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Abstract

Accounting for an accurate noise model is essential when dealing with real data which are noisy due to the effect of environmental

noise, failures and limitations in data acquisition and processing. Quantifying the noise model is a challenge for practitioners

in formulating an inverse problem and usually, a simple Gaussian noise model is assumed as a white noise model. Here we

propose a pragmatic approach to using an estimated seismic wavelet to capture the correlated noise model (coloured noise)

for the processed reflection seismic data. We test the method for a probabilistic sampling-based inversion where post-stack

seismic data, associated with a hard carbonate reservoir in southwest Iran, is inverted directly to porosity. We assume eight

different scenarios for the bandwidth and the magnitude of the noise. The investigation of the corresponding posterior statistics

shows that ignoring the correlation of the noise samples in the noise covariance matrix generates unrealistic features in porosity

realisations while underestimating the noise magnitude leads to overfitting the data and generating a biased model with low

uncertainty. Furthermore, by considering an imperfect bandwidth for the noise model, the error is propagated to the posterior

realisations. These issues are resolved considerably when the correlated noise is considered in the inversion. Therefore, in

real data applications where the estimation of the magnitude and correlations of the noise is not trivial, the estimated seismic

wavelet provides a good proxy for describing the correlation of the noise samples or equivalently the bandwidth of the noise

model. In addition, it might be better to overestimate the noise magnitude than to underestimate it. This is true especially for

an uncorrelated noise model and to a lesser degree also for the correlated noise model.
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ABSTRACT 

Accounting for an accurate noise model is essential when dealing with  real data which are 

noisy due to the effect of environmental noise, failures and limitations in data acquisition and 

processing. Quantifying the noise model is a challenge for practitioners in formulating an 

inverse problem and usually, a simple Gaussian noise model is assumed as a white noise 

model. Here we propose a pragmatic approach to using an estimated seismic wavelet to 

capture the correlated noise model (coloured noise) for the processed reflection seismic data. 

We test the method for a probabilistic sampling-based inversion where post-stack seismic 

data, associated with a hard carbonate reservoir in southwest Iran, is inverted directly to 

porosity. We assume eight different scenarios for the bandwidth and the magnitude of the 

noise. The investigation of the corresponding posterior statistics shows that ignoring the 

correlation of the noise samples in the noise covariance matrix generates unrealistic features 

in porosity realisations while underestimating the noise magnitude leads to overfitting the 

data and generating a biased model with low uncertainty. Furthermore, by considering an 

imperfect bandwidth for the noise model, the error is propagated to the posterior realisations. 

These issues are resolved considerably when the correlated noise is considered in the 

inversion. Therefore, in real data applications where the estimation of the magnitude and 

correlations of the noise is not trivial, the estimated seismic wavelet provides a good proxy 

for describing the correlation of the noise samples or equivalently the bandwidth of the noise 

model. In addition, it might be better to overestimate the noise magnitude than to 

underestimate it. This is true especially for an uncorrelated noise model and to a lesser degree 

also for the correlated noise model. 

Key words: Probabilistic inverse problem, Noise model, Reservoir Geophysics, Uncertainty 

quantification 



 

 

INTRODUCTION 

Recorded seismic data are indispensably associated with uncertainty. From a theoretical 

perspective, the solution to the seismic inversion problem is non-unique, in that infinitely 

many models exist that allow fitting observed seismic data within the data uncertainty 

bounds. If the acquired data would be absolutely reproducible, i.e. noise-free, then all models 

whose responses did not match the data perfectly would be incorrect (Scales and Snider, 

1998). The uncertainty in the estimated model can be attributed to diverse sources, including 

data uncertainties, data processing flow, and approximate or even faulty physical 

relationships between data and model parameters (Oliver et al. 2021). The noise in seismic 

data is often considered to be additive, such that the noise can be considered as the residual 

between the observed (recorded) and predicted (modelled) measurements, i.e. all that cannot 

be reconstructed by the forward modelling. The assumption of additive noise is common and 

well formulated in a standard framework in the inverse problem theory (Sen and Stoffa 1996; 

Mosegaard and Tarantola 2002; Trantola 2005; Ulrych and Sacchi 2005; Aster, Borchers, and 

Thurber 2018). By acknowledging that the seismic data is contaminated with the noise of 

some form or another, a realistic noise model must be considered in an inversion of seismic 

data in order to account for the data uncertainty precisely.  

