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Abstract

In this paper, we leverage open data and open-source software to develop flexible, probabilistic monthly and seasonal (three-

month) precipitation forecasts for the Pacific region. We use data from a Multi-Model Ensemble (MME), i.e. a large ensemble of

state-of-the-art General Circulation Models (GCMs) and make use of recent developments in the Python open-source software

ecosystem allowing the processing of large datasets on standard consumer grade laptops or desktop computers, of particular

relevance in the Pacific context. The validation of the deterministic MME forecasts against reanalysis and observational products

shows good performance, and confirms that an MME outperforms even the best single GCM. We show that the MME’s forecast

performance is modulated by the phases and characteristics of the El Nino Southern Oscillation (ENSO), with the longitude

of the maximum Sea Surface Temperature anomalies playing a major role. We suggest that these findings could be used to

provide additional confidence information along with the operational MME forecasts. Validation metrics for the probability of

drought conditions, alternatively defined as seasonal rainfall accumulations below the climatological 1 tercile (percentile 33) or

1st quartile (percentile 25) show that the MME forecasts are reliable enough for most of the region. We provide an example of

how this probabilistic forecast information can be integrated with real-time rainfall monitoring, in order to highlight areas in

the tropical Pacific region which are at risk of water stress (i.e., where rainfall has recently been in deficit and forecasts indicate

a high likelihood of dry conditions to persist or worsen).
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Abstract  
 

In this paper, we leverage open data and open-source software to develop flexible, probabilistic 

monthly and seasonal (three-month) precipitation forecasts for the Pacific region. We use data from a 

Multi-Model Ensemble (MME), i.e. a large ensemble of state-of-the-art General Circulation Models 

(GCMs) and make use of recent developments in the Python open-source software ecosystem allowing 

the processing of large datasets on standard consumer grade laptops or desktop computers, of 

particular relevance in the Pacific context.  

The validation of the deterministic MME forecasts against reanalysis and observational products shows 

good performance, and confirms that an MME outperforms even the best single GCM. We show that 

the MME’s forecast performance is modulated by the phases and characteristics of the El Nino Southern 

Oscillation (ENSO), with the longitude of the maximum Sea Surface Temperature anomalies playing a 

major role. We suggest that these findings could be used to provide additional confidence information 

along with the operational MME forecasts. 

Validation metrics for the probability of drought conditions, alternatively defined as seasonal rainfall 

accumulations below the climatological 1 tercile (percentile 33) or 1st quartile (percentile 25) show that 

the MME forecasts are reliable enough for most of the region. We provide an example of how this 

probabilistic forecast information can be integrated with real-time rainfall monitoring, in order to 

highlight areas in the tropical Pacific region which are at risk of water stress (i.e., where rainfall has 

recently been in deficit and forecasts indicate a high likelihood of dry conditions to persist or worsen).  

 

Practical Implications  
 

Tracking and predicting the development of meteorological drought conditions is of paramount 

importance in the Pacific region, where hydroclimate variability is large, in-situ (station) data is often 

lacking, and national capacity in seasonal forecasting is limited. In this paper we present data, methods 

(including software implementation) pertaining to the development of a range of freely available 

products that utilizes near-realtime monitoring of drought conditions using satellite remote sensing and 

probabilistic forecasts from a large ensemble of operational forecast General Circulation Models 

(GCMs), as part of the Island Climate Update (ICU) a climate monitoring and outlook bulletin for Pacific 

Island nations and regional support agencies. In particular, we provide a flexible product that combines 

a percentile-based drought index and the probabilistic information for future drought conditions from 

the Multi-Model Ensemble (MME) to highlight areas at potential for ‘water stress’, i.e. where drought 
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conditions have been observed and where the forecast information indicates a high likelihood for 

rainfall deficits to persist or worsen. The full range of the ICU near-realtime and forecast products are 

operationalized and publicly available and aim to provide the Pacific region with an early alert on island 

groups which are at risk of developing water stress, allowing resources and assistance to be mobilized 

and directed ahead of time. 

 

 

Introduction  
 

Pacific Island countries (PICs) are impacted by large rainfall variability, arising primarily from variations in 

the position and intensity of the South Pacific Convergence Zone (SPCZ, Vincent 1994, Widlansky et al, 

2011, Brown et al, 2020) and the Intertropical Pacific Convergence Zone (ITCZ, Schneider et al. 2014). 

Extreme phases of El Niño-Southern Oscillation (ENSO, see e.g. Neelin et al, 1998) can lead to multi-year 

drought. Generally, islands close to the Equator and east of the International Dateline experience dry 

conditions during La Niña phases of ENSO, while many countries west of the Dateline experience lower 

rainfall during El Niño (Cottrill et al. 2013). A majority of Pacific Islanders, particularly in rural areas and 

outer-islands, rely on subsistence agriculture (Geogeou et al, 2022), and can be subject to food security 

risks arising from a range of weather and climate-related extremes.  These extremes also impact water 

security with reliance on rainwater harvesting  and shallow groundwater lenses commonplace on low-

lying islands and atolls that  are subject to water quality and water shortage issues during prolonged 

drought or deluge episodes (Iese et al, 2021). 

Precipitation variability associated with ENSO is projected to increase in the Pacific in response to 

climate change (Power and Delage, 2018, Yun et al, 2021), which will further threaten water and food 

security in the region. As such, better climate forecasts (i.e., one month to season ahead) are becoming 

increasingly recognized as an important component of successful climate change adaptation strategies. 

This has been notably the impetus behind the establishment of the World Meteorological Organisation’s 

(WMO) Global Framework for Climate Services (Hewitt et al, 2012), and the Pacific Islands Climate 

Services (PICS) panel, a regional advisory group to the Pacific Meteorological Council (PMC), whose 

objective is to strengthen the capacity of National Meteorological and Hydrological Services (NMHSs) in 

observing and understanding weather and climate and in providing related services in support of 

national needs (WMO, see: https://public.wmo.int/en/our-mandate/how-we-do-it/role-and-operation-

of-nmhss). It has also recently motivated the establishment of the WMO Regional Association V Pacific 

Regional Climate Centre (RCC) Network, a virtual Centre of Excellence that assists National 

Meteorological and Hydrological Services (NMHSs) in the Pacific Islands region to deliver better climate 

services and products and to strengthen their capacity to meet national climate information and service 

delivery needs (See https://www.pacificmet.net/rcc). 

Both statistical and dynamical approaches can be used to produce monthly to seasonal climate 

forecasts. Statistical approaches harness empirical relationships between target variables (such as time-
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series of monthly or seasonal precipitation accumulations) and indices representative of known climate 

modes such as ENSO, while dynamical approaches use initialised General Circulation Models (GCMs, see 

Meehl et al, 2021). Notably, coupled ocean – atmosphere GCMs provide physically consistent fields of 

atmospheric and surface climate variables, typically up to six months into the future and aggregated at 

the monthly time-scale (e.g. average monthly temperature or precipitation rates).  

