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Abstract

Intense convection (updrafts exceeding 10 m[?]s-1) plays an essential role in severe weather and Earth’s energy balance. Despite

its importance, how the global pattern of intense convection changes in response to warmed climates remains unclear, as

simulations from traditional climate models are too coarse to simulate intense convection. Here we take advantage of a kilometer-

scale global storm resolving model and conduct year-long simulations of a control run, forced by analyzed sea surface temperature

(SST), and one with a 4-K increase in SST for comparison. Comparisons show that the increased SST enhances the frequency

of intense convection globally with large spatial and seasonal variations. Increases in the intense convection frequency do not

necessarily reflect increases in convective available potential energy (CAPE). Results are also compared with traditional climate

model projections. Changes in the spatial pattern of intense convection are associated with changes in planetary circulation.
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Key Points: 14 

• A global storm resolving model is used to conduct year-long simulations to study the 15 

change of intense convection in a warmed climate 16 

• Increased SST modulates the frequency of intense convection with large spatial and 17 

seasonal variations 18 

• Increases in convective available potential energy do not necessarily enhance intense 19 

convection frequency  20 
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Abstract 21 

Intense convection (updrafts exceeding 10 m∙s-1) plays an essential role in severe weather and 22 

Earth’s energy balance. Despite its importance, how the global pattern of intense convection 23 

changes in response to warmed climates remains unclear, as simulations from traditional climate 24 

models are too coarse to simulate intense convection. Here we take advantage of a kilometer-25 

scale global storm resolving model and conduct year-long simulations of a control run, forced by 26 

analyzed sea surface temperature (SST), and one with a 4-K increase in SST for comparison. 27 

Comparisons show that the increased SST enhances the frequency of intense convection globally 28 

with large spatial and seasonal variations. Increases in the intense convection frequency do not 29 

necessarily reflect increases in convective available potential energy (CAPE). Results are also 30 

compared with traditional climate model projections. Changes in the spatial pattern of intense 31 

convection are associated with changes in planetary circulation. 32 

Plain Language Summary 33 

Intense convection, which we sense as strong thunderstorms, is a major cause of damaging 34 

weather and an important component in Earth’s energy balance. However, it is still unclear how 35 

intense convection changes in a warmed climate because traditional climate models cannot 36 

resolve these convective events. In order to investigate the impact of a warmed climate on 37 

intense convection, we use a new ultra-high-resolution global model to conduct year-long 38 

simulations under normal and warmed-ocean conditions. We find that intense convection 39 

becomes more frequent globally in a warmed climate. However, some regions have less intense 40 

convection. Spatial and seasonal responses of intense convection are associated with the changed 41 

planetary circulation. We also find that increases in convective available potential energy do not 42 

necessarily favor the development of intense convection.  43 

 44 

1 Introduction 45 

Intense convection, featuring large vertical motions and water phase changes, has 46 

profound consequences for many aspects of atmospheric and climate science. Intense convection 47 

is a major source of weather hazards due to its association with heavy rain, damaging winds, and 48 

large hail. Worldwide, the economic loss related to intense convection is about 108 million US 49 
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dollars on average every day from 1970 to 2019 (WMO, 2021). In the context of climate, intense 50 

convection plays a critical role in Earth’s energy balance, as intense convection modulates 51 

radiative balance through its effect on both the incoming solar radiation and the outgoing 52 

longwave radiation. Furthermore, intense convection modulates energy transfer dynamically and 53 

thermodynamically within the atmosphere.  54 

Previous modeling studies (e.g., Diffenbaugh et al., 2013) argued that a warming climate 55 

is likely to enhance the frequency and intensity of intense convection. The argument, however, is 56 

based on the analysis of convective environmental proxies (e.g., low-level wind shear and 57 

CAPE), rather than the simulation of the convection itself. This limitation arises because 58 

traditional climate models have too coarse a grid to simulate intense convection explicitly.   59 

