constants unnecessary. We run genetic programming with732

q, u, and v as our base features. Arbitrary powers or cross-multiples of these features733
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Figure 13. Offline correlation and sequence of terms discovered by Algorithm 1 – Hybrid

Symbolic regression without any human-in-the-loop intervention (terms learned for upper/lower

layers in blue/orange respectively). Terms learned in initial iterations tended to be physically

meaningful, relatively simple, and related to parameterizations in the literature, while terms

learned in later iterations tended to be complex or unphysical (e.g., adding u and q despite in-

compatible units in iteration 6).

can be discovered since the operator set includes multiplication. This approach allows734

us to discover all the same terms which appear in the feature library used for ZB2020,735

but is not limited to them.736

Based on results obtained from the FCNNs (Section 5.4), we chose to run our GP737

method on PV subgrid forcing, Sq, computed with Operator 1 (Section 3.4.1) to sim-738

plify learning. Running Algorithm 1 without any manual experimenter intervention leads739

to a formula of the forcing with an expression for each iteration given in Fig. 13. We saw740

offline performance increase significantly, with many of the discovered features seemingly741

physically-relevant, based on previous published parameterizations. In particular, we note742

that ∇2(u·∇)q and ∇2v in the upper layer, together approximate a parameterization743

proposed by Porta Mana and Zanna (2014), though missing a Euleurian time derivative744

of PV which is not provided to the algorithm. However, terms discovered after the first745

two iterations tend to vary significantly on random restarts. Terms after the fourth it-746

eration are also significantly harder to interpret (see right end of Figure 13). More im-747

portantly, we find that some combinations of terms include additions of terms with dif-748

ferent units (e.g., q and u). Finally, implementations of parameterizations using the hy-749

brid expressions found after the sixth iteration were numerically unstable; in addition,750

although the online performance of runs with the first 4-6 terms from the symbolic pa-751

rameterizations did improve over low-resolution models, there were still significant dif-752

ferences with respect to many high-resolution diagnostics. To address these issues, we753

added a human-in-the-loop guidance step described below.754

6.2 Human-in-the-loop guidance755

Some manual intervention can be introduced during the learning procedure to im-756

prove interpretability and stability. We added a human-in-the-loop guidance step in each757

iteration (gray lines in Algorithm 1), where we edited or removed terms that seemed un-758

physical and sometimes added what seemed like natural extensions of existing terms. In759

our final OptionalUserEdits step, we attempted to prune the set of terms as much as pos-760

–24–



manuscript submitted to JAMES

sible by removing those whose removal did not worsen online performance or adding some761

that may improve it. We provide an account of our specific actions in Appendix C.762

Algorithm 1 “Hybrid” linear and genetic programming-based symbolic regression (with
optional human-in-the-loop interventions in light gray).

1: procedure FitGeneticProgram(x, y)
2: Run gplearn (Stephens, 2019) with operators {∂x, ∂y,∇2, (u · ∇), ∗,+}, and

Fitness(term) = |Corr(term(x), y)| − 0.001 ∗ Length(term)

3: end procedure
4:

5: procedure FitLinearRegression(x, y)
6: Find w to minimize ||w · x− y||22
7: end procedure
8:

9: procedure FitHybridSymbolic(x, y)
10: terms← ∅ ▷ set of symbolic expressions
11: w ← ∅ ▷ weights of those expressions
12: ỹ ← y ▷ residual forcing to predict
13:

14: repeat
15: for all layers z do
16: terms← terms∪ FitGeneticProgram(xz, ỹz) ▷ learn the next term
17: end for
18: terms← OptionalUserEdits(terms)
19: for all layers z do
20: wz ← FitLinearRegression(terms(xz), yz) ▷ reweight terms
21: ỹz ← wz · terms(xz)− yz ▷ update residuals
22: end for
23: until convergence or user decision
24:

25: return terms, w
26: end procedure

This procedure left us with a final parameterization of the form:763

SGP
q = (w1∇2 + w2∇4 + w3∇6)(u · ∇)q

+ (w4∇4 + w5∇6)q

+ (u · ∇)2∇2(w6vx + w7uy).