One weakness of a statistical approach is the underlying assumption of stationarity, which is likely to not 

hold in a rapidly warming climate. The WMO’s Guidance on Operational Practices for Objective Seasonal 

Forecasting (WMO, 2020) therefore recommends that regional or national outlooks be based on 

dynamical approaches. It further indicates that large ensembles of dynamical climate forecasts from 

different GCMs (Multi-Model Ensembles or MMEs) tend to perform better than a single GCM. An MME 

forecasting approach can help to better account for the uncertainties that can arise from the initial 

conditions, the absence of strong climate drivers and the differences between GCMs formulations. 

Moreover, MME forecasting easily allows forecasts to be expressed in probabilistic terms, which can 

help communicate uncertainties and be readily translated and communicated in terms of risks.  

Several meteorological institutions provide global monthly and seasonal, probabilistic forecasts, typically 

of tercile categories, i.e. the probabilities for monthly or seasonal aggregated statistics to be below, 

above or between percentile 33.3 and 66.6: Graphical examples of which can be found at 

https://climate.copernicus.eu/charts/c3s_seasonal/.  

The developments and products presented in this paper are the culmination of a process started in 

2000, when NIWA started to provide Pacific Island Countries with the “Island Climate Update” (ICU), a 

climate bulletin and outlook product suite which adopted a multimodel ensemble approach as early as 

2008. This initially developed and utilized  a semi-objective ensemble method through the development 

of the Multimodel Ensemble Tool for Pacific Islands  (Lorrey et al, 2009; McGree and Baleisolomone, 

2009). This initial effort has grown from  ensemble outlooks based on a limited number of rainfall and 

SST models to now drawing on a much larger model pool and use of more objective methods to create 

spatially-scaled and seasonally-tuned forecasts for Pacific nations. 

The goal of this study is to illustrate how one can help unlock the full potential of MME forecasts by 

integrating them with other sources of climate or environmental information and allowing for the 

development of more useful and actionable climate services (i.e., when they are one component in a 

wider system, be it combining with real-time climate monitoring systems, or inputs to downstream 

models, such as hydrological, crop or disease models, etc.). This requires the GCM forecast (realtime) 

and hindcast (retrospective forecasts) data to be openly and freely accessible, allowing the derivation of 

statistics and diagnostic variables tailored to the system into which monthly and seasonal climate 

forecasts are integrated.  

In this paper, we utilize near real-time satellite precipitation estimates and monthly and seasonal 

precipitation forecasts from state-of-the-art GCMs to derive an operational system designed to highlight 

areas at potential for “water stress” in the Pacific (i.e., where rainfall has recently been in deficit and 

forecasts indicate a high likelihood of dry conditions to persist or worsen). The development of this 

product was initiated in response to feedback from NMHSs and regional institutions who desire the 
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ability to track the development of drought conditions in the region with a focus on placing the forecasts 

in the context of current hydroclimate anomalies, and to provide improved representation of the 

confidence of the forecasts.  

In order to allow for reproducibility, extensibility and foster the development of  further climate service 

products in the region, we developed a software library, written in Python (van Rossum, 2001) to handle 

all steps of the data processing and visualisation pipeline, as well as a set of commented, example 

Jupyter notebooks (Shen, 2014), which will be briefly described in the present paper.  

The first section presents the data, the methodological choices made in developing the various near-real 

time and probabilistic forecast products, as well as a brief overview of the supporting software 

infrastructure.  

The second part of the paper is devoted to the validation of the precipitation forecasts from the MME 

system, and include some analyses shedding light on the variability in the forecast performance in space 

and time and its drivers.  

The third part provides an example of a regional product based on the above development and designed 

to communicate the monthly and seasonal probabilistic forecasts in the context of the antecedent 

conditions from the real time precipitation estimates and to potential trajectories of water stress 

categories across the tropical Pacific.  

 

1. Material and methods 

 

1.1 Data  

 

1.1.1. Near- real time gridded precipitation estimates: The GPM-IMERG dataset 

For monitoring the evolution of various precipitation statistics over different accumulation periods in 

near –real time, we use the Integrated Multi-satellitE Retrievals for GPM (Global Precipitation 

Measurement, hereafter GPM-IMERG, see Huffman et al 2014). The GPM-IMERG algorithm combines 

information from the GPM constellation satellites to estimate precipitation over the majority of the 

Earth's surface. This product is particularly valuable over the Pacific region, where real time in-situ 

(surface station) information is sparse and data quality issues are common. We use specifically the Level 

3, version 6, daily near- real time product, available at 

https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDL.06/, with two days latency to real 

time. While there are known biases and deficiencies in the GPM-IMERG product, these are mostly 

present for daily precipitation and especially extreme precipitation (Silva et al, 2021), it is therefore 

assumed that these biases are of relatively low impact in the present study, as we use precipitation 

accumulations (from 30 to 360 days) and are only considering relative quantities (such as percentiles of 

scores) instead of absolute amounts in millimeters.   

https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDL.06/
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1.1.2. Monthly and seasonal GCMs forecasts 

The monthly and seasonal forecasts and hindcasts (retrospective forecasts, also named reforecasts) data 

are sourced from the Copernicus Climate Data Store (CDS), established under the auspices of the 

Copernicus Climate Change Service (C3S). The CDS collects hindcast and forecast data generated by 

eight international institutions, namely the European Centre for Medium-Range Weather Forecasts 

(ECMWF), the United Kingdom Meteorological Office (UKMO, UK), Météo-France (the French 

Meteorological agency), The Deutscher Wetterdienst (DWD, Germany), the Centro Euro-Mediterraneo 

sui Cambiamenti Climatici (CMCC, Italy), the National Centers for Environmental Prediction (NCEP, USA), 

the Japan Meteorological Agency (JMA, Japan) and Environment and Climate Change Canada (ECCC, 

Canada). Together, we will refer to the MME constituted from these GCMs as the C3S MME. Currently, 

complete hindcast (1993-2016) datasets for seven GCMs, and forecasts (2017 – present) datasets for 9 

GCMs are available. 

Some characteristics of the GCMs are summarized in Table 1, and more details can be found within the 

CDS documentation, at URL https://confluence.ecmwf.int/display/CKB/C3S+Seasonal+Forecasts. All 

GCMs are state of the art, operational, and coupled ocean – atmosphere models.  