This study overcomes this limitation using a global storm-resolving model (GSRM). 60 

GSRMs are a new class of global atmosphere models with 2-5 km horizontal resolution that can 61 

resolve individual convective storms (Stevens et al., 2019; Satoh et al., 2019). We are unaware of 62 

any published GSRM simulations of warming climates, except for the paper done by Tsushima 63 

et al. (2014), which investigated the impact of warmer SSTs on high clouds. The resolution of 64 

their simulations (7 and 14 km) is insufficient to accurately simulate intense convection, and the 65 

simulation periods used (at most 90 days) do not cover the full annual cycle.  66 

In this study, we use a GSRM to explore the impact of global warming on the global 67 

distribution of intense convection. We compare two sets of year-long GSRM simulations, a 68 

control run and that with 4-K warmer SST, made using the eXperimental System for High-69 

resolution prediction on Earth-to-Local Domains (X-SHiELD) developed at the Geophysical 70 

Fluid Dynamics Laboratory (GFDL). X-SHiELD is designed to explicitly resolve convection at 71 

scales of 3 km. X-SHiELD has been a part of the Dynamics of the Atmospheric general 72 

circulation Modeled On Non-hydrostatic Domains (DYAMOND) project (Stevens et al., 2019) 73 

from the project’s inception and has been evaluated for tropical cyclones (Judt et al., 2021) and 74 

tropical cirrus (Nugent et al., 2021 and Turbeville et al., 2021). The 4-K warmer SST experiment 75 

is analogous to the amip4K experiments included in the Coupled Model Intercomparison Project 76 

phase 5 (CMIP5; Taylor et al. 2012) and phase 6 (CMIP6; Eyring et al. 2016). X-SHiELD’s 77 

year-long simulations are unique datasets that allow us to examine the behavior of intense 78 

convection in a warming climate. 79 
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 80 

2 Global storm-resolving model X-SHiELD and experiment design 81 

X-SHiELD, a configuration of a unified modeling system SHiELD (Harris et al., 2020), 82 

is a full physics global model powered by the Finite-Volume Cubed-Sphere Dynamical Core 83 

(FV3; Putman & Lin, 2007; Harris et al., 2021). The horizontal resolution of X-SHiELD is ~3.25 84 

km globally. X-SHiELD uses 79 vertical levels where the resolution is the finest (~20 m) at the 85 

bottom and gradually expands upward, with a model top at 3 hPa. The physical 86 

parameterizations used in X-SHiELD include the in-line GFDL microphysics scheme (Harris et 87 

al., 2020; Zhou et al. 2022), the turbulent kinetic energy (TKE)-based moist eddy-diffusivity 88 

mass-flux (EDMF) PBL scheme (Han and Bretherton, 2019), the scale-aware simplified 89 

Arakawa–Schubert scheme (Han et al., 2017) for shallow convection only, and the Noah-MP 90 

land surface model (Niu et al., 2011). A mixed-layer ocean model (Pollard et al., 1973) is used 91 

and nudged towards real-time ECMWF SST analyses. The deep convective parameterization is 92 

disabled as X-SHiELD explicitly simulates deep convection. 93 

This study aims to investigate how warmer SST affects the development of intense 94 

convection. For the purpose of comparison, a control experiment and that with a 4-K warmer 95 

SST (4-K hereafter) were conducted. Both experiments use the same model with the same 96 

configuration. The only difference in the 4-K experiment is that the SST is nudged towards 97 

analyses with a uniform 4 K increase in SST. Both runs are 15 months long starting at 00 UTC 98 

on 20 October 2019, and the period from Dec 2019 to Nov 2020 is used for the analysis 99 

presented here. 100 

 101 

3 Global picture of intense convection 102 

The global annual-mean distribution of intense convection, defined as wmax (6-hr column-103 

maximum vertical velocity below 100 hPa) > 10 m∙s-1, produced by the 4-K and the control 104 

experiments are shown in Figure 1a and 1b respectively. Both experiments share a similar 105 

pattern consistent with the observed global picture of deep convection (e.g., Houze et al., 2015; 106 