In a probabilistic inverse problem framework, the noise is assumed to consist of a 

combination of measurement and modelling errors (Tarantola 2005). Modelling errors stem 

from a variety of sources such as imperfect model parameter space parameterization, 

uncertainty related to the geometry of measurement, the use of approximate forward models, 

etc. In some cases, the magnitude of the modelling errors may be much smaller than the 

measurement errors, in which case they can be ignored. However, as will be demonstrated, 

for many practical cases, the modelling errors have a significant portion, and should not be 

disregarded.  



 

 

It is common in seismic data inversion to assume that the data uncertainty is uncorrelated 

and stationary (Aleardi, Ciabarri, and Gukov 2018; Gunning and Sams 2018; de Figueiredo et 

al. 2019; Grana 2020; Sengupta et al. 2021, Grana, de Figueiredo, and Mosegaard 2022; Li et 

al. 2022; Aleardi 2021; Aleardi and Salusti 2020 ). Cordua et al. (2009) assess the impact of 

correlated noise on cross-borehole ground-penetrating radar data. They argue that as the 

correlation of the data errors is accounted for, the higher resolution images are obtained. 

Hansen et al. (2014) argue that ignoring the modelling error can lead to severe artefacts, 

which erroneously appear to be well resolved in the solution of the inverse problem, which 

has been exemplified for seismic data (Madsen and Hansen 2018; Madsen, Nørmark, and 

Hansen 2018).  x. Among few publications on this subject, Jakobsen and Hansen (2019) 

assess the effect of correlated and uncorrelated noise in a direct Bayesian inversion of 1D 

synthetic seismic data to lithofacies. They show that considering correlated noise improves 

the resolution of the model parameters compared to the case when using a white uncorrelated 

noise model. Madsen et al. (2017) also adopt a hierarchical Bayesian approach to infer the 

properties of the noise model as a part of inversion. Malinverno and Parker (2006) propose 

two approaches to invert geophysical measurements and estimate subsurface properties and 

their uncertainties when little is known a priori about the size of the errors associated with the 

data. They use an empirical Bayes approach, where hyperparameters (e.g., the variance of 

data uncertainty) are not well known in advance to the inversion and are estimated from the 

most probable value, given the observed data. Estimation of the variance of data uncertainty 

in each iteration of the sampling algorithm is practically demanding as the data covariance 

needs to be inverted at each iteration. However, Hansen et al. (2013) developed a toolbox 

through which it is straightforward to estimate the noise magnitude of even large-scale 

seismic data using a local subset of seismic data.  



 

 

In this study, the uncorrelated noise assumption is compared with a range of scenarios 

for the correlated noise model with varying magnitude (variance) and shape (wavelet 

bandwidth). The performance of the probabilistic inversion under different noise assumptions 

is examined over a realistic synthetic case study where seismic data is inverted directly to a 

posterior distribution of porosity in a hard-rock carbonate reservoir. By analysing the 

posterior distribution of porosity and its statistics in different noise scenarios, a pragmatic 

approach is proposed to account for the noise model in the probabilistic petrophysical seismic 

inversion. 

In the following, we first outline the inversion methodology and associated 

parameterisations. Then we discuss the results of probabilistic inversion of 2D realistic 

synthetic seismic data in presence of different noise models. As showcased in Heidari et al. 

(2022), the results of this work can be directly applied in industry-led studies, where the noise 

model is a challenging aspect in setting up the probabilistic inversion of real seismic data.  

