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Abstract

* Poor estimates of the sinking speed of marine aggregates stem primarily high variance in aggregate excess density. * Self-

similarity of aggregation facilitates efficiently modelling of aggregate size and excess density, and hence sinking speed. * This

provides a mechanistic description of how planktonic communities impact the size and density-resolved export flux of organic

matter.
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Abstract13

We propose self-similarity of aggregation provides a tractable framework for estimating14

the sinking speed of natural marine particle aggregates for ocean biogeochemical mod-15

els. It does so by providing a means to tracking both size and excess density of aggre-16

gates as they are formed and transformed by aggregation, degradation and fragmenta-17

tion processes. A self-similarity parameter a in the range 1.8 to 2.1 is well supported by18

direct observations drawn from an extensive database of aggregate size and sinking speed.19

This provides a mechanistic description of how spatial and temporal variations in plank-20

tonic communities impact size and density characteristic of aggregate assemblages and21

their subsequent export from the surface ocean. We provide a simple model for which22

we conduct sensitivity analyses for the self-similarity parameter, stickiness, and turbu-23

lent dissipation rate. While incomplete in several aspects, the model compares well with24

observations of aggregate size spectra covering the global ocean.25

Plain Language Summary26

How fast dead stuff sinks is perhaps the biggest uncertainty in estimating how the27

world’s oceans cycle elements, and in particular, how they sequester carbon. We present28

a model that links surface plankton communities with the density and size character-29

istics of the aggregates of dead material they produce, and are thus able to estimate the30

sinking speeds of all aggregates that emerge. A key assumption that allows for efficient31

simulation is self-similarity of aggregation; that the underlying process of how aggregates32

form is well described by a set of global rules, even though this is often hidden by dif-33

ferences in what they are made of, and how they are degraded and fragmented. Although34

really quite simple, our model compares well with macroscopic properties of aggregates35

assemblages seen in nature.36

1 Introduction37

Perhaps the greatest hurdle to attaining a mechanistic understanding of the oceans’38

biogeochemical cycles is the incomplete description of the sinking speeds of particulate39

matter. This issue is central to key questions such as how much organic material is ex-40

ported from the sunlit surface ocean (Ducklow et al., 2001; Mouw et al., 2016), its de-41

pendence on the ever changing structure of the surface plankton community (Boyd &42

Newton, 1995; Henson et al., 2012), the depth to which detrital material sinks before be-43

ing solubilized (Cavan et al., 2017; Marsay et al., 2015), what this means for carbon se-44

questration (Kwon et al., 2009), consumption of oxygen (Suess, 1980; Bopp et al., 2002)45

nutrient recycling (Tréguer & Jacques, 1992; Buesseler et al., 2007), and how much reaches46

the seabed to be buried in sediments or feed benthic communities (Gooday, 2002; Cael,47

Bisson, et al., 2021). Despite years of observations from laboratory and field, sinking speeds48

of natural aggregate particles remain as enigmatic as ever; aggregates of any size from49

microns to centimeters seemingly sink at any speeds from practically zero to several 1000s50

of meters per day (Iversen & Lampitt, 2020; Laurenceau-Cornec et al., 2020; Cael, Ca-51

van, & Britten, 2021). Yet the physics of sinking speed is unequivocal. Sinking speed52

is set by a balance between buoyancy forces and drag (Stokes, 1851; Clift et al., 1978),53

and while the precise formulation may not be as neat as Stokes’ law (Oseen, 1910; White,54

1991; Loth, 2008), the following principle must hold: sinking speed is a monotonically55

increasing function of aggregate size and excess density ceteris paribus.56

The key concept we explore here is that aggregation is a geometrically self-similar57

process, such that the linear dimension rioj of an aggregate formed by the combination58

of two parent aggregates of linear dimension ri and rj respectively is given by:59

ri◦j = (rai + raj )
(1/a) (1)
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That is, for the binary process of aggregation, ra is an additive conservative property.60

This is not a new idea (Jackson, 1998; Wiesner, 1992) and arises from the general ob-61

servation that aggregates are fractal objects (Alldredge & Gotschalk, 1988; Meakin, 1987;62