Liu et al., 2007), suggesting that X-SHiELD realistically simulates intense convection. Overall, 107 

the annual occurrence of intense convection increases by 21% due to the increased SST, which is 108 
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can be generalized in terms of the warm season and the cold season. The warm season is defined 142 

as the period between March-August in the North Hemisphere (NH) and September-December in 143 

the South Hemisphere (SH). The cold season refers to the rest of the year for each hemisphere. 144 

During the warm season, intense convection tends to develop frequently and the difference 145 

between the two runs becomes significant and complex, especially in the NH (SH) during JJA 146 

(DJF). Generally, there are increases at high latitudes and decreases at low latitudes in North 147 

America, South America, and East Asia, suggesting the increased SST shifts intense convection 148 

development to higher latitudes in those regions. In addition, reductions in the frequencies can be 149 

seen in west Eurasia and central Africa, suggesting that the increased SST suppresses intense 150 

convection development there. For the cold season, on the contrary, the development of 151 

convection becomes less active and migrates to lower latitudes. Also, the difference between the 152 

two experiments becomes less discernible, which can be depicted clearly in the NH (SH) during 153 

DJF (JJA). It shows that the increased SST has a weak impact on the nature of intense 154 

convection during the cold season. Exceptions, however, exist. For example, we observe 155 

significant reductions taking place in the South of the US during DJF and increases taking place 156 

in the Rio de la Plata Basin during JJA. These exceptions suggest that the increased SST 157 

suppresses (enhances) intense convection development over the southern US (Rio de la Plata 158 

basin). 159 

Lepore et al. (2021) studied how convective severe weather activities change in warmer 160 

climates for different seasons, based on analyzing environmental proxies of convection in the 161 

CMIP6 ensemble. They found that the frequency of severe weather activities increases globally 162 

as the global temperature increases, with higher latitudes showing larger relative changes. Their 163 

findings are broadly consistent with our results. However, significant discrepancies exist in many 164 

regions and vary seasonally (cf. Figure 7 in Lepore et al., 2021). For example, our simulations 165 

show decreases in Europe and the southern US during the warm season, whereas their results 166 

show increases in those regions. We note, however, that the frequency of severe weather 167 

activities computed by Lepore et al. (2021) is based on convective environmental proxies, not 168 

convection itself, as CMIP6 models do not resolve convection. Also, the shift of convection 169 

development from the land to the ocean in our 4-K run may partially account for the 170 

discrepancies. Moreover, the discrepancies may result from the relatively short simulation 171 

periods used by our model, compared to multi-decadal simulations conducted by the CMIP 172 
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models. The spatial and seasonal response of intense convection to the increased SST can be 173 

affected by the internal variability in our year-long simulations. 174 

Previous global modeling studies on changed climates could not resolve deep 175 

convection. Thus we also calculated other convection-related fields, including CAPE, 176 

precipitation, 500 hPa vertical pressure velocity ω500, and global mean radiative feedback.  This 177 

helps put the warming-induced changes in intense convection in a broader physical 178 

context. Figure 3a shows that the increased SST enhances CAPE throughout the warmer oceans, 179 

and to a lesser extent, over convectively-active land regions. This distribution of CAPE change 180 

in our model qualitatively agrees with climate model projections (Chen et al., 2020; Fasullo, 181 

2012, Sobel & Camargo, 2011). Quantitatively, the overall increase of CAPE in the tropics is 182 

over 300 J∙kg-1, or over 40% with respect to the control run, which is much higher than the 183 

CAPE calculated by traditional climate models for warming climates. 184 

We also compare our results with observations. Taszarek et al. (2021) calculated trends in 185 

CAPE under global warming based on ERA5 reanalysis and rawinsonde observations. Our 186 

results qualitatively agree with the observations, but not with ERA5. Both their observations and 187 

our model analysis show a warming climate enhances CAPE in the Midwest of the US, Rio de la 188 