These data are accessible via an API (Application Programmer Interface, see 

https://github.com/ecmwf/cdsapi) which allows the user to select variables of interest, initial month, 

lead-time (in months), and download the resulting files in grib or netcdf, data formats both widely used 

in the meteorological and climate communities.  

Table 1: Some characteristics of the GCMs constituting the C3S MME (more details can be found at 

https://confluence.ecmwf.int/display/CKB/C3S+Seasonal+Forecasts). 

Originating 
institution  

Forecast system  Hindcast ensemble 
size  

Forecast ensemble size  
(as of 15 March 2022)  

Hindcast 
complete 

ECMWF   SEAS5 25 51 Yes 

UKMO GloSea6-GC3.2 28 56  Yes 

Météo-France Météo-France 
System 8 

25 51 Yes 

DWD GCFS 2.1 30 50 Yes 

CMCC CMCC-SPS3.5 40 50 Yes 

NCEP CFSv2 20 112 Yes 

JMA JMA/MRI-CPS3 10 140 Yes 

ECCC  CanCM4i 10 10 No 

ECCC  GEM5-NEMO 10 10 no 

 

The total number of members in the MME for the seven GCMs where  the hindcast data is complete 

(ECMWF, UKMO, Météo-France, CMCC, DWD, NCEP and JMA) is therefore 198, while at the time of  

writing, operationally the forecast MME comprises 563 members from nine GCMs.  

https://confluence.ecmwf.int/display/CKB/C3S+Seasonal+Forecasts
https://confluence.ecmwf.int/display/CKB/C3S+Seasonal+Forecasts
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1.1.3. Observational datasets for forecast validation 

Due to the GPM-IMERG data starting in 2001, we used the following products to validate the 

deterministic and probabilistic forecasts from the individual GCMs and the C3S MME: the ERA5 

(Hersbach et al., 2020) monthly precipitation (taken from the CDS), the CMAP (CPC Merged Analysis of 

Precipitation, Xie and Arkin, 1997) and the MSWEP 2.0 dataset (Beck et al, 2019). We present only the 

results using ERA5 as the conclusions regarding the performance of the individual GCMs and the MME 

are not dependent on the validation dataset. Note that we make available Jupyter notebooks at (see 

https://zenodo.org/record/6658577) allowing one to easily select an alternative validation dataset.   

1.2. Methods  

 

1.2.1. Quantile-based climatologies  

The system developed relies on the calculation of several climatological quantities, notably quantiles, 

from time-series of satellite precipitation estimates and monthly and seasonal hindcast data.   

For the GPM-IMERG satellite estimates, the percentile of scores for given accumulation periods 

(currently 30, 60, 90, 180 and 360 days) are calculated compared to the archived dataset over the period 

2001 - 2020 (20 years). More specifically, the latest rainfall accumulation is compared to the 

corresponding accumulations ending on the target day of year, + / - buffer of three days, so that a 90-

day accumulation ending on the 30 September 2021 is compared to the 90-day accumulation ending 27, 

28, 29, 30 September as well as 1, 2, 3 October, for each year from 2001 to 2020 (i.e., a total of 7 x 20 = 

140 values).  

These percentiles of scores are then used as the basis for deriving percentile-based drought monitoring 

indices such as the “Early Action Rainfall” (EAR) Watch categories developed by the Climate and Oceans 

Support Programme in the Pacific (COSPPac - http://cosppac.bom.gov.au/) and the US Drought Monitor 

levels used in the US-Affiliated Pacific Islands (see Heim et al, 2020). In addition, the Standardized 

Precipitation Index (SPI) is calculated, following the methodology described in Lloyd-Hughes and 

Saunders (2002). These three indices are widely used by PICs NMHSs to monitor drought conditions, 

using data from their surface station monitoring network where available, and by regional support and 

development agencies. The satellite-derived drought indices make it possible to compare and 

contextualise local to regional drought evolution and provide information for areas where real-time in-

situ data is lacking or of poor quality.  

The calculation of these indices is done operationally every day, with the corresponding graphical and 

data products, collectively called the NIWA Island Climate Update (ICU), made available on Amazon Web 

Services (AWS), respectively at URLs https://s3.ap-southeast-

2.amazonaws.com/icu.niwa/gpm/images/images.html and https://s3.ap-southeast-

2.amazonaws.com/icu.niwa/gpm/netcdf/netcdf.html  

Besides theses indices, the rainfall accumulation and anomalies (in mm) as well as the number of dry 

days, and number of days since last rain, are also calculated and made available at the URLs above.  

https://s3.ap-southeast-2.amazonaws.com/icu.niwa/gpm/images/images.html
https://s3.ap-southeast-2.amazonaws.com/icu.niwa/gpm/images/images.html
https://s3.ap-southeast-2.amazonaws.com/icu.niwa/gpm/netcdf/netcdf.html
https://s3.ap-southeast-2.amazonaws.com/icu.niwa/gpm/netcdf/netcdf.html
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Figure 1 presents an example of the maps generated at the regional (Pacific) scale. 

 
Figure 1: Standardized Precipitation Index (SPI) over Pacific Island Exclusive Economic Zones (EEZs) calculated for 
the 90 days precipitation accumulation ending 31 August 2022, according to Lloyd-Hughes and Saunders (2002).  

 

For the C3S GCMs, we derive lead-time dependent monthly and seasonal (three month accumulation) 

climatological values from all the corresponding available hindcast data, spanning 1993 to 2016.  

The tercile (percentiles 33.3 and 66.6), quartile (25, 50, 75) and decile (10, 20, …, 90) climatologies are 

calculated using all members of the hindcast’s GCM’s ensemble: e.g. for the ECMWF GCM, the 

climatological quantiles are calculated from the 1993 – 2016 hindcast dataset, which gives a total of 600 

instances (24 years x 25 ensemble members) for each initial month. 

We calculate both the empirical climatological quantiles, as well as parametrized quantiles, whereby a 

Gamma distribution is first fitted (using the L-moments method, Hosking, 1990) to the monthly or 

seasonal accumulations, the final validations were qualitatively unaffected by the choice of the method, 

and comparisons with the tercile probabilities displayed on https://climate.copernicus.eu/seasonal-

forecasts led us to choose the empirically-derived quantiles as the basis for the derivation of the 

probabilistic forecasts.  

In Section 2, we provide validation information for deterministic forecasts and probabilistic forecasts, 

Noting the current ICU products are based primarily on the probabilistic information.  

Deterministic forecasts are defined as the average of the precipitation anomalies across each member of 

each GCM ensemble, calculated with respect to the GCM lead-time dependent ensemble mean 

climatology derived from the whole hindcast period (1993-2016). The deterministic MME forecast is 

simply calculated as the average of these anomalies across the GCMs.  