(20)

Here wi signify the linear weights. Evaluating this parameterization against FCNNs and764

traditional physics-based models, we find its performance competitive with neural net-765

works in the eddy configuration (Figs. 16 and 17) and near-dominant in the jet config-766

uration (18 and 19). We discuss its performance further in Section 7.1 where we com-767

pare and contrast different categories of parameterizations.768

6.3 Symbolic regression feature importance769

As in Section 5.6 for FCNNs, it is useful to quantify the relative importance of the770

different symbolic terms. One way to do this is by examining the weights wi. These are771

visualized in Fig. 14 in two ways: (A) as raw values (on a log scale), and (B) normal-772

ized after dividing by the standard deviations of the corresponding features (on a lin-773

ear scale), which makes them directly comparable despite each wi having different units.774
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In normalized form (Fig. 14B), the largest coefficients in both layers are for ∇4(u·775

∇)q, and the absolute magnitudes of these coefficients (Fig. 14A) are somewhat close.776

In contrast, the next-largest normalized coefficients in Fig. 14B disagree between layers;777

for the upper layer, the next-largest coefficient is for ∇6(u·∇)q, while the correspond-778

ing value in the lower layer is near zero. Instead, the next-largest coefficients in the lower779

layer are for ∇4q and ∇6q, which receive much more weight relative to their magnitudes780

in the dataset. However, despite the difference in relative weight across layers, the ab-781

solute magnitudes of the ∇4q and ∇6q coefficients in Fig. 14A are almost equal. Over-782

all, these results suggest that the parameterization learns to behave in reasonably sim-783

ilar ways in both layers, but with a few crucial differences, particularly in how they han-784

dle ∇6(u ·∇)q. The final two terms, (u ·∇)2∇2vx and (u ·∇)2∇2uy, receive relatively785

little (normalized) weight in either layer.786

Another way to estimate feature importance is by removing each term, re-fitting787

the linear regression coefficients, and re-evaluating online performance (Fig. 15). If we788

consider the performance decrease after removal of each feature as a measure of its im-789

portance, we reach similar conclusions: the ∇4 and ∇6 terms (for both q and (u·∇)q)790

are most important, the ∇2(u·∇)q term is somewhat important, and the (u·∇)2∇2 terms791

are relatively unimportant.792

6.4 Interpretation of the learned expression793

Note that the goal of the paper is not to focus on interpretability but to introduce794

methods for learning and evaluating parameterizations from data. Therefore, we are not795

claiming that this parameterization is more physical than anti-viscosity backscatter (Jansen796

& Held, 2014) or deformation-based parameterizations (Anstey & Zanna, 2017). Nev-797

ertheless, we will discuss briefly how the discovered terms compared to other subgrid pa-798

rameterizations and leave further analysis of their contribution to model physics to fu-799

ture studies.800

The components of the proposed model were discovered in the following order. In801

the first few iterations, quadratic expressions, proportional to (u·∇)q, were discovered.802

Quadratic models are often found to be highly-correlated with subgrid forcing (Meneveau803

& Katz, 2000; Layton & Rebholz, 2012; Porta Mana & Zanna, 2014; Anstey & Zanna,804

2017), but often cannot be used as standalone parameterizations. The next few itera-805

tions led to eddy-viscosity models, ∇4q and ∇6q. Particularly, both weights w4 and w5806

being positive implies that there is dissipation of energy in small scales and redistribu-807

tion to larger scales, i.e. backscattering (Jansen & Held, 2014). The final terms discov-808

ered are cubic in model variables and contains double-advection operator, (u·∇)2. The809

terms resemble the anticipated PV method from Vallis and Hua (1988). This method810

allows to preserve properties inherent to geostrophic turbulence such as conservation of811

energy and dissipation of enstrophy (Marshall & Adcroft, 2010), but it suffers from in-812

accurate representation of spectral fluxes (Thuburn et al., 2014). In summary, our dis-813

covered closure contains elements of existing subgrid parameterizations, which have pros814

and cons when used as standalone ones.815

This symbolic parameterization includes up to the seventh spatial derivative of q,816

which may be unrealistic to implement into a climate model. However, it might be more817

realistic than a fully non-local approach such as the convolutional neural network pa-818

rameterizations considered in Section 5 or extremely local physics-based parameteriza-819

tions (such as anti-viscosity).820

7 Discussion and Conclusion821

We will finally compare our top parameterizations and then summarize our key find-822

ings in this section.823
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Figure 14. Linear regression-derived weights w for the human-in-the-loop genetic

programming-derived basis terms of Equation 20, both as raw values (A, negative values shown

with hatching) and normalized (B) after multiplying by the standard deviations of the terms

over the training set (giving them consistent units). The absolute magnitudes of many terms are

somewhat similar across layers, but their effective contributions to the output differ.