Plata basin, and East China. Both also show reduced CAPE in parts of west Europe. On the other 189 

hand, our result does not agree with the trends calculated by the ERA5 reanalysis, which shows 190 

CAPE increases over western Europe and decreases over East China, Rio de la Plata basin and 191 

over the ocean. The pattern of CAPE changes due to the increased SST generally resembles that 192 

of intense convection frequency shown in Figure 1c. However, discrepancies can be observed in 193 

regions, such as South Africa and Congo basin, where enhanced CAPE does not necessarily 194 

increase intense convection frequencies. In fact, intense convection frequencies may even 195 

decrease in regions with increased CAPE, e.g., Amazon Basin. It shows that analyzing 196 

convective environmental proxies is insufficient to understand the global picture of intense 197 

convection and that GSRMs are a useful tool for the study of intense convection on a global 198 

scale.  199 
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produced by deep convection. Precipitation significantly increases over the ocean, while the 208 

change in the intense convection frequency is tiny. 209 

The pattern of the precipitation change generally agrees with the multimodel mean of the 210 

corresponding uniform SST warming CMIP5 experiment (He et al. 2014) and the results of Zhao 211 

(2021), who used a 50-km climate model to investigate the change in precipitation in a warmed 212 

climate that is forced by a uniform 4 K increase in SST (cf. Figure 9 in Zhao, 2021). Zhao (2021) 213 

found that the precipitation changes in tropics and subtropics are associated with tropical storms 214 

and mesoscale convection systems, consistent with our results. The changes in extratropics are 215 

associated with atmospheric rivers. 216 

In low latitudes, deep convection (which generates latent heating) is tightly connected to 217 

vertical motion, as can be seen by comparing Figure 3b (control-climate precipitation) with 218 

Figure 3c (control-climate ω500).  The change in ω500 due to increased SST is generally in the 219 

opposite sense as the change in precipitation, with regions of increased ascent (negative change 220 

in ω500) coinciding with increased precipitation. The pattern is consistent with previous studies 221 

on how the tropical circulation changes under global warming (e.g., Vecchi and Soden, 2007; 222 

Wyant et al. 2006). Vecchi and Soden (2007) found that the ω500 change opposes the background 223 

ω500 in tropics and subtropics, indicating a weakening of the mean tropical circulation as can be 224 

also seen in our simulations. The result suggests that the robustly simulated weakening of the 225 

tropical circulation in a warmed climate holds in this year-long GSRM, notwithstanding the 226 

increase in intense convection frequency. 227 

Intense convective clouds and associated tropical cirrus are also an important contributor 228 

to the global radiation budget and its changes in a warmer climate.  Ringer et al. (2014) found 229 

that the change in global cloud radiative effect is highly correlated between GCM simulations 230 

forced with a uniform 4 K SST increase and fully-coupled simulations of the climate response to 231 

CO2 quadrupling, even though the detailed spatial patterns of cloud change are less similar. The 232 

changes in global annual average all-sky top-of-atmosphere longwave and shortwave radiation 233 

are -1.66 and 0.06 W∙m-2 K-1, respectively, for a net radiative feedback of -1.6 W∙m-2 K-1, which 234 

is squarely within the GCM interquartile range shown for amip4K results in Figure 1 of Ringer et 235 

al. (2014).  This is based on a global average surface air temperature increase of 4.3 K between 236 
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our control and 4-K simulations. We conclude that the radiative response of X-SHiELD to SST 237 

warming is broadly similar to that of current GCMs. 238 

 239 

4 Changed planetary-scale circulation and its impact on intense convection development 240 

We have shown changes in the spatial and seasonal variability of intense convection in a 241 

warmer climate due to increased SST. One important question then arises: how are such changes 242 

coupled to planetary-scale circulation features? Beyond examining the mean vertical velocity, it 243 

is helpful to examine how the planetary-scale circulation changes in response to the increased 244 