Probabilistic forecasts for each GCM are calculated as the proportion of ensemble members (see Table 

1) falling into each quantile category. The MME probabilities are then calculated as the average of the 

individual GCMs’ probabilities, expressed in percentage and summing to 100%.  
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1.2.2. Forecast verification metrics 

To quantify the performance of the deterministic forecasts (average of all GCM anomalies) we use the 

Anomaly Correlation Coefficient (ACC): The ACC is dimensionless, varies between -1 and 1, and is simply 

calculated as the correlation between the spatial patterns of forecast and the observed precipitation 

anomalies, it is therefore a useful measure of the ability of the GCMs to broadly reproduce the spatial 

distribution of rainfall, and therefore the regional scale hydroclimate.  

For the probabilistic forecasts, we use the overall accuracy (or “hit rate”) first, then focus on the lower 

categories for both tercile and quartile probabilistic forecasts, i.e., the forecast probabilities for rainfall 

being below the 1st tercile (< 33rd percentile) and below the 1st quartile (< 25th percentile), respectively, 

given the significance of dry conditions in the region for water security.  

Verification metrics of particular interest when focusing on one categorical forecast are the precision 

and recall.  

The precision is the number of True Positives (TPs) divided by the number of TPs and False Positives 

(FPs): in other words, it is the number of “positive” predictions (i.e., when the lower quantile category is 

the most likely) divided by the total number of “positive” class values predicted. It is also called the 

Positive Predictive Value (PPV). In the context of this study, it answers the question: out of the months 

or seasons that were predicted to be in the ‘dry’ category, how many turned out to be actually dry ? The 

precision is therefore an informative measure when the costs of a False Positive (predicting dry 

conditions that fail to materialize) is high. 

The recall is the number of TPs divided by the number of TPs and False Negatives (FNs). In other words it 

is the number of “positive” predictions divided by the number of “positive” class values in the 

observational data. It is also called Sensitivity or the True Positive Rate. In the context of this study, it 

indicates what proportion of the months or seasons when rainfall fell in the lower quantile category 

were correctly predicted by the forecast system. It is therefore a useful measure to determine when the 

cost of a False Negative (failing to predict dry conditions) is high. 

Both precision and recall vary between 0 and 1, with 1 indicating perfect forecasts for the category in 

question.  

The F1 score is given as reference, it is calculated from the precision and recall and is a synthetic 

measure of a categorical forecast’s performance. It is calculated as 2 x ((precision x recall) / (precision + 

recall)), and also varies between 0 and 1.  

1.2.3. Calculation of sub-regional time-series 

Sub-regional (based on administrative areas or sub-national island groupings , see Figure 2) probabilistic 

forecasts and their validation required the calculation of area-averaged time-series of precipitation from 

GCMs’ hindcasts and forecasts as well as the gridded validation datasets.  
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Figure 2: Domain for the calculation of the ACC and RMSE (red, boundaries are [35oS – 25oN, 125oE - 120oW]), 
and location of the 73 administrative areas for which regional tercile and quartile probabilistic forecasts are 
provided (orange), in green is highlighted the ‘Islands’ administrative area of Papua New Guinea, used to 
illustrate the derivation of land-sea masks for the calculation of regional time-series (see Figure 3). The average 
December – February cumulative precipitation amounts from ERA5 (1993 – 2016) is shown in blue filled contours 
and displays the typical positions of the ITCZ and SPCZ at this time of year.  
  
 

Given the small land area of many Pacific Islands and atolls, the GCM (and all gridded validation datasets 

such as the ERA5 reanalysis) outputs are first interpolated to 0.2 degree (i.e., five times the typical 

original resolution for the GCMs). We use shapefiles that delineate the exclusive economic zone 

boundaries, administrative areas and island coastlines to derive land / sea masks for each of the 73 

territorial areas. In order to account for islands and atolls with small land area, we further apply a buffer 

(0.15o) around the coastlines prior to the mask definition. Given the original resolution of the GCM 

outputs, results are very much insensitive to the exact extant of the buffer.  Figure 3 illustrates this 

process for the “Islands region” of Papua New Guinea. 

 

 



11 

Figure 3: Example illustrating the derivation of land / sea masks for the Pacific Island countries administrative 
areas: The black line corresponds to the original coastlines for the ‘Islands’ region of Papua New Guinea, the red 
line corresponds to the 0.15o buffer, the gray shading corresponds to the resulting land-sea mask used to derive 
regional precipitation time-series from the interpolated gridded datasets (GCM hindcasts and forecasts and 
validation datasets).  

 

1.2.4. Combining real time rainfall monitoring and monthly to seasonal climate forecasts  

The system presented in this paper has been developed in order to ultimately combine real time rainfall 

monitoring and monthly or seasonal probabilistic rainfall forecasts to alert national and regional 

institutions around the Pacific of regions that are at potential risk of ‘water stress’: conceptually, one 

wants to highlight regions where significant rainfall deficits occurred recently, and at the same time the 

probabilistic forecasts indicate a high likelihood for dry conditions to persist or worsen. After feedback 

from potential end-users and several iterations, we established three categories, with criteria based on 

the most recent 90 days rainfall accumulation percentile of score, and the forecast probability for 

rainfall being below or above the 25th percentile (1st quartile) for either the next month or the next 3 

months accumulation as a whole. Table 2 presents the detailed criteria use to define these categories; 

an example will be provided in the results section. 

ICU “Water Watch” 

category 

Present situation Next month outlook Next 3 months outlook 

1) Current “water stress” 

conditions, potentially 

easing  

Past 90 days rainfall 

accumulation < 25th 

percentile 

50% chance or more for the 

next month rainfall 

accumulation >= 25th 

percentile 

50% chance or more for the 

next 3 months rainfall 

accumulation >= 25th 

percentile 

2) Areas moving into “water 

stress” conditions 

Past 90 days rainfall 

accumulation > 25th 

percentile and < 40th 

percentile 

50% chance or more for the 

next month rainfall 

accumulation < 25th 

percentile 

50% chance or more for the 

next 3 months rainfall 

accumulation < 25th 

percentile 

 

3) Current “Water Stress” 

conditions getting worse 

Past 90 days rainfall 

accumulation < 25th 

percentile 

50% chance or more for the 

next month rainfall 

accumulation < 25th 

percentile 

50% chance or more for the 

next 3 months rainfall 

accumulation < 25th 

percentile 

 

1.2.5. Software implementation 

The software infrastructure for downloading and processing the data, the calculation of various 

quantities and their graphical representations, as well as all the code necessary to reproduce the results 

and figures presented in this paper are made available freely (https://zenodo.org/record/6658577). It 

has been developed using the open-source language Python (Van Rossum, 2001), and relies heavily on 
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the Scientific Python Ecosystem (Virtanen et al, 2020) and in particular the foundational libraries of the 

Pangeo initiative (Hoyer and Hamman, 2017; Abernathey et al, 2017; Brady and Spring, 2021).  