Logan & Wilkinson, 1990). We term a the self-similarity parameter, and note a < 363

in compliance with the observed increase in porosity under aggregation. We stress that64

a is not the fractal dimension of the aggregate. Neither is it an inherent property of ag-65

gregates and we will not attempt to use a to produce scaling laws as is the usual trajec-66

tory of these considerations. At this point we simply want to treat a as a parameter gov-67

erning the binary process of aggregation.68

Under geometric self-similarity, the total mass of an aggregate produced by the com-69

bination of 2 aggregates of mass mi and mj can be deduced to be the sum of these two70

masses, plus a bit extra due to the inclusion of some fluid (density ρw) that occupies the71

expanded aggregate volume (i.e. increase in porosity). Specifically,72

mioj = mi +mj + (vioj − vi − vj)ρw (2)

where vi, vj and vioj are the volumes of the two parent aggregates and the daughter ag-73

gregate respectively. Note that m is the total mass, not just the dry mass of the aggre-74

gate. It is convenient to recast this in terms of density of the aggregates, ρi, ρj , ρioj . It75

follows that excess density76

ρioj − ρw =
r3i
r3ioj

(ρi − ρw) +
r3j
r3ioj

(ρj − ρw) (3)

Equations (1) and (3) provide a construct by which the size and excess density, and77

hence sinking speed, of particle aggregates can be estimated. However, processes other78

than aggregation also effect size and density; chief amongst these are degradation, dis-79

solution and fragmentation. This is illustrated in Figure 1 for a single primary particle80

(a diatom for instance) where aggregation produces larger and less dense aggregates, degra-81

dation and /or dissolution removes mass but has no immediate impact on aggregate size,82

and fragmentation, particularly on large porous aggregates produces smaller aggregates83

which can be reincorporated into the aggregation process. Though out, sinking speed84

can be estimated. At the system scale (e.g. the surface mixed layer), a dynamic can be85

established between the supply of primary particles (e.g. from primary production, de-86

position of dust, faecal pellets) and the loss of aggregates by sinking. While still rela-87

tively complex, each of the sub-processes can in principle be constrained from observa-88

tions, parameterized and mechanistically formulated. What makes this framework par-89

ticularly attractive is the development of size-based and trait-based models of plankton90

communities (Banas, 2011; Serra-Pompei et al., 2020; Serra-Pompei et al., 2022) which91

provide precisely the type of information (size and trait resolved primary productivity92

and zooplankton grazers) that can serve as input. Indeed a resolved particle aggrega-93

tion model can provide a mechanistic link between emerging plankton community struc-94

ture and export flux; one of the key unresolved issues of the biological carbon pump (Boyd95

& Newton, 1995; Bach et al., 2019).96

2 Analysis of self-similarity from observations.97

A large literature exists reporting observations of the sinking speed and size of ma-98

rine aggregates. These were recently collated and published in a database (Laurenceau-99

Cornec et al., 2015; Cael, Cavan, & Britten, 2021), and, together with additional obser-100

vations (Gärdes et al., 2011; Bach et al., 2019; Iversen & Lampitt, 2020) provide the ba-101

sis for this analysis. While aggregate density in itself is a difficult parameter to measure,102

it can be estimated from observed sinking speeds (Engel et al., 2009; Iversen & Ploug,103

2010). In particular,104

ρ− ρw =
3

8

Cw2

gr
(4)105
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Figure 1. Aggregate dynamics depicted in 2 dimensional state space. Dynamics are driven by

3 processes; aggregation producing larger less dense aggregates, degradation/dissolution which

reduces the solid mass (and hence excess density) of aggregates, and fragmentation. Primary

particles (e.g. diatoms) are produce in a specific size and density range. The production of other

material such as dust and TEP can also be specified. The distribution of aggregates in this state

space eventually reaches steady state when the rate of supply is balanced by the sinking losses

particularly of large dense aggregates.