THEORY 

Suppose m  represents some model parameters, which describes physical properties, and 

d  refers to the noise-free physical response of the model m through the forward operator 

( )gd m . Assuming additive noise, the observed data 
obsd  can be represented by the 

following equation, 

obs ( ) ,g   d m e d e                                                                                                               (1) 

where e  symbolizes the noise, due to both the measurement and theoretical (modelling) 

errors (Tarantola, 2005). The inverse problem then consists of inferring information about the 

model parameters m , given information about the observed data, forward operator, and noise 

model. 



 

 

PARAMETERISATION OF THE PROBABILISTIC INVERSE PROBLEM  

Tarantola and Valette (1982) propose a probabilistic approach to solve the inverse 

problem, in which all information is quantified through a prior probability distribution ( ) m   

and a likelihood function  L m . The prior information, quantified through ( ) m , can come 

from various sources that are independent of the observed data, such as previous surveys, 

geoscientists' knowledge, outcrops, and so forth. In this study, we use the porosity logs at 

four boreholes as the prior information. The geophysical data information is quantified 

through the likelihood function  L m , which describes the expected distribution of the data 

residual for the model m  as     obsL f dm g m . Once the available information is 

quantified, the combined state of information, prior distribution, and the likelihood is 

obtained using the concept of conjunction of states of information (Tarantola and Valette, 

1982). This leads to the solution of the inverse problem as the posterior probability 

distribution, 

     L , m m m                                                                                                                 (2) 

where,  

   1 L d    m m m                                                                                                               (3) 

is a normalization constant, which ensures that   1d  m m .  

Assuming a Gaussian distribution for the data uncertainty, the likelihood function is also 

Gaussian and is represented as (Mosegaard and Tarantola, 2002), 

          
1

N 2 11
2

2

T

D obs D obsL exp ,


 
    

 
m C d g mCd g m                                        (4) 

where N  is the length of data and 
DC  is the data covariance, which can be split into 



 

 

contributions from the measurement error 
dC  and modelling error 

tC  such that 
D  d tC C C , 

assuming independence of the two (Tarantola, 2005). 

To solve the probabilistic inverse problem, it is necessary to describe the posterior 

distribution   m  either analytically, or numerically. In this study, we use the extended 

Metropolis-Hastings algorithm (Mosegaard and Tarantola, 1995), through the 

“Stochastic Inverse Problem with informed Prior Information” (SIPPI) toolbox developed by 

Hansen et al. (2013) to sample the posterior distribution (See Appendix A for more details). 

To run the extended Metropolis-Hastings algorithm, we need to consider at least three main 

components: 1) sampling the prior model through a random walk, 2) solving the forward 

problem ( )gd m , and 3) evaluating the likelihood  L m . The third component is equivalent 

to evaluating the data residual as a realisation of the noise model. To represent the prior 

model numerically, we use the fast Fourier transform moving average (FFT-MA) method 

proposed by Le Ravalec et al. (2000), which is an efficient approach for generating 

independent realisations from a stationary multivariate Gaussian realisation. We also apply 

the inverse normal score transform (See, e.g., Goovaerts, 1997) to ensure that the distribution 

of the model realisations follows the target distribution, i.e., the distribution of the porosity 

logs (Hansen et al., 2013). This leads to a more realistic distribution of the porosity 

realisations than a simple Gaussian distribution. In order to implement a random walk in the 

prior model space, we perturb the Gaussian random deviates used by the FFT-MA method at 

each iteration following Hansen et al (2012).  

To solve the forward modelling problem and generate a synthetic trace associated with 

each model parameter, we use the widely used one-dimensional convolution approach 

(Yilmaz, 2001). We calibrate the Nur critical porosity rock physics model through the 

methodology proposed by Amini (2018) to obtain the optimized minerals’ elastic moduli and 



 

 

pointwise critical porosity using the petrophysical logs, i.e., the volume of shale and water 

saturation, and density and sonic logs for four pseudo-logs. The petrophysical logs and 

porosity realisations are converted to elastic parameters using rock physics modelling. In 

equations (1) to (4), m refers to porosity and the prior model refers to the assumption of the 

porosity distribution. 