The processing of a large amount of data was facilitated by the underlying dask library (Rocklin, 2015). It 

makes it possible to run all steps of the data processing and analysis pipeline on small-scale hardware 

such as a laptop, even though the complete archive for the C3S MME hindcast datasets (for a surface 

variable such as the precipitation rate of interest here) exceeds 16 GB, (i.e., too large to fit in memory on 

typical laptops hardware). 

 

2. Results  
 

2.1. Validation of deterministic forecasts  

 

We first present validation results for the deterministic C3S MME forecasts, calculated as the average of 

precipitation anomalies across the seven GCMs for which all initial months are available over the 1993 – 

2016 hindcast period.  

 
Figure 4: Anomaly Correlation Coefficient (ACC) between the individual GCMs precipitation reforecasts (1993 – 
2016) and ERA5 precipitation for a) monthly accumulations b) seasonal (3 months) accumulations anomalies, 
over the domain [35oS – 25oN, 125oE – 120oW, see Figure 2]. The leadtime (x-axis) is given in months (seasons) 
from the initial month, so that e.g. leadtime 1 for monthly (seasonal) forecasts initialized in January corresponds 
to February (February – April) accumulations.  

 

Figure 4 confirms that overall, the C3S MME performs better than even the ‘best’ GCM (ECMWF in this 

instance). This is in line with the WMO (2020) conclusions: The average of forecast inputs (the multi-

model ensemble approach) is statistically a better predictor of observed climate than a single model’s 

forecast alone and makes combining different climate model predictions advantageous and an advisable 
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approach (See SPECS (2016) for a review on this topic). The ACC for seasonal (three month 

accumulation) is also significantly larger than for monthly accumulations, and, as expected, the 

performance degrades as the lead-time increases. 

As the next season (three month) period is generally the focus of PICs NMHSs national outlook bulletins, 

we will mainly focus on this time scale and lead-time in the rest of this paper, however the code allows 

replication of the following figures for the monthly time-scale and for other lead-times.  

As expected, the performance of the individual GCMs and the C3S MME is significantly seasonally 

dependent: Figure 5 shows the one season lead-time ACC as a function of the month of the initialization  

 
Figure 5: ACC over the domain [35oS – 25oN, 125oE - 120oW] for one season ahead forecasts, as a function of the 
initial month (i.e. January initial month corresponds to FMA forecasts and so on)  

 

Generally speaking, seasonal forecasts for December-February (DJF, initialized in November) have the 

highest ACC. The lowest ACC is found for forecasts initialized in March (i.e. for the AMJ forecast period). 

Three GCMs are characterized by low ACC during the Austral autumn period: Météo-France, NCEP and 

DWD. Removing these three GCMs from the MME however only leads to very marginal improvement on 

the overall MME’s ACC during this period. The maximum difference found is for forecasts initialized in 

April, where the ACC for the “reduced” MME (4 instead of 7 GCMs) is 0.58 instead of 0.55. On the other 

hand, the removal of these GCMs from the MME tends to slightly decrease the MME’s ACC during 

Austral summer. The same seasonal patterns and conclusions regarding the removal of Météo-France, 

NCEP and DWD from the MME also hold for longer lead-times.  
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The ACC variability for seasonal values at one season lead-time is shown in Figure 6. There is a 

considerable amount of variability in the ability of the individual GCMs – and the MME – to reproduce 

the observed overall pattern of rainfall anomalies over the Pacific domain.  

 
Figure 6: ACC variability for each target season from March – May 1993 to October – December 2016. Gray lines: 
individual GCMs, black line: Multi-Model Ensemble, blue line: Centered, 5 points running average of the MME’s 
ACC.   

 

At one season lead-time, the ACC for the C3S MME exceeds 0.6 40% of the time, and exceeds 0.4 75% of 

the time, but about 3% of the seasons are associated with ACC <= 0.2.  

2.2 Role of El Nino Southern Oscillation  

 

Given the important role of ENSO in controlling the intensity and position of the Pacific Convergence 

Zones (Widlansky et al, 2011), it can be assumed that the variability in the ability of the GCMs (and 

MME) to forecast the patterns of precipitation anomalies over the Pacific region is at least partially 

dependent upon the phase and characteristics of ENSO when the GCMs are initialized. We chose to 

investigate this potential dependency using three widely used SST (Sea Surface Temperature) ENSO 

indices (Trenberth and Stepaniak, 2001) : The Niño 3.4 index (190o to 240oE, 5oS to 5oN) representative 

of the standard ‘canonical’ ENSO events, The Trans-Niño Index (TNI), calculated as the difference 

between the Nino1+2 index (270o to 280oE, 10oS to Equator) and the Nino4 index (160oE to 210oE), 5oS 

to 5oN) and representative of the east – west gradient in SST anomalies, as well as the El Niño “Modoki” 

index (EMI) used to capture the El Niño Modoki phenomenon (also sometimes referred to as “Central 

Pacific El Niño”) whereby the maximum SST anomalies is located towards the central rather than the 

eastern Pacific (Ashok et al 2007), the EMI being calculated as:  

EMI = [SSTA]A – 0.5*[SSTA]B – 0.5*[SSTA]C  (1) 
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The brackets in equation (1) represent the area-averaged SSTA over each of the region A (165°E–140°W, 

10°S–10°N), B (110°W–70°W, 15°S–5°N), and C (125°E–145°E, 10°S–20°N), respectively. 

All indices are calculated using the detrended monthly SST anomalies from the ERSST version 5 dataset 

(Huang et al. 2017). We use a 1993 – 2016 climatology to be consistent with the leadtime-dependent 

climatologies calculated from the C3S GCMs.  

We then use a threshold of +/- 1 standard deviation to define positive (> +1 std), negative (< - 1 std) and 

neutral phases (>= -1 std and <= +1 std) for each of the above indices.  

For reference, the Figure 7 shows the Tropical (25oS – 25oN) Pacific-wide SST anomalies associated with 

each index and phase. 

 
Figure 7: SST (ERSSTv5) anomalies for the different phases of the Nino3.4, EMI and TNI indices. The detrended anomalies 
have been calculated with respect to a 1993-2016 climatology. The same threshold of +/- 1 standard deviation has been used 
to define the positive (> +1 std), negative (< - 1 std) and neutral phases (>= -1 std and <= +1 std) phases for each index.  