where w is sinking speed, r the estimated spherical radius, g the gravitational acceler-106

ation, and C is an empirically derived drag coefficient. While there are several formu-107

lations, generally expressed as a function of Reynolds number (R = 2rw/η, with η be-108

ing the kinematic viscosity of seawater), the most commonly used is109

C =
24

R
+

6

1 +
√
R

+ 0.4 (5)110

(White, 1991). This, and similar formulas are robust for R up to about 105. Estimates111

of excess density and observed sinking speed for aggregates are plotted in Figure 2 and112

summarized in Table 1. The preponderance of observations correspond to R < 100 and113

thus lie well within the range where (5) is valid. The general features of Figure 2 neatly114

illustrate some of the properties of aggregation already mentioned. For instance, that115

large aggregates tend to sink faster and have a lower excess density than small aggre-116

gates. Further, while there is considerable variance of sinking speed with size, this ap-117

pears to be reduced for excess density. Indeed, the ensemble of excess density observa-118

tions appears to collapse roughly to a power law rb with b around −1.4.119

Under special conditions, self-similarity makes quite strong predictions on how ag-120

gregate properties (e.g. mass, density, porosity) scale with size. Specifically, for a mono-121

culture of primary particles of size r0 and density ρ0, and in the absence of degradation,122

dissolution, and fragmentation, then aggregates’ excess density follows a power law:123

ρ(r)− ρw = (ρo − ρw)

(
r

r0

)a−3

(6)

Under these conditions, the aggregation vector in the Figure 1, would have an expected124

slope a− 3.125

Within the set of field and laboratory observations reported in Table 1, a subset126

meet suitable criteria that can reveal such a relationship. For instance, (Iversen & Ploug,127

2010) conducted laboratory studies of aggregates from relatively fresh monocultures of128

the chain forming diatom Skeletonema costatum and the coccolithophore Emiliania hux-129

leyi, and mixtures of the two. Log-log regressions on these indicate b in the range −1.2130

–4–
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Figure 2. (a) Aggregate sinking speed (w) observed in a large number of studies (cf. Table 1)

as a function of estimated spherical radius (r) and (b) the excess density (ρ− ρw) calculated from

observed sinking speeds using a modified Stokes law. Colors represent different studies. The lines

in panel (a) are contours of Reynolds number ranging from 100 to 0.001. The grey lines in panel

(b) indicate a log-log slope of −1.4.

to −1.0 i.e. a in the range 1.8 to 2.0. Other laboratory observations that have avoided131

degradation and extraneous manipulations with TEP and dust indicate similar relation-132

ships with b in the range [−1.2,−0.9] (Engel & Schartau, 1999; Engel et al., 2009; Laurenceau-133

Cornec et al., 2015). These values are consistent with laboratory experiments for non-134

biological particle aggregation (Lin et al., 1989) for which a ranges between 1.8 and 2.1.135

The lower value corresponds to a relatively porous structure that arises when aggregates136

are built-up of very sticky, similarly sized particles that combine immediately on con-137

tact. The value a = 2 corresponds to a random walk arrangement in 3 dimensions, and138

has been used in previous model settings (Jackson & Burd, 1998; Jokulsdottir & Archer,139

2016). From these considerations, it appears that a in the ranges 1.8 to 2.1 is a reason-140

able choice.141

It is also clear that a large number, indeed the majority, of studies listed in Table142

1, exhibit slopes b that are spread across a much broader range. These studies all fol-143

low quite different experimental (e.g. natural aggregates, lab cultures, manipulations with144

ballast material) and observational procedures (e.g. in situ cameras, roller tanks, ver-145

tical flow systems). In some instances it can be argued that the observation method is146

poorly designed to capture the characteristics of the full aggregate community. Roller147

tanks for instance preferentially generate large, fast-sinking aggregates (Jackson, 2015)148

producing particle size spectra that are not representative of natural aggregate commu-149

nities. Perhaps more important is the heterogeneity of the primary particles. In some150

experimental setups, ballasting material of considerably different excess densities are present151

or introduced. Further, natural plankton communities are seldom mono-cultures, and152

are generally composed of unicellular organisms covering a range of sizes and densities;153

some with shells and spines, some vacuolated, some chain-forming. In any given size range,154

the aggregate community will be an ad-mixture derived from different primary particles.155