7.1 Comparing top parameterizations824

To conclude our analysis, we focus on the top-performing models of different cat-825

egories. The Pareto frontier of distributional and spectral similarity (Fig. 8) conveniently826

includes one FCNN, our symbolic parameterization, and two backscatter parameteriza-827

tions (we select the one with higher spectral similarity). Note that the Smagorinsky pa-828

rameterizations have very poor performance online (not surprisingly since they are dis-829

sipative) and we strongly encourage the community to choose better physics baselines830

when evaluating the performance of data-driven parameterizations.831

Offline on eddy configuration (Fig. 16), FCNN performance (A-E) is strongest over-832

all, though power spectra diverge slightly at large scales (E). The symbolic regression833

model (F-J) performs slightly worse offline than the FCNN, but matches the power spec-834

trum at all scales reasonably well. The backscatter model (K-O) performs much worse835

offline than the data-driven models, using R2 as a metric. However, all three selected836

models perform well online (Fig. 17), with the FCNNs showing better distributional per-837

formance than the other models (Fig. 17C). However, the FCNN models seem to spin838

up the large scale faster than the other models (Fig. 17B).839

On jet configuration, the offline performance remains similar for all models, except840

for the R2 of the FCNN in the lower layer which is significantly lower than for the eddy841

configuration (Fig. 18B). However, online FCNN’s performance degrades to significantly842

worse than the low-resolution without parameterization (Figs. 19 and 20). In addition,843

the backscatter model does not have a significant impact on the low-resolution simula-844

tion, though this depends on which metric we consider (e.g., Fig. 19). On the other hand,845

the symbolic model remains fairly robust - without retraining or tuning in this new con-846

figuration.847

FCNNs with different forcing formulations degraded slightly less when transferring848

to jet configuration (Fig D6). However, their average similarity scores were still low com-849

pared to the hybrid symbolic model (Fig. D9), and they disrupted the characteristic jet850

–27–



manuscript submitted to JAMES

Eddy config (similar to train) Jet config (generalizing)
Model regime

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Sp
ec

tra
l s

im
ila

rit
y 

sc
or

e
(2

0%
 / 

m
ed

ia
n 

/ 8
0%

)

Effect of removing terms from hybrid symbolic model

Term removed
None

2(u )q
4(u )q
6(u )q

4q
6q

(u )2 2
xv

(u )2 2
yu
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(using human-in-the-loop guidance) on spectral similarity (median scores within groups, with

error bars showing the 20th and 80th percentiles). From left to right, removing ∇2(u·∇)q re-

duced performance in eddy configuration, but not jet configuration. Removing ∇4 and ∇6 terms

(for both q and (u·∇)q) drastically reduced performance in both configurations, which suggests

these terms are crucial. Removing the (u·∇)2∇2 terms had small effects, suggesting they could

be dropped for future experiments.

features, causing the flow to more closely resemble the eddy configuration on which they851

were trained (Fig. D3).852

Even in the eddy configuration, decorr times for the best-performing models are853

only modestly closer to those from the high-resolution compared to those of the low-resolution854

simulation. In the case of the FCNN, the decorrelation times are actually worse (Fig. 21)855

than the low resolution. Using the decorrelation metric, Smagorinsky parameterizations856

actually performed best (slightly ahead of certain backscatter settings), even though they857

performed near the worst by all other metrics (see also Fig. D8). As expected, the data-858

driven parameterizations are doing well at representing the averaged statistics at coarse859

resolution (i.e., the climate) but do not improve the short-term trajectories (i.e., the “weather”).860