 

As expected, the most prominent difference between ‘canonical’ ENSO phases and Modoki phases is the 

location of the maximum SST anomalies along the equator, with canonical positive ENSO phases 

characterised by maximum positive SST anomalies located east of the International Dateline, towards 

the South American coast, and ‘Modoki’ positive phases characterised by maximum SST anomalies 

located around the International Dateline and negative SST anomalies off the South American coast.   

The ACC is then calculated for all GCMs, and the C3S MME for seasonal forecasts initialized during the 

different phases of each index (Figure 8).  
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Figure 8: ACC for seasonal forecasts as a function of leadtime during the different phases of a) the ‘Canonical’ 

ENSO mode (as characterized by the Niño 3.4 index) b) the El Niño ‘Modoki’ index (as characterized by the El 

Niño Modoki Index) and c) the Trans-Niño Index (TNI). The bold line corresponds to the MME, and the light lines 
to each individual GCM.  

 

As expected, there are large differences in the performance of the GCMs and the MME (as measured by 

the ACC) depending on the phase, and the characteristics of ENSO conditions at initialisation.  

The ACC is generally higher during the positive phases of Niño3.4 and TNI, but negatives phase of the 

EMI, the commonality therefore being the presence of large positive SST anomalies in the far eastern 

Pacific and the establishment of a strong west-to-east gradient in anomalies.  

Conversely, the ACC tends to be lower during ENSO phases and flavors characterized by an inverse 

gradient in SST anomalies, such as during the negative phases of the TNI.  

The patterns displayed for the MME (Figure 8) hold true for all individual GCMs: Meaning that for all 

GCMs at all lead-times (with one exception, see below), the ACC during positive phases of the TNI is 

larger than for neutral phases, which is in turn larger than for negative phases). The only exception is for 

Météo-France and for Nino3.4, where at lead 3 (three seasons ahead) the ACC for neutral ENSO phases 

is 0.47, and 0.46 for negative phases.  

These results therefore suggest that the sign and amplitude of SST anomalies specifically in the eastern 

Pacific plays a major role in determining the skill (as measured by the ACC) of the GCM forecasts: 

Positive SST anomalies (i.e., during either the positive phase of ‘canonical’ ENSO events, or the negative 

phase of the ‘Modoki’ ENSO events), tend to lead to enhanced skill, while negative SST anomalies (i.e., 

during either the negative phase of canonical ENSO or the positive phase of modoki ENSO) lead to 

reduced skill, in comparison to neutral phases of both ENSO flavours. 
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This result is of operational significance, as this information can be used to convey the level of 

confidence in the seasonal forecast information in real-time, by monitoring the SST anomaly patterns in 

the Tropical Pacific.   

2.3. Validation of probabilistic forecasts 

 

The MME probabilities for tercile and quartile categories are calculated as the average of the individual 

GCMs’ probabilities. We first present the overall accuracy score (or ‘hit-rate’), then focus on the 

performance of the forecasts for the lower quantile categories, i.e., respectively the lower tercile 

(probability for rainfall being below the 33rd percentile) and lower quartile (probability for rainfall being 

below the 25th percentile). This is because an accurate prediction of drought conditions is of primary 

interest for the region.  

  
Figure 9: Accuracy (or ‘hit rate’) of the MME seasonal tercile (a) and quartile (b) probabilistic forecasts (one 
season ahead) against the seasonal tercile and quartile categories derived from ERA5. All calculations were 
performed over the same 1993 – 2016 period.  

 

Figure 9 presents the respective accuracy for tercile (Figure 9a) and quartile (Figure 9b) most likely 

category from the MME, one season ahead. Note that a climatological forecast would result in an 

accuracy of 0.33 (33%) and 0.25 (25%) respectively for the tercile and quartile forecasts.  

The C3S MME is therefore more skillful than a climatological forecast for most of the region, with the 

notable exception being the southeast Pacific (South of French Polynesia). More precisely, 91% of the 

grid-points are associated with an accuracy score exceeding 40% for the MME terciles probabilistic 

forecasts, and 88% of grid points are associated with an accuracy score exceeding 30% for the quartile 

probabilistic forecasts.  

High skill is found in the tropical region between 10S and 10N, and east of ~ 160E as well as for southern 

parts of Papua New Guinea, the Solomon Islands, Vanuatu and Fiji.  

The spatial distribution of the C3S MME accuracy for both terciles and quartiles forecasts can be readily 

related to the average position of the ITCZ and the SPCZ (see Figure 2): The regions with higher accuracy 

tend to flank the average position of the convergence zones (i.e., regions that experience significant 

rainfall anomalies when there are large variations in the position of the convergence zones, usually 
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associated with ENSO). The predictability of rainfall in the region is therefore clearly linked to the ability 

of the GCMs to forecast shifts in the position and intensity of the convergence zones.  

2.4. Forecasts of drought conditions 

F 

igures 10 and 11 present the precision, recall and F1 scores for the C3S MME forecasts of the lower 

tercile and lower quartile categories, respectively.  

Overall, the general pattern follows the spatial distribution of the accuracy scores in Figure 9, but these 

figures provide insights into the ability of the C3S MME forecast system to specifically forecast dry 

conditions in comparison with the other rainfall categories.  

 

 
Figure 10: Precision (a), recall (b) and F1 score (c) for MME seasonal (1 season ahead) forecasts of the 
lower tercile category  (precipitation below the 33rd percentile)  
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Figure 11: Precision (a), recall (b) and F1 score (c) for MME seasonal (1 season ahead) forecasts of 
the lower quartile category  (precipitation below the 25th percentile) 

 
 

In particular, for any grid point, one can extract the precision and recall statistics and derive insights 

related to the context-dependent costs of False Positives (predicting drought conditions that failed to 

eventuate) and False Negatives (failure to predict drought conditions that actually occurred).  

 

2.5. Sub-regional time-series  

 

In the supplementary material (A1 and A2) we provide tables presenting respectively the accuracy 

scores for the tercile and quartile probabilistic forecasts from the MME for the 73 sub-regional (PICs 

administrative areas) time-series (see Figure 2). These tables do not provide additional information on 

the performance of the C3S MME compared to Figure 9, but are an example of the tailored products 

that can be derived from the availability of open seasonal forecast data. Tables of probabilistic tercile 



20 

and quartile seasonal forecasts are derived operationally every month and are part of the suite of 

products offered by the ICU.  