Furthermore, as aggregates degrade and fragment, smaller, less dense aggregates come156

into the mix – grist to the mill – so that aggregate density, and hence sinking speed, will157

exhibit a relatively broad distribution at any given aggregate size. We must therefore158

conclude that while the majority of observations plotted in Figure 2 are perfectly fine159

in relating the sinking speed to the size of an aggregate, methodological issues mean that160

–5–
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they remain mute on any self-similarity in the underlying aggregation process. Seen in161

this light, it appears that the variance of excess density (Figure 2 (b)) is composed of162

two elements; a general negative slope being due to increased aggregate porosity with163

size, and an inherent variability due to the excess density of primary aggregate mate-164

rial.165

3 Dynamic Aggregate Model166

Here we provide a brief description of a simplified model . The physical setting we167

consider is a surface mixed layer of depth h where aggregates are produced from a range168

of primary particles, transformed and sink out according to the dynamics described in169

Figure 1. The model simulates the number and mass of aggregates in a two dimensional170

state space (size and excess density). We supply the code for the model in the supple-171

mentary material, and encourage readers to perform their own simulations.172

It is convenient right from the outset to introduce two transformed variable (x, z)173

that map to (r, ρ− ρw) as174

r = roδ
x, ρ− ρw = ρozδ

(a−3)x (7)175

x is a logarithmic scaling of aggregate size, and z a stretched linear scaling of excess den-176

sity. The factor δ(a−3)x takes advantage of the reduction of density by aggregation and177

expands the density resolution for large aggregates. Key variables in the model are the178

matrices N and M representing the number of aggregates and their total mass respec-179

tively within 1×1 bins in discretized (x, z) state space. Suitable range choices for x and180

z, scaling factors ro [µm] and ρo [kg m−1], and logarithmic interval δ allow for a rela-181

tively complete representation of the aggregate community within computationally con-182

venient dimensions of N and M. These are related by M = m ◦ N where ◦ represents183

piece-wise matrix product and m is the mean mass of an aggregate within each bin.184

The model determines the rate of change of M due to five processes: production,185

aggregation, degradation, fragmentation and sinking losses. Several of these processes186

are relatively simple to implement. For instance production is prescribed and sinking losses187

Q = −M◦w/h, where w is the mean aggregate sinking speed in discretized state space.188

Aggregation is computationally the most complex aspect of the model as it involves a189

binary convolution of N (Smoluchowski, 1916). It is governed by encounter kernels β;190

the rate at which aggregates collide, and stickiness α; the probability that collision will191

lead to aggregation (Burd & Jackson, 2009; Jokulsdottir & Archer, 2016). Performing192

binary convolution calculations is greatly facilitated by self-similarity. Specifically, the193

ordinates of an aggregate produced from the combination of (xi, zi) and (xj , zj) is given194

by:195

xi◦j = xi + logδ((1 + δ(xj−xi)a))/a

= xj + logδ((1 + δ(xi−xj)a))/a

zi◦j =
zi

1 + δ(xj−xi)a
+

zj
1 + δ(xi−xj)a

. (8)

It follows that the combination of aggregates from any two 1×1 bins in state space will196

be confined to a third 1×1 bin, albeit offset from the matrix grid spacing. The model197

utilizes this in optimizing the algorithm architecture.198

We implement degradation as a drift of particle numbers to lower density bins. Specif-199

ically, if γ is the degradation rate, then it can be shown that the z ordinate of an aggre-200

gate follows dz/dt = −γz. In this, degradation acts only on excess density. We set γ =201

0.1 day−1 consistent with a range of studies (Kiørboe, 2001; Cavan & Boyd, 2018; Bach202

et al., 2019) although it should be noted that there is considerable variation. Finally frag-203

mentation is simulated simply as a rate at which aggregate mass is transported to smaller204

–6–
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sizes classes. We implement this as an increasing function of aggregate size. Of the pro-205

cesses considered, fragmentation remains the least well constrained; aggregates appear206

resistant to mechanical shear (Alldredge et al., 1990), and fragmented appears to be chiefly207

mediated by metazooans through handling and feeding appears to be important (Dilling208