NOISE MODEL 

In probabilistic seismic data inversion, it is a common practice to assume uncorrelated white 

noise, where the noise covariance matrix in equation (4) is described by the noise variance 2  

and the identity matrix I  in the form of 2
d C I . Finding a representative covariance matrix 

is a key aspect of a correlated noise setup. It is acknowledged that the summation of the earth 

impulse response and the additive noise is convolved with the receiver array, geophone and 

recording system responses (Yilmaz 2018). Furthermore, during processing, all effort goes to 

attenuation of the noise components that do not overlap with the seismic signal. 

Consequently, the remnants of noise in seismic data after processing must be correlated 

(Figure 1). Therefore, we suggest modelling the correlated noise using an estimated source 

wavelet that is a good representative of both the seismic signal and the noise. To address the 

correlation of the noise samples and simulate realistic correlated noise, we generate a set of 

realisations from a Gaussian random reflectivity 0 0 0324( , . )  and convolve them with a 

seismic wavelet extracted from a 3D real seismic mid-angle gather. Figure 2a shows some 1D 

band-limited Gaussian noise realisations. The corresponding covariance matrix of 531 

correlated noise can be seen in Figure 2b. The mean of the nonzero diagonals of the 

covariance matrix, the seismic wavelet as well as their corresponding frequency spectra are 

shown in Figures 3a and b, respectively. The mean of the nonzero diagonals of the covariance 

matrix could be a reasonable approximation of the seismic wavelet, as their main lobes are 



 

 

similar and their frequency spectrums are in approximately the same range. Therefore, we 

suggest that the seismic wavelet can potentially be assumed as a suitable proxy for capturing 

the coupling of data samples for both signal and noise within the seismic bandwidth. 

Consequently, in contrast to the routine practice where the main diagonal of the noise 

covariance matrix is a delta function, it is sensible to insert the seismic wavelet along the 

main diagonal of the covariance matrix ,t shapeC  to account for the correlation of the noise 

samples more realistically.  

THE SYNTHETIC SEISMIC DATA SET 

A 2D geological model of porosity from a hard-rock carbonate reservoir in southwest 

Iran is used to build the synthetic seismic data (Figure 4a). Porosity has the dominant 

petrophysical control on the seismic response (Mavko et al. 2020). The rock-physics model 

proposed by Heidari et al. (2020) in conjunction with an estimated wavelet extracted from the 

real seismic data is used to generate the synthetic seismic data (Figure 4b). To simulate a 

realistic correlated (bandlimited) Gaussian noise, we convolve the wavelet with a 2D 

Gaussian random reflectivity field with zero mean and standard deviation (STD) of 0.18, 

providing a signal-to-noise (SNR) of 3.3 (Figure 4c). This 2D noise section was added to the 

noise-free seismic data to generate the noisy seismic section (Figure 4d). 

NOISE SCENARIOS IN THE INVERSION ALGORITHM 

In order to test the hypothesis that the correlated part of the noise model can be 

determined based on the seismic wavelet, we consider eight different scenarios with various 

noise magnitudes and bandwidths. The first, second, and third scenarios assume uncorrelated 

noise models D dC C  with different levels of noise variance 2 . The other five scenarios 

assume correlated noise models D tC C (Table 1). Similar to the uncorrelated noise dC , the 

covariance of the correlated noise model is scaled such that  2
, t t shapeC C . In the fourth 



 

 

scenario, to capture the optimal coupling of data samples for both signal and noise within the 

seismic bandwidth, we use a tC  equivalent to the noise added to the data. To address the 

uncertainty with the wavelet estimation and its effect on the statistics of the posterior 

realisations, scenarios five and six make use of shorter and longer wavelets than the reference 

wavelet to construct ,t shapeC  with the correct level of noise variance 2  given (Figures 5a and 

b). Estimation of the magnitude of the noise in real data is not straightforward. Scenarios 

seven and eight aim at examining the performance of the inversion algorithm where the 

magnitude of the noise variance 2  is over- and under-estimated respectively but the correct 

,t shapeC  is provided. 