7.2 Conclusion861

We introduced a framework and a set of datasets for learning and evaluating ocean862

subgrid forcing parameterizations in a quasi-geostrophic setup, with a focus on a set of863

well-defined quantitative offline and online metrics. We used this framework to train and864

test physics-based and data-driven parameterizations under a variety of conditions, namely865

the different training datasets and definitions of subgrid forcing.866

Several conclusions stand out as particularly relevant for developing subgrid pa-867

rameterizations from high-resolution simulations for climate models, even though some868

of the parameterizations developed here cannot easily be implemented in climate mod-869

els. We summarize our key points as follows870

• Metrics: performance offline and online needs to be rigorously evaluated, rather871

than eyeballing improvement over a few selected diagnostics, to determine the ac-872

curacy and reliability of a given parameterization or simulation. Here, we designed873

multiple level of metrics: offline metrics that captures the statistics of the subgrid874

forcing; online metrics that captures the physics of parameterized simulation (e.g.,875

kinetic energy flux) or the climatological and short-term performance of the model876
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Figure 16. Offline performance for selected subgrid parameterizations on a heldout eddy

configuration dataset computed with Operator 1, with means shown in spatial plots. FCNN

performance (A-E) is strongest overall, though subgrid power spectra diverge slightly at large

scales (E). The symbolic regression (F-J) model performs slightly worse, but matches the power

spectrum at all scales reasonably well. The backscatter model (K-O) perform much worse offline

(though all three perform well online, Fig. 17).

(e.g, climatological PDF of potential vorticity, or decorrelation timescales of short877

term forecasts, respectively). Our open-source framework (Appendix D) will hope-878

fully encourage the research community to find easy-to-use resources for such eval-879

uation and facilitate the development of new parameterizations that more faith-880

fully capture the effects of subgrid-scale processes.881

• Data design choice: the filtering and coarse-graining operator is key, consistent882

with Zanna and Bolton (2021) and Frezat et al. (2022). The online results for a883

given FCNN architecture are highly sensitive to filtering choice; here the best per-884

formance was obtained with a filtering that most closely follow the numerics of885

the model. Therefore, we encourage testing multiple operators for data prepara-886

tion guided by the target target application rather than varying hyperparameters887

or neural network architectures.888

• Stability: Our architecturally-constrained FCNNs remained numerically stable889

in any configuration (as shown in Guillaumin and Zanna (2021) for different model890

configurations), which is likely further aided by the spectral truncation of high-891

frequency modes in pyqg.892

• Generalization: symbolic expressions, found using a new algorithm that we de-893

veloped, were more interpretable with fewer parameters and generalized better to894

new domains than neural networks, which are infamously sensitive to even minor895

distributional shifts (Recht et al., 2018).896

There are many possible directions we did not explore for NN optimization, includ-897

ing online learning (Kochkov et al., 2021; Frezat et al., 2022; Sirignano et al., 2020; Um898

et al., 2020; Dresdner et al., 2022), or training on multiple datasets (Bolton & Zanna,899

2019; O’Gorman & Dwyer, 2018). New approaches to remain more faithful to the physics900

of the problem that could be explored as well which include non-dimensionalizing input901

variables (Beucler et al., 2021), modeling subgrid-scale organization (Shamekh et al., 2022),902

or finding a better latent space for our input (and eliminating spurious correlation with903

causal inference). There are also opportunities for improving our symbolic regression pro-904
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Figure 17. Sample of online performance diagnostics for symbolic regression and best

FCNN/backscatter parameterizations by eddy-config spectral diff (taken from the Pareto

frontier of top models by spectral and distributional similarity, and averaged across five indepen-

dent runs). Shading in KE time-series shows standard deviation over runs. All parameterizations

improve significantly over the low-resolution model.

cedure, including more intelligently interweaving continuous optimization with genetic905

programming (Cranmer, 2020), initializing symbolic regression with terms from exist-906

ing physical parameterizations, or directly learning residuals on top of them. For both907

neural networks and symbolic regression, finding better metrics for offline learning or test-908

ing might help ensure more robust results for online implementation in existing legacy909

climate models.910

Appendix A Baseline Local Physical Parameterizations911

A1 Smagorinsky912

A common baseline for physical parameterizations was proposed by Smagorinsky913

(1963) as scale-selective dissipation. Given the strain-rate tensor, T ,914

T =

(
T11 T12
T21 T22

)
=

1

2

(
2ux uy + vx

uy + vx 2vy

)
, (A1)

the Smagorinsky parameterization predicts the subgrid forcing of u and v, denoted as915