& Alldredge, 2000) and by microbial ”mining” and dissolution of adhesive material. We209

set the maximum fragmentation rate at 0.5 day−1 for large porous aggregates, a value210

consistent with observations (Briggs et al., 2020).211

4 Results and sensitivity212

We present a series of simulations for a fixed rate of primary particle production213

(size range 1 to 30 µm in radius, excess density range 10 to 100 kg m−3) that corresponds214

to a mixed community of unicellular auto- and heterotrophic plankton ranging from cyanobac-215

teria to diatoms. Simulations were run to quasi-steady state (i.e. relative differences be-216

tween successive daily estimates (normalized root-mean-square deviation) were < 10−6)217

using a MATLAB ode solver. Three sets of parameters (self-similarity, stickiness and tur-218

bulent dissipation rate) were varied between runs and the emerging aggregate commu-219

nity was characterized by its size spectrum and size resolved export flux. All simulations220

assumed a mixed layer depth of h = 50 m, and a production rate of Ptotal = 0.1 gC m−2
221

day−1 of primary detrital particles. Results are presented in Figure 3, and the numer-222

ical code that produced it can be found in the supplementary material.223

Particle size spectra n(r(x)) =
∑

z N(x, z)/dr(x) were estimated in the normal224

manner (Burd & Jackson, 2009) as per size bin width and provide a macroscopic mea-225

sure of the underlying dynamics of production, transformation and sinking. Measure-226

ments of such spectra are routinely made and often conform to a power law of the form227

n(r) ∼ rp. Observations (Stemmann et al., 2008; Guidi et al., 2009; Reynolds & Stram-228

ski, 2021) from different oceanic regions and spanning aggregate sizes from microns to229

centimeters, show that p ranges from −2 to −6 and cluster around −3 to −4 in the sur-230

face ocean. For our model simulations (Figure 3:b,d,f), all runs exhibited particle size231

spectra slopes of about −4 for aggregates from 1 to several 100s of µm in size.232

The flux distributions f(r(x)) =
∑

z M(x, z) ◦ w(x, z)/(hPtotal) are the flux con-233

tributions summed over different excess density bins, reported within aggregate size bins234

and normalized with regards total primary particle production Ptotal. The net sum is235

a little less than unity; difference being due to the net loss of mass due to degradation.236

The shape of f(r) is universally dome-shaped with very little flux at either small (low237

sinking speed) or large (low total mass) aggregate sizes. The peak of the flux distribu-238

tion, and to some extent its width, varies with self-similarity, stickiness and turbulent239

dissipation rate. Low self-similarity indices for instance, push the flux distribution to-240

wards larger aggregate sizes, as do high turbulent dissipation rates. Stickiness by con-241

trast has a relatively minor influence on the flux distribution. Maximum flux appears242

to be associated with a steepening of the particle size spectrum n(r).243

While we have argued that a universal self-similarity index, if it exists, is relatively244

well constrained within the range [1.8, 2.1], this range still presents a large variation in245

the characteristics of the export flux. For instance, the peak of the flux distribution (Fig-246

ure 3 a) ranges over an order of magnitude in aggregate size, from 300 to 3000 µm. Fur-247

ther, the flux distribution range is much narrower for high self-similarity indices, a fea-248

ture that is exacerbated given the logarithmic scaling of the size bins. The total export249

flux however, remains virtually the same across all these self similarity values (within250

99% of each other). Indeed, the self similarity parameter has counteracting effects on sink-251

ing speed in terms of aggregate size and excess density (large a produce small but low252

porous aggregates and vice versa). The sinking speeds for aggregates in flux maxima (Fig-253

ure 3 a) vary only modestly, from 10 to 20 m day−1 across all values of the self-similarity254

parameter. It should be noted that the export flux distribution in terms of aggregate size,255

–7–



manuscript submitted to Geophysical Research Letters

Figure 3. Aggregate community structure at steady state; f(r) size resolved normalized ex-

port flux (a,c,b) and n(r) particle size spectra (b,d,f) for a range of different a self-similarity

parameters (a,b), α stickiness coefficients (c,d) and turbulent dissipation rates [m2 s−3] (e,f). Dis-

sipation rates are related to encounter rate β as given in (Burd & Jackson, 2009). Dashed lines in

(b,d,f) indicate log-log slopes of −4.