RESULTS AND DISCUSSIONS 

Figure 6 represents the results of the probabilistic inversion as the mean of the porosity 

posterior realisations for all of the noise model scenarios. To better investigate the inversion 

performance, we show the log-likelihood curves of the sampling procedure in Figure 7. 

Figure 6a represents the result of the inversion for case 1, where the inversion resolves the 

true porosities even for the thin layers. However, there are some unrealistic features (stripes) 

on the porosity section. These artefacts can be attributed to ignoring the correlation of the 

noise samples. Figures 6b and 6c show the results of over- and underestimation of the noise 

magnitude in the uncorrelated noise setup (cases 2 and 3). Overestimation of the noise 

variance generates a smooth posterior mean model with low resolution. It should be noted 

that the individual realisations may not be necessarily smooth. The results also clearly 

indicate that ignoring the correlation in the noise setup as well as underestimation of the 

magnitude generate apparently well-resolved features with lower uncertainty, exemplified by 

white arrows in Figure 6c, which are simply biases from overfitting the data. We discuss the 

uncertainty assessment further in Figure 9. In addition, assuming uncorrelated noise leads to a 

harder sampling problem. In other words, the sampling algorithm is not able to search the 



 

 

high probability regions and sample them sufficiently. This is due to the failure of the 

algorithm to reach the “burn-in” phase, where the correct posterior distribution is sampled, 

and instead, the data is overfitted through an optimization procedure rather than a sampling 

procedure. The behaviour of the log-likelihood curve of this case in Figure 7c also confirms 

the failure of the algorithm to converge to a steady-state and search the full posterior 

distribution. In this case, the true porosity is found in a 95% CI only for 17.52% of data 

samples. Also, the root-mean-square error (RMSE) of the residual of the true and estimated 

porosity is 13.20. This indicates that although the resolution of the posterior realisations is 

high, the algorithm fails to sufficiently capture the posterior distribution and generate 

independent realisations. Here, there is a trade-off between the number of iterations and the 

resolution. The inability of the sampling algorithm to fully sample the posterior and generate 

enough independent realisations may be resolved if the number of iterations is increased. 

However, it is not feasible to run the algorithm for numerous iterations, especially in real data 

applications. Therefore, considering just the posterior realisations to conclude the sampling 

algorithm performance in presence of different noise models is not enough. In other words, 

not only the behaviour of the log-likelihood curve but the statistical features of the posterior 

realisations should be analysed as well. 

 Figure 6d shows the results of case 4 for the correlated noise assumption using the 

seismic wavelet and true STD. We expect this case to be the best-case scenario as the 

assumed noise is the same as the added noise and the distribution of the posterior realisations 

follows the distribution of the realistic reference model due to applying the normal score 

transformation. Therefore, in this case, the algorithm should obtain the optimal inversion 

resolution for the problem. Furthermore, the true porosity is found in a 95% CI for 92.23% of 

data points and the RMSE of the estimated porosity is 10.70. This shows that the sampled 

realisations describe the true porosity reasonably well. The results of cases 5 and 6 are shown 



 

 

in Figures 6e and 6f. These figures qualitatively show that the error propagated into the 

posterior realisations by over- and underestimating the wavelet bandwidth in noise 

covariance construction is insignificant as 92% and 93.23% of the true porosity is found in a 

95% CI and the RMSE is 10.73 and 10.49, respectively. It indicates that in practice and for 

real data applications, we would not be penalized a lot by choosing an imperfect wavelet for 

constructing the covariance matrix of a correlated noise model. Also, the associated log-

likelihood curve shown in Figure 7 levels out, which shows that the burn-in phase is finished 

normally. The results of cases 7 and 8 are depicted in Figures 6g and 6h, respectively. The 

results are consistent with cases 2 and 3 (Figures 6b and 6c). Therefore, it is sensible to be 

conservative and overestimate rather than underestimate the noise magnitude. This is 

consistent with findings related to correlated noise in travel-time inversion where only little 

resolution is lost assuming a too high magnitude of the correlated noise (Hansen et al. 2014). 