2.6. Combining forecast and near realtime rainfall monitoring 

 

In the previous section we demonstrated that the overall skill of the C3S MME probabilistic forecast 

system is reasonable (i.e., exceeding the skill of a ‘climatological’ forecast) for a large proportion of the 

southwest Pacific, and that, in particular, forecasts for dry conditions, such as rainfall accumulations 

below the 25th percentile, are associated with reasonable precision and recall statistics (see section 1 

and Figure 11). The overall performance of the   forecast system makes it conceivable to combine it with 

near-realtime rainfall monitoring information to alert national or regional institutions of potential 

“water stress” conditions: Defined here when rainfall has recently been in deficit and forecasts indicate 

a high likelihood of dry conditions to persist or worsen. As one example, based on the empirical 

conditional statements presented in section 1 (Table 2), operationally on the 2nd of each month, we 

combine the percentiles of scores for the past 90 days (i.e., up to the last day of the previous calendar 

month) and the probability for the following month or season (three month accumulation) to be below 

the 25th percentile to produce and map three water stress categories, corresponding to the likely 

trajectories of drought conditions over the region (Figure 12). Further work is underway to assess the 

validity of combining the satellite derived near real-time three drought indices mentioned above with 

probabilistic forecasts of these three drought indices. 

  

 

Figure 12: Island Climate Update “Water Stress” outlook, which combines near-real-time information 

and probabilistic, seasonal rainfall forecasts from the C3S MME. This outlook is for the period 

September – November 2022 and is based on the 90 days GPM-IMERG rainfall accumulations ending 

30 August 2022 as well as the C3S MME forecast for the period September – November 2022. 
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Summary and conclusions  
 

In this paper, we present a set of products notably aimed at tracking and forecasting drought conditions 

across   the tropical Pacific region. The system employs near–real time satellite rainfall estimates to 

track the evolution of several drought indices and indicators at different time-scales and a state-of-the-

art probabilistic seasonal forecast system based on the forecasts provided operationally for nine 

coupled ocean-atmosphere GCMs. The validation of the individual GCMs and the MME for the region, 

both deterministic and probabilistic forecasts, show that the MME out-performs even the best GCM, 

and is able to forecast the general patterns of rainfall anomalies over the region. The MME’s 

performance varies significantly seasonally (with summer rainfall usually better predicted) and is also a 

function of the ENSO state (phase and location of maximum SST anomalies). The probabilistic forecasts 

for dryness, such as rainfall being below the 25th percentile, have reasonable precision and recall for the 

majority of the region, indicating that this system is associated with a relatively low rate of ‘false alarms’ 

or ‘misses’ for dry conditions. Using empirical conditional statements, the probabilistic information can 

be combined with the real-time rainfall estimates to highlight regions at risk of “water stress”. This 

product is representative of the kind of climate services that can be developed based on openly 

available seasonal climate forecast and climate monitoring data. It is enabled by the development of an 

open-source, flexible software infrastructure, made possible by the growing popularity of the open-

source Python programming language in the climate and meteorology communities, the reliance on 

well-tested, self-described data formats, and the development of an integrated eco-system of third-

party Python libraries (packages). This combination of tools can handle all steps of the data processing 

and analysis pipelines and allows small-scale parallelization, making it possible to run the processing, 

analysis and visualisation pipeline on small-scale hardware such as a decent laptop. 

It was therefore our goal to show that the use of open-data and open-source software, and recent 

advances in small scale parallelization and out-of-core computation, makes it possible to develop 

tailored climate services leveraging large-scale ensemble seasonal forecast systems (such as the C3S 

MME) as a part of a larger, integrated system combining several data streams. While the example 

presented combines rainfall, and in particular drought, monitoring and forecasting, it could easily be 

adapted to other variables (such as tracking and predicting the development of marine heatwaves see 

Jacox et al, 2022) or to develop input fields or time-series to ‘downstream’ models, either mechanistic, 

empirical or conceptual. Indeed the data streams generated as part of this project are now being used 

as input to a range of country-level climate service products, impact forecasting and decision-support 

systems being developed and operational in a wide range of Pacific Island countries. 
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Supplementary material for:  
 

Fauchereau N., Ramsay D., Noll B.E. and Lorrey A.M.: “Open data and open source software for the 

development and validation of multi-model monthly-to-seasonal probabilistic forecasts for the Pacific 

Islands”  (submitted to Climate Services). Hereafter FRNL2022.   

A1, Supplementary Table 1: Accuracy (or “hit rate”) expressed in percentage for the C3S MME seasonal 

tercile probabilistic forecasts derived for each of the 73 Island Climate Update (ICU) administrative areas 

(see Figure 2 in FRNL2022). The column labels indicate the leadtime (in months) so that 3 refers to 1-

season ahead forecast (e.g. a forecast initialized on the 1st of January for the February-March period). 

The validation is based on the 1993-2016 hindcast period, with the MME including 7 GCMs (ECMWF, 

UKMO, Météo-France, CMCC, DWD, NCEP and JMA, see Table 1 in FRNL2022). The table is sorted by the 

1-season ahead accuracy. Accuracy exceeding 40% is shaded in green, note that for tercile probabilistic 

forecasts, a climatological forecast would have an accuracy of 33%. 