SST, which may provide clues for the change in the intense convection pattern. 245 

We use eddy geopotential height (He) to depict the impact of the increased SST on 246 

subtropical highs, as shown in Figure 4. He has been used extensively in examining the nature of 247 

the Western North Pacific Subtropical High (see He et al., 2015 and Zhou et al., 2009). He is 248 

defined as the deviation of the geopotential height at 500 hPa from the regional average over the 249 

tropics and subtropics. so it is suitable for the comparison of the pressure patterns between a 250 

warmed climate and a normal climate.   251 

We first consider the NH. Compared to the control run, the subtropical high over North 252 

America in the 4-K run becomes stronger and expands northward and eastward, covering most of 253 

the continental United States. This helps suppress intense convection in that simulation. High 254 

pressure also expands northward over West Africa.  This could partially explain the decrease in 255 

the intense convection frequency over west Eurasia. In contrast, the Western North Pacific 256 

Subtropical High weakens a bit in the 4-K run, which may explain the increased intense 257 

convection frequency over East China during the warm season. In the SH the subtropical highs 258 

are strengthened by the increased SST. This reduces the intense convection frequency in 259 

subtropical regions of South America, South Africa, and Australia during the warm season. 260 

The changed circulation also affects low-level heat and moisture fluxes regionally, 261 

which, in turn, modulates intense convection. For example, the intensified circulation around the 262 

Bermuda High brings more warm and moist air to the Midwest of the US, enhancing intense 263 

convection frequency there. These circulation changes are in part nonlocally driven by latent 264 

heating from deep convection and would be altered if CO2 changes were also included in these 265 
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throughout the warm oceans where deep convection is common. During the warm season, the 280 

increased SST tends to shift intense convection over land to higher latitudes in North America, 281 

South America, and East Asia. The increased SST, however, reduces the intense convection 282 

frequencies in west Eurasia and central Africa. During the cold season, the increased SST 283 

reduces intense convection in the southern US but enhances it in the Rio de la Plata basin.  284 

We compared aspects of our novel year-long global storm-resolving simulations that are 285 

connected to intense convection with climate models and observational analyses documented in 286 

previous studies. CAPE, precipitation, and ω500 were examined, as the global survey of intense 287 

convection frequency is unavailable in previous studies. The change in CAPE due to the 288 

increased SST shares a similar pattern as seen in previous studies, albeit our simulations give a 289 

much larger increase in CAPE over the tropical ocean. In some land regions, increased CAPE 290 

does not necessarily correlate with more intense convection. For precipitation and ω500, their 291 

changes due to the increased SST in X-SHiELD are consistent with previous studies. We found 292 

that the radiative response of X-SHiELD to the increased SST is also similar to that of current 293 

GCMs. This gives us confidence that our X-SHiELD findings about the distribution and causes 294 

of intense deep convection in a changing climate can inform the future development of GCMs. 295 

We also showed that the increased SST modulates the planetary-scale circulation and, in 296 

turn, affects the global pattern of intense convection. The increased SST enhances subtropical 297 

highs and drives the poleward shift of intense convection development. The changed circulation 298 

also modulates low-level heat and moisture fluxes regionally and in turn the distribution of 299 

intense convection. 300 

One caveat of this study is that the simulated seasonality (e.g., intense convection and 301 

He) is subject to the internal variability of one-year-long simulations, which may partially 302 

account for the discrepancies between our simulations and the multi-year mean results from 303 

previous studies. We also reiterate that warmer SST is only a partial proxy for a warmer climate 304 

because radiative changes from CO2 and horizontal variations in the SST increase driven by 305 

ocean coupling are also important. While global-scale changes in convection and circulation due 306 

to the increased SST should be robust, these factors will change the warming-induced spatial 307 

patterns of convection and circulation. We plan to conduct CO2-forced experiments for direct 308 

comparison shortly. 309 
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