A comparison of the results of these cases with the results of cases 2 and 3 highlights the key 

contribution of including the correlation of the noise samples (the non-diagonal elements) in 

the covariance matrix. In addition to fewer stripes on the mean porosity section, a larger 

number of data points are found within 95% CI, in the correlated noise setup. However, 

comparing figures 6b and 6g (i.e., black arrows), denotes that although ignoring the 

correlation of the noise samples generates some unrealistic features in case 2, this case leads 

to a better estimation of the porosity magnitude for the mean model. The first three columns 

in Table 2 summarise the percentage of the true porosity found in a 95% CI and the RMSE of 

the estimated porosity for all the noise scenarios.  

The log-likelihood curves in Figure 7 might be misleading for the assessment of the 

sampling performance as they seem to be similar for different cases of the correlated and 

uncorrelated noise scenarios. Therefore, to quantify the efficiency of the different Markov 

chains in the sampling procedure, we obtain the number of iterations between independent 



 

 

realisations and the number of independent realisations obtained from the posterior 

distribution for all the cases using the correlation between the sampled realisations from the 

posterior distribution (See Table 2). The numbers in the last two columns of Table 2 show 

that the noise models in cases 3 and 8 lead to the hardest sampling as the algorithm fails to 

sample sufficiently and the number of independent realisations is notably lower in 

comparison with the other noise models. In addition, in Table 2, the difference between the 

statistics of the porosity realisations and the RMSE of the estimated porosity for cases 3 and 8 

is more notable compared to the other cases. For better illustration of the statistical analysis 

criteria mentioned in Table 2, we normalised their associated values in a range between 0 and 

1 and depicted them as a spider plot shown in Figure 8. Consistent with Table 2, the highest 

value of the number of iterations between independent realisations and consequently the 

lowest value of the number of independent realisations corresponds to Case 3. 

Figure 9 represents a binary map, where all the regions where the reference (true) 

porosity is located outside the 95% confidence interval (CI) are shown in white colour. In an 

ideal inversion, 5% of this map should show white colours scattered evenly. Thus, this figure 

visually gives a good insight into the regions where the inversion could not resolve the true 

porosity properly. For instance, in regions where the white points are predominant, the 

posterior uncertainty is underestimated. This showcases features in the mean model that 

appear well-resolved but are not, such as the mean model in Figure 6c (case 3), which is 

clearly not resolved. In these binary maps, some recognizable lateral patterns (which are 

highlighted by red curves in Figure 9a) are visible for all cases except case 3. Judging from 

figure 6, this is probably attributed to some geological boundaries, where the current prior 

model is incapable of fully describing the spatial variability of the reference model. This may, 

in part, also be attributed to some edge effect in the inversion algorithm (Proakis, 2001). 

Cases 4 to 7 with the correlated noise models are superior to the rest of the inversion results 



 

 

in alleviating the effect of the imperfect prior model, resolving the true porosity, and hence 

providing trustworthy uncertainty estimates. This is confirmed when describing the overall 

performance as a single number as done in Table 2, where the CI of cases 4 to 7 are all close 

to the target value of 95%.  