Ssmag, such that916

Ssmag =

(
Su,smag

Sv,smag

)
= 2

(
(νsmagT11)x + (νsmagT12)y
(νsmagT21)x + (νsmagT22)y

)
, (A2)

where the short-hands ()x,y ≡ ∂
∂x,y are used for low-resolution spatial derivatives,917

νsmag = (CS∆x)
2
√
T 2
11 + T 2

12 + T 2
21 + T 2

22, (A3)
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Figure 18. Offline performance as in Figure 18, but testing for generalization to jet config-

uration. For FCNNs (A-E), R2 is lower in the upper layer and actually negative in the lower

layer. However, correlation remains fairly high, suggesting that performance might improve with

rescaling. For our symbolic regression model (F-J) and backscatter (K-O), offline performance

remains similar to eddy configuration, though only the hybrid symbolic model generalizes online

(Figure 19).

and CS is a tunable parameter. Here we will use CS ∈ {0.075, 0.15, 0.3}.918

Smagorinsky is a parameterization of small-scale dissipation, which can correct the919

tendency of low-resolution models to concentrate too much energy at small scales. How-920

ever, the parameterization does not redistribute this energy back up to larger scales via921

backscatter, as show in theoretical analysis and simulations of quasi-2D turbulence (Kraichnan,922

1976; Thuburn et al., 2014; Natale & Cotter, 2017).923

A2 Backscatter and Biharmonic Dissipation924

Different parameterizations that can potentially address backscatter include the925

parameterization suggested by Jansen and Held (2014); Jansen et al. (2015), which con-926

sists of scale-selective dissipative operator and an additional negative viscosity part rein-927

jecting energy at larger scales. The magnitude of the negative viscosity part is chosen928

such that resulting model approximately conserves energy.929

We adapt this parameterizations for use in pyqg. The small-scale dissipation of en-930

strophy is parameterized with biharmonic Smagorinsky model (see Eq. A3)931

Fsmag = −∇2
[
νsmag∇4ψ

]
. (A4)

The negative viscosity backscatter is parameterized with less scale-selective Laplacian932

viscosity operator:933

Fbscat = −νbscat∇4ψ, (A5)

and total contribution to PV equation is given as Sbscat = Fsmag + Fbscat. The nega-934

tive viscosity backscatter re-injects the CB fraction of the total energy dissipated by the935

biharmonic model. As such, the negative viscosity coefficient is given by:936

νbscat = CB

∑2
i=1Hi

∫∫
ψiFsmag,idx dy∑2

i=1Hi

∫∫
ψi∇4ψidx dy

(A6)
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Figure 19. Similar to Figure 17, but evaluated on jet rather than eddy configuration (without

retuning). The hybrid symbolic parameterization still improves significantly over low-resolution

model, while backscatter has no discernible effect and FCNNs degrade significantly.

where Fsmag,i is the value of Eq. A4 at a particular layer. We run this parameterization937

at 36 parameter settings corresponding to every combination of CB ∈ {.7, .8, .9, 1.0, 1.1, 1.2}938

and C2
S ∈ {.003, .005, .007, .01, .02, .04} (the use of C2

S is for convenience).939

A3 Zanna Bolton Data-Driven Equation-Discovery parameterization940

Using data from an idealized primitive equation model and relevance vector ma-941

chine, Zanna and Bolton (2020) learned an expression for the subgrid momentum forc-942

ing. They use both barotropic and baroclinic simulated data, and apply Gaussian filter-943

ing with coarse-graining to diagnose the subgrid forcing. The form of the parameteri-944

zation is given by945

ŜZB2020
u ≈ κZB2020∇ ·

(
−ζD ζD̃

ζD̃ ζD

)
+ I

1

2
κZB2020∇(ζ2 +D2 + D̃2), (A7)

for each vertical layer, with946

ζ = vx − uy, σ = ux + vy, (A8a)