–8–
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excess density and sinking speed sets many of the key characteristics of the subsequent256

flux attenuation curve within the mesopelagic (e.g. remineralization length scale (Cavan257

et al., 2017) and subsequent sequestration time scales (Boyd et al., 2019)). While we can-258

not at this time provide argumentation to further constrain the self-similarity param-259

eter, we have put in place a mechanistic model that can guide empirical studies to im-260

prove resolution.261

5 Conclusions262

Much of the literature concerning the fractal dimensions of aggregates has been built263

on the restrictive assumptions of irreversibity and uniform primary particles (Meakin,264

1987; Lin et al., 1989) which leads to the rather handy definition that the fractal dimen-265

sion of aggregates a′ can be found from their mass-size relationship m ∼ ra
′
(Meakin,266

1987; Burd & Jackson, 2009). At the same time, aggregates found in the marine envi-267

ronment have been deemed to be fractal objects in that they display fractal type prop-268

erties (Alldredge & Gotschalk, 1989; Logan & Wilkinson, 1990); an increase in poros-269

ity and a decrease in excess density as a function of size for instance. There is however270

a disconnect between these two concepts, namely that aggregation in the marine envi-271

ronment is not irreversible; aggregates degrade and fragment, and they are not composed272

of identical primary particles. All manner of primary particles are introduced into the273

surface ocean by primary producers, sloppy feeding, fecal matter and aeolian dust de-274

posits. Further, the constituent components of detritus vary significantly in excess den-275

sity (relative to seawater ρw = 1027 kg m−3) ranging from positively buoyant e.g. TEP276

in the range −200 to −300 kg m−3 (Azetsu-Scott & Passow, 2004) and lipids around −100277

kg m−3 (Visser & Jónasdóttir, 1999) to near neutrally buoyant e.g. cytoplasm 3 to 70278

kg m−3 (Tappan & Loeblich Jr, 1973) , to very much negatively buoyant, e.g. coccol-279

iths 1700 to 1900 kg m−3 (Toktamış et al., 2016), diatom frustules 1600 kg m−3 (Miklasz280

& Denny, 2010) and atmospheric dust (quartz, feldspar, calcite) approximately 1700 kg281

m−3. It is no surprise that neither a well constrained fractal dimension nor a size depen-282

dent sinking speed for marine aggregates has been found.283

More than anything, the poor ability to estimate the sinking speed of marine ag-284

gregates stems from the high variability of their excess density. Other factors, like shape,285

surface roughness and the through flow of interstitial fluid have been suggested, but at286

most, contribute a factor 2 to sinking speed corrections. This is negligible compared to287

the orders of magnitude variance (yet alone a potential change in sign) exhibited in the288

excess density. The modelling framework we propose is designed specifically to track both289

size and excess density throughout an emerging aggregate community. We purposefully290

present the model itself in its simplest form. In this we are mindful that overly complex291

models become increasingly inscrutable, and unattractive for integration into higher level292

computational products. There are clearly aspects that can be expanded. For instance293

resolving aggregate porosity would allow a distinction between dry mass and total mass294

and provide a more robust implementation of degradation and fragmentation processes.295

Stickiness is also a parameter that shows large variability in primary material (from TEP296

to dust). Further, temporal aspects such as annual cycles of productivity, turbulence and297

mixed layer depth are yet to be explored. Finally, our concept of self-similarity of ag-298

gregation, and a governing parameter a constrained to the range 1.8 to 2.1 is certainly299

open to scrutiny, particularly given its impact on the emerging flux-size distribution. That300

there is some systematic control on aggregate size and density is evident in figure 2.b.301