In these maps, some features such as the ones highlighted by the red ellipses are striking 

in cases where the noise model is uncorrelated. These regions are more prone to incorrect 

uncertainty estimates in cases where the noise bandwidth is not considered and the sampling 

algorithm is unable to resolve the porosity correctly. This notable difference indicates the 

importance of assuming correlation in the noise model, such that the risk of overfitting the 

data and consequently generating artefacts is minimized. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CONCLUSIONS 

Due to the data acquisition and data processing flow, the remnant noise in the seismic 

data is more likely to be correlated noise. It has been demonstrated that ignoring such 

correlated noise and considering only uncorrelated noise will lead to artefacts in the posterior 

distribution as un-accounted correlated noise will be propagated into the posterior 

distribution. The statistical analysis of the posterior realisations for all of the noise model 

scenarios indicates the indispensable role of the shape of the noise model such that, ignoring 

the correlation of the noise samples in the covariance matrix leads to the generation of 

unrealistic features on the posterior realisations and issues related to the sampling 

convergence. As a practical solution, we suggest using the scaled seismic wavelet based on 

the estimated noise magnitude to build the noise covariance matrix. The results indicate that 

the inversion is robust to variations in the shape (wavelet bandwidth) of the correlated noise 

model. In other words, even if an approximate wavelet is used, the results suggest only a 

minor effect on the posterior distribution. However, the effect of noise magnitude is more 

pronounced, such that assuming too small magnitude for the correlated noise leads to fitting 

noise as resolved features and also leads to a hard sampling problem. On the other hand, 

considering a higher magnitude than the true magnitude leads to a minor effect on the 

resolution of the posterior distribution. Thus, in order to provide a robust and practically 

useful noise model when inverting reflection seismic data, a conservative choice for the 

magnitude of the noise is to choose a magnitude at least as high as the true magnitude. 

Adopting the frequency spectrum of the wavelet as a proxy for the correlated noise model, 

while remaining conservative about noise levels is hence the most pragmatic takeaway of the 

inversion tests as it can potentially guide the practitioners to account for the precise noise 

model in a probabilistic inversion of real seismic data.  
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APPENDIX A: THE EXTENDED METROPOLIS-HASTINGS ALGORITHM 

The extended Metropolis algorithm (Mosegaard and Tarantola, 1995) can be used to sample 

the product of two probability distributions, such as the product between a likelihood and a 

prior distribution. It requires that one can sample the prior using a random walk, and evaluate 

the likelihood for any proposed model. If we have a way of evaluating the values of the 

likelihood  L m  and an algorithm A that can perform a random walk in the prior model 

 m  directly (without necessarily evaluating  m  anywhere), the following algorithm 

will sample the posterior  m : 

- Starting in the current model cm , perform one step in the random walk with 

the prior sampler A. 

- Accept the new point tm only with probability     1accept t cL LP min , m / m . 

- If tm  is rejected here, re-use cm  in the next step. 

- If tm  is accepted, let t cm m  in the next step. 

The above algorithm thus, through Paccept, allows for the acceptance of less likely models 

than the currently accepted and the full likelihood to be explored. In this study, we use the 

sequential Gibbs sampler (algorithm A) to perform the random walk in the prior distribution. 

Considering a known realisation m of the random field described by the probability 

distribution  m m, , i N , if we randomly select a model parameter  m mi iu  and compute 

the local conditional pdf  1 2 1 1m m m m m m  i i i Nf , , , , , ,∣ , and draw a value from it, we get a 

new realisation of the random field defined by  m m, , i N . If this is repeated iteratively, it 

will be an application of the Gibbs sampler (Geman and Geman, 1984). By combining the 

Gibbs sampling and sequential simulation (Hansen et al., 2012) it is possible to sample 

realisations of the probability distribution   m  instead of computing the full conditional pdf 

analytically. 