D = uy + vx, D̃ = ux − vy, (A8b)

where ζ is the relative vorticity, σ is the divergence, and D and D̃ are the shearing and947

stretching deformation of the low-resolution flow field, respectively.948

For online tests, rather than using the value of κZB2020 diagnosed in Zanna and Bolton949

(2020), we fit the parameter empirically to achieve maximal offline R2 on the training950

set (equivalent to that generated using Operator 2). For online simulations, we also test951

at κZB2020 = 2 and 1/2 times the empirically fit value.952
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Figures D1 and D2 for more.
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Appendix B Decomposition of subgrid forcing953

We can further decompose subgrid contribution into the contribution towards ki-954

netic energy and the contribution towards potential energy. Let Sψ be the tendency in955

the streamfunction induced by subgrid forcing, we use Eq. 3 to rewrite Eq. 12 as956 (
∂E(k, l)

∂t

)sub

= − 1

H

2∑
m=1

HmR
[
ψ̂∗
m[(−κ2I+M)Ŝψ]

]
=

1

H
κ2

2∑
m=1

HmR
[
ψ̂∗
m

(
AκŜq

)
m

]
− 1

H

2∑
m=1

HmR
[
ψ̂∗
m

(
MAκŜq

)
m

]
,

(B1)
where Aκ = (−κ2I+M)−1. On the right-hand side of Eq. B1, the first term matches957

the definition of the contribution towards kinetic energy, and we regard the second term958

as the contribution towards potential energy. This decomposition is used in calculating959

the spectral similarity scores.960
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Appendix C Human-in-the-Loop Symbolic Regression Steps961

In this section, we describe the specific “OptionalUserEdits” steps we took in ap-962

plying Algorithm 1 to obtain Equation 20.963

In the first gplearn step, we discovered ∇2(u·∇)q (in the upper layer) and ∇4(u·964

∇)q (in the lower layer), which gave us training set correlations of 0.80 (upper) and 0.77965

(lower) after fitting models with both terms to each layer. To this, we added ∇6(u·∇)q966

to extend the pattern, which brought the same correlations to 0.84 and 0.82. We then967

ran the next gplearn step, which outputted ∇4q (upper) and ∇6q (lower). This brought968

correlations up to 0.845 (upper) and 0.836 (lower). We kept both these terms, and ex-969

perimented with adding ∇8q, but correlations actually decreased in the lower layer. We970

then ran the next gplearn step, which returned (u·∇)2∇2∂xv and ∂x∇8q. This nudged971

correlations to 0.846 (upper) and 0.838 (lower), which nudged very slightly higher to 0.846972

and 0.840 when further adding the counterparts of these terms obtained by switching973

x and y, (u · ∇)2∇2∂yu and ∂y∇8q.974

From this set of terms (which includes all terms in Equation 20 with the addition975

of two ninth-order ∂i∇8q terms), we began a final OptionalUserEdits step using online976

performance as a guide (removing each term individually, but pairing up the removals977

of the terms with natural x and y counterparts). In this step, we found that the ∂i∇8q978

terms were actually hampering online performance (i.e. performance rose without them),979

while the others all appeared to help (i.e. performance fell without them)—though our980

results in Figure 15 later showed that the slight improvement we saw from the (u·∇)2∇2∂iui981

terms was not significant. We then accepted the expression of Equation 20 as our final982

output, saving its weights (learned with respect to eddy-config S
(1)
q ).983

Note that because the genetic programming steps are stochastic, re-running this984

procedure with a different random seed might produce different results. For example,985

in Figure 13, we discovered a ∇2v term in the second step, but in this case such a term986

was never learned (though this could be alternately explained by the manual addition987

of ∇6(u · ∇)q, which may have accounted for its contribution).988

Appendix D Supplementary Figures989

This section includes additional result figures.990

Open Research991

Version 1.0.2 of the Python repository used for training and evaluating parame-992

terizations is preserved at https://doi.org/10.5281/zenodo.7222704, available via993

the MIT license and developed openly at https://github.com/m2lines/pyqg parameterization994

benchmarks (Ross et al., 2022).995

The baseline high- and low-resolution datasets used for evaluating parameteriza-996

tions, as well as the subgrid forcing datasets used for training them, are available at Zen-997