How this is manifest in particular setting is however highly variable. We argue that in302

part, this variability can be accounted for through the aggregation process for which we303

provide a mechanistic description. A large part of the variance remains however, and re-304

flects the vastly different excess densities of the primary material from which the aggre-305

gates derive. Failure to recognize the variability in the density of primary material and306
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how this propagates through an aggregate community confounds efforts to estimate fluxes307

and attenuation length scales of particulate matter in the oceans.308

6 Open Research309

The model code and associated documentation for the simulations presented here310

is open source, and freely available on GitHub github.com/AndyWVisser/Aggregation311

and zenodo.org/record/6731544#.Yra-0HZBxPY. Data sets used in the analysis are avail-312

able in the supplementary material and accessible at zenodo.org/record/6731670#.Yra9i3ZBxPY.313
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Visser, A. W., & Jónasdóttir, S. H. (1999). Lipids, buoyancy and the seasonal verti-542

cal migration of Calanus finmarchicus. Fisheries Oceanography , 8 , 100–106.543

White, F. M. (1991). Viscous Fluid Flow. New York, NY: McGraw-Hill.544

Wiesner, M. R. (1992). Kinetics of aggregate formation in rapid mix. Water Re-545

search, 26 (3), 379–387. doi: 10.1016/0043-1354(92)90035-3546

–14–



manuscript submitted to Geophysical Research Letters

Table 1. Estimated exponent b ± s for excess density vrs aggregate size power law where s

is the 95% confidence interval. ∆r is the log10 r range of aggregate size, and n the number of

observations. References as given, and indicate field or lab studies.

b ±s ∆r n reference
-0.38 1.21 0.5 14 (Alldredge & Gotschalk, 1989) Field
-1.49 0.15 1.9 76 (Alldredge & Gotschalk, 1988) Field
-2.09 1.22 0.5 13 i (Azetsu-Scott & Johnson, 1992) Field
-1.09 1.88 0.4 15 ii –´´– Lab
-0.72 0.20 0.8 37 (Iversen et al., 2010) Field
-0.83 0.55 0.9 104 (Belcher et al., 2016) Field
-1.11 0.94 0.8 10 (Carder et al., 1982) Field
-2.18 0.28 1.0 332 (Diercks & Asper, 1997) Field
-1.07 0.09 1.2 294 (Engel & Schartau, 1999) Lab
-1.21 0.05 1.1 20 (Gibbs, 1985) Field
-1.46 0.05 1.6 1224 Chase 1979 Field
-1.13 0.14 1.1 63 i (Iversen & Ploug, 2010) Lab
-1.20 0.12 0.8 26 ii –´´– Lab
-1.01 0.20 0.5 97 iii –´´– Lab
-0.46 0.30 0.5 99 (Hill et al., 1998) Field
-0.51 0.23 0.9 187 (Iversen & Ploug, 2013) Lab
-1.34 0.26 1.1 153 (Iversen & Robert, 2015) Lab
-1.37 0.20 1.4 54 (Kajihara, 1971) Field
-2.12 0.59 0.8 61 i (Laurenceau-Cornec et al., 2015) Field
-1.24 0.21 0.8 59 ii –´´– Lab
-1.24 0.21 0.8 72 i (Laurenceau-Cornec et al., 2020) Lab
-0.35 0.19 0.7 131 ii –´´– Lab
-1.53 0.12 1.2 274 i (Engel et al., 2009) Lab
-1.07 0.09 1.2 249 ii –´´– Lab
-0.74 0.14 1.2 296 iii –´´– Field
-1.53 0.70 0.9 49 (Nowald et al., 2009) Field
-1.22 0.12 1.7 149 (Syvitski et al., 1995) Field
-0.95 0.37 1.3 57 i (Van der Jagt et al., 2018) Field
-2.01 0.30 1.2 85 ii –´´– Field
-0.88 0.23 1.9 36 (Guidi et al., 2008) Field
-1.65 0.26 1.7 41 (McDonnell & Buesseler, 2010) Field
-2.24 0.78 1.0 28 (Jouandet et al., 2011) Field
-1.59 0.02 1.2 1654 (Bach et al., 2019) Field
-0.11 0.25 0.7 36 (Gärdes et al., 2011) Lab
-1.74 0.27 1.4 154 (Iversen & Lampitt, 2020) Field
-1.38 0.02 4.0 6332 All data points -
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