Country District 3 4 5 

Kiribati Gilberts-South 78% 74% 69% 

Kiribati Gilberts-North 75% 72% 72% 

Nauru Nauru 75% 69% 63% 

Kiribati Ocean Island 74% 68% 64% 

Kiribati Northern Line Islands 71% 69% 70% 

Kiribati Phoenix Islands 66% 63% 60% 

Tuvalu Northern Tuvalu 66% 63% 63% 

French Polynesia Marquesas Islands 61% 55% 56% 

Kiribati Southern Line Islands 59% 57% 55% 

Vanuatu Torba 59% 56% 53% 

Tokelau Tokelau 59% 55% 52% 

Cook Islands Northern Cook Islands 58% 56% 56% 

Tuvalu Southern Tuvalu 58% 55% 55% 

Palau Babeldaob region 57% 57% 51% 

Palau South-west Islands 57% 50% 43% 

FSM Kapingamarangi 57% 54% 49% 

Vanuatu Penama 55% 55% 57% 

Papua New Guinea Southern Region 55% 53% 50% 

Fiji Western 54% 54% 53% 

Vanuatu Sanma 54% 57% 53% 

FSM Pohnpei 54% 54% 54% 

New Caledonia Loyalty Islands Province 54% 55% 54% 

FSM Yap 54% 55% 48% 

Papua New Guinea Highlands Region 53% 46% 47% 

Tonga Vavau 53% 53% 49% 

Vanuatu Tafea 53% 55% 53% 

Marshall Islands Southern Marshall Islands 53% 52% 47% 



Fiji Central 53% 51% 49% 

Vanuatu Shefa 53% 54% 52% 

Vanuatu Malampa 52% 51% 52% 

New Caledonia South Province 52% 49% 51% 

Fiji Eastern 52% 54% 51% 

Papua New Guinea Momase Region 52% 46% 45% 

Solomon Islands Choiseul Province 51% 48% 47% 

New Caledonia North Province 51% 47% 47% 

American Samoa Swains 51% 48% 48% 

Tonga Haapai 51% 52% 52% 

FSM Chuuk 51% 51% 49% 

Solomon Islands Temotu Province 50% 50% 42% 

FSM Kosrae 50% 49% 48% 

Guam Guam 50% 47% 51% 

Northern Mariana Islands Northern Islands 49% 41% 40% 

Solomon Islands Isabel Province 49% 50% 45% 

Niue Niue 49% 48% 49% 

Papua New Guinea Islands Region 49% 45% 46% 

Northern Mariana Islands Southern Islands 49% 45% 46% 

Solomon Islands Makira-Ulawa Province 48% 46% 44% 

Tonga Tongatapu-Eua 48% 48% 49% 

Kiribati Central Line Islands 48% 46% 43% 

Fiji Northern 47% 47% 45% 

Solomon Islands Rennell and Bellona 47% 45% 45% 

American Samoa Manua 47% 43% 42% 

Marshall Islands Northern Marshall Islands 46% 43% 40% 

Marshall Islands Central Marshall Islands 46% 42% 42% 

Samoa Savaii 46% 44% 43% 

Solomon Islands Central Province 46% 44% 42% 

Fiji Rotuma 46% 45% 46% 

Tonga Niuas 46% 46% 46% 

American Samoa Tutuila 46% 44% 42% 

French Polynesia Tuamotu Archipelago 45% 48% 43% 

Solomon Islands Malaita Province 45% 43% 41% 

Samoa Upola 45% 43% 40% 

Pitcairn Ducie 45% 41% 43% 

Solomon Islands Wesgtern Province 44% 44% 43% 

Solomon Islands Guadacanal Province 44% 41% 41% 

Pitcairn Pitcairn, Henderson & Oeno 44% 38% 40% 

Wallis et Futuna Futuna 43% 46% 47% 

Wallis et Futuna Wallis 41% 42% 42% 

French Polynesia Austral Islands 40% 37% 37% 

French Polynesia Gambier Islands 39% 31% 38% 



Cook Islands Southern Cook Islands 38% 41% 37% 

French Polynesia Windward-Society Islands 38% 35% 32% 

French Polynesia Leeward-Society Islands 33% 32% 33% 

 

A2, Supplementary Table 2: Same as A1 but for seasonal quartile probabilistic forecasts. Accuracy 

exceeding 30% is shaded in green. Note that for quartile probabilistic forecasts, a climatological forecast 

would have an accuracy of 25%. 

Country District 3 4 5 

Kiribati Gilberts-North 59% 56% 56% 

Nauru Nauru 58% 56% 52% 

Kiribati Gilberts-South 58% 56% 51% 

Kiribati Ocean Island 53% 51% 49% 

Kiribati Northern Line Islands 48% 47% 48% 

FSM Kapingamarangi 47% 44% 42% 

Kiribati Phoenix Islands 45% 41% 38% 

Tuvalu Northern Tuvalu 43% 42% 44% 

Palau South-west Islands 42% 37% 35% 

Vanuatu Torba 42% 41% 39% 

Papua New Guinea Momase Region 41% 35% 40% 

Vanuatu Penama 41% 38% 38% 

Tuvalu Southern Tuvalu 41% 42% 42% 

FSM Chuuk 41% 39% 40% 

Palau Babeldaob region 41% 39% 35% 

Papua New Guinea Southern Region 40% 39% 37% 

Papua New Guinea Islands Region 40% 41% 39% 

Tokelau Tokelau 40% 40% 38% 

FSM Pohnpei 39% 41% 40% 

Vanuatu Sanma 39% 38% 39% 

Solomon Islands Makira-Ulawa Province 39% 37% 33% 

French Polynesia Marquesas Islands 39% 38% 36% 

Solomon Islands Rennell and Bellona 39% 42% 38% 

Northern Mariana Islands Southern Islands 39% 35% 33% 

FSM Yap 39% 38% 36% 

Tonga Vavau 38% 37% 35% 

Papua New Guinea Highlands Region 38% 35% 33% 

Cook Islands Northern Cook Islands 38% 38% 35% 

Guam Guam 37% 34% 33% 

Marshall Islands Southern Marshall Islands 37% 34% 35% 

FSM Kosrae 37% 38% 38% 

Fiji Eastern 37% 35% 35% 

Fiji Central 37% 32% 35% 

Fiji Western 37% 36% 40% 



Vanuatu Shefa 36% 35% 36% 

Kiribati Southern Line Islands 36% 36% 37% 

Solomon Islands Choiseul Province 36% 37% 35% 

Tonga Haapai 36% 37% 37% 

Vanuatu Malampa 36% 36% 38% 

Solomon Islands Isabel Province 36% 38% 36% 

Solomon Islands Central Province 36% 35% 31% 

Vanuatu Tafea 36% 35% 35% 

Tonga Tongatapu-Eua 35% 39% 40% 

American Samoa Tutuila 35% 30% 33% 

New Caledonia Loyalty Islands Province 35% 35% 36% 

Fiji Rotuma 35% 32% 34% 

New Caledonia South Province 35% 34% 36% 

Niue Niue 35% 33% 34% 

New Caledonia North Province 35% 34% 38% 

Solomon Islands Guadacanal Province 34% 33% 32% 

American Samoa Swains 34% 35% 34% 

American Samoa Manua 34% 34% 30% 

Solomon Islands Wesgtern Province 33% 35% 32% 

Fiji Northern 33% 32% 32% 

Kiribati Central Line Islands 33% 30% 32% 

Solomon Islands Temotu Province 33% 37% 35% 

Samoa Savaii 33% 28% 31% 

Wallis et Futuna Futuna 32% 30% 29% 

Marshall Islands Central Marshall Islands 32% 29% 29% 

Pitcairn Pitcairn, Henderson&Oeno 32% 31% 30% 

Wallis et Futuna Wallis 32% 29% 34% 

Samoa Upola 31% 29% 29% 

Solomon Islands Malaita Province 31% 30% 30% 

Northern Mariana Islands Northern Islands 31% 32% 31% 

Marshall Islands Northern Marshall Islands 30% 32% 30% 

French Polynesia Gambier Islands 30% 32% 30% 

Tonga Niuas 30% 32% 29% 

French Polynesia Tuamotu Archipelago 30% 29% 29% 

Pitcairn Ducie 29% 30% 31% 

French Polynesia Austral Islands 29% 25% 25% 

French Polynesia Windward-Society Islands 27% 25% 26% 

French Polynesia Leeward-Society Islands 27% 26% 26% 

Cook Islands Southern Cook Islands 24% 30% 31% 
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