odo via https://doi.org/10.5281/zenodo.6609034 under a Creative Commons At-998

tribution 4.0 International license (Ross, 2022).999
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Figure D2. Like Figure 20, but showing upper PV q1 rather than KE density.
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Figure D3. Like Figure 20, but additionally showing KE snapshots for FCNNs trained on

eddy configuration data with different forcing formulations (see Figures D5 and D6). All FCNNs

produce reasonable results on eddy configuration (D-F), but on jet configuration (J-L), the snap-

shots do not resemble high-resolution (G), with either latitude-specific increases in energy (J) or

disruption of jets in favor of isotropic eddies (K-L), resembling FCNN training conditions.
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Comparing FCNNs trained on different operators on eddy configuration

Figure D4. Like Figure 17, but comparing FCNNs trained to predict Sqtot computed with

each filtering and coarse-graining operator. Only the model trained with Operator 1 (Sec-

tion 3.4.1) performs near-optimally, though the model trained with Operator 3 (Section 3.4.3)

does well except for deviations in spectral metrics at large scales (A,F,G). These results suggest

the filtering and coarse-graining operator is important for parameterization performance.
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Comparing FCNNs predicting different forcing formulations on eddy configuration

Figure D5. Like Figure 17, but comparing the online eddy configuration performance of FC-

NNs trained to predict different subgrid forcing formulations (Sqtot , Su, and ϕq) computed with

Operator 1 (Equation 13). All perform almost equally well, suggesting that the forcing formula-

tion may matter much less than the filtering and coarse-graining operator (Figure D4).
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Comparing FCNNs predicting different forcing formulations on jet configuration

Figure D6. Like Figure 19, but comparing the online jet configuration performance of FC-

NNs trained to predict different subgrid forcing formulations (Sqtot , Su, and ϕq) computed with

Operator 1 (Equation 13). In this case, the models trained to predict S
(1)
u and ϕ

(1)
q appear to

generalize better. However, their average scores across the full set of metrics (e.g. Figure D9)

remain low, and in KE snapshots from these FCNNs (Figure D3), the characteristic jet behavior

we see in high-resolution is absent.
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Figure D7. Offline results for more forcing formulations (S
(1)
u and ϕ

(1)
q results show averages

over u and v terms). Many performance metrics are generally higher for models trained to pre-

dict subgrid fluxes (K-N), but this difference disappears if we compute them with respect to the

implied subgrid forcing (i.e. by taking the divergence of the predicted quantities and comparing

that to the true subgrid forcing, rather than comparing predicted to true subgrid fluxes).
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Figure D8. Like Figure 8, but comparing distributional similarity from Section 4.2.2 (A) and

spectral similarity from Section 4.2.1 (B) with decorrelation time similarity from Section 4.2.3.

Smagorinsky and backscatter parameterizations (which form most of the Pareto frontier in

both plots) increase decorrelation time, though only by about 8% of the gap between low- and

high-resolution decorrelation times (which is what the y-axis signifies). Neural networks almost

universally reduce it, while the hybrid symbolic parameterization modestly increases it.
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Figure D9. Like Figure 8, but evaluated on jet configuration. In this regime, the only models

which appear on the Pareto frontier (highlighted in text) are the hybrid symbolic model and one

parameter setting of the backscatter parameterization, which differs significantly from the eddy-

configuration Pareto-optimal settings shown in Figures 8 and D8.

spectral_diff distrib_diff decorr_diff
Similarity metric group

0.2
0.0
0.2
0.4
0.6
0.8
1.0

Si
m

ila
rit

y 
wr

t.
or

ig
in

al
 h

ig
h-

re
s

Consistency of mean similarity scores wrt. unseen high- and low-res data
Unseen L/ x=256 Unseen L/ x=128 Unseen L/ x=64

Figure D10. Mean similarity scores for unseen high-resolution (L/∆x=256), low-resolution

(L/∆x=64), and intermediate-resolution (L/∆x=128) simulations with respect to the actual

high- and low-resolution datasets used to evaluate parameterizations. Error-bars show means and

standard deviations over 10 random samples of 5 simulations from a set of 25 unseen simulations.