 



 

 

TABLES 

 

Table 1 The noise scenarios considered in probabilistic seismic inversion 

Noise scenarios Description 
 

Case 1 Uncorrelated (STD of 0.18) 
Case 2 Uncorrelated – overestimated noise (STD of 0.36 ) 
Case 3 Uncorrelated – underestimated noise (STD of 0.02 ) 
Case 4 Correlated – bandwidth similar to seismic bandwidth (STD of 0.18) 
Case 5 Correlated – bandwidth more than the seismic bandwidth (STD of 0.18) 
Case 6 Correlated – bandwidth less than the seismic bandwidth (STD of 0.18) 
Case 7 Correlated – bandwidth similar to seismic bandwidth (STD of 0.36 ) 
Case 8 Correlated – bandwidth similar to seismic bandwidth (STD of 0.02) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2 The statistical analysis of the posterior distribution. The first three columns: the 
percentage of the true porosity inside a 95% CI and the RMSE of the estimated porosity. The 
last two columns: the number of iterations between independent realisations and the number 
of independent realisations estimated through posterior static analysis for all the eight noise 
scenarios in probabilistic seismic inversion 

 

Noise 

scenarios 

The true porosity 

inside a 95% CI 

(%) 

The 

RMSE 

The number of 

iterations between 

independent 

realisations 

The number 

of 

independent 

realisations 

Case 1 81.18 11.13 4000 100 

Case 2 90.11 11.03 3000 133 

Case 3 17.52 13.20 82000 3 

Case 4 92.23 10.70 1000 400 

Case 5 92.00 10.73 1000 400 

Case 6 93.23 10.49 1000 400 

Case 7 94.45 11.13 1818 220 

Case 8 80.00 10.10 8000 50 

 

 

 

 

 

 

 

 

 

 

 



 

 

FIGURES 

 

 

Figure 1 A diagram describing the effect of data acquisition and the processing flow on the 
earth impulse response and additive noise. The final observed seismic data contains the noise 
in the bandwidth of the seismic wavelet, which cannot be discriminated from the seismic 
signal. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 2 (a) Some correlated (bandlimited) noise traces constructed through convolution of 
the extracted seismic wavelet with 1D Gaussian random reflectivity series with mean zero 
and variance of 0.0324 (Gaussian noise), (b) the covariance matrix of a 2D correlated noise 
section with 531 traces, some of which are exemplified in (a).  

 

 

 



 

 

 

Figure 3 (a) The statistical seismic wavelet (red) with the mean of the nonzero diagonals of 
the covariance matrix (black) in Figure 2b, and (b) the frequency spectrum of the wavelets in 
(a). 

 

 

 

 

 

 

 



 

 

 

Figure 4 (a) The reference porosity model superimposed by the pseudo-log location (black 
dashed lines), (b) the noise-free seismic data, (c) 2D band-limited Gaussian random field 
constructed through convolution of the statistical seismic wavelet with the 2D Gaussian 
random reflectivity series with mean zero and variance of 0.0324 (Gaussian noise), (d) the 
noisy seismic section. 

 



 

 

 

 

Figure 5 (a) seismic wavelets and (b) their frequency spectrum that are used for noise 
covariance matrix construction, black for cases 4, 7, and 8, blue for case 5, and red for case 6. 

 

 

 

 

 

 

 

 



 

 

 

Figure 6 The mean of the porosity posterior realisations for eight noise scenarios in 
probabilistic seismic inversion, which are described in Table 1 (See the text for detailed 
description).   

 



 

 

 

Figure 7 The log-likelihood curves for different noise scenarios in seismic probabilistic 
inversion. The failure of the sampling algorithm to reach the burn-in phase is notable in case 
3. 

 

 

 

 

 



 

 

 

Figure 8 The spider plot of the statistical analysis criteria and their associated values, which 
are shown in Table 2. To facilitate the comparison of the values of each criterion between 
different noise scenarios, the values of all four criteria are normalised in a range between 0 
and 1.  

 

 

 

 

 

 

 

 

 



 

 

 

Figure 9 The binary map describing the regions where the true porosity is outside (white 
points) and inside a 95% CI (black points). Red curves highlight spatial patterns of regions 
where the true porosity is outside a 95% CI. The red ellipses exemplify a feature describing 
the ability of the sampling algorithm with different noise models in resolving the true 
porosity. 

 

 