Spectral and decorrelation time similarity scores between different randomly re-run high-res

simulations are >0.95 on average (and ≤0.01 on average for unseen low-resolution simulations),

indicating they are fairly reliable (they should be near 1 for high-res and near 0 for low-res).

End-of-simulation distributional similarity scores are a bit noisier, averaging 0.83 for unseen

high-resolution simulations (so such scores in our results of above ≈0.8 are potentially near-

optimal). Although distributional similarity scores are still precise enough to provide meaningful

insight into parameterization performance, future experiments could improve their precision by

increasing the size of ensembles, or by comparing distributions marginalized over more than just

the final timestep. Finally, L/∆x=128 simulations score highly (closer to L/∆x=256) on dis-

tributional and spectral similarity, indicating convergence on long-term “climate” predictions.

However, they score much worse (closer to L/∆x=64) on decorrelation time similarity, suggesting

that short-term “weather” predictions are more sensitive to changes in resolution.

–39–



manuscript submitted to JAMES

10 5 10 4

Isotropic wavenumber [m 1]

6

4

2

0

En
er

gy
 fl

ux
 fr

om
hy

pe
rd

iff
us

io
n 

[m
3 s

3 ] ×10 7

Energy removed by numerical dissipation
by model and scale (eddy config)

Highres
Lowres
FCNN(q S(1)

qtot
)

Hybrid Symbolic
BSCAT(0.007,1.2)

Figure D11. Comparison of the energy density removed via numerical dissipation at each

scale for different parameterizations and resolutions (on eddy configuration, with spectra av-

eraged over 5 simulations). Although the definition of the dissipative term is identical at each

resolution, the actual amount of energy dissipated varies in practice due to how parameteriza-

tions change the distribution of quantities across scales. In this case, parameterized models lose

less energy to numerical dissipation than unparameterized models at the same resolution, likely

because the purpose of those parameterizations is to transport energy to larger scales.
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Figure D12. Probability density functions (PDFs), calculated using kernel density estimates

(KDE), in both real (top) and logarithmic (bottom) space of upper and lower PV and KE for

selected parameterizations (as compared to unparameterized baselines, and computed via kernel

density estimation). The selected parameterizations cause these quantities to match the high-

resolution simulation much more closely, even in the tails of the distribution (e.g. far right sides

of log PDF plots).
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Simulation Type Train Time Runtime

Neural Network (CPU) — 2hrs 53min
Neural Network (GPU) 52min 13min 4s

High-res N/A 5min 57s
Hybrid Symbolic 35min 2min 22s

Backscatter + Biharmonic N/A 59s
Low-res N/A 22s

Table D1. Wall clock times to train parameterizations (center) and run simulations (right) for

different simulation types; i.e., for single runs on a Tesla V100 for GPUs and an M1 MacBook

Pro for CPUs. The FCNN slows down the low-res simulations (Zanna & Bolton, 2020), even

when utilizing a GPU. The low-res simulations with FCNN are twice as slow as the high-res;

the slow down is primarily due to the depth of the neural network. The symbolic regression-

parameterized simulations are more than twice as fast as the high-res simulations. Lower-order

backscatter parameterizations are >2x as fast again (though still < 1
2
x the speed of unparameter-

ized low-res simulations). This is consistent with Zanna & Bolton, 2020.

Model
Eddy configuration Jet configuration

Rank by
∑

Rank by
∏

Rank by
∑

Rank by
∏

FCNN(q → S
(1)
qtot) 1 — 129 —

BSCAT(0.02,1.0) 28 1 31 —

Hybrid Symbolic 4 11 1 —

BSCAT(0.005,0.8) 74 23 2 1

Table D2. “Leaderboard” of models with the highest arithmetic means (
∑

) and geometric

means (
∏
) over our three score categories (average distributional, spectral, and decorrelation

time similarity; i.e. the axes of the Pareto frontier plots in Figures 8, D8, and D9) in both eddy

and jet configuration. Off-diagonal elements show each model’s ranking by score reductions where

it is not optimal, and “—” indicates that a negative similarity score was found (so the geometric

mean is not meaningful). The hybrid symbolic model ranks highly by all score reductions except

its jet configuration geometric mean (where its decorrelation time similarity is slightly negative